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ABSTRACT

We present the Identity-Preserving Large Human Reconstruction Model (IPRM),
a feed-forward framework that reconstructs photorealistic, clothed 3D humans
from a single in-the-wild image while preserving 3D identity. Recent works pre-
dominantly reason 3D structure based on 2D features, making it challenging to
achieve 3D consistency while preserving the human identity in 3D space. To
alleviate these challenges, IPRM anchors the monocular 3D reasoning human re-
construction by constructing a human-based 3D feature space and explicitly pre-
serves the human identity and details by the 3D features. Specifically, we intro-
duce an efficient and robust SMPL-based sparse voxel representation to transform
2D identity features into 3D space, categorizing them as 3D visible identity to-
kens and invisible tokens to be reasoned. Using these 3D tokens, an identity-
aware 3D reasoning module is proposed to propagate projected 3D identity fea-
tures from visible to invisible tokens, ensuring that only unobserved regions are
reasoned while observed identity remains intact. Subsequently, IPRM introduces
an encoder-decoder structure to decode SMPL-based 3D features into 3DGS and
mesh representation, while simultaneously designing a 3D ID Adapter for identity
preservation. Instead of only conditioning on 2D image tokens, this adapter uti-
lizes 3D identity tokens extracted from a single-view branch as guidance to inject
identity information at the 3D token level. Comprehensive experiments on exist-
ing benchmarks and in-the-wild data show that IPRM surpasses state-of-the-art
methods in reconstruction performance, efficiency, and identity consistency.

1 INTRODUCTION

The pursuit of photorealistic 3D clothed human models represents a rapidly evolving field with
substantial commercial impact across gaming, film production, fashion design, and AR/VR applica-
tions. Although dense-view capture systems with scene-specific reconstruction models demonstrate
success in achieving this goal (Işık et al., 2023), their substantial computational and hardware re-
quirements impede widespread deployment. Therefore, a user-friendly system is needed that can
reconstruct 3D humans from any in-the-wild image in a feedforward manner

This task is challenging, where the core target lies in how to reason the complete 3D representation
from monocular input while preserving human identity (Li et al., 2024). Recent approaches
often address this issue using 2D features, either by employing multiview or video-based generation
to enhance 2D view completeness (Li et al., 2024), or directly utilizing 2D image feature tokens
to update 3D geometric tokens (Qiu et al., 2025a) that are sampled on parametric body models
(SMPL) (Loper et al., 2015) (referred to as 2D-to-3D Token Reasoning). However, these approaches
struggle to maintain multi-view consistency and fail to ensure that the reasoned 3D identity features
align with the 2D image, leading to issues such as artifacts and identity drift, as shown in Fig 1.

Therefore, we propose the Identity-Preserving Large Human Reconstruction Model (IPRM), a novel
framework that anchors the single-view human reconstruction process in an identity-aligned 3D
SMPL feature space and, rather than only using 2D image tokens, explicitly preserves human iden-
tity through 3D visible token guidance. However, implementing this framework presents several
significant challenges: 1). Recent studies (Qiu et al., 2025a; Pan et al., 2024) focusing on sam-
pling point-features from the coarse SMPL model struggle to accurately project 2D identity features
into these visible 3D points, with excessive points often compromising efficiency. 2). Existing
works (Qiu et al., 2025a) directly update all 3D token features conditioned on 2D image tokens,
making it difficult to preserve the projected 3D identity features. 3). The decoding process from
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Figure 1: Existing methods based on 2D generative priors and 2D-to-3D Token Reasoning often
over-rely on 2D feature space and fail to maintain 3D consistency and explicitly align 3D human
identity with the 2D input reference. IPRM achieves 3D Token Reasoning from 3D visible identity
tokens to 3D invisible tokens directly and preserves consistency on 3D identity-related tokens.

the SMPL-based feature space to 3D representations is often underexplored, despite its potential to
introduce uncertainty in the 3D identity features.

To address these challenges, 1). We introduce a sparse voxel representation in SMPL space
for 3D human modeling, which is more efficient compared to SMPL-point sampling and exhibits
greater robustness for SMPL-induced feature projection errors. 2). We design an identity-aware 3D
reasoning module, which includes multiple visibility mask-based self-attention blocks to achieve
the transition only from 3D visible identity to invisible tokens, and an adaptive 3D Human Feature to
align these 3D tokens with the human-specific domain. 3). IPRM introduces a 3D ID Adapter based
on a parallel single-view branch to maintain the consistency of identity-related tokens at the token
level during the decoding process. Specifically, IPRM first projects 2D features into 3D sparse active
voxels occupied by SMPL prior as well as camera Pose, and leverages SMPL’s normal direction to
distinguish visible and invisible voxels, thereby deriving visible identity and invisible tokens within
the SMPL space. Based on these tokens, the identity-aware 3D reasoning module infers invisible
tokens using visibility mask-based self-attention blocks, which can explicitly preserve 3D identity
tokens unchanged. Subsequently, they are further refined by the 3D Human Feature, which includes
a visible Human Feature derived from the input image and an invisible Human Feature predicted
from the reasoned 3D invisible tokens to represent the entire 3D target. Finally, we train an encoder-
decoder structure to decode these features from SMPL space, supporting both 3DGS and mesh
representations. To further preserve identity consistency during this process, we design an additional
single-view branch to predict the 3D identity condition tokens, which provides token-wise guidance
to ensure identity consistency in 3D space.

In summary, IPRM is a novel 3D human reconstruction framework capable of achieving fast and
high-fidelity human reconstruction from single-image features within one second, while utilizing
minimal GPU memory. Quantitative and qualitative experiments on extensive benchmarks demon-
strates the superiority of IPRM, particularly in preserving identity features. Furthermore, IPRM can
be directly extended to multi-view input settings. Our main contributions are as follows:

• IPRM establishes a novel paradigm for directly reconstructing 3D humans while preserving 3D
identity features via 3D token reasoning on SMPL-based 3D sparse voxel representation.

• We propose an identity-aware 3D reasoning module, which includes visibility mask-based self-
attention blocks to maintain human 3D identity features consistency during the 3D reasoning
process, and a 3D Human Feature for further refinement with human-specific knowledge.

• IPRM supports decoding into diverse 3D representations, including 3DGS and mesh. Addition-
ally, we introduce a 3D ID Adapter as critical 3D guidance to mitigate identity drift at the 3D
token level, significantly enhancing identity consistency throughout this process.

• IPRM achieves efficient inference of 3D human representations from image features in approxi-
mately 0.6 seconds. Comprehensive qualitative and quantitative evaluations validate the frame-
work’s superiority over existing methods and demonstrate the effectiveness of its key compo-
nents in addressing identity preservation and 3D consistency.

2 RELATED WORKS

2.1 DIFFUSION-BASED SINGLE-IMAGE HUMAN RECONSTRUCTION

Reconstructing 3D humans from a single view is inherently an ill-posed problem. Therefore, a
straightforward idea is to introduce 2D diffusion models for providing additional priors. Early
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works (Zhang et al., 2024a; 2025b; Gao et al., 2024; Wang et al., 2024) attempt to leverage Score
Distillation Sampling (SDS) (Tang et al., 2023; Huang et al., 2024), using diffusion models as aux-
iliary supervision to optimize 3D models, but these approaches often require time-consuming opti-
mization. Later, leveraging advances in diffusion models, SiTH (Ho et al., 2024) address missing
3D information by dividing the task into generative hallucination and reconstruction, using diffu-
sion models to hallucinate unseen back-view appearances from input images. Building on this idea,
subsequent works adopt a similar generation-reconstruction paradigm (Chen et al., 2024; Sengupta
et al., 2024; Zhang et al., 2025a). Among these works, (AlBahar et al., 2023) further focuses on
preserving the shape and structural details of the underlying 3D structure, while PSHuman (Li et al.,
2024) introduces an iterative Explicit Human Carving approach to achieve similar goals. In addition
to multi-view generation models, HumanSplat (Pan et al., 2024) utilized pre-trained video generation
models to complete continuous 3D information, while DiffHuman (Sengupta et al., 2024) extends
image generation to different domains such as normal and depth maps. Although these diffusion
model-based methods have achieved great success in recent years, generation in 2D space struggles
to align with 3D structures, inevitably leading to 3D inconsistencies. Additionally, the multi-step
nature of diffusion models inevitably sacrifices efficiency. To address these issues, IPRM introduces
a novel framework that reasons invisible features directly in 3D SMPL-based feature space without
diffusion processes and facilitates the transformation from SMPL space to realistic 3D representa-
tions while maintaining 3D identity consistency.

2.2 LARGE HUMAN RECONSTRUCTION MODEL

Single-image 3D human reconstruction is traditionally tackled by directly regressing the parameters
of a parametric body model (Kanazawa et al., 2018; Kolotouros et al., 2019) or by learning pixel-
aligned implicit surfaces that capture clothing details (Saito et al., 2019; 2020; Xiu et al., 2022; 2023)
(ICON, 2021; ECON, 2023). However, such methods lack explicit representations and struggle with
poor geometric quality. The development of Large Reconstruction Models (LRMs) (Hong et al.,
2023; Tang et al., 2024) has revitalized this field by enabling generalizable feedforward object re-
construction from a single or a small number of images. In the task of human reconstruction, several
works adopt this paradigm to replace traditional reconstruction methods (Zhuang et al., 2024). Early
Human-LRM (Weng et al., 2024) uses three-plane features for coarse reconstruction and improves
representation with diffusion models. Human-Splat (Pan et al., 2024) utilizes generated multi-view
image features to implicitly update SMPL-based Human Geometric Token features and decodes
the optimized SMPL-based 3D features into 3DGS representations. Similarly, (Chen et al., 2024)
adopts this paradigm and introduces additional optimization for back-view perspectives. In contrast,
LHM (Qiu et al., 2025a) and its derivative work (Qiu et al., 2025b) abandon the multi-view gen-
eration process, propose a video-based training paradigm, and introduce a Multimodal Body-Head
Transformer to further enhance the reconstruction quality of head tokens.

Although these methods achieve better 3D structure compared to diffusion-based approaches, they
suffer from two key limitations. First, the direct update of all 3D token features based on 2D image
token fails to establish explicit correspondence with the input image, resulting in the loss of identity-
specific 3D features. Second, existing methods rely on collecting numerous feature points from
SMPL (Qiu et al., 2025a), which not only compromises computational efficiency but also struggles
to handle cases involving loose clothing that deviates from the SMPL topology. To address these
challenges, IPRM adopts an SMPL-based sparse voxel representation as the foundational 3D struc-
ture. This representation can be efficiently projected from image features and subsequently decoded
into 3DGS and mesh. More importantly, unlike methods that rely on 2D-3D token reasoning, we
develop a novel identity-aware 3D token reasoning paradigm to directly infer invisible voxel token
features from visible identity tokens while explicitly preserving 3D identity features.

3 METHOD

3.1 HUMAN PARAMETRIC MODEL

SMPL (Loper et al., 2015) and its variants, SMPL-X (Pavlakos et al., 2019), serve as essential
parametric body model priors in human reconstruction tasks, establishing a coarse 3D geometr
that facilitates subsequent reconstruction processes. In this work, we utilize SMPL-X to estab-
lish SMPL-based sparse voxel representations. The SMPL-X model employs shape parameters and
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Figure 2: Overview of IPRM’s Inference Process: After constructing a voxel space based on
SMPL and projecting image features into it, IPRM classifies all voxels into visible TV and invisible
TI categories, leveraging visible voxels to infer invisible features and obtain 3D features. Subse-
quently, these SMPL-based 3D features are processed through a 3D ID Adapter and encoder-decoder
architecture to achieve identity-preserving 3DGS/mesh representations.

pose parameters to represent human body configurations, which can be directly converted into mesh
representations in 3D space to estimate occupied voxels and the visibility mask in IPRM.

3.2 IPRM FRAMEWORK

Given an in-the-wild human image I, our goal is to reconstruct a realistic 3D human representation
in one second while explicitly preserving the human identity of the input. To achieve this, we
propose IPRM, a feed-forward framework that projects the input image into visible identity 3D
token features and leverages them to explicitly reason about invisible 3D token features, thereby
enabling 3D human reconstruction from a single view. The entire pipeline is illustrated in Fig. 2.

Previous 2D-3D Token Reasoning works (Qiu et al., 2025a; Pan et al., 2024) primarily rely on
sampling points directly on the SMPL surface. This approach involves extensive sampled points
and depends heavily on the coarse SMPL prior, leading to inefficiencies and challenges in achiev-
ing accurate pixel-aligned feature projection due to inaccuracies in SMPL geometry. Inspired by
Trellis (Xiang et al., 2025), IPRM adopts an SMPL-based sparse voxel as the foundational represen-
tation. By operating on active voxels rather than individual surface points, this method significantly
improves efficiency and mitigates the impact of 2D-3D projection errors. Combined with the subse-
quent encoder and decoder, it enables conversion from the SMPL feature space to 3DGS and mesh.

After projecting image features into the SMPL-based voxel space, referred to as the SMPL Feature
Space (Single View), we propose an identity-aware 3D reasoning module. This module leverages
projected visible voxel tokens (also referred to as identity tokens) to infer invisible 3D tokens while
preserving identity consistency in the 3D space, resulting in the SMPL Feature Space (3D). During
the encoding-decoding process from SMPL-based feature space to 3DGS or mesh, IPRM intro-
duces a 3D ID Adapter, which utilizes single-view 3D identity features from the condition branch
as guidance to mitigate identity drift in a token-by-token manner.

3.3 SMPL-BASED SPARSE VOXEL TOKENS

Sparse voxel is an efficient 3D representation designed to coarsely capture the occupied regions of a
3D space surrounding an object (Gao et al., 2023; Lu et al., 2024). Unlike Trellis (Xiang et al., 2025),
which directly operates in real geometric space, our sparse voxel is adapted to the SMPL space by
identifying active voxels based on whether they are occupied by the SMPL geometry. Instead of
sampling exact points on the SMPL surface, this voxel-based representation captures the 3D space
surrounding SMPL and outlines the human’s coarse geometry on the 3D grid (Xiang et al., 2025),
while being less sensitive to feature projection inaccuracies on the SMPL surface. Correspondingly,
to enable high-quality conversion from the SMPL space to 3DGS and mesh, the specific encoder-
decoder structure is trained to further enhance robustness to approximate projected voxel features.
The effectiveness of this representation is discussed in Sec. 4.3 and Fig. 7.

Based on the SMPL-based sparse voxel V and input features F = DINOv2(I), we project F into
the 3D voxel space and serialize them as tokens T = {(zi, fi)}Vi=0, where zi ∈ {0, 1, . . . , N − 1}3
is the positional index of the active voxels and fi ∈ RC represents the projected feature from
F. We refer to it as the SMPL feature space (Single view), denoted as VS . Subsequently, IPRM

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Vis-Masked Self-Attention
Cross-attention

Cross-attention

3DLoss

Position Emb

Arcface

Cross-attention

Cross-attention

…

…

…

…

V
isib

le
 T

ok
e
n  K

 ,V

Single View 

Loss

Multi Views 

Loss

3D Visible 
Voxel Tokens:

3D Invisible 
Voxel Tokens:

3D ID Adapter

3D Human
Feature

3D Invisible Voxel Feats:

Human Invisible 
Feature:

Human Identity 
Feature:

Sapiens

Identity-aware 3D Reasoning Module

Vis-Masked Self-Attention

FFN

（ ）
3D Reconstruction

Target Branch

K
 ,V

Token-by-Token Manner

R
e
place

TV
TITV TV

TI
TI

TI

TV
TITV

TV
TI

TI
TI

TV
TITV

TV TI
TI

TI

TVTV
TV

TI

TI

TVTV
TV

TI

TI

Vis-Mask M

TI
TI

TI TI

SMPL Feat. Space 
(3D-GT) 3DGT

SMPL Feat. Space 
(3D) 3D

SMPL Feat. Space 
(3D-GT) 3DGT

Single-view
Condition Branch

SMPL Feat. Space 
(Single View) S

Figure 3: Given voxel tokens, the identity-aware 3D reasoning module uses multiple visibility
mask-based self-Attention blocks and a 3D Human Feature to update invisible voxel token features
and refine 3D Tokens for human-specific knowledge alignment, respectively. During the decoding
of these SMPL-based 3D features to 3DGS/mesh, the 3D ID Adapter designs a single-view branch
to predict single-view 3D identity features, which serve as guidance to preserve the identity of 3D
representations in a token-by-token manner.

leverages the relationship between the SMPL-based voxel normals (Norm) and viewpoints P to
classify these tokens into visible tokens TV , i.e., identity tokens, and invisible tokens TI , i.e.,
tokens to be reasoned and obtain a visibility mask M based on the token index z.

3.4 IDENTITY-AWARE 3D REASONING MODULE

Given TV , the IPRM is tasked with inferring TI while preserving the integrity and consistency
of the known identity features TV . To address this objective, we introduce the identity-aware 3D
reasoning module, which incorporates a visibility-mask-guided self-attention mechanism alongside
a 3D Human Feature. The integration of these components enables effective reasoning and facilitates
the transformation from VS to SMPL feature space (3D), referred to as V3D.

To handle TI and TV , IPRM first incorporates sinusoidal positional encodings by voxel posi-
tions and concatenates them token-wise, which are subsequently processed through self-transformer
blocks. Given the visibility mask M, the visibility mask-based self-attention blocks are then em-
ployed to reason over TV while explicitly preserving TI unchanged. This process enables reasoning
from known regions to unknown regions, but it struggles to align with human-specific knowledge.
Therefore, we introduce an additional human-based condition to further refine these 3D tokens.

Prior approaches (Qiu et al., 2025a) typically depend on human-specific encoders (Khirodkar et al.,
2024), leveraging a single-view human feature as conditioning, referred to as PV , to accomplish
this goal. However, relying exclusively on this 2D Feature to guide the update of all tokens T
proves insufficient, as 2D features extracted from limited viewpoints inherently struggle to align with
the comprehensive 3D spatial representation. Therefore, we propose a 3D Human Feature, which
introduces an additional invisible Human Feature PI representing the invisible 3D information that
is not captured from the given viewpoint. Subsequently, the IPRM leverages the concatenation (||)
of both components as a condition to collectively guide the updating of 3D tokens. To obtain PI , we
utilize the reasoned TI as a condition to update PV , which is achieved through the cross-attention
blocks, enabling the 3D Human Feature to transition from visible to invisible regions, as in Fig. 3.

PI = Cross-Attention(PV ;TV ), T = Cross-Attention(TV ||TI ;PV ||PI), (1)

3.5 3D ID ADAPTER

After achieving the transformation from SMPL-based single-view features to 3D features, IPRM
aims to decode these 3D voxel features V3D into 3DGS or mesh representations. This process has
been discussed in existing works (Qiu et al., 2025a; Xiang et al., 2025), but they often overlook
the potential identity drift introduced during this step. Such a drift may arise due to the uncertainty
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Table 1: Comparisons of methods on two benchmark (Qiu et al., 2025a; Li et al., 2024) on Synthetic
Data and THuman2.1 for 3DGS reconstruction, with inference time and memory usage.

Methods Synthetic Data THuman2.1 Inference
PSNR↑ SSIM↑ LPIPS↓ PSNR(I)↑ FC↓ PSNR↑ SSIM↑ LPIPS↓ Time Memory

GTA 17.03 0.919 0.09 17.66 0.051 19.61 0.834 0.10 0.68s ≈8GB
SIFu 16.68 0.917 0.09 19.22 0.060 19.44 0.831 0.10 0.65s ≈9GB
DreamGaussian 18.54 0.917 0.08 19.47 0.056 - - - 2 min ≈8GB
SITH - - - - - 18.46 0.820 0.10 45.12s ≈21GB
PSHuman 17.56 0.921 0.08 21.44 0.037 20.85 0.864 0.08 1 min ≈40GB
Trellis* 21.67 0.921 0.05 21.99 0.058 21.33 0.886 0.06 4.20s ≈11GB
LHM-0.5B 25.18 0.951 0.03 26.64 0.035 - - - 2.01s ≈18GB

Ours 27.11 0.954 0.03 28.86 0.031 26.87 0.949 0.05 0.61s ≈9GB

challenge in directly decoding 3D tokens, defined within the SMPL space, into 3D representations.
A popular approach is to incorporate a 2D image condition to guide the 3D token decoding.

We explore the integration of human features (Khirodkar et al., 2024) and face features (Deng et al.,
2019) as conditioning inputs for the cross-attention layers to guide the encoder-decoder. Neverthe-
less, experiments demonstrate that this approach yields only modest improvements, potentially due
to the challenge of establishing explicit correspondence between the 2D tokens and the 3D tokens,
as aforementioned. To address this issue, IPRM further introduces 3D identity condition tokens,
which not only directly guide token decoding in a token-by-token manner but also achieve better
alignment within the same feature domain. To obtain the 3D identity condition tokens, we design
an additional single-view condition branch that operates in parallel with the target branch. Distinct
from the target branch (reconstruction branch), which takes V3DGT as input and focuses on recon-
structing 3D representations from SMPL-based features, the condition branch processes VS as input
with the objective of reconstructing the input or identity image only.

Through optimizing condition branch by the input image, it acquires the capability to infer single-
view 3D identity features from a 2D input image, serving as critical guidance for the target branch.
Motivated by the design of ReferenceNet (Hu, 2024), we replace the key and value in each self-
attention layer of the target branch with the corresponding key and value from the condition branch,
while preserving the query from the target branch. In addition, the objective of the 3D ID Adapter
is to leverage 3D identity features to ensure the identity consistency. Therefore, this 3D token-wise
guidance is applied exclusively to the visible identity tokens, while the reasoned invisible tokens
retain the original key and value from the target branch.

3.6 TRAINING STRATEGY

IPRM adopts a two-stage training paradigm to separately train the identity-aware 3D reasoning
module and the encoder-decoder with the 3D ID Adapter. In the first training stage, we take images
and SMPL as inputs to predict SMPL-based 3D voxel features V3D from the SMPL-based single-
view feature space VS . This process is supervised in the GT-3D feature using MSE loss. To obtain
the SMPL-based GT 3D voxel features V3DGT , we project and aggregate the features from all
viewpoints into the 3D SMPL voxel space, as in appendix A. In the second stage, we fine-tune
the pre-trained encoder-decoder (Xiang et al., 2025) without sampling, which is designed to directly
decode into 3DGS or mesh representations from SMPL-based V3DGT . Additionally, we jointly train
the model with image-based cross-attentions and a 3D ID Adapter to preserve identity features.
Specifically, the 3DGS-decoder maps 3D voxel feature into Gaussian components with position
offsets, colors, scales, opacities, and rotations, optimized using L1, D-SSIM, and LPIPS losses,
while for meshes, 3D features are transformed into signed distance values for voxel vertices, with
outputs extracted from isosurfaces and optimized using L1 loss on depth and normal maps. For the
condition branch, we supervise it only through a single view under the input view.

4 EXPERIMENTS

4.1 EXPERIMENTS DETAIL

Dataset and Evaluation Metrics: We introduce Human4Dit (Shao et al., 2024), Thuman2.1 (Yu
et al., 2021), 2K2K (Han et al., 2023), and CustomHumans (Ho et al., 2023) for training and evaluat-
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ing the IPRM. To ensure fairness, we follow the evaluation benchmarks of LHM (Qiu et al., 2025a)
and PSHuman (Li et al., 2024) by using the same test cases and viewpoints for assessment while
ensuring that these evaluation cases are excluded from the training set. To quantitatively evaluate
the performance of 3DGS rendering, we introduce traditional metrics such as PSNR, SSIM, and
LPIPS to assess the performance of 3D human reconstruction. Additionally, we introduce Input-
view PSNR, referred to as PSNR (I), and Face Consistency (Qiu et al., 2025a) to further evaluate the
ability of IPRM to preserve identity. To assess the quality of mesh reconstruction, we employ three
primary metrics: one-directional point-to-surface (P2S), L1 Chamfer Distance (CD), and Normal
Consistency (NC) (Li et al., 2024). More details are discussed in appendixA.

Preprocessing Pipeline: Given an in-the-wild image, we first utilize Segment Anything (Kirillov
et al., 2023) to segment the foreground human. Subsequently, we generate square and centralized
input images and estimate their SMPL-X following SiTH (Ho et al., 2024) for reconstruction.

Training Configuration: IPRM adopts a two-stage training paradigm. Specifically, the identity-
aware 3D reasoning module is trained from scratch with an initial learning rate of 2 × 10−3 over
200,000 iterations. In contrast, the encoder-decoder is fine-tuned from a pre-trained model (Xiang
et al., 2025), where cross-attention layers are added and initialized. This stage is optimized with an
initial learning rate of 5× 10−4 over 100,000 iterations. More details are discussed in appendixA.

4.2 COMPARATIVE EXPERIMENTS

Here, we primarily follow three recent and widely adopted benchmarks for conducting comparative
experiments: 1) approaches leveraging 2D generative priors (Li et al., 2024), 2) 2D-to-3D Token
Reasoning methods (Qiu et al., 2025a), as Fig. 1, and 3) general 3D generation models (Xiang et al.,
2025) fine-tuned on human data. To ensure a rigorous and fair comparison, all experiments are
conducted on identical test cases (excluded from the training data) and under consistent viewpoints.

4.2.1 QUANTITATIVE EVALUATION

Performance Comparison: As evidenced by the experimental results in Tab 1 and Tab 4, our
proposed IPRM achieves substantial improvements across all evaluation metrics compared to ex-
isting state-of-the-art methods. These performance gains can be primarily attributed to the frame-
work’s ability to perform 3D token reasoning directly in 3D space, enabling superior 3D consis-
tency, particularly when compared to approaches based on 2D generative models. As reflected in
the PSNR(I) and FC metrics, IPRM demonstrates improved preservation of human identity com-
pared to LHM (Qiu et al., 2025a). This improvement stems from our SMPL-based sparse voxel and
identity-aware 3D reasoning module, which achieves 3D tokens with 2D feature alignment and fa-
cilitates the transition from identity 3D tokens to invisible tokens. Compared to Trellis fine-tuned on
human datasets, IPRM achieves greater consistency with the original images and excels in capturing
fine-grained details, such as facial features, owing to the integration of SMPL priors and the 3D ID
adapter. Furthermore, as shown in Tab. 2, IPRM significantly outperforms most existing methods
in mesh reconstruction, delivering results comparable to PSHuman (Li et al., 2024). This achieve-
ment is particularly notable, as PSHuman relies on iterative optimization for each individual case,
whereas IPRM operates within a feed-forward paradigm, offering both efficiency and effectiveness.

Efficiency and Memory Usage: Compared to existing algorithms, IPRM achieves superior compu-
tational efficiency, characterized by faster inference speed and reduced memory consumption, as in
Tab. 1. This efficiency is primarily attributed to the framework’s avoidance of the iterative denoising
process of diffusion models and its adoption of an SMPL-based sparse voxel representation.

4.2.2 QUALITATIVE EVALUATION

As corroborated by the quantitative results, IPRM also demonstrates remarkable performance in the
qualitative evaluations presented in Fig. 4. Methods based on 2D generative priors, such as PSHu-
man (Li et al., 2024), suffer from significant 3D inconsistency issues, leading to severe artifacts like
broken fingers and distorted geometry, as shown in the facial regions in the first row and the hand
regions in rows 2-3. Similarly, 2D-to-3D Token Reasoning approaches like LHM (Qiu et al., 2025a),
exhibit noticeable inconsistencies in preserving input pose and identity, as shown in the facial re-
gions in rows 1-2 and the hand regions in the third row. In contrast, IPRM effectively addresses
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Table 2: Quantitative comparison for mesh.

Method Opt THuman2.1
Cham. Dist ↓ P2S ↓ NC ↑

ICON × 0.6146 0.5934 0.8493
ECON × 0.6725 0.6331 0.8362
GTA × 0.5791 0.5587 0.8491
SIFU × 0.5754 0.5576 0.8500
HiLo × 0.5977 0.5892 0.8405
SITH × 0.6474 0.5810 0.8264
PSHuman ✓ 0.4399 0.4077 0.8504
Ours × 0.4451 0.4332 0.8507

Table 3: Application on more inputs.

Method THuman2.1
PSNR ↑ SSIM ↑ LPIPS ↓

Single View (Front image) 26.87 0.949 0.05
Two Views (+Back Image) 27.31 0.953 0.04
All Views 27.77 0.961 0.03

Table 4: Comparison on CustomHuman.

Method CustomHuman
PSNR ↑ SSIM ↑ LPIPS ↓

SiTH 27.07 0.938 0.07
LHM-0.5B 28.31 0.953 0.05
Ours 29.41 0.971 0.04

both challenges within a unified framework, delivering superior 3D consistency and maintaining
identity fidelity through the proposed identity-aware 3D reasoning module and 3D ID Adapter. No-
tably, IPRM excels in preserving fine-grained details in complex regions such as the hands and face,
where other methods often introduce distortions or compromise structural integrity. As illustrated in
Fig. 5, we provide a qualitative comparison of IPRM for mesh reconstruction. While PSHuman (Li
et al., 2024) relies on iterative optimization for each individual case, IPRM achieves more complete
reconstruction results (e.g., facial regions) through a more efficient feed-forward paradigm, which
benefits from the 3D consistency of IPRM. Furthermore, in comparison to GTA (Zhang et al., 2023)
and SIFU (Zhang et al., 2024b), IPRM produces smoother surfaces and more precise geometry,
demonstrating its robustness in capturing intricate 3D human identity and ensuring 3D consistency.
More cases are discussed in appendix B.

4.3 ABLATION STUDY

To analyze the functional mechanisms of the SMPL-based sparse voxel, identity-aware 3D
reasoning module, and 3D ID Adapter in IPRM, the ablation study is shown in Tab. 5.

Table 5: Componential ablation study.

Method Synthetic Data
PSNR(I) SSIM LPIPS

SMPL-based Sparse Voxel

w/o Feature Project 17.01 0.911 0.10

Identity-aware 3D Reasoning Module

w/o Visibility Mask 27.92 0.951 0.04
w/o 3D Human Feature 28.66 0.953 0.03

3D ID Adapter

w/o 2D Attention 28.72 0.954 0.03

Ours 28.86 0.954 0.03

SMPL-based Sparse Voxel: Beyond its con-
tribution to higher efficiency, we further val-
idate the impact of the SMPL-based sparse
voxel representation on overall performance
enhancement. Unlike existing approaches that
directly sample point features on SMPL sur-
faces (Qiu et al., 2025a), the sparse voxel de-
fines features in the 3D space surrounding the
SMPL geometry. This design enhances ro-
bustness against the coarse geometric priors of
SMPL, leading to more reliable reconstruction
for loose clothing, as Fig. 6. Moreover, pro-
jecting features into 3D space introduces sig-
nificant improvements to IPRM, enabling more
accurate and identity-aligned reconstructions.

Identity-aware 3D Reasoning Module: The visibility mask proves to be critical for identity preser-
vation, as it explicitly retains identity-relevant tokens when reasoning about invisible tokens. Fur-
thermore, the 3D Human Feature significantly enhance the results by leveraging human-specific
features to facilitate global optimization of 3D tokens, leading to improved reconstruction quality.

3D ID Adapter: Experimental results demonstrate that utilizing 2D images as conditioning in-
puts provides some benefit in maintaining identity information during the encoder-decoder process;
however, the impact remains limited. This highlights the challenge of establishing explicit corre-
spondences between 2D image tokens and 3D tokens. In contrast, our proposed 3D ID Adapter
exhibits a significantly greater impact on performance, which is also demonstrated in Fig. 7. This
improvement can be attributed to the single-view condition branch in effectively preserving identity
features, as well as the enhanced token-to-token correspondence achieved through these 3D identity
features, which better align with the 3D reasoning process.

More Inputs: IPRM is inherently capable of adapting to any number of input images. To further
explore its potential, we extended IPRM to multi-input scenarios in Tab. 3. Experimental results

8
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Input GTA IDOL PSHuman LHM Trellis* IPRM

Figure 4: Qualitative comparison with recent SOTA works on test sets and in-the-wild data.

GTAInput SIFU

PSHuman IPRMSiTH

Figure 5: Qualitative comparison of IPRM with
recent SOTA works on mesh.

Input Point-based Voxel-based

Point-based

Voxel-based

Figure 6: Comparison between point-based and
voxel-based representations on SMPL.

Original Encoder-
Decoder

+2D Attention +3D ID AdapterInput

Figure 7: Ablation study for 3D ID Adapter.

clearly demonstrate that as the number of visible tokens increases, the prediction performance im-
proves significantly, highlighting the model’s ability to leverage additional view information for
enhanced reconstruction accuracy.

5 CONCLUSION

This paper presented IPRM, a feed-forward framework 3D human reconstruction from single im-
ages. Through explicit 3D tokens reasoning about invisible 3D regions from visible identity features
in SMPL-based sparse voxel space, IPRM achieves 3D-consistent and identity-preserving recon-
struction. Our key technical contributions–the SMPL-based sparse voxel representation, identity-
aware 3D reasoning module, and the 3D ID Adapter–work synergistically to preserve 3D visible
identity cues while reasoning about only unobserved regions. Extensive experiments demonstrate
that IPRM achieves state-of-the-art performance across multiple benchmarks, substantially surpass-
ing existing methods in geometry accuracy, texture fidelity, and identity similarity, while operating
significantly faster than prior work with minimal memory requirements.
Limitation: Although IPRM preserves identity, the sparse voxel representation limits fine detail
reconstruction, which could be improved through future post-processing optimization.
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REPRODICIBILITY STATEMENT

We have made every effort to ensure our work is reproducible. Our experiments are conducted on the
public Trellis benchmarks. The methodology for constructing the IPRM is detailed in Sec.3, and the
implementation details are provided in Sec.4. To further facilitate replication, we provide compre-
hensive training configurations in appendix A. The source code for our framework and experiments
will be made publicly available upon publication.
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A EXPERIMENTAL DETAILS

A.1 TRAINING AND EVALUATION DATASET

During training, we use partial rendered data from Human4Dit (Shao et al., 2024), Thuman2.1 (Yu
et al., 2021), and CustomHumans (Ho et al., 2023), with the remaining data designated as evaluation
datasets, following PSHuman (Li et al., 2024) and LHM (Qiu et al., 2025a), where Synthetic Data
includes 2K2K (Han et al., 2023) and Human4Dit (Shao et al., 2024). Each case is uniformly
rendered from 30 viewpoints in Blender following Trellis (Xiang et al., 2025) for training, while
during evaluation, the LHM benchmark uses the same rendering viewpoints for assessment, and the
PSHuman benchmark samples only four viewpoints {0◦, 90◦, 180◦, 270◦}.
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A.2 TRAINING AND EVALUATION DETAILS

After obtaining the rendered data, we can leverage them to train the 3DGS-based encoder-decoder
structure and 3D ID Adapter, and utilize the GT Human Mesh along with its corresponding normals
to train the mesh-based structure. To train IPRM, we reproject the multi-view rendered features back
to the 3D SMPL voxel space and average them within each smpl-based voxel (Xiang et al., 2025) to
obtain the GT multi-view SMPL feature space V3DGT . During inference, we do not use V3DGT .
The IPRM can directly construct VS from a single in-the-wild image and its corresponding SMPL,
which is used to infer invisible tokens by the identity-aware 3D reasoning module, obtaining V3D.
Finally, V3D can be decoded into 3DGS or mesh. Additionally, in comparative experiments, we
use the same method to process human data for fine-tuning Trellis (Xiang et al., 2025), including its
diffusion model structure and encoder-decoder structure.

A.3 TRAINING CONFIGURATION

All models are trained using the AdamW optimizer and conducted on 4 A6000 GPUs with a batch
size of 8, requiring approximately two days for completion. The entire training framework is modi-
fied based on the open-source TRELLIS project (Xiang et al., 2025). The key difference is that we do
not employ any diffusion model processes, but rather achieve single-view to 3D feature conversion
solely through 3D token reasoning. In the identity-aware 3D reasoning module, we employ 4 visi-
bility mask-based self-attention blocks in conjunction with 4 cross-attention blocks to facilitate 3D
token reasoning. This configuration is designed to strike an optimal trade-off between computational
efficiency and model performance. For the encoder-decoder architecture, we adopt the original Trel-
lis (Xiang et al., 2025) structure, with the key difference being the introduction of cross-attention
layers based on 2D image tokens in each self-attention block, guided by 3D identity features from
the single-view condition branch. For 3DGS, we fine-tune both the encoder and decoder, while for
mesh reconstruction, we only fine-tune the decoder based on the 3DGS-based encoder.

B MORE QUALITATIVE COMPARISONS

Here we present more cases comparing IPRM with recent work, as shown in Fig. 8-10. Consis-
tent with previous findings, IPRM demonstrates superior rendering results for the decoded 3DGS,
particularly in identity features including pose, geometry, and appearance. This is attributed to the
advantage of 3D Token Reasoning in preserving visible identity features. The same conclusion can
be drawn for mesh reconstruction, where our method achieves more complete geometry compared
to PSHuman (Li et al., 2024), which often suffers from missing parts such as hands and feet due to
difficulties in maintaining 3D consistency.

C THE USE OF LARGE LANGUAGE MODELS

During the writing process of this paper, we utilized large language models to enhance the
manuscript quality, including employing large language models to correct grammatical errors and
modify wording and expressions to achieve a more formal and academic style.
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Figure 8: Qualitative comparison of IPRM with recent SOTA works.
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Figure 9: Qualitative comparison of IPRM with recent SOTA works.
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Figure 10: Qualitative comparison of IPRM with recent SOTA works.
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