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Abstract

Real-world datasets often have class imbalance and follow a long-tail distribution, in
contrast to curated datasets, such as CIFAR-10/100, MNIST, etc. Learning from long-
tail distributed datasets is a challenging problem due to few representative samples from
the tail classes, which makes it difficult for the model to learn robust representations. We
posit that curriculum learning presents a viable route to iteratively learn good predictive
models that better capture predictive signals about rare classes. We propose a simple
method to leverage label hierarchies to craft curricula for learning. For real-world
datasets, when the label hierarchy trees are not typically available and manually creating
a hierarchy is tedious and expensive, we show that Large Language Models (LLMs) can
be used to compose semantic information about the labels and generate label hierarchies
to serve as curricula. We perform a thorough empirical evaluation of our method,
showing that across different model architectures (ResNet, ViT, and ConvNext) and on
multiple datasets (ImageNet, Places365-LT, iNaturalist, etc), we show that LLMs can
be used to generate meaningful hierarchies. Our method improves performance on the
long-tail classes and achieves state-of-the-art results on multiple large-scale datasets.

1 Introduction

In recent years, Machine Learning (ML) has made significant progress, demonstrating state-of-the-art
results across a diverse set of tasks, often evaluated by benchmark datasets. For example, contemporary
Deep Neural Network (DNN) models trained to address the computer vision task of visual classification can
achieve state-of-the-art results when evaluated on benchmark datasets such as CIFAR10/100 [Krizhevsky,
2009], MNIST [LeCun et al., 2010], SVHN [Netzer et al., 2011], and ImageNet [Deng et al., 2009].
However, ML models and training methods evaluated on benchmark datasets such as these often do not
generalize well to real-world applications/datasets. One reason for this is that benchmark datasets are
often highly curated and fail to capture the complexity of real-world datasets completely. For example,
CIFAR10/100, MNIST, SVHN, and ImageNet are perfectly or almost perfectly class balanced. In contrast,
real-world datasets and problems usually exhibit a long-tail distribution — i.e., a few classes have most of
the images, while many classes have few images. Learning from long-tail datasets is challenging because
there are fewer training samples for the tail classes, potentially leading to overfitting the few samples
available to the tail classes, thus biasing the model. Developing ML algorithms that can learn from long-tail
datasets with reduced algorithmic bias and overfitting long-tail classes is important for the safe and reliable
deployment of ML models in real-world applications.

We explore Curriculum Learning in the Label Space (CLLS) for long-tail learning, i.e., using label
hierarchy for curriculum learning. Inspired by human learning, which is guided by the teaching curricula
in educational institutes, Curriculum Learning (CL) similarly trains the model sequentially on a curriculum,
i.e. learning sequentially from training samples (tasks), with increasing order of difficulty. CL divides
the learning task into a sequence of tasks, each progressively becoming more difficult to learn, similar to
how humans learn. It has been shown that CL has a faster training convergence rate, and models trained
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with CL generalize better [Weinshall and Amir, 2018]. However, a good notion of difficulty is difficult to
specify. Devising heuristics to sort training samples based on difficulty is non-trivial and increases the time
complexity of the training algorithm. Though there exists much work using CL in the literature, there is no
clear consensus on the notion of sample/task difficulty, and methods often rely on hand-crafted curricula,
making applying CL challenging. We propose a simple yet efficient workaround to overcome this limitation.

Our main contributions are as follows:

1. We propose a simple but efficient method to build curricula for CL using the label hierarchy
available in some datasets. We demonstrate that CLLS can improve the generalization of the long-
tail classes and help reduce the model bias. Against several existing baselines and different neural
network architectures, our method significantly improves the predictive performance of models.

2. We demonstrate that LLMs can be used to extract rich semantic and contextual information
about the label space and generate the label hierarchy tree for real-world datasets, eliminating
the necessity of manually creating the hierarchy tree.

3. We show that CLLS is also effective in fine-tuning pre-trained models and can improve the
performance on the long-tail classes compared to the state-of-the-art baselines.

4. We extend the state-of-the-art baseline for long-tail learning, PEL [Shi et al., 2024] and show that
CLLS can be used on top of existing baselines to further improve the performance on long-tail
classes.

2 Curriculum Learning in the Label Space (CLLS)

Curriculum Learning lacks a formal definition of difficulty and a method to generate curriculum
automatically [Weinshall and Amir, 2018]. Bengio et al. [2009] relied on manually crafted domain-
specific curricula; for real-world datasets, crafting curricula manually is not feasible without domain
knowledge/expertise. To address this issue, we propose to generate curricula based on the hierarchy tree
of the labels. Often, the target labels are related and can be grouped into coarse/broad classes based on
the label hierarchy tree; in this work, we explore leveraging the implicit tree hierarchy of labels for defining
easy-to-difficult tasks (coarse-to-fine-grained classification).

Notation. Let T (i) denote the label hierarchy tree, which maps the original fine labels Y0, i.e. the leaf
nodes of the tree, to Yi, i.e., the labels at height i in the label hierarchy tree, where the height is the number
of edges from the leaf node to the particular root node. Let Di={X,Yi} denote the training dataset and
Mi= {Ei,W i} denote the model with an encoder Ei and classifier head W i for task Ti. The model
Mi is trained on task Ti :X→Yi and C={Tn,Tn−1,...,T0} denotes the curricula, i.e., the model is
sequentially trained on Tn to T0, where n is the total number of tasks in the curricula. Ki is the number
of classes in dataset Di. We denote the classifier head weights wj

k for class k and task Tj.

2.1 Proposed Method

Generating label hierarchy using LLMs. Since LLMs are trained on large training corpora, they can
understand the contextual and semantic relations between the labels, enabling them to effectively grasp
the nuances and connections within the data. We prompt LLMs with the original class labels (Y0) of
the dataset with the instruction to group the classes into broad categories based on visual and contextual
similarities as conceptually illustrated in Figure 2. This generates the hierarchy structure of the label
space (T ), which can be used to generate coarse labels Y1. We can repeat this process to get more levels
in the hierarchy tree. This substitutes the need to create, using domain expertise, the label hierarchy tree
manually and thus enables us to leverage the implicit hierarchical information in the target labels to learn
a more robust representation. Hierarchical information helps models understand the data distribution better,
enabling them to make more informed predictions and decisions.

Defining curricula. Given the hierarchy tree, we construct a sequence of tasks corresponding to each
level in the tree. For label at height i, the classification task Ti learns a mapping from input images X
to the corresponding labels in the hierarchy tree Yi. Thus, using each level of the hierarchy tree, we can
construct a sequence of n task T0,...,Tn, where T0 is the original classification task with fine-grained
labels. We define the curricula to train the model as follows:

C=[Tn,Tn−1,...,T0] where Ti :X→Yi.
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Figure 1: Schematic overview of the method for a curriculum with only two tasks. (a) Encoder weights
are transferred to the next task directly. Classifier head weights are transferred using the hierarchy tree, i.e.,
the classifier head of the next task uses the weights of its corresponding parent for initialization. (b) Label
hierarchy tree is generated using a LLM.

The model M is trained sequentially starting from Tn, i.e., the coarsest labels to T0, i.e., the original
fine-grained labels. Since the class imbalance in the dataset labels, and the number of classes themselves
decrease for the tasks Tn,...,T1 compared to the original task T0, task difficulty sequentially increases in
the curricula C. M0 is trained first on the task T0, which gives it a good prior for learning the subsequent
task. Between each task, learned knowledge is transferred to the model Mi from the weights of Mi+1,
and used as an initialization for Mi to be trained from, right up to and including the final model M0.

Knowledge transfer between tasks. Model Mn={En,Wn}, where both the encoder and classifier
head weights are randomly initialized, is first trained on task Tn. After training on the first task, for the
next task Tn−1, the encoder weights E are transferred, whereas a new classifier head is initialized Wn−1.
The classifier weights are initialized using the knowledge learned for the previous tasks. For a task Ti,
The new classifier head weights W i are initialized using the previous classifier head weight W i+1; weight
vector wi

k corresponding to class k in Yi is initialized using the weight vector of its parent (coarser) class
in W i+1 as shown in Figure 1a. The new model Mi={E,W i} is then trained on task Ti, followed by a
knowledge transfer to the next task Ti−1 and so on. Since the classifier weights are not initialized randomly
but instead use the knowledge learned in the previous task, this improves the training convergence. Most
existing hierarchical learning methods only transfer the weights of the encoder to the subsequent task.
As shown in Table 3, CLLS can improve the performance of baseline training (w/o curriculum learning).

Adapting for long-tail learning. The methodology described above is a general framework for CLLS;
however, to improve long-tail learning, we also use the features from a pre-trained language model along
with the knowledge transfer from the previous tasks. PEL [Shi et al., 2023] proposed to fine-tune a pre-
trained model using adapter layers (parameter efficient). Prompts corresponding to each class (”a photo of
¡class name¿” is used to get feature f using the CLIP model [Radford et al., 2021]. We build up on PEL and
show that using knowledge from the curricula can significantly enhance the tail classes’ accuracy. Following
the training methodology, we use adapter layers for fine-tuning, keeping the number of trainable parameters
the same for a fair comparison. We train the adapter layers A and classifier head first sequentially on
the curricula C; adapter weights are shared between each task, whereas a weight vector wi

k for task Ti

is initialized using features from the CLIP model f i
k corresponding to class k for task Ti and the weight

vector of its parent class p from previous classifier head W i−1, controlled by the mixing ratio β:
wi
k=β∗wi−1

p +(1−β)∗f i
k.

This allows the classifier to use knowledge from both the CLIP model and the previous task. This is
in contrast to the PEL method, which only relies on the feature of the CLIP model; our method, as
demonstrated empirically, achieves better performance of long-tail classes using additional information
learned from the curriculum.

3 Results

We evaluate our modified PEL method (PEL + CLLS) on ImageNet-LT, Places365-LT and iNaturalist-2018
datasets. As shown in Table 1, Table 2 (Appendix A) and Table 4 (Appendix A), our method improves
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Table 1: Evaluation on the Places-LT dataset. Test accuracy is calculated for all the classes (overall),
classes with more than 100 training images (many), with 20–100 images (medium), and with less than 20
images (few). Our method achieves overall accuracy comparable to the existing state-of-the-art method
whilst improving the performance on the long-tail classes by a significant margin. Mean accuracy along
with std. deviation over three runs w/ diff random initializations are reported.

Test Accuracy (%)
Method Backbone Overall Many (¿100) Medium (20–100) Few (¡20)

Trained from scratch (w/ pre-trained backbone)

OLTR [Liu et al., 2019] ResNet-152 35.9 44.7 37.0 25.3
cRT [Kang et al., 2020] ResNet-152 36.7 42.0 37.6 24.9
LWS [Kang et al., 2020] ResNet-152 37.6 40.6 39.1 28.6
MiSLAS [Zhong et al., 2021] ResNet-152 40.4 39.6 43.3 36.1
DisAlign [Zhang et al., 2021] ResNet-152 39.3 40.4 42.4 30.1
ALA [Zhao et al., 2021] ResNet-152 40.1 43.9 40.1 32.9
PaCo [Cui et al., 2021] ResNet-152 41.2 36.1 47.9 35.3
LiVT [Xu et al., 2023] ViT-B/16 40.8 48.1 40.6 27.5

Fine-tuned from pre-trained model

BALLAD [Ma et al., 2021] ViT-B/16 49.5 49.3 50.2 48.4
Decoder [Wang et al., 2023] ViT-B/16 46.8 - - -
LPT [Dong et al., 2023] ViT-B/16 50.1 49.3 52.3 46.9
PEL [Shi et al., 2024] ViT-B/16 52.2 51.7 53.1 50.9

Ours ViT-B/16 51.7 ± 0.1 51.3 ± 0.3 52.8 ± 0.1 51.8 ± 0.1

the performance on the long-tail classes while keeping the accuracy on the dominant classes almost
same. Places-LT contains 62.5K images from 365 classes, from a maximum of 4980 to a minimum of
5 images per class. iNaturalist-2018 consists of 437.5K images distributed across 8142 species, with the
number of images per species varying from as few as 2 to as many as 1000. For the Places365-LT dataset,
the performance on the long-tail classes is improved with curricula designed by the language model,
confirming our hypothesis that language models can be used to extract label hierarchy trees. For all three
datasets, the accuracy of the classes with less than 20 images was improved, thus reducing the model
bias. We provide an additional evaluation of metrics used for imbalanced datasets. Additional results on
ImageNet-LT and iNaturalist-2018 datasets are shown in the appendix. For the ImageNet dataset, the
accuracy of the majority classes decreases slightly; we suspect this might be because the ViT model was
pre-trained on the ImageNet-21k dataset and thus was overfit on the majority classes.

4 Conclusion

In this work, we explored leveraging curriculum learning in the label space for learning long-tail datasets.
This formulation of curricula provides a simple yet effective way to design curricula using language models.
We demonstrated for the Places365-LT dataset that LLMs can create curricula based on contextual similari-
ties and thus substitute the expensive process of creating a label hierarchy tree manually (e.g. WordNet). Our
method improved the state-of-the-art LT baselines on multiple large-scale LT datasets, such as ImageNet-LT,
Places-LT, and iNaturalist2018 datasets, specifically for the tail classes. For the Places-LT dataset, our
method improved the accuracy on tail classes from 50.9% to 51.8%, on ImageNet-LT from 73.4% to 73.9%
and on iNaturalist-2018 dataset from 82.2% to 82.7%. One limitation of our method is that our work relies
on using LLMs to extract the label tree hierarchy. To extract a meaningful label tree hierarchy, the label must
be in the training corpus of LLMs. For some task-specific datasets, it is possible that labels were not present
in the training corpus, and thus the label tree extracted with the LLM will not be reliable. In future work,
we will evaluate the method for domain-specific datasets, such as medical imaging and histopathology.
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A Appendix / supplemental material

A.1 Background

Curriculum Learning. Inspired by how humans learn, CL involves training models in a meaningful
order of data defined by curricula — usually starting from easier-to-learn and moving on to difficult-to-learn
data. The concept of CL has been studied from a behavioural approach [Skinner, 2019] and computational
approach [Elman, 1993]. Although the idea of CL in supervised learning is not new [Sanger, 1994], CL
has gained traction in recent years. Bengio et al. [2009] proposed training models by gradually increasing
the difficulty of the data samples — defined by a curriculum — during the training process. CL can be
broadly categorized into five categories [Soviany et al., 2022]: Balanced CL, Progressive CL, Self-Paced
CL and Implicit CL. In Self-Paced CL (SPL) [Kumar et al., 2010], training loss is regularized to give
greater significance to points that better fit the current learner’s hypothesis. While SPL does not explicitly
require a pre-defined curriculum, it introduces new challenges. SPL is difficult to optimize and more
susceptible to over-fitting [Weinshall and Amir, 2018]. Progressive CL, instead of training the model
on easy to difficult samples, trains the model sequentially on easy-difficult tasks [Morerio et al., 2017].
Implicit CL does not change the easy-to-hard schedule; instead, it changes the training method to make
training easier. For example, Sinha et al. [2021] proposed to deblur the convolution activation map during
the training gradually. Balanced CL, in addition to training from easy-to-hard samples, also enforces the
selection of training samples to be balanced [Zhang et al., 2015].

Long-Tail Learning. Most of the methods for long-tail learning can be divided into four categories
— Data Manipulation, Representation Learning, loss adjustment, and fine-tuning pre-trained models. Data
manipulation methods use data augmentation and re-sampling techniques to learn better representations for
the long-tail classes [Kang et al., 2020, Zhou et al., 2019]. Loss adjustment techniques use label frequency
to re-weight the loss [Hong et al., 2021, Kang et al., 2019, Lin et al., 2018] and adjust the logits [Menon
et al., 2021, Zhang et al., 2021] based on the label frequency. Most of the recent work within this area
has focused on fine-tuning a model pre-trained on a large and diverse dataset. Ensemble-based methods
learn to use multiple expert models trained on different data sub-groups to learn robust representation
for long-tail recognition [Zhang et al., 2022, Zhou et al., 2019]. BALLAD [Ma et al., 2021] leverages
contrastive vision-language models for long-tailed recognition. It first fine-tunes a vision-language
backbone on the target long-tail datasets, followed by using an additional adapter layer to enhance the
representations of tail classes. PEL [Shi et al., 2024] uses a pre-trained ViT [Dosovitskiy et al., 2021] and
CLIP [Radford et al., 2021] model and introduces a small number of task-specific parameters by adopting
the design of any existing parameter-efficient fine-tuning method. CLIP feature embeddings are used
to initialize the classifier head and improve the convergence rate. In this work, we extend the PEL without
CL approach and show that it further improves the performance on long-tail classes on multiple datasets.

LLMs in Vision. Since the emergence of LLMs, different methods have been proposed to implicitly
use the information learned by the language model for solving downstream vision tasks. Vision-Language
Models (VLMs) have gained popularity because of their ability to learn rich representation from limited
data [Shi et al., 2023]. Outside of VLM, language model guidance for vision tasks has been explored
recently, including open-set learning and metric learning. Khan et al. [2023] explored the use of language
model prompting to reduce the effect of catastrophic forgetting in the vision model. Methods in open-set
learning learn a vision encoder to map to the same embedding space as the language model. The model
can then generalize to new classes by matching it with the embeddings of the class names without requiring
labelled visual training data. Language models have also been explored in interpretability in computer
vision; Yang et al. [2023] proposed language-guided bottlenecks to improve the concept bottlenecks, which
leverages GPT-3 to define a large space of possible bottlenecks. However, to the best of our knowledge,
the use of language models for curriculum learning has not been studied so far in this manner. Our work
aims to bridge this gap, and in this paper, we explore the applications of language models for curriculum
learning, in particularly for long-tail classification.

A.2 Experimental Details and Additional Results

Datasets. We ran experiments on multiple large-scale datasets, such as ImageNet [Deng et al., 2009],
ImageNet-LT [Liu et al., 2019], Places-LT [Liu et al., 2019], and iNaturalist-2018 [iNaturalist 2018 compe-
tition dataset] using different types of visual backbones (Convolutional Neural Network, ViT [Dosovitskiy
et al., 2021] and ConvNext [Liu et al., 2022]) to show that our method can improve the generalization
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Table 2: Evaluation on the ImageNet-LT dataset. Accuracy is calculated for all the classes (overall),
classes with more than 100 images (many), classes with 20–100 images (medium), and classes with less
than 20 images (few). As shown in the table, our method achieves overall accuracy comparable to the
existing state-of-the-art method but improves the performance on the long-tail classes by a significant
margin. Mean accuracy along with std. deviation over five runs w/ diff random initializations are reported.

Test Accuracy (%)
Method Backbone Overall Many (¿100) Medium (20–100) Few (¡20)

Trained from scratch (w/ pre-trained backbone)

cRT [Kang et al., 2020] ResNet-50 47.3 58.8 44.0 26.1
LWS [Kang et al., 2020] ResNet-50 47.7 57.1 45.2 29.3
MiSLAS [Zhong et al., 2021] ResNet-50 52.7 62.9 50.7 34.3
LA [Menon et al., 2021] ResNet-50 52.7 62.9 50.7 34.3
DisAlign [Zhang et al., 2021] ResNet-50 52.9 61.3 52.2 31.4
BCL [Zhu et al., 2022] ResNet-50 56.0 - - -
PaCo [Cui et al., 2021] ResNet-50 57.0 - - -
NCL [Li et al., 2022] ResNet-50 57.4 - - -
LiVT [Xu et al., 2023] ViT-B/16 60.9 73.6 56.4 41.0

Fine-tuned from pre-trained model

BALLAD [Ma et al., 2021] ViT-B/16 75.7 79.1 74.5 69.8
Decoder [Wang et al., 2023] ViT-B/16 73.2 - - -
PEL [Shi et al., 2024] ViT-B/16 78.3 81.3 77.4 73.4

Ours ViT-B/16 77.8 ± 0.2 80.7 ± 0.1 76.6 ± 0.4 73.9 ± 0.2

of visual backbones across different architecture types. The ImageNet dataset contains 1.2 million images
of 1000 different object categories; Places-LT contains 62.5K images from 365 classes, from a maximum
of 4980 to a minimum of 5 images per class. iNaturalist-2018 consists of 437.5K images distributed across
8142 species, with the number of images per species varying from as few as 2 to as many as 1000. The
ImageNet dataset is organized according to the WordNet hierarchy [Miller, 1994]; to extract the label
hierarchy for the ImageNet dataset, we use the WordNet synsets. The ImageNet-LT dataset, which is a
long-tail version of the ImageNet dataset, contains 115.8K images from 1000 categories, with a maximum
of 1280 images per class and a minimum 5 images per class. The iNaturalist-2018 dataset has information
about the ‘genus’, ‘kingdom’, ‘order’, etc. for each of the species, which can be used to extract a label
hierarchy tree. For the Places-LT dataset, we use a LLM to group the classes and generate a label hierarchy
tree. Following the evaluation scheme of Shi et al. [2024], we report overall accuracy along with three
splits of classes: many (>100 images/class), medium (20–100 images/class) and few (<20 images/class).

LLM Input

Here is the list  of Places365
classes, let's call this list A. 

<class list> 

LLM Input

Group the 365 classes into 
50 coarse classes based on
contextual and visual 
similarities. Let's call this list B.

LLM Output

Here are the 50 coarse classes:

<coarse class list>  

LLM Input

Assign each of the classes in 
the list A to list B without any 
overlap.

  Label  
Hierarchy

.  . . . . .

LLM Output

Thank you for providing the
list of classes from the 
Places365 dataset. 
How may I assist you with
this list? 

Figure 2: LLM prompt for Places365-LT dataset. LLM is given the list of classes with the instruction of
grouping them into coarse classes based on contextual similarities. The hierarchy tree generated by the
LLM is then used for curriculum learning.

CL Baselines. To demonstrate that our method can generalize better than conventional training, i.e.,
without CL, we train multiple baseline models (ResNet-50, ViT-B/16 [Dosovitskiy et al., 2021], and
ConvNext [Liu et al., 2022]) on multiple datasets to compare the generalization performance of the trained
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Table 3: Improvement over baselines with CLLS. Comparison of top-1 accuracy (%) between training
without CL (baselines) and with our method, CLLS. As shown in the table, models trained with CLLS
generalize better on multiple datasets across different architectures. ViT and ConvNext require large-scale
datasets for training and thus not feasible to train them on the CIFAR-100 dataset. We re-train the baselines
using the hyper-parameters and training methodology reported in the literature.

Backbone Method ImageNet iNat-2018
ResNet Baseline 75.4 59.0

CLLS 76.3 61.2
ViT-B/16 Baseline 78.9 50.1

CLLS 79.5 55.8
ConvNext-T Baseline 79.6 60.4

CLLS 81.2 65.9

Table 4: Evaluation on the iNaturalist-2018 dataset. Test accuracy is calculated for all the classes
(overall), classes with more than 100 training images (many), with 20–100 images (medium), and with less
than 20 images (few). Our method achieves overall accuracy comparable to the existing state-of-the-art
method whilst improving the performance on the long-tail classes by a significant margin. Mean accuracy
along with std. deviation over three runs w/ diff random initializations are reported.

Test Accuracy (%)
Method Backbone Overall Many (¿100) Medium (20–100) Few (¡20)

Trained from scratch (w/ pre-trained backbone)

cRT [Kang et al., 2020] ResNet-50 65.2 69.0 66.0 63.2
LWS [Kang et al., 2020] ResNet-50 65.9 65.0 66.3 65.5
MiSLAS [Zhong et al., 2021] ResNet-50 71.6 73.2 72.4 70.4
DiVE ResNet-50 69.1 70.6 70.0 67.6
DisAlign [Zhang et al., 2021] ResNet-50 69.5 61.6 70.8 69.9
ALA ResNet-50 70.7 71.3 70.8 70.4
RIDE ResNet-50 72.6 70.9 72.4 71.3
BCL [Zhu et al., 2022] ResNet-50 71.8 - - -
PaCo [Cui et al., 2021] ResNet-50 73.2 70.4 72.8 73.6
NCL [Li et al., 2022] ResNet-50 74.2 72.0 74.9 73.8
GML [Suh and Seo, 2023] ResNet-50 74.5 - - -
LiVT [Xu et al., 2023] ViT-B/16 76.1 78.9 76.5 74.8

Fine-tuned from pre-trained model

Decoder [Wang et al., 2023] ViT-B/16 59.2 - - -
LPT [Dong et al., 2023] ViT-B/16 76.1 - - 79.3
PEL [Shi et al., 2024] ViT-B/16 80.4 74.0 80.3 82.2

Ours ViT-B/16 80.9 ± 0.2 74.0 ± 0.3 80.9 ± 0.3 82.7 ± 0.2

models. For all the datasets, we create a curriculum with only two tasks, i.e., coarse and fine (original) labels;
we re-train all the baselines based on the using the hyper-parameters reported in the original paper. As shown
in Table 3, our method can improve generalization across a range of different architectures and datasets (both
long-tail and roughly class-balanced) for visual classification, validating the effectiveness of our method.
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