
Under review as a conference paper at ICLR 2024

AUTO DP-SGD: DUAL IMPROVEMENTS OF PRIVACY
AND ACCURACY VIA AUTOMATIC CLIPPING THRESH-
OLD AND NOISE MULTIPLIER ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially Private Stochastic Gradient Descent (DP-SGD) has emerged as a
popular method to protect personally identifiable information (PII) in deep learn-
ing (DL) applications. Unfortunately, DP-SGD’s per-sample gradient clipping and
uniform noise addition during training can significantly degrade model utility. To
enhance the model’s utility, researchers proposed various adaptive/dynamic DP-
SGD methods by adapting the noise multiplier and clipping threshold. However,
we examine and discover that these established techniques result in greater privacy
leakage or lower accuracy than the traditional DP-SGD method, or a lack of eval-
uation on a complex data set such as CIFAR100. To address these limitations, we
propose an automatic DP-SGD (Auto DP-SGD). Our method automates clipping
threshold estimation based on the DL model’s gradient norm and scales the gra-
dients of each training sample without losing gradient information or requiring an
additional privacy budget than what is needed for DP training. This helps to im-
prove the algorithm’s utility while using a less privacy budget. To further improve
accuracy, we introduce automatic noise multiplier decay mechanisms to decrease
the noise multiplier after every epoch. Finally, we develop closed-form mathe-
matical expressions using the truncated concentrated differential privacy (tCDP)
accountant, which offers a straightforward and tight privacy-bound analysis for
automatic noise multiplier and automatic clipping threshold estimation. Through
extensive experimentation, we demonstrate that Auto DP-SGD outperforms exist-
ing state-of-the-art (SOTA) DP-SGD methods in privacy and accuracy on various
benchmark datasets. We also show that privacy can be improved by lowering the
scale factor and using learning rate schedulers without significantly reducing ac-
curacy. Moreover, we explain how to select the best Auto DP-SGD variant that
does not require a privacy budget more than what is needed to train the Auto DP
algorithm. Specifically, Auto DP-SGD, when used with a step noise multiplier
(Auto DP-SGD-S), improves accuracy by 3.20%, 1.57%, 6.73%, and 1.42% for
the MNIST, CIFAR10, CIFAR100, and AG News Corpus datasets, respectively.
Furthermore, it obtains a substantial reduction in the privacy budget (ϵ) of 94.9%,
79.16%, 67.36%, and 53.37% for the corresponding data sets.

1 INTRODUCTION

DL emerged as a powerful technology during the fourth industrial revolution Sarker (2021). Busi-
ness intelligence, sentiment analysis, banking, healthcare Ardila et al. (2019), finance Huang et al.
(2020), and many other fields employ DL to earn huge revenue and reduce human burden hea
(2023); Fin (2023). Unfortunately, data, including patient images and PII Hassani et al. (2020),
used to train DL algorithms in some industries mentioned above, are privacy sensitive. Current
studies demonstrate that extracting sensitive information from DL models is possible through var-
ious attacks Shokri et al. (2017); Hu et al. (2022); Truex et al. (2018); Gong & Liu (2016; 2018);
Zhao et al. (2021); Fredrikson et al. (2015); Wu et al. (2016); Chen et al. (2020a); Dwork et al.
(2014); Dinur & Nissim (2003). Even more concerning, sensitive information cannot be protected
using conventional methods like de-identification Near & Abuah (2021) and k-anonymity Sweeney
(2015).

1

Under review as a conference paper at ICLR 2024

The existing investigation indicates that differential privacy (DP) can provide strong privacy guar-
antees for sensitive information Dwork et al. (2011; 2006b). Different DP mechanisms are imple-
mented in various machine learning (ML) algorithms Fletcher & Islam (2019); Jagannathan et al.
(2009); Chaudhuri et al. (2011); Wang et al. (2017), and deep neural networks (DNN) Abadi et al.
(2016); Zhang et al. (2021) For DNN, DP-SGD Abadi et al. (2016); Chen et al. (2020b) is used
more frequently as it obtains higher accuracy with reasonable privacy loss. DP-SGD uses per-
sample gradient clipping to bind the sensitivity of the gradients and adds noise to the aggregated
clipped gradients to avoid leakage of PII. Using uniform clipping Abadi et al. (2016); Koskela &
Honkela (2020); Zhang et al. (2021) can result in increased privacy leakage, particularly when using
elevated clipping thresholds such as 50 as shown in Table 2. Du et al. (2021) proposed dynamic
DP-SGD incorporating dynamic clipping and adaptive noise addition. However, they did not ade-
quately estimate the privacy budget and did not perform experiments on complex data sets such as
CIFAR10 and CIFAR100. We implement dynamic DP-SGD on the CIFAR-10 data set and find it to
have lower accuracy than conventional DP-SGD, as shown in Table 3.

To estimate the privacy budget of the DP algorithms, there are different privacy accountants such as
concentrated DP (CDP) Dwork & Rothblum (2016), zero concentrated DP (zCDP) Bun & Steinke
(2016), Renyi DP (RDP) Mironov (2017) and truncated concentrated DP (tCDP). CDP and zCDP
accountants lack privacy amplification by sampling. The RDP accountant Abadi et al. (2016), over-
estimates privacy costs. On the other hand, the Gaussian DP (GDP) accountant Du et al. (2021)
underestimates the exact privacy budget. Auto DP-SGD adjusts the noise multiplier and clipping
threshold after each epoch and sample, respectively. The privacy accountant of tCDP provides
lemmas 1-4 to incorporate these changes, support privacy amplification through subsampling, and
develop closed-form mathematical expressions that efficiently approximate the total privacy budget,
as opposed to CDP, zCDP, RDP, and GDP.

In conclusion, existing work suffers from issues such as the poor choice of privacy accountant Du
et al. (2021), uniform clipping Abadi et al. (2016); Zhang et al. (2021); Koskela & Honkela (2020),
and limited evaluation Du et al. (2021). To overcome these limitations and bridge the gap between
DP and nonprivate model accuracy while maintaining strong privacy guarantees, we design Auto
DP-SGD. The Auto DP-SGD technique comprises two crucial components: an automatic clipping
threshold estimation and an automatic noise multiplier estimation. Automatic clipping threshold es-
timation avoids operations involving a batch of model parameters or gradients that are obtained over
a batch of data samples, as they compromise differential privacy. Our method uses the total gradient
norm of the model for a single sample in a batch to determine the clipping threshold for that sample.
This approach offers two advantages: First, it lowers the average sensitivity of the algorithm by
adjusting the clipping threshold according to the decreasing gradient norm throughout the training;
thus, it improves privacy; second, it eliminates excess noise, leading to accuracy improvement. In-
spired by the usage of learning rate schedulers in non-private deep learning models, we formulate
the concept of an automatic noise multiplier decay for DP-SGD. Our work introduces the following
primary contributions:

• To accurately estimate the clipping threshold for each sample, we propose an algorithm 1
that computes the total gradient norm of the model, multiplies it with a scale factor and
sets it as a clipping threshold. Then, it scales all the per-sample gradients and avoids
clipping. Scaling the gradients has been shown to help the model converge faster, and thus
it improves the utility of the model Bu et al. (2021); Esipova et al. (2022).

• We propose three new automatic noise multiplier decay mechanisms: (i) time decay, (ii)
exponential decay, and (iii) step decay by extending the existing linearly decaying noise
multiplier Zhang et al. (2021). Decay of the noise multiplier reduces the noise multiplier
after every epoch and helps to improve the accuracy of the model Zhang et al. (2021). Our
Auto DP-SGD integrates an automatic noise multiplier decay mechanism and automatic
clipping threshold estimation algorithm.

• We investigate the impact of various learning rate schedulers, scale factors, and noise mul-
tiplier decay mechanisms on DP models’ accuracy and privacy. Moreover, we develop
mathematical expressions to estimate the privacy budget of Auto DP-SGD.

• Through extensive evaluations, we demonstrate that Auto DP-SGD outperforms current
state-of-the-art (SOTA) DP-SGD methods on various benchmark datasets. More specifi-
cally, our Auto DP-SGD-S variant improves accuracy by 3.20%, 1.57%, 6.73%, and 1.42%
as well as reduces the privacy budget (ϵ) by 94.9%, 79.16%, 67.36%, and 53.37% on the
MNIST, CIFAR10, CIFAR100, and AG News Corpus datasets, respectively. Moreover, we

2

Under review as a conference paper at ICLR 2024

also demonstrate how to select the best Auto DP-SGD-S variant that does not require a
privacy budget more than what is needed to train the Auto DP algorithm.

2 RELATED WORK

Adaptive DP-SGD algorithms. There are many studies related to DP-SGD. This section only com-
pares the most related work with our proposed Auto DP-SGD. Existing work has focused on de-
veloping adaptive hyperparameters such as learning rate, clipping threshold, and noise multiplier
to improve the trade-off between privacy and accuracy. Zhang et al. (2021) proposed adaptive
DP-SGD that linearly decays the Gaussian noise mechanism to reduce noise, demonstrating its bet-
ter performance than the standard DP-SGD approach. Koskela & Honkela (2020) presented a DP
technique that eliminates the need for validation sets when adapting the learning rate for DP-SGD.
Du et al. (2021) proposed a dynamic DP-SGD approach that dynamically adjusts the clipping and
noise multiplier. These studies change one or two of the three hyperparameters (learning rate, noise
multiplier, and clipping threshold) to improve the DP-SGD. In contrast, our work proposes an opti-
mization method that addresses all three parameters simultaneously and obtains SOTA accuracy and
privacy.

DP-SGD Global Bu et al. (2021) and DP-SGD Global-Adapt Esipova et al. (2022) are popular gra-
dient scaling algorithms for DP-SGD. DP-SGD Global scales gradients with an l2 norm less than
or equal to a clipping threshold. If the gradients are larger than the clipping threshold, they are
discarded. DP-SGD Global has two problems: (i) If the clipping threshold is set too high, no gra-
dients are discarded, but the clipped gradients become smaller, making it harder for the algorithm
to converge. (ii) If the clipping threshold is too low, most gradients are discarded, leading to in-
formation loss. DP-SGD Global-Adapt is a modified version of DP-SGD Global that makes the
DP algorithm fairer. It does this by clipping the gradients higher than the upper clipping threshold
to have an l2 norm equal to the lower clipping threshold to reduce the loss of information. It also
adaptively changes the upper threshold to be higher than all the per-sample gradients by using the
privacy budget. Since the fairness of DP is not the focus of our paper, we leave testing our algo-
rithm on a fairness-related dataset to future work. Our Auto DP-SGD algorithm does not require an
additional privacy budget than what is needed for the DP algorithm training and does not cause any
information loss.

Privacy accountants. Privacy accountants compose the loss of privacy incurred during each iteration
of DP training to calculate the total cost of privacy (ϵ, δ). Dwork et al. (2006a); Dwork & Lei (2009)
offers a simple composition method that linearly combines the DP of various iterations, resulting
in a greater loss of privacy. Dwork et al. (2010) defined an advanced composition theorem to
tightly bind the cumulative privacy budget. Abadi et al. (2016) proved that tighter estimates of
the total privacy loss could be obtained by tracking higher moments of the privacy loss. Mironov
(2017) introduced an RDP based on Renyi divergence to track cumulative privacy loss throughout
training. RDP underestimates the true cost of privacy. Dong et al. (2019) proposed f -DP measure
the privacy cost from the point of view of hypothesis testing, with GDP as the main application.
However, while GDP permits a tight composition, it is computationally difficult to determine the
accurate composition of the Gaussian mechanism with subsampling amplification. Bun et al. (2018)
proposed tCDP as an enhancement over CDP. tCDP supports privacy amplification, unlike CDP, and
offers a method to increase accuracy exponentially. Recently, Gopi et al. (2021) have proposed
numerical methods to determine the optimal composition of the DP mechanisms. It is difficult to
calculate how much privacy the algorithm loses when the noise multiplier changes for each epoch
and the clipping threshold changes for each sample, as in Auto DP-SGD.

3 BACKGROUND ON DIFFERENTIAL PRIVACY (DP)

Differential privacy (DP) Dwork (2008); Hilton (2002) is a method to preserve an individual’s data
while revealing aggregated information. DP is formally defined as follows:

Definition 3.1. A randomized function F : D → R with a domain D and range R satisfies (ϵ, δ)−
differential privacy if for any two datasets d, d̂ ∈ D, differing with only a single data sample and
for any subset of outputs O ⊆ R, it holds that

3

Under review as a conference paper at ICLR 2024

Pr[F(d) ∈ O] ≤ eϵPr[F(d̂) ∈ O)] + δ (1)

One commonly used method to introduce randomness to a deterministic real-valued function g :
D → R is by adding noise calibrated to the sensitivity sg of the function g. Sensitivity is the
maximum absolute difference between the output of g on any two neighboring data sets d, d̂ ∈ D.

sg = maxd,d̂||g(d)− g(d̂)||2 (2)

Most commonly, noise is drawn from the Gaussian distribution and added to the deterministic func-
tion as follows:

F(d) = g(d) +N (0, s2g · σ2) (3)

where N (0, s2g · σ2) is the Gaussian distribution with mean 0 and standard deviation sg · σ and σ is
termed the noise multiplier.

The function F satisfies (ϵ, δ)− DP, where δ ∈ (0, 1) and σ ≥
√

2ln(1.25)/δsg
ϵ is a noise multiplier.

Definition 3.2. (tCDP). For all τ ∈ (1, ω), a randomized algorithm A is (ρ, ω)− tCDP if for any
neighboring data sets d and d̂, and all α > 1, we have:

Dτ (A(d)||A(d̂)) ≤ ρα (4)

where Dτ (·||·) is the Renyi divergence of order τ .

Given two distributions µ and ν on a Banach space (Z,|| · ||), the Rényi divergence is computed as
follows.

Definition 3.3. Rényi divergence Rényi (1961): Let 1 < α <∞, and µ, ν be measures with µ≪ ν.
The Rényi divergence of orders α between µ and ν is defined as:

Dα(µ||ν)
.
=

1

α− 1
ln

∫
(
µ(z)

ν(z)
)αν(z)dz. (5)

Here we follow the convention 0
0 = 0. If µ ̸≪ ν, we define the Renyi divergence as∞. The Renyi

divergence of orders α = 1,∞ is defined by continuity.

In this work, we mainly use the following properties of tCDP, as demonstrated in Bun et al. (2018):

Lemma 1. The Gaussian mechanism satisfies (
(s2g)

2σ2 ,∞)− tCDP.

Lemma 2. If randomized functions F1 and F2 satisfy (ρ1, ω1)-tCDP and (ρ2, ω2)-tCDP, their com-
position defined as (F1 ◦ F2) is (ρ1 + ρ2,min(ω1, ω2))−tCDP.

Lemma 3. If a randomized function F satisfies (ρ, ω)−tCDP, then for any δ ≥ 1/exp((ω−1)2ρ), F
satisfies (ρ+ 2

√
ρln(1/δ), δ)− differential privacy.

Lemma 4. If a randomized function F satisfies (ρ, ω)−tCDP, then for any n-element data set
D, computing on uniformly random cn entries ensures (13c2ρ, log(1/c)/(4ρ))−tCDP, with ρ, c ∈
(0, 0.1], log(1/c) ≥ 3ρ(2 + log(1/ρ)) and ω ≥ log(1/c)/(2ρ).

The lemma 1 provides a relation between the Gaussian mechanism and the tCDP privacy accountant.
Lemma 2 describes the composition property of two randomized functions under tCDP. The lemma
3 provides a way to convert the privacy budget in the tCDP accountant to the standard (ϵ, δ)− DP.
The lemma 4 illustrates privacy amplification through random sampling using tCDP. We derive the
proof for our proposed algorithm using these lemmas as a basis. We have provided the full proof for
all of our Auto DP-SGD variants in Appendix A.1.

4

Under review as a conference paper at ICLR 2024

Algorithm 1: Automatic Clipping threshold estimation (AC)
Input: Batch size B, scale factor W , batch of model gradients G, G includes g0, g1,..., gB−1

Initialize an empty clip list C
for b = 0, 1, ..., B − 1 do

Compute the total gradient norm of the model for current iteration
L = ||gb||2 where gb represents gradients of all the model parameters after bth sample in G

is backpropagated and the model is updated.
Compute the current iteration clipping threshold
cb = W · L
scale the model gradient
ḡb = gb/max(1, ||gb||2

cb
) = W · gb

Replace the normal gradient with the scaled gradient
gb = ḡb
Add the cb to the clip list C and update the gradient list G

end
Output: st=(

∑B−1
b=0 cb)/B, ḡt = (

∑B−1
b=0 gb)/B

4 METHODOLOGY

4.1 AUTOMATIC CLIPPING THRESHOLD ESTIMATION

DP-SGD employs per-sample gradient clipping to estimate the sensitivity of gradients. Seminal
work on DP-SGD Abadi et al. (2016) and some recent studies Zhang et al. (2021) adopt a fixed
clipping threshold throughout training. However, the magnitudes of gradients tend to decrease over
iterations, and gradient clipping becomes less effective when the gradients are smaller than the
clipping threshold. Consequently, using a fixed clipping threshold introduces redundant noise to the
model, eventually reducing accuracy. Thus, it becomes necessary to dynamically adjust the clipping
threshold between iterations. To address this issue, we propose Algorithm 1.

The algorithm 1 takes the batch size B, the scale factor W (W ∈ (0, 1]), and a batch of model
gradients G consisting of g0, g1, ..., gB−1 as inputs. Next, it initializes an empty clip list C to store
the clipping threshold cb for each sample. As the algorithm traverses each sample in the training
set, it computes the total gradient norm (L) of the model gradients. The L is defined as the l2
norm of the gradients of the model in the current iteration. The clipping threshold (cb) is then
calculated by multiplying L by the scale factor W . The algorithm then scales the model gradient
by computing ḡb = W · gb. Then it replaces the normal gradient with a scaled gradient. Next, cb is
added to the list C, and the gradient list G is updated with ḡb. After running through all iterations,
the algorithm produces the average of the clipping threshold and the gradients, respectively. In
general, the algorithm 1 scales the gradients of the model and computes the clipping threshold in
each iteration. One of the outputs of the algorithm 1, which is the average clipping threshold, is
used when estimating the total privacy budget of the Auto DP-SGD. We emphasize that this is
the main reason we propose the algorithm 1. We avoid clipping the gradients, since it results in
information loss, and scaling helps the model to converge faster, thus improving the utility Bu et al.
(2021); Esipova et al. (2022). Algorithm 1 is compatible with DP since computations use per-
sample gradients only. We demonstrate the importance of automatic clipping in Appendix C. and
the estimation of the total privacy budget in Appendix A.

Table 1: Types of noise multiplier decay mechanisms.

Auto DP-SGD variant Decay type Mathematical expression

Auto DP-SGD-L Linear decay Zhang et al. (2021) σ2
e = σ2

0R
e, R = 0.99

Auto DP-SGD-T Time decay σ2
e =

σ2
0

1+Re , R = σ0/E

Auto DP-SGD-S Step decay σ2
e = σ2

0R
⌊e/D⌋, R = 0.5, D = 10

Auto DP-SGD-E Exponential σ2
e = σ2

0 exp(−Re), R = 0.1
decay

5

Under review as a conference paper at ICLR 2024

Algorithm 2: Automatic differentially private SGD (Auto DP-SGD)

Input: Private examples {x1, ..., xM}, loss function L(θt) = 1
M

∑
i L(θt, xi), θt is model

parameter at tth iteration, noise multiplier decay mechanism σ2
e = F (e,R,D, σ0),

learning rate ηt, Batch Size B, Bt is batch of samples at tth iteration, scale factor W ,
decay rate R, sampling rate q = B/M , epochs E, iterations T = E/q.

Initialize θ0, σ0

for t = 0, 1, ..., T − 1 do
Initialize an empty list G
Randomly take a batch of data samples with sampling rate q from the training data set.
Compute gradient
For each xi ∈ Bt, compute g = ▽θtL(θt, xi) and add it to G
Call the automatic clipping algorithm to obtain the average of clipping threshold and

gradients
st, ḡt = AC(B,W,G)
Calculate the noise multiplier
σ2
t = F (e,R,D, σ0), e = ⌊qt⌋

Add Gaussian noise according to the noise decay scheduler
ḡt = ḡt +

N (0,σ2
t s

2
t I)

B , where I is the identity matrix.
Update the model parameter
θt+1 ← θt − ηtḡt

end
Output: θT

4.2 AUTOMATIC NOISE MULTIPLIER ESTIMATION

As the iterations progress, the gradients decrease, as shown in Figure 2 for DP-SGD Abadi et al.
(2016). However, the noise multiplier is the same across the training. In that case, it is possible
that the noise will overpower the gradients, especially in later training iterations when the gradients
are much smaller, leading to meaningless model predictions. Moreover, it is necessary to decrease
the noise multiplier through training to improve the utility Zhang et al. (2021). Therefore, Zhang
et al. (2021) used a linear Gaussian decay noise multiplier to minimize the negative impact of fixed
noise addition. We build upon their work and propose three more decaying mechanisms: step decay,
exponential decay (exp decay), and time decay inspired by learning rate schedulers used in non-
private settings. The various noise multiplier decay techniques examined in this paper are illustrated
in Table 1. In Table 1, σ0 is the initial noise multiplier; e is the epoch number; R is the decay rate;
D is the epoch drop rate; and E is the total number of training epochs.

4.3 AUTO DP-SGD

The automatic DP-SGD algorithm (Auto DP-SGD), which incorporates automatic clipping thresh-
old estimation (AC) and automatic noise multiplier decay, is explained in this section. Auto DP-SGD
takes the private dataset, loss function, and other parameters as input. Then, it initializes the model
parameters and noise multiplier. The algorithm runs T iterations, where T = E

q . E represents the
total number of training epochs. q = B/M is the sampling rate, where B is the batch size, and M
represents the number of training examples in the data set. In each iteration, the algorithm initializes
an empty list G. Next, it obtains a batch of data samples that are selected randomly with a sampling
rate of q. Then, for each sample in the batch, the model gradient is obtained and appended to the list
G. Auto DP-SGD then calls the Automatic Clipping threshold estimation algorithm (AC) and ob-
tains the average of the clipping threshold and gradients. Now, the noise decay mechanism is called
to compute the noise multiplier for the current iteration. The noise decay mechanism F can be one
of the four noise decay mechanisms presented in Table 1. The argument D of F is only used for
the step noise decay scheduler. The F is set before the algorithm starts. Finally, the Auto DP-SGD
updates the average gradient obtained using the AC algorithm and the model parameter. When all
iterations have been completed, the algorithm generates the updated model.

We emphasize that the equation to add noise in DP-SGD Abadi et al. (2016): g̃t =
1
s (
∑

i(ḡt(xi) +

N (0, σ2S2I)) is the same as our proposed algorithm noise adding mechanism (see the Appendix

6

Under review as a conference paper at ICLR 2024

A.2 for a more detailed explanation). Noise multiplier decays F , scale factor W , and learning rate
schedulers reduce the magnitude of scaled noisy gradients. The Algorithm 1 (AC) finds the clipping
threshold for every sample considering this reduction in the magnitude of the scaled gradients using
the total gradient norm. Therefore, Algorithm 2 (Auto DP-SGD) results in a lower sensitivity, as
shown in Tables 11-13. Lower sensitivity improves privacy, as discussed in the Appendix A. Lower
sensitivity also reduces the noise added to the model, leading to an improvement in accuracy. This
is the reason why Auto DP-SGD has obtained better accuracy even with a lower privacy budget (ϵ).

5 EXPERIMENTS

In this section, we use the DP and DP-SGD interchangeably. In Tables 2 - 4, the Acc., ∆ϵ, and
∆Acc. should be considered in percentages. In Tables 2 - 5, Auto DP-S is the Auto DP used
with step noise multiplier decay, σ0 is the initial noise multiplier for Auto DP-S, dynamic DP, and
adaptive DP. For DP, σ0 is the noise multiplier that is used throughout the training. We want to
emphasize that the lower the privacy budget (ϵ), the higher the privacy and the less vulnerable the
model is to inference-based attacks.

Implementation details. The codes for our experiments are developed and implemented using Py-
Torch Tor (2017). We conduct all the experiments on a server equipped with an Intel Core i9-
10980XE CPU, 251 GB of memory, and four Nvidia Quadro RTX 8000 GPUs, running Ubuntu
18.04 OS. We use the expression given in Section 4.3, Theorem 2 of Zhang et al. (2021) to compute
the privacy budget for adaptive DP-SGD Abadi et al. (2016). The adaptive DP-SGD is implemented
using the logic shown in Zhang et al. (2021). To implement dynamic DP-SGD, we use the codes
provided in dp (2021). We will release the codes for our proposed algorithm after the paper is
published or accepted. In this paper, we provide the details to replicate our work.

Table 2: Accuracy (Acc.) and privacy budget for different DP algorithms using MNIST dataset and
custom CNN model.

DP Dynamic DP ADP Auto DP-S
Abadi et al. (2016) Du et al. (2021) Zhang et al. (2021)

σ0 ϵ (↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ∆ ϵ ∆Acc.

1.4929 1 92.45 1 94.84 9.52 93.71 0.50 99.26 -50.0 4.67
0.9584 2 94.01 2 95.44 16.86 94.98 0.68 99.29 -66.0 4.03
0.6630 5 95.24 5 96.15 25.44 95.81 0.52 99.31 -89.6 3.29
0.5517 10 95.70 10 96.26 32.32 96.26 0.51 99.34 -94.9 3.20

Table 3: Accuracy (Acc.) and privacy budget for different DP algorithms using CIFAR10 dataset
and pre-trained NFNet-F0 model.

DP Dynamic DP ADP Auto DP-S
Abadi et al. (2016) Du et al. (2021) Zhang et al. (2021)

σ0 ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ∆ ϵ) ∆ Acc.

1.6082 1 92.29 1 91.31 1.87 92.58 0.50 94.96 -73.26 2.57
1.0134 2 92.85 2 92.08 3.04 93.18 0.72 95.12 -76.32 2.08
0.6848 5 93.29 5 92.69 4.62 93.54 1.00 95.18 -78.35 1.75
0.5649 10 93.52 10 93.07 5.71 93.77 1.19 95.24 -79.16 1.57

Computation details. Each experiment has taken approximately 20 hours, and this project involves
more than 100 successful experiments. The project took five months to test the Auto DP-SGD and
to collect all the required experiments.

Evaluation strategy. Specifically, we use a custom CNN model, consisting of two convolutional
layers, fully connected layers, a Max Pool layer, and a ReLU, to train on the MNIST data set LeCun
et al. (1998). Furthermore, we fine-tune the NFNet-F0 and NFNet-F1 pretrained models Brock
et al. (2021) on the CIFAR10 and CIFAR100 datasets Krizhevsky et al. (2009), respectively. In
the fine-tuning process, we reinitialized only the final classification layer. We find that existing

7

Under review as a conference paper at ICLR 2024

Table 4: Accuracy (Acc.) and privacy budget for different DP algorithms using CIFAR100 dataset
and pre-trained NFNet-F1 model.

DP Dynamic DP ADP Auto DP-S
Abadi et al. (2016) Du et al. (2021) Zhang et al. (2021)

σ0 ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ∆ ϵ ∆ Acc.

1.6082 1 58.54 1 65.77 3.89 70.42 1.70 79.09 -56.30 12.31
1.0134 2 71.20 2 69.42 6.43 72.63 2.49 79.92 -61.28 10.04
0.6848 5 73.06 5 71.37 10.03 74.43 3.47 80.30 -65.40 7.89
0.5649 10 74.11 10 72.47 12.56 75.35 4.10 80.42 -67.36 6.73

Table 5: Accuracy (Acc.) and privacy budget for different DP algorithms using AG News Corpus
dataset and BiLSTM model.

DP Adaptive DP Auto DP-S
Abadi et al. (2016) Zhang et al. (2021)

σ0 ϵ(↓) Acc. ϵ(↓) Acc. ϵ(↓) Acc. ∆ ϵ ∆ Acc.

1.3768 1 83.63% 3.78% 84.57% 2.04 85.18% -46.03% 0.72%
0.9169 2 84.76% 5.87% 85.32% 3.01 86.33% -48.72% 1.18%
0.6585 5 85.56% 8.51% 85.93% 4.13 87.09% -51.47% 1.35%
0.5468 10 86.09% 10.53% 86.13% 4.91 87.35% -53.37% 1.42%

Table 6: Accuracy of non-private model for different datasets.

Dataset Accuracy

MNIST 99.49%
CIFAR10 95.79%
CIFAR100 81.21%
AG News Corpus 89.06%

methods Zhang et al. (2021); Du et al. (2021) are evaluated on simple data sets such as CIFAR10 and
MNIST. We make our evaluation more comprehensive by evaluating our Auto DP-SGD on simple
and complex datasets, from custom models to pretrained ones on image and text classification tasks.
Auto-DP-SGD is independent of the model and dataset, which is the reason why our approach works
well on all kinds of models and data sets. Lastly, we conduct experiments using the BiLSTM model
on the AG News Corpus dataset AG (2005). The batch size for all algorithms is fixed before the
training starts. However, samples are selected in batches at random in every iteration. To make
our evaluation robust and fundamentally correct, we use the same set of hyperparameters to run all
algorithms on an appropriate dataset.

To perform a comparative analysis, we evaluate the performance of our proposed approach against
non-private SGD, DP-SGD Abadi et al. (2016), dynamic DP-SGD Du et al. (2021), and adaptive
DP-SGD Zhang et al. (2021). The privacy budget for DP-SGD is calculated using the Renyi DP im-
plementation from TFPrivacy TFP (2019). On the contrary, the loss of privacy of dynamic DP-SGD
is calculated using the Gaussian DP method as described in Du et al. (2021). For Auto DP-SGD,
the privacy loss is estimated based on the equations provided in Table 8. We conduct experiments
with DP-SGD and dynamic DP-SGD for epsilon values of 1, 2, 5, and 10. To determine the epsilon
values for adaptive DP-SGD and Auto DP-SGD, we first calculate the noise multiplier using the
TF-Privacy package TFP (2019) for epsilon values of 1, 2, 5, and 10. Then, we utilize these noise
multipliers in the respective algorithms. We include these noise multipliers in Tables 2 3 4 5. The
probability parameter δ is set to 10−5 in all experiments. We want to emphasize that because the
privacy budget for the Auto DP-SGD depends on the average sensitivity of the algorithm, which
becomes known only after training, it is impossible to compute the privacy budget before training.

8

Under review as a conference paper at ICLR 2024

We find that the suitable clipping threshold for adaptive DP Zhang et al. (2021) and DP Abadi et al.
(2016) are 50, 10, 20, and 10 on MNIST, CIFAR10, CIFAR100, and AG News Corpus, respectively,
after performing a hyperparameter search. We provide experiments on hyperparameter tuning in
Appendix B.2., whereas Appendix B.1. contains details about the datasets used in this work and
details of hyperparameters. In Appendix B.3., we analyze the results of the Auto DP-SGD variants,
and in Appendix D. we explain how to select the best Auto DP-SGD variant without using validation
data to prevent privacy risk.

Comparative analysis. The Adaptive DP results in Table 2 illustrate that a higher clipping thresh-
old (the clipping threshold is set to 50) leads to an increased loss of privacy, with values of
ϵ = 9.52, 16.86, 25.44, 32.32 observed. Dynamic DP results in Tables 3 and 4 show poorer per-
formance compared to DP-SGD Abadi et al. (2016). However, it shows better performance in Table
2. With our automatic clipping threshold estimation algorithm (Algorithm 1), the Auto DP approach
overcomes the challenge of setting the clipping threshold before training by learning it automat-
ically. Auto DP-S outperforms current state-of-the-art (SOTA) DP-SGD methods on most of the
benchmark datasets used in this study. More specifically, Tables 2, 3, 4 and 5 show accuracy im-
provements of 3.20%, 1.57%, 6.73%, and 1.42% as well as a reduction in the privacy budget of
94.9%, 79.16%, 67.36%, and 53.37% using Auto DP-S. Auto DP-S achieves a higher reduction in
privacy budget than other DP methods because it uses a number of techniques to reduce the aver-
age sensitivity of the algorithm. These techniques include gradient scaling using automatic clipping
threshold estimation algorithm, automatic noise multipliers, and learning rate schedulers. The av-
erage sensitivity is directly proportional to the privacy budget (ϵ) (see Appendix A. to understand
the reason.). Therefore, by reducing the average sensitivity, Auto DP-S can achieve a much lower
privacy budget (ϵ). Auto DP-S achieves accuracy similar to that of the non-private model, even with
a lower privacy budget. For example, on MNIST Auto DP-S achieves an accuracy of 99.39% at ϵ
of 0.51, which is only slightly lower than the non-private model’s accuracy of 99.49%. The same
pattern is repeated for the rest of the datasets considered in the paper. The next closest accuracy to
the nonprivate model in MNIST is obtained by dynamic DP, which has an accuracy of 96.26% at
ϵ of 10. Since it is impossible to compute the privacy budget before starting the training for Auto
DP-S, we show the improvements in accuracy and privacy in percentages rather than comparing
the accuracy for the fixed privacy budget across the algorithms. The important point to note is that
the privacy budget formulation for Auto DP-L and adaptive DP Zhang et al. (2021) is identical.
However, the privacy budget attributed to Auto DP-L is reduced mainly due to automatic clipping
threshold estimation. This algorithm precisely assesses the clipping threshold and decreases the
average sensitivity of Auto DP-L. Consequently, this leads to a lower level of privacy leakage.

6 LIMITATIONS AND FUTURE WORK

The proposed Auto DP-E incurs a greater privacy loss. For example, on AG News Corpus data, using
the BiLSTM model requires a privacy budget (ϵ) 687.61 to obtain 81.06% accuracy for Auto DP-E,
while for Auto DP-S it only needs (ϵ) 4.10 to obtain 80.42% accuracy. Adjusting the noise multiplier
dynamically according to the characteristics of the data set and the model might be a good direction
to improve Auto DP-SGD. We leave differentially private hyperparameter tuning and improving the
utility using differentially private neural architecture search (DPNAS) Cheng et al. (2022) to future
work. The privacy accountant tCDP can be replaced with an exact computation method, such as
numerical methods Gopi et al. (2021), to obtain an exact privacy computation. However, using it is
not straightforward when noise and clipping threshold change every epoch.

7 CONCLUSION

We demonstrated that the existing adaptive DP-SGD algorithm incurs a higher privacy loss due to a
higher clipping threshold and is evaluated on a limited set of benchmarks. Furthermore, the adaptive
DP-SGD and dynamic DP-SGD algorithms were not evaluated on the CIFAR-100 dataset in their
paper. We then proposed an approach called Auto DP-SGD that automatically estimates the clipping
threshold in every iteration using the total gradient norm of the model. Specifically, we proposed the
three variants of Auto DP-SGD, namely Auto DP-SGD-T, Auto DP-SGD-S, and Auto DP-SGD-E,
and presented Auto DP-SGD-L, which uses our automatic clipping threshold estimation algorithm.
Finally, we formalized how to calculate the privacy loss using the tCDP privacy accountant. Auto
DP-SGD-S consistently improves the SOTA privacy/utility trade-off on various benchmarks. We
then showed that it is possible to improve privacy using learning rate schedulers and a scale factor

9

Under review as a conference paper at ICLR 2024

with little or no effect on accuracy. Furthermore, we explained how to select the best Auto DP-
SGD variant that does not require a privacy budget more than what is needed to train the Auto DP
algorithm. The variant of Auto DP-SGD that performs best, Auto DP-SGD-S, improves accuracy
by 3.20%, 1.57%, 6.73%, and 1.42% as well as reduces the privacy budget (ϵ) by 94.9%, 79.16%,
67.36%, and 53.37% using MNIST, CIFAR10, CIFAR100, and AG News Corpus, respectively.

REFERENCES

http://groups.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html,
2005. [accessed on 4-Feb-2023].

https://pytorch.org, 2017. [accessed on 12-Jan-2023].

https://github.com/tensorflow/privacy/tree/master/tensorflow_priva
cy, 2019. [accessed on 20-Jan-2023].

https://github.com/dynamic-dp/dynamic-dp, 2021. [accessed on 8-Apr-2023].

https://www.insiderintelligence.com/insights/ai-in-finance, 2023.
[accessed on 14-Mar-2023].

https://www.healthcaredive.com/news/artificial-intelligence-hea
lthcare-savings-harvard-mckinsey-report/641163/, 2023. [accessed on
2-Feb-2023].

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J Reicher, Lily Peng,
Daniel Tse, Mozziyar Etemadi, Wenxing Ye, Greg Corrado, et al. End-to-end lung cancer
screening with three-dimensional deep learning on low-dose chest computed tomography. Na-
ture medicine, 25(6):954–961, 2019.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. Neural
Networks: Tricks of the Trade: Second Edition, pp. 437–478, 2012.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021.

Zhiqi Bu, Hua Wang, and Qi Long. On the convergence and calibration of deep learning with
differential privacy. arXiv preprint arXiv:2106.07830, 2021.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and
lower bounds. In Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing,
China, October 31-November 3, 2016, Proceedings, Part I, pp. 635–658. Springer, 2016.

Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated cdp. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 74–86, 2018.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12(3), 2011.

Si Chen, Ruoxi Jia, and Guo-Jun Qi. Improved techniques for model inversion attacks. 2020a.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782,
2020b.

Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen, Peisong Wang, and Jian Cheng. Dpnas:
Neural architecture search for deep learning with differential privacy. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6358–6366, 2022.

10

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://pytorch.org
https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy
https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy
https://github.com/dynamic-dp/dynamic-dp
https://www.insiderintelligence.com/insights/ai-in-finance
https://www.healthcaredive.com/news/artificial-intelligence-healthcare-savings-harvard-mckinsey-report/641163/
https://www.healthcaredive.com/news/artificial-intelligence-healthcare-savings-harvard-mckinsey-report/641163/

Under review as a conference paper at ICLR 2024

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 202–210, 2003.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint
arXiv:1905.02383, 2019.

Jian Du, Song Li, Xiangyi Chen, Siheng Chen, and Mingyi Hong. Dynamic differential-privacy
preserving sgd. arXiv preprint arXiv:2111.00173, 2021.

Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications of Models
of Computation: 5th International Conference, TAMC 2008, Xi’an, China, April 25-29, 2008.
Proceedings 5, pp. 1–19. Springer, 2008.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the forty-
first annual ACM symposium on Theory of computing, pp. 371–380, 2009.

Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887, 2016.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Advances in Cryptology-EUROCRYPT
2006: 24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25, pp. 486–503. Springer,
2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006b.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 51–60. IEEE, 2010.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Differential privacy—a primer
for the perplexed,”. Joint UNECE/Eurostat work session on statistical data confidentiality, 11,
2011.

Roth Dwork et al. Dwork c., roth a. The algorithmic foundations of differential privacy, Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Maria S Esipova, Atiyeh Ashari Ghomi, Yaqiao Luo, and Jesse C Cresswell. Disparate impact in
differential privacy from gradient misalignment. arXiv preprint arXiv:2206.07737, 2022.

Sam Fletcher and Md Zahidul Islam. Decision tree classification with differential privacy: A survey.
ACM Computing Surveys (CSUR), 52(4):1–33, 2019.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322–1333, 2015.

Neil Zhenqiang Gong and Bin Liu. You are who you know and how you behave: Attribute inference
attacks via users’ social friends and behaviors. In USENIX Security Symposium, pp. 979–995,
2016.

Neil Zhenqiang Gong and Bin Liu. Attribute inference attacks in online social nerks. ACM Trans-
actions on Privacy and Security (TOPS), 21(1):1–30, 2018.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Hossein Hassani, Xu Huang, Emmanuel Silva, and Mansi Ghodsi. Deep learning and implementa-
tions in banking. Annals of Data Science, 7:433–446, 2020.

Michael Hilton. Differential privacy: a historical survey. Cal Poly State University, 2002.

11

Under review as a conference paper at ICLR 2024

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54
(11s):1–37, 2022.

Jian Huang, Junyi Chai, and Stella Cho. Deep learning in finance and banking: A literature review
and classification. Frontiers of Business Research in China, 14(1):1–24, 2020.

Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N Wright. A practical differentially
private random decision tree classifier. In 2009 IEEE International Conference on Data Mining
Workshops, pp. 114–121. IEEE, 2009.

Antti Koskela and Antti Honkela. Learning rate adaptation for differentially private learning. In
International Conference on Artificial Intelligence and Statistics, pp. 2465–2475. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Joseph P Near and Chiké Abuah. Programming differential privacy. URL: https://uvm, 2021.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics, volume 4, pp. 547–562. University of California Press, 1961.

Iqbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy, applications
and research directions. SN Computer Science, 2(6):420, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Latanya Sweeney. Only you, your doctor, and many others may know. Technology Science,
2015092903(9):29, 2015.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Towards demystifying
membership inference attacks. arXiv preprint arXiv:1807.09173, 2018.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited:
Faster and more general. Advances in Neural Information Processing Systems, 30, 2017.

Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F Naughton. A methodology for formalizing
model-inversion attacks. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF),
pp. 355–370. IEEE, 2016.

Xinyue Zhang, Jiahao Ding, Maoqiang Wu, Stephen TC Wong, Hien Van Nguyen, and Miao Pan.
Adaptive privacy preserving deep learning algorithms for medical data. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1169–1178, 2021.

Benjamin Zi Hao Zhao, Aviral Agrawal, Catisha Coburn, Hassan Jameel Asghar, Raghav Bhaskar,
Mohamed Ali Kaafar, Darren Webb, and Peter Dickinson. On the (in) feasibility of attribute
inference attacks on machine learning models. In 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 232–251. IEEE, 2021.

12

Under review as a conference paper at ICLR 2024

A PROOFS FOR AUTO DP-SGD VARIANTS PRIVACY BUDGET AND NOISE
ADDITION

Table 7 shows the notations used in this project.

Table 7: Explanation of different notations used in this work.

Notation Explanation

B Batch size
W scale factor
σ0 Initial noise multiplier
e Current epoch number
E Total number of training epochs
b Provides sample number in a batch of data samples.
R Decay rate
q Sampling rate
M Total length of the dataset
T Total number of training iterations
t Current iteration number
G Represents a batch of model gradients
ηt Learning rate
D Epoch drop rate
N Type of noise multiplier decay mechanism
C Average sensitivity of gradients
ρ, ω Privacy parameters of tCDP
ρe, ωe The ρ, ω at eth epoch.
ρtotal, ωtotal The total privacy budget parameters under tCDP
g̃t Averaged noisy gradient at tth iteration
ḡt(xi) Clipped gradient of the ith training data sample at tth iteration
ḡt The averaged clipped gradient
N (0, σ2s2I) The gaussian distribution with mean 0 and standard deviation σs
P P = E

D
p An integer that ranges from 0 to P − 1
L Total gradient of the norm
AC Automatic Clipping threshold estimation algorithm

In this work, we mainly use the lemma 1- 4 of tCDP, as demonstrated in Bun et al. (2018) and
presented in the background 3 of the article. The lemma 1 establishes a relationship between the
Gaussian mechanism and the tCDP privacy accountant. Lemma 2 outlines the composition property
of two randomized functions under tCDP. The lemma 3 presents a method for converting the privacy
budget in the tCDP accountant to standard (ϵ, δ)-differential privacy. Finally, the lemma 4 demon-
strates privacy amplification through random sampling using tCDP. We utilize these lemmas as the
foundation for deriving the proof of our proposed algorithm. Then, using Lemmas 1–4, we prove
the privacy parameters for different decay types in Table 8.

Table 8: Total privacy budget for different noise multiplier decay mechanisms.

Decay type ρtotal ωtotal

Linear 13(B/M)2C2(1−RE)
2σ2

0(R
E−1−RE)

log(M/B)σ2
0R

E−1

2C2

Time 13(B/M)2C2(2E+R(E)(E−1))
4σ2

0

log(M/B)σ2
0

2C2(1+R(E−1))

Exponential 13(B/M)2C2(eRE−1)
2σ2

0(e
R−1)

log(M/B)σ2
0

2C2(eR(E−1))

Step 13(B/M)2C2(1−RP)
2σ2

0D(RP−1−RP)

log(M/B)σ2
0R

P−1

2C2

13

Under review as a conference paper at ICLR 2024

To estimate the cumulative privacy loss of the proposed differentially private stochastic gradient
descent (DP-SGD) algorithm, we use the composition theorem of truncated concentrated differential
privacy (tCDP), which was created to support more computations and offer a sharper and tighter
analysis of privacy loss than the strong composition theorem of (ϵ, δ)-DP. We provide the cumulative
privacy budget for the three types of noise multiplier decay considered in this work: (i) time decay,
(ii) exponential decay, and (iii) step decay, and present the total privacy budget for linear decay
given by Zhang et al. (2021). Table 8 provides the final expressions to compute the privacy budget
for Auto DP-SGD. In Table 8, σ0 is the initial noise multiplier; E is the total number of training
epochs; R is the decay rate; M is the total number of training samples; B is the batch size; D is
the epoch drop rate; C is the average sensitivity of the gradients; and the ratio of the total number
of training epochs to the epoch drop rate is P = E/D. C is the average clipping threshold that
is estimated by averaging the clipping threshold obtained for each sample in each training iteration
using algorithm 1.

To derive the final expression for the step decay, we simplified the step decay from σ2
e = σ2

0R
⌊e/D⌋,

R = 0.5, D = 10 to σ2
p = Dσ2

0R
p where p ranges from 0 to P − 1, and we assumed that E

is divisible by D. After estimating ρtotal and ωtotal using the lemma 3. Our algorithm satisfies
(ρtotal + 2

√
ρtotalln(1/δ), δ)− DP, which means ϵ = (ρtotal + 2

√
ρtotalln(1/δ)). Table 8 shows

that ρtotal is directly proportional to the average sensitivity of the gradients (C) and ϵ. Therefore, a
lower average sensitivity of the gradients improves privacy. After obtaining ρtotal and ωtotal, we can
apply the lemma 3 to calculate the corresponding privacy parameters. Specifically, ϵ should be set
to (ρtotal + 2

√
ρtotal ln(1/δ)), where δ is a predetermined fixed value representing the probability

of failure.

A.1 PROOFS FOR DIFFERENT TYPES OF NOISE MULTIPLIER DECAY MECHANISMS

The notation log in all subsequent expressions refers to the natural logarithm. The sum of terms in
a geometric sequence can be expressed as follows:

sn =
a1(r

n − 1)

r − 1
, r > 1 (6)

Here, sn represents the sum of the first n terms of the geometric sequence, r is the common ratio,
a1 denotes the first term in the geometric sequence, and n represents the number of terms in the
sequence.

The sum of the first n natural numbers is expressed as follows:

Σn
i=1i =

n(n+ 1)

2
(7)

Based on Lemma 1 and Lemma 4, the values of ρe and ωe are given by:

ρe = 13(B/M)2(
C2

2σ2
e

) (8)

ωe =
log(M/B)σ2

e

2C2
(9)

Where (B/M) represents the number of entries in a single batch of training examples and e ranges
from 0 to E − 1.

Now, we can compute ρtotal and ωtotal using Lemma 2 as follows:

ρtotal = 13(B/M)2(
C2

2
)(

1

σ2
0

+
1

σ2
1

+ ...+
1

σ2
e

+ ...+
1

σ2
E−1

) (10)

ωtotal =
log(M/B)

2C2
min(σ2

0 , σ
2
1 , ..., σe

2, .., σ2
E−1) (11)

14

Under review as a conference paper at ICLR 2024

A.1.1 PROOF FOR LINEAR NOISE MULTIPLIER DECAY MECHANISM

According to the linear noise multiplier decay mechanism Zhang et al. (2021):

σ2
e = Rσ2

e−1, R ∈ (0, 1) (12)

Now, let us substitute Equation 12 into Equation 10:

ρtotal = 13(B/M)2(
C2

2
)(

1

σ2
0

+
1

Rσ2
0

+
1

R2σ2
0

+ ...+
1

Reσ2
0

+ ...+
1

RE−1σ2
0

) (13)

ρtotal = 13(B/M)2(
C2

2σ2
0

)(1 +
1

R
+

1

R2
+ ...+

1

Re
+ ...+

1

RE−1
) (14)

Equation 14 can be summarized as follows:

ρtotal = 13(B/M)2(
C2

2σ2
0

)(ΣE−1
e=0

1

Re
) (15)

Using the sum of the terms of the geometric sequence formula 6, the equation 15 can be summarized
as follows:

ρtotal = 13(B/M)2(
C2

2σ2
0

)(
1.(1

R)E − 1
1
R − 1

) (16)

After simplifying the equation 16 further:

ρtotal = 13(B/M)2(
C2

2σ2
0

)(
1−RE

RE−1 −RE
) (17)

Now, substitute the linear noise multiplier decay 12 into the equation 11

ωtotal =
log(M/B)

2C2
min(σ2

0 , Rσ2
0 , ..., R

eσ2
0 , ..., R

E−1σ2
0) (18)

ωtotal =
log(M/B)σ2

0

2C2
min(1, R, ..., Re, ..., RE−1) (19)

Since R ∈ (0, 1), equation 19 becomes as follows:

ωtotal =
log(M/B)σ2

0

2C2
(RE−1) (20)

A.1.2 PROOF FOR TIME NOISE MULTIPLIER DECAY MECHANISM

The time noise multiplier decay mechanism is expressed as follows:

σ2
e =

σ2
0

1 +Re
,R =

σ0

T
,R ∈ (0, 1) (21)

Substituting equation 21 in equation 10. Equation 10 looks like follows:

ρtotal = 13(B/M)2
C2

2
(
1

σ2
0

+
1 +R

σ2
0

+
1 + 2R

σ2
0

+ ...+
1 +Re

σ2
0

+ ...+
1 +R(E − 1)

σ2
0

) (22)

15

Under review as a conference paper at ICLR 2024

ρtotal = 13(B/M)2(
C2

2σ2
0

)[1+ (1+R) + (1+ 2R) + ...+ (1+ eR) + ...+ (1+ (E− 1)R)] (23)

The equation 23 can be summarized as follows:

ρtotal = 13(B/M)2(
C2

2σ2
0

)[ΣE−1
e=0 (1 +Re)] (24)

In simplifying, equation 24 using equation 7 becomes as follows:

ρtotal = 13(B/M)2(
C2

2σ2
0

)[E +
R(E)(E − 1)

2
] (25)

ρtotal = 13(B/M)2(
C2

4σ2
0

)[2E +R(E)(E − 1)] (26)

Now, substitute the decay of the time noise multiplier 21 into the equation 11

ωtotal =
log(M/B)

2C2
min(σ2

0 ,
σ2
0

1 +R
, ...,

σ2
0

1 +Re
, ...,

σ2
0

1 +R(E − 1)
) (27)

ωtotal =
log(M/B)σ2

0

2C2
min(1,

1

1 +R
, ...,

1

1 +Re
, ...,

1

1 +R(E − 1)
) (28)

In further simplification, Equation 28 becomes as:

ωtotal =
log(M/B)σ2

0

2C2(1 +R(E − 1))
(29)

A.1.3 PROOF FOR STEP NOISE MULTIPLIER DECAY MECHANISM

To derive the final expression for the step decay, we simplify the step decay from Equation 30 to
Equation 36 under the assumption that E is divisible by D and P = E/D.

σ2
e = σ2

0R
⌊e/D⌋, R ∈ (0, 1) (30)

To illustrate the transformation of Equation 30, let us consider E = 100, D = 10, and P = E
D =

100
10 = 10. Now, using Equation 30, we can express σ2

e for e that varies from 0 to E − 1 = 99 as
follows:

σ2
0 = σ2

0R
⌊0/10⌋ = σ2

0 , σ
2
1 = σ2

0R
⌊1/10⌋ = σ2

0 , ..., σ
2
10 = σ2

0R
⌊10/10⌋ = σ2

0R,
σ2
11 = σ2

0R
⌊11/10⌋ = σ2

0R, ..., σ2
98 = σ2

0R
⌊98/10⌋ = σ2

0R
9, σ2

99 = σ2
0R

⌊99/10⌋ = σ2
0R

9 (31)

Now, the sum of the noise multiplier at all the epochs is equal to:

Σ99
e=0σ

2
e = 10σ2

0 + 10Rσ2
0 + ...+ 10R9σ2

0 (32)

Equation 32 can be generalized as follows:

ΣE−1
e=0 σ

2
e = Dσ2

0 +DRσ2
0 + ...+DRpσ2

0 + ...+DRP−1σ2
0 (33)

ΣE−1
e=0 σ

2
e = ΣP−1

p=0 DRpσ2
0 (34)

16

Under review as a conference paper at ICLR 2024

To simplify the formula, let us define the following:

ΣE−1
e=0 σ

2
e = ΣP−1

p=0 σ
2
p (35)

Then, σ2
p can be expressed as follows:

σ2
p = Dσ2

0R
p (36)

Equation 10 can be generalized as follows:

ρtotal = 13(B/M)2(
C2

2
)(ΣE−1

e=0

1

σ2
e

) (37)

Using Equation 35, Equation 37 can be expressed as follows:

ρtotal = 13(B/M)2(
C2

2
)(ΣP−1

p=0

1

σ2
p

) (38)

Now, let us substitute Equation 36 into Equation 38:

ρtotal = 13(B/M)2(
C2

2Dσ2
0

)(ΣP−1
p=0

1

Rp
) (39)

In expanding Equation 39, it becomes as follows:

ρtotal = 13(B/M)2(
C2

2Dσ2
0

)(1 +
1

R
+

1

R2
+ ...+

1

Rp
+ ...+

1

RP−1
) (40)

Using the formula for the sum of terms in a geometric sequence, Equation 6, we can summarize
Equation 40 as follows:

ρtotal = 13(B/M)2(
C2

2Dσ2
0

)(
1.(1

R)P − 1
1
R − 1

) (41)

After further simplifying Equation 41:

ρtotal = 13(B/M)2(
C2

2Dσ2
0

)(
1−RP

RP−1 −RP
) (42)

Now, let us substitute the revised step noise multiplier decay (Equation 36) into Equation 42:

ωtotal =
log(M/B)

2C2
min(Dσ2

0 , RDσ2
0 , ..., R

pDσ2
0 , ..., R

P−1Dσ2
0) (43)

ωtotal =
log(M/B)Dσ2

0

2C2
min(1, R, ..., Rp, ..., RP−1) (44)

Since R < 1, we have:

ωtotal =
log(M/B)Dσ2

0

2C2
(RP−1) (45)

17

Under review as a conference paper at ICLR 2024

A.1.4 PROOF FOR EXPONENTIAL NOISE MULTIPLIER DECAY MECHANISM

The exponential noise multiplier decay mechanism is expressed as follows:

σ2
t = σ2

0 × e−Re, R ∈ (0, 1) (46)

Now, let us substitute Equation 46 into Equation 10:

ρtotal = 13(B/M)2(
C2

2
)(

1

σ2
0

+
1

e−Rσ2
0

+ ...+
1

e−Reσ2
0

+ ...+
1

e−(E−1)Rσ2
0

) (47)

ρtotal = 13(B/M)2(
C2

2σ2
0

)(1 + eR + ...+ eRe + ...+ e(E−1)R) (48)

Equation 48 can be summarized as follows:

ρtotal = 13(B/M)2(
C2

2σ2
0

)(ΣE−1
e=0 e

Re) (49)

Using the geometric sequence formula (Equation 14), Equation 49 becomes as follows, considering
that eR > 1:

ρtotal = 13(B/M)2(
C2

2σ2
0

)(
eRE − 1

eR − 1
) (50)

After substituting Equation 46 into Equation 11, it can be expressed as follows:

ωtotal =
log(M/B)

2C2
min(σ2

0 , σ
2
0e

−R, ..., σ2
0e

−eR, ..., σ2
0e

−(E−1)R) (51)

ωtotal =
log(M/B)σ2

0

2C2
min(1,

1

eR
, ...,

1

eeR
, ...,

1

e(E−1)R
) (52)

Equation 52 can be simplified considering the fact that 1
eR

< 1
eeR

< 1
e(E−1)R :

ωtotal =
log(M/B)σ2

0

2C2e(E−1)R
(53)

A.2 EQUIVALENCE OF NOISE ADDITION MECHANISM TO DP-SGD

This section aims to prove that the noise addition mechanism of the proposed algorithm is equivalent
to the noise addition mechanism used in DP-SGD Abadi et al. (2016).

The noise addition mechanism in DP-SGD is given by:

g̃t =
1

B
(
∑
i

(ḡt(xi) +N (0, σ2
t s

2I)) (54)

where σt is the same for every iteration in the DP-SGD algorithm.

The noise addition mechanism of the Auto DP-SGD algorithm is given by:

g̃t = ḡt +
N (0, σ2

tC
2I)

B
(55)

The expanded form of Equation 54, considering different clipping thresholds for every sample in a
batch of gradients, is given by:

g̃t =
1

B

∑
i

(ḡt(xi)) +
1

B
(N (0, σ2

t I)(
s0 + s1 + ...sb + ...+ sB−1

B
)) (56)

18

Under review as a conference paper at ICLR 2024

Where s0, s1, ..., sb, ..., sB are the sensitivities (clipping threshold) of the 0, 1, ..., b, ..., Bth data
sample in the batch.

Let C = s0+s1+...+sB−1

B . Then, Equation 56 can be written as follows, which is the proposed
algorithm noise-adding mechanism:

g̃t =
1

B

∑
i

(ḡt(xi)) +
1

B
(N (0, σ2

tC
2I)) (57)

The proposed Auto DP-SGD algorithm differs from DP-SGD Abadi et al. (2016) in two aspects.
First, it utilizes automatic noise multipliers, which adjust the noise multiplier for each iteration and
automatically determine the clipping threshold for each sample. This requires averaging the clips
over the batch of data samples to compute the average sensitivity. In contrast, DP-SGD uses a
fixed clipping threshold that is the same for all data samples in the batch. Therefore, the clipping
threshold applied to a single data sample is equivalent to the average clipping threshold. Second,
Auto DP-SGD automates the noise multiplier throughout the training process, whereas DP-SGD
uses a constant noise multiplier throughout the training.

B EXPERIMENTS ON HYPER-PARAMETERS AND AUTO DP-SGD VARIANTS

B.1 DATASET DETAILS

This section provides details on the data sets used in this study.

MNIST. The MNIST dataset LeCun et al. (1998) consists of grayscale images with dimensions of
28×28 pixels. The training set comprises 60,000 images, while the test set contains 10,000 images.

CIFAR10. The CIFAR-10 dataset Krizhevsky et al. (2009) consists of 60,000 color images with
dimensions of 32 × 32 pixels. It includes 6,000 images per class, spanning across 10 classes. The
data set is divided into 50,000 training images and 10,000 test images.

CIFAR100. The CIFAR-100 data set Krizhevsky et al. (2009) consists of 60,000 images divided
into 100 classes, with 600 images per class. Like CIFAR-10, the CIFAR-100 data set also includes
50,000 training images and 10,000 test images.

During experiments, we ran the above three datasets for 100 training epochs and set the batch size
to 64.

AG News Corpus. The AG News Corpus data set is a classification data set created by selecting
the four most significant classes from the original AG corpus. Each class consists of 30,000 training
samples and 1,900 testing samples. In total, there are 120,000 training samples and 7,600 testing
samples available. The AG News Corpus dataset is trained for 40 epochs with a batch size of 256.

For Tables 9 and 10, we use the SGD optimizer with a noise multiplier of 2.8 and a learning rate
of 10−4. To generate the results in Table 11, we use an AdamW optimizer with a weight decay of
10−3, a scale factor of 1.0, a noise multiplier of 2.8, and an initial learning rate of 10−3. In the case
of Table 12, we use an AdamW optimizer with a weight decay of 10−3, and a noise multiplier of
2.8, and implement a one-cycle learning rate policy with a learning rate set at 10−3. Additionally,
for all other tables in the Appendix and the main paper, we use a scale factor value of 1.0, an
AdamW optimizer with a weight decay of 10−3, and implement a one-cycle learning rate policy
with a learning rate set at 10−3.

B.2 EXPERIMENTS ON HYPER-PARAMETER TUNING

B.2.1 EFFECT OF CLIPPING THRESHOLD ON DP-SGD ABADI ET AL. (2016) AND ADAPTIVE
DP-SGD ALGORITHMS ZHANG ET AL. (2021)

Tables 9 and 10 illustrate the impact of the clipping threshold on the DP-SGD algorithm Abadi
et al. (2016) and adaptive DP-SGD Zhang et al. (2021) respectively. The results demonstrate that
choosing an appropriate clipping threshold involves extensive hyperparameter tuning. Even with
hyperparameter adaptation, it is challenging to estimate the optimal clipping threshold. The best
clipping threshold for the MNIST, CIFAR10 and CIFAR100 datasets was found to be 50, 10, and

19

Under review as a conference paper at ICLR 2024

Table 9: Impact of clipping threshod DP-SGD algorithm Abadi et al. (2016).

Clipping Threshold MNIST Accuracy CIFAR10 Accuracy CIFAR100 Accuracy

0.1 12.23% 30.38% 1.24%
0.25 25.86% 63.89% 1.96%
0.5 52.49% 80.42% 4.18%
0.75 56.79% 84.47% 7.46%
1.0 59.07% 85.88% 11.46%
2.5 72.08% 88.58% 35.73%
5 84.29% 89.98% 50.80%
7.5 87.48% 90.81% 55.53%
10.0 88.68% 91.09% 57.91%
20.0 - - 61.88%
50.0 91.87% 89.70% 46.00%
100.0 88.44% 84.97% 23.31%

Table 10: Impact of the clipping threshold on adaptive DP-SGD algorithm Zhang et al. (2021).

Clipping Threshold MNIST Accuracy CIFAR10 Accuracy CIFAR100 Accuracy

0.1 12.23% 30.44% 1.25%
0.25 25.86% 63.88% 1.97%
0.5 52.49% 80.48% 4.12%
0.75 56.79% 84.43% 7.45%
1.0 59.07% 86.03% 11.51%
2.5 72.08% 88.63% 36.29%
5 84.29% 89.98% 51.67%
7.5 87.48% 90.86% 56.88%
10.0 88.68% 91.25% 59.39%
20.0 - - 63.74%
50.0 91.87% 90.81% 52.52%
100.0 88.44% 87.43% 31.98%

20, respectively. When the clipping threshold is set too low, the accuracy decreases significantly due
to information loss. On the other hand, setting the clipping threshold too high leads to increased
noise, leading to reduced accuracy. Therefore, it is crucial to design algorithms to approximate the
optimal clipping threshold and maintain privacy efficiently.

B.2.2 EFFECT OF LEARNING RATE (LR) SCHEDULERS ON THE AUTO DP-SGD-L
ALGORITHM

Learning rate schedulers (LR schedulers) are commonly employed in non-private DL techniques
to enhance model accuracy and accelerate convergence. The learning rate determines the step size
towards the global minimum. Using a fixed learning rate is not recommended, as gradients of-
ten become smaller through training. Learning rate schedulers can improve the performance of
deep learning models Bengio (2012) by dynamically changing the learning rate through training.
This study investigates the impact of 11 different learning rate schedulers (StepLR, MultiStepLR,
ConstantLR, LinearLR, ExponentialLR, PolynomialLR, CosineAnnealingWarmRestarts, CyclicLR,
OneCycleLR and ReduceLROnPlateau) on the performance of Auto DP-SGD-L using the MNIST
dataset. It has been empirically demonstrated that integrating AdamW with learning rate sched-
ulers yields better results in non-private settings Loshchilov & Hutter (2017). The performance of
LR schedulers in nonprivate settings, particularly with AdamW, served as an inspiration for inves-
tigating their effects in DP settings. Table 11 shows that all LR schedulers improve sensitivity and
accuracy, the OCL LR scheduler being the most effective, achieving an accuracy of 98.02% and sen-
sitivity of 12.2752. As discussed in the Appendix A., lower sensitivity values indicate better privacy.
Therefore, LR schedulers enhance the accuracy and privacy of the Auto DP-SGD-L algorithm.

20

Under review as a conference paper at ICLR 2024

Table 11: Impact of LR schedulers on the Auto DP-SGD-L algorithm.

LR scheduler Accuracy Sensitivity

StepLR(st) 97.59% 13.2799
MultiStepLR(mst) 97.70% 13.9652
ConstantLR (con) 96.49% 17.7517
LinearLR(li) 96.23% 19.0044
ExponentialLR(exp) 92.43% 20.6112
PolynomialLR(poly) 96.86% 15.1552
CosineAnnealingLR(cos) 97.92% 13.0260
CosineAnnealingWarmRestarts(coswr) 97.43% 15.8700
CyclicLR(cyc) 97.61% 13.1589
OneCycleLR(ocl) 98.02% 12.2752
ReduceLRPlateau(rop) 97.85% 14.7475
LR(10−2) 85.63% 289.5400
LR(10−3) 95.75% 16.7381
LR(10−4) 96.60% 24.6880

B.2.3 EFFECT OF SCALE FACTOR ON THE AUTO DP-SGD-L ALGORITHM

To investigate the impact of the scale factor on the Auto DP-SGD-L algorithm, we experimented
with five different scale factors: 1.0, 0.9, 0.75, 0.5, and 0.2. Table 12 results show that as the scale
factor decreases, the sensitivity improves for all data sets (MNIST, CIFAR10, CIFAR100, and AG
News corpus). The lowest sensitivity is 2.4475, 0.9020, 3.0859, and 1.4779 for the respective data
sets. Interestingly, not much variation in accuracy is observed across the different scale factors.
Based on these findings, it is recommended to use a lower scale factor to enhance privacy without
sacrificing accuracy.

Table 12: Impact of scale factor on the Auto DP-SGD-L algorithm.

Dataset scale factor Accuracy sensitivity

MNIST

1.0 98.02% 12.2752
0.9 98.06% 11.0005
0.75 98.08% 9.1679
0.5 98.01% 6.1189
0.2 98.09% 2.4475

CIFAR10

1.0 93.68% 4.5261
0.9 93.68% 4.0735
0.75 93.68% 3.3946
0.5 93.68% 2.2630
0.2 93.64% 0.9020

CIFAR100

1.0 67.34% 15.3871
0.9 67.34% 13.8484
0.75 67.34% 11.5403
0.5 67.34% 7.6935
0.2 67.70% 3.0859

AG NEWS CORPUS

1.0 82.63% 7.3702
0.9 81.89% 6.7131
0.75 82.36% 5.6046
0.5 82.70% 3.6476
0.2 82.09% 1.4779

21

Under review as a conference paper at ICLR 2024

Training Rounds

N
o
is

e
 M

u
lt
ip

li
e
r

0 20 60 80 10040

2.5

2.0

1.5

1.0

0.5

0.0

linear decay

step decay

time decay

exp decay

Figure 1: Types of noise multiplier decay mechanisms

Table 13: Impact of noise multiplier decay on the Auto DP-SGD algorithm.

Dataset Noise multiplier decay Accuracy sensitivity

MNIST

Linear decay Zhang et al. (2021) 98.02% 12.2752
Exponential decay 99.36% 4.7777
Time decay 98.23% 10.6461
Step decay 99.11% 6.6427

CIFAR10

Linear decay Zhang et al. (2021) 93.68% 4.5261
Exponential decay 95.18% 3.7083
Time decay 93.83% 4.4091
Step decay 94.91% 4.0232

CIFAR100

Linear decay Zhang et al. (2021) 67.34% 15.3870
Exponential decay 80.29% 11.6984
Time decay 68.84% 14.9671
Step decay 77.84% 13.1365

AG NEWS CORPUS

Linear decay Zhang et al. (2021) 82.48% 7.3702
Exponential decay 85.22% 7.1516
Time decay 83.66% 7.3594
Step decay 84.21% 7.3065

B.2.4 EFFECT OF NOISE MULTIPLIER DECAY MECHANISMS ON THE AUTO DP-SGD
ALGORITHM

Figure 1 illustrates the progression of noise multiplier decay processes throughout the training pe-
riod. Among the decay mechanisms investigated (linear, time, step, and exponential decay), ex-
ponential decay exhibits the least sensitivity and the highest accuracy, followed by step, time, and
linear decay in that order. Table 13 summarizes the sensitivity and accuracy of each decay mech-
anism. In particular, higher decay rates correspond to lower sensitivity and higher accuracy. For
example, in the case of the MNIST dataset, the sensitivity for linear, time, step, and exponential
decay is 12.2752, 10.6427, 6.6427, and 4.7772, respectively, while the accuracy is 98.02%, 98.23%,
99.11%, and 99.36%, respectively.

22

Under review as a conference paper at ICLR 2024

Table 14: Accuracy and privacy budget of different Auto DP-SGD variants using MNIST dataset
and custom CNN model.

Auto DP-L Auto DP-T Auto DP-S Auto DP-E

Noise Multiplier ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy

1.4929 1.00 98.62 0.98 98.74 0.50 99.26 22.85 99.30
0.9584 1.49 99.03 0.84 99.08 0.68 99.29 34.20 99.33
0.6630 0.85 99.16 0.72 99.17 0.52 99.31 26.65 99.35
0.5517 0.81 99.23 0.67 99.25 0.51 99.34 27.18 99.36

Table 15: Accuracy and privacy budget of different Auto DP-SGD variants using CIFAR10 dataset
and pre-trained NFNet-F0 model.

Auto DP-L Auto DP-T Auto DP-S Auto DP-E

Noise Multiplier ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy

1.6082 0.72 94.22 0.73 94.27 0.50 94.96 30.25 95.13
1.0134 1.03 94.45 0.96 94.58 0.72 95.12 50.65 95.18
0.6848 1.44 94.55 1.28 94.65 1.00 95.18 81.79 95.21
0.5649 1.72 94.74 1.43 94.82 1.19 95.24 105.06 95.29

Table 16: Accuracy and privacy budget of different Auto DP-SGD variants using CIFAR100 dataset
and pre-trained NFNet-F1 model.

Auto DP-L Auto DP-T Auto DP-S Auto DP-E

Noise Multiplier ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy

1.6082 2.57 72.24 2.62 72.4 1.70 79.09 95.94 80.6
1.0134 3.77 73.95 3.50 74.37 2.49 79.92 300.35 80.78
0.6848 5.29 75.59 4.57 76.14 3.47 80.3 520.24 80.98
0.5649 6.26 76.26 5.26 76.87 4.10 80.42 687.61 81.06

Table 17: Accuracy and privacy budget of different Auto DP-SGD variants using AG News Corpus
dataset and BiLSTM model.

Auto DP-L Auto DP-T Auto DP-S Auto DP-E

Noise Multiplier ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy ϵ(↓) Accuracy

1.3768 2.73 84.86 2.69 85.17 2.04 85.18 247.63 87.01
0.9169 4.13 86.09 3.64 86.93 3.01 86.33 457.32 87.07
0.6585 5.61 86.32 4.86 86.5 4.13 87.09 800.33 87.76
0.5468 6.73 86.70 5.76 86.88 4.91 87.35 1087.63 87.78

B.3 EXPERIMENT ANALYSIS ON AUTO DP-SGD VARIANTS

This section compares the results of all the Auto DP variants: Auto DP-L, Auto DP-T, Auto DP-S,
and Auto DP-E, where L, T, S, and E represent linear, time, step, and exponential decay mechanisms,
respectively. Tables 14 - 17 clearly show that Auto DP-E incurs a significant loss of privacy. For
example, the BiLSTM model spent ϵ = 1087.63 to achieve an accuracy of 87.78% on AG News
corpus data, as shown in Table 17. Similarly, the NFNet-F1 model used ϵ = 687.61 to reach an
accuracy of 81. 06% in CIFAR100, as shown in Table 16. Likewise, other tables 14 15 show the
highest privacy leaks in Auto DP-E. The substantial privacy loss of Auto DP-E could be attributed
to the exponential decrease in the noise multiplier over iterations, resulting in inadequate noise
addition. Among the Auto DP-SGD-L, Auto DP-SGD-T, and Auto DP-SGD-S variants, Auto DP-
SGD-S demonstrates the highest performance, followed by Auto DP-SGD-T and Auto DP-SGD-L,

23

Under review as a conference paper at ICLR 2024

Training Rounds

A
ve

ra
g
e
 G

ra
d
ie

n
t

N
o
rm

0 20 60 80 10040

25

20

15

10

5

0

Non-DP

DP-SGD

Adaptive DP-SGD

Auto DP-SGD

Figure 2: Avg Gradient Norm of different DP algorithms and SGD without DP protection

respectively. For example, consider Table 15, which illustrates that Auto DP-S achieves an accuracy
of 95.24% at ϵ = 1.19, while Auto DP-T and Auto DP-L achieve accuracies of 94.82% and 94.74%
at ϵ = 1.43 and ϵ = 1.72, respectively. This pattern is consistent across all other datasets, as
observed in the respective tables.

C IMPORTANCE OF AUTOMATIC CLIPPING THRESHOLD ESTIMATION
ALGORITHM

Figure 2 illustrates the progress of the average gradient norm for different DP algorithms and the
non-private algorithm during training. Adaptive DP-SGD Zhang et al. (2021) is increasing starting at
20th epoch. From Figure 2, it is evident that DP-SGD Abadi et al. (2016) and the Auto DP-SGD al-
gorithm started to grow from a 30th epoch and then tends to decrease after a 70th epoch. Therefore,
the takeaway is that the average gradient norm changes during training and that the clipping thresh-
old should adapt to this change to produce an effective DP model. DP-SGD and adaptive DP-SGD
use the constant clipping threshold without considering this gradient behavior. Using the constant
clipping threshold, gradients are clipped only in some training iterations where the magnitude of the
gradient norm is higher than the clipping threshold. Moreover, a fixed clipping threshold can lead to
a more noisy model when the gradients become much smaller in most of the training iterations. This
can suppress the gradients and make the model give useless predictions. Our proposed approach
considers the average gradient norm, chooses the clipping threshold automatically, and adds noise
to the model efficiently. Furthermore, selecting an applicable clipping threshold requires a lot of
tuning and leads to a greater loss of privacy, according to Koskela & Honkela (2020). The proposed
automatic clipping threshold estimation Algorithm 1 avoids tuning the clipping threshold. We use
the MNIST LeCun (1998) dataset and a custom four-layer CNN model to compute the average grade
norm.

D HOW TO SELECT THE NOISE MULTIPLIER SCHEDULER WITHOUT PRIVACY
LEAKAGE?

In Appendix B.2.4., we discussed that a higher accuracy could be obtained using the noise decay
scheduler, which has a higher decay rate (we show empirically that a higher decay rate yields lower
sensitivity and higher accuracy). A decay scheduler with a higher decay rate can be easily found by
plotting the noise multiplier vs. training rounds. In the Appendix, Fig. 1 shows that exponential
decay has a higher decay rate, followed by step, time, and linear, respectively. To plot Fig. 1, we use
the expressions given in Table 1. Next, consider the results of the table 17 last row that are obtained

24

Under review as a conference paper at ICLR 2024

using the same set of hyperparameters. Auto DP-E, Auto DP-S, Auto DP-T, and Auto DP-L obtain
an accuracy of 86.70%, 86.88%, 87.35%, and 87.88%. Therefore, it is clear that the noise decay
scheduler with a higher decay rate gives greater accuracy. Using the expressions of Table 8, we
calculate ϵ using the batch size of 64, the initial noise multiplier, and a clip of 1, and the number
of training epochs is set to 100. The ϵ we get for linear, time, step, and exponential decay is 0.24,
0.23, 0.19, and 9.99, respectively. The exponential decay has a huge privacy leakage compared to
other decay methods. Since a lower ϵ means better privacy, the step decay yields better privacy.
Therefore, the step-decay noise scheduler provides the best trade-off between privacy and accuracy
among the four noise decay schedulers. All experiments in the main paper validate and demonstrate
that the Auto DP-S has a better privacy and accuracy trade-off. Therefore, to choose the better Auto
DP-SGD variant, it is unnecessary to use the validation data and can be done without any privacy
risks. We only use four different decay functions to show how different decay schedulers affect the
model’s accuracy and privacy without leading to privacy risks.

The noise decay scheduler involves adjustable factors such as the drop rate, initial noise multiplier,
and epoch drop rate. The performance of the DP model depends on the optimization of these factors
while avoiding inadvertent privacy breaches. To do this, Chaudhuri et al. (2011) has introduced a
technique for achieving differentially private hyperparameter optimization. This method suggests
splitting the data set into equivalent k + 1 segments. Subsequently, the k models are trained using
k distinct schedules, each on a separate data segment. The performance of the model is assessed by
counting the number of incorrect predictions for each model, represented as zi (where 1 ≤ i ≤ k),
in the remaining data segment. The Exponential Mechanism McSherry & Talwar (2007) is then
used. This mechanism selects and produces a potential solution with a likelihood proportional to
exp(−zi

2). We leave the differentially private hyperparameter tuning to future work.

25

	Introduction
	Related Work
	Background on Differential Privacy (DP)
	Methodology
	Automatic Clipping threshold estimation
	automatic noise multiplier estimation
	Auto DP-SGD

	Experiments
	Limitations and Future Work
	Conclusion
	Proofs for Auto DP-SGD variants privacy budget and noise addition
	Proofs for different types of noise multiplier decay mechanisms
	Proof for linear noise multiplier decay mechanism
	Proof for time noise multiplier decay mechanism
	Proof for step noise multiplier decay mechanism
	Proof for exponential noise multiplier decay mechanism

	Equivalence of noise addition mechanism to DP-SGD

	Experiments on hyper-parameters and Auto DP-SGD variants
	Dataset details
	Experiments on hyper-parameter tuning
	Effect of clipping threshold on DP-SGD abadi2016deep and adaptive DP-SGD algorithms zhang2021adaptive
	Effect of learning rate (LR) schedulers on the Auto DP-SGD-L algorithm
	Effect of scale factor on the Auto DP-SGD-L algorithm
	Effect of noise multiplier decay mechanisms on the Auto DP-SGD algorithm

	Experiment Analysis on Auto DP-SGD variants

	Importance of Automatic Clipping threshold estimation algorithm
	How to select the noise multiplier scheduler without privacy leakage?

