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ABSTRACT

In single image super-resolution (SISR), many deep learning-based methods suf-
fer from intensive computational operations. In addition, while Swin Transformer-
based methods such as SwinIR established state-of-the-art results, they still hold
the problem of ignoring the broad regions when computing window self-attention
(WSA) to reconstruct high-frequency information. In this paper, we propose the
efficient NGswin network, which is the first attempt in history to introduce N-
Gram to deep learning in images. For text analysis, N-Gram is a sequence of
consecutive characters or words, but in an image, we define N-Gram as neigh-
boring local windows (in WSA of Swin Transformer) which interact with each
other by sliding-WSA. We propose N-Gram interaction, SCDP bottleneck, and
a pooling-cascading mechanism, which enable the network to consider broad re-
gions beneficial to recovering the degraded neighbor pixels. Moreover, we employ
a hierarchical encoder with patch-merging, uni-Gram embedding, and a compact
decoder to NGswin to enhance the network efficiency. Experimental results show
that the proposed model achieves competitive performance in terms of PSNR and
SSIM scores with fewer operations (Mult-Adds) compared to other methods.

1 INTRODUCTION

Deep learning-based methods have improved performance in single image super-resolution (SISR),
which aims to reconstruct high-resolution (HR) images from low-resolution (LR) images. However,
recent state-of-the-art (Chen et al., 2021; Mei et al., 2021; Liang et al., 2021; Zhang et al., 2022)
and lightweight SR networks (Lu et al., 2021; Zhang et al., 2021; Du et al., 2022) require intensive
computations. Although the network having small number of parameters is practically more appli-
cable, the contemporary semi-conductor system can tolerate a certain level of memory consumption
(e.g., 1M parameters, 4MB) to fetch the network weights from the memory unit (SSD or RAM) to
the processing unit (CPU or GPU) (Han et al., 2021). If keeping the parameters around that level,
fewer operations are important for real-world applications concerning time. Meanwhile, as Swin
Transformer (Liu et al., 2021) integrates locality of convolutional neural network and long-range de-
pendency of Vision Transformer (Dosovitskiy et al., 2020) by window self-attention (WSA), some
studies have employed it to restore HR images (Liang et al., 2021; Fang et al., 2022). Nevertheless,
Swin Transformer has a critical limitation that the information of the broad regions in neighboring
local windows would not be utilized for inferring high-frequency information, due to the shift size.

To overcome these problems, we propose a efficient approach, N-Gram Swin Transformer
(NGswin). As illustrated in Fig. 1, NGswin is composed of five components: a shallow network,
three hierarchical encoder stages with NSTBs (N-Gram Swin Transformer Blocks), SCDP Bottle-
neck (pixel-Shuffle, Concatenation, Depth-wise convolution, Point-wise projection), one decoder
stage with NSTBs, and Reconstruction module. We adapt WSA of Swin Transformer, hierarchical
architecture of U-Net (Ronneberger et al., 2015), and cascading mechanism of CARN (Ahn et al.,
2018). To the best of our knowledge, this is the first attempt in history to introduce N-Gram to deep
learning in the vision domain. As stated in He et al. (2022), images have heavy spatial redundancy,
which means that some degraded pixels can be recovered from contextual information of neighbor-
ing pixels or patches. Similar to N-Gram language models that take into account the longer span
of neighboring words beyond a single word, the longer context can enhance image reconstruction
as well as text analysis. To take advantage of the extensive information from neighboring pixels,
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Figure 1: Overall architecture of NGswin. We adopt asymmetric encoder-decoder U-Net archi-
tecture. NSTB stands for N-Gram Swin Transformer Block. SCDP Bottleneck is composed of
pixel-Shuffle, Concatenation, Depth-wise convolution, and Point-wise projection. It is a variant of
bottleneck of U-Net, which takes all outputs of encoder stages including the initial shallow network.

the output of proposed N-Gram interactions by sliding-WSA is added to each local window before
WSA. To decrease self-attention operations in N-Gram interaction, uni-Grams are embedded by a
group convolutional layer before interacting with each other. We demonstrate that N-Gram context
utilizes the information in broader regions for restoring the degraded pixels.

The main contributions of this paper are summarized as follows:

(1) We propose N-Gram interactions in the image domain by sliding-WSA, a variant of bot-
tleneck structure, and pooling-cascading mechanism, all of which are crucial for achieving
competitive performance in the efficient SISR on ×2, ×3, and ×4 upscaling tasks.

(2) For a more efficient network while keeping a tolerable size of parameters, we exploit the hier-
archical encoder with patch-merging and an asymmetrically smaller decoder. We also embed
uni-Gram context by group convolution for efficient calculation of N-Gram interactions.

2 RELATED WORK

2.1 EFFICIENT SINGLE IMAGE SUPER-RESOLUTION (SISR)

Many SISR studies have striven to increase network efficiency. CARN (Ahn et al., 2018) introduced
cascading residual blocks. IMDN (Hui et al., 2019) used information multi-distillation and selective
feature fusion. RFDN (Liu et al., 2020) proposed residual feature distillation for lightening IMDN.
ESRT (Lu et al., 2021) combined convolutional neural network (CNN) and channel-reducing Trans-
former (Vaswani et al., 2017). SwinIR-light (Liang et al., 2021) additionally appended CNN on Swin
Transformer backbone (Liu et al., 2021). SRPN-lite (Zhang et al., 2021) applied the network pruning
technique (Reed, 1993) on EDSR-baseline (Lim et al., 2017), a CNN-based lightweight SR model.
Most recently, ELAN-light (Zhang et al., 2022) utilized group-wise multi-scale self-attention. Al-
though these methods successfully reduced the number of parameters, they still required intensive
operations, which is a drawback for real-world applications. Since contemporary semiconductors
can tolerate a certain memory level (Han et al., 2021) (e.g., around 1M parameters, about 4MB in
size), computational operation is a key factor for evaluating the network efficiency.

2.2 N-GRAM LANGUAGE MODEL IN DEEP LEARNING

N-Gram is a sequence of consecutive characters or words, of which the length (or size) N is typ-
ically set to 2 or 3 (Majumder et al., 2002). The N-Gram language model (LM) considering a
longer span of context in sentences was operating well statistically. Although this method seemed
dominated by recent deep learning-based LM, some researchers still adopted N-Gram to effectively
understand text data even in the deep learning methods. Sent2Vec (Pagliardini et al., 2017) used
N-Gram embeddings by averaging word-embedding to learn sentence embedding. To learn the sen-
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(a) N-Gram in text (b) N-Gram in image

Figure 2: N-Gram in text and image (N = 2). (a) SOS and EOS signify the start and the end of the
sentence. Underlined words in groups are the target words and non-underlined words are N-Gram
neighbors of the target word. (b) Each local window (referred from SwinV1&V2) is defined as
uni-Gram. The right/lower local windows are defined as forward N-Gram neighbors.

tence representation better, Lopez-Gazpio et al. (2019) computed word N-Gram context by recurrent
neural network (RNN) and passed it to the attention layer. ZEN (Diao et al., 2019; Song et al., 2021)
trained a BERT-styled (Devlin et al., 2018) N-Gram encoder for all possible character N-Grams from
Chinese or Arabic lexicon to convey salient N-Grams to another encoder, the character encoder.

2.3 SWIN TRANSFORMER V1 & V2

Swin Transformer (Liu et al., 2021) (SwinV1) proposed window self-attention (WSA) that computes
self-attention only within non-overlapping local windows, to avoid quadratic time-complexity to the
resolution of feature-map. To compensate for WSA that lacks interaction across windows, SwinV1
also proposed shifted window self-attention (SWSA) in consecutive layers. The revised version
(Liu et al., 2022) (SwinV2) modified SwinV1. First, for the advanced model capacity with milder
optimization, SwinV2 introduced residual post normalization and scaled cosine attention, instead
of pre-normalization configuration and scaled-dot-product attention. Second, for better transfer-
learning regardless of the size of images or windows, it replaced the relative position bias with
the log-spaced continuous position bias. As we find that SwinV2 backbone is more effective than
SwinV1 for NGswin, we adopt SwinV2 rather than SwinV1.

Limitations. The shift size (⌊M
2 ⌋ on paper; M : window size) in SwinV1 and V2 is critically

vulnerable, in that the shift size could not be over M . It causes the considerably broad regions in
neighboring local windows to be ignored when computing (S)WSA. Though the weakness can be
compensated in the deeper layers, information helpful for reconstruction task cannot be utilized for
producing high-frequency information in the shallower layers taking HR inputs.

3 METHODOLOGY

3.1 DEFINITION OF N-GRAM CONTEXT IN IMAGE

N-Gram in text. As shown in Fig. 2(a), the N-Gram language model views the consecutive for-
ward, backward, or bi-directional words as N-Gram of the target word. The words are independent
with each other for uni-Gram (i.e., word-embedding), but they interact with each other by RNN or
Attention when considering N-Gram. In contrast, an N-Gram composed of the same words (e.g.,
“office work” in Fig. 2(a)) never interact with the other N-Gram combinations.

N-Gram in image. Similarly, N-Gram in an image should have the aforementioned properties.
Thus, we define a uni-Gram as a non-overlapping local window of Swin Transformer, within which
the pixels of feature-maps interact with each other by self-attention. N-Gram is defined as the larger
window including neighbors of each uni-Gram. As depicted in Fig. 2(b), setting N-Gram size N to
2 indicates a bi-Gram that combines a local window (green area) and its neighboring windows (red
areas) at lower-right. The interaction within the N-Gram will be explained in sec. 3.3.
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Figure 3: Efficiency of asymmetrically smaller decoder in terms of the operations, the number of
parameters, and the inference time. Mult-Adds is evaluated on ×2 task with a 1280×720 HR image.
The inference time is estimated on doubling 10 LR images (640×360) into HR images (1280×720)
on a single NVIDIA TITAN Xp GPU.

Table 1: Computational complexity of NGswin. (left) Comparisons of operations with state-of-the-
art networks. (right) Number of operarions for each hierarchical encoder and a compact decoder.
res. and dep. indicate the resolution of input and the number of NSTBs, respectively.

scale NGswin (ours) SwinIR-light2 ESRT ELAN-light
x2 140.4G 243.7G 191.4G 168.4G
x3 66.5G 109.5G 96.4G 75.7G
x4 36.4G 61.7G 67.7G 43.2G

scale stage Mult-Adds res. dep.

×2

encoder 1 61.91G 64×64 6
encoder 2 11.05G 32×32 4
encoder 3 2.76G 16×16 4
decoder 60.84G 64×64 6

3.2 OVERALL ARCHITECTURE

As illustrated in Fig. 1, we adopt U-Net (Ronneberger et al., 2015) architecture; hierarchical en-
coder stages, a bottleneck layer, a decoder stage, and skip-connection from encoder to decoder with
same feature resolution1. However, the encoder and decoder in our network are asymmetric, which
indicates significantly smaller decoder stages are employed (He et al., 2022; Pang et al., 2022). This
asymmetry highly enhances the efficiency, as shown in Fig. 3 and right of Tab. 1.

Encoder. Given a low-resolution (LR) image ILR ∈ R3×H×W , a shallow network Gs(·) (Liang
et al., 2021) extracts zs ∈ RD×H×W , where H , W , and D stand for height, width, and network
dimension (channels), respectively. This module provides stable optimization and easy mapping to
feature space (Liang et al., 2021). zs is passed through three encoder stages, each composed of
Ki N-Gram Swin Transformer Blocks (NSTB, sec. 3.3) and a 2× 2 patch-merging (except the last
stage). {K1,K2,K3} is set to {6, 4, 4} by default. The mapping function of k-th (1 ∼ Ki) NSTB
in i-th (1, 2, 3) encoder stage is formulated as:

zkenci = Gk
enci(z

k−1
enci), z

k−1
enci ∈ RHW/(2i−1)2×D, (1)

where z0enc1 equals to zs, and z0enci equals to zenci−1 , which results from downsampling z
Ki−1
enci−1 . In

other words, the first NSTB in the 2nd or 3rd stage takes the output of patch-merging in the previous
stage as input. The patch-merging follows Swin Transformer (Liu et al., 2021), except the network
dimension is decreased from 4D to D instead of 2D. Since patch-merging reduces the resolutions,
NGswin consumes much fewer Attention computations than state-of-the-art methods, as revealed
in Tab. 1 (Liang et al., 2021; Lu et al., 2021; Zhang et al., 2022, respectively on the left table).
Mult-Adds is evaluated on a 1280× 720 HR image.

Following the global cascading in CARN (Ahn et al., 2018), we place a cascading mechanism (the
light green dotted lines in Fig. 1) between all the encoder stages including the shallow network.
However, the resolutions of features are halved as the stage goes deeper, so we place 2 × 2 max-
pooling layers before concatenating the intermediary features, unlike CARN. Cascading gives the
effect of reflecting the flow of the information and gradient in the previous layers, which helps the
network to learn more meaningful representations and be easily optimized with few additional com-
putations. We denote it as across-stage-pooling-cascading, distinguishing it from another cascading
mechanism between NSTBs in the same stage (sec. 3.3). More detailed algorithms of cascading are
provided in A.2.

1 In this paper, “resolution” indicates height and width of features, excluding network dimension (channel).
2 We correct Mult-Adds underestimated on a 1024× 720 HR image in the original SwinIR paper.
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(a) NSTB (proposed) (b) SwinV2 Block (c) N-Gram Window Partition

Figure 4: NSTB architecture. The sandwich between red blocks in (b) is same as the red block in
(a), except that NSTB does not utilize the continuous position bias (blue block in (b)). Instead, we
use relative position bias following SwinV1. cos and τ in (b) are cosine-similarity and a learnable
scalar. (c) is N-Gram window-partitioning, the top block of (a). k, s, p, and M in (c) stand for kernel
size, stride, padding, and local window size, respectively. The channel and resolution reduction
through uni-Gram embedding enables the efficient WSA between N-Gram neighbors. Note that
WSA weights are shared between forward and backward N-Gram context computations.

Bottleneck. All intermediary outputs from encoders including the shallow network are simultane-
ously taken as inputs, and they are mapped into zscdp ∈ RHW×D by a bottleneck layer Gscdp(·).
More detailed explanation is in sec. 3.4.

Decoder. zscdp is fed into a single decoder stage Gdec(·), which is much smaller than the encoder. It
contains Kdec NSTBs and a final layer-norm (LN) (Ba et al., 2016) which allows stable learning. The
decoder NSTB architecture is the same as encoder NSTB. As shown in Fig. 1, the input of decoder is
residually connected with zK1

enc1 from the first encoder stage. zs and decoder output zdec ∈ RHW×D

are added with a global skip-connection (Kim et al., 2016; Liang et al., 2021; Ahn et al., 2022). The
global skip-connection boosts optimization and allows reconstruction module Grec(·) to utilize both
locality and long-range dependency for producing super-resolution images.

Reconstruction. Following Kim et al. (2016); Lim et al. (2017); Ahn et al. (2018; 2022); Liang
et al. (2021), the final reconstruction module contains a convolutional layer that adjusts dimension,
an upsampling pixel-shuffler (Shi et al., 2016), and a convolutional layer that produces the super-
resolution image ISR ∈ R3×rH×rW , where r is an upscale factor (e.g., ×4). For more, see A.3.

3.3 N-GRAM SWIN TRANSFORMER BLOCK (NSTB)

As shown in Fig. 4(a) and (b), NSTB shares the most components with SwinV2 (Liu et al., 2022)
block, except for the continuous position bias proposed for scalable fine-tuning on the larger image
or window size. Since SR models are commonly trained on fixed size (64 × 64) of image patches,
we employ relative position bias of SwinV1 (Liu et al., 2021). In window partitioning (the top of
Fig. 4(a)), the novel N-Gram context algorithm is adapted by following 4 steps, as illustrated in
Fig. 4(c). As previously mentioned, the input to k-th NSTB in i-th encoder stage is zk−1

enci .

First, zk−1
enci is embedded into uni-Gram (N = 1) context zuni ∈ RD

2 ×wh×ww by M × M group
convolution (stride: M , padding: 0, groups: D

2 ). M is the window size. wh(=
h
M ) and ww(=

w
M )

represent the number of windows in height and width. h and w are the resolution of zk−1
enci .

Second, the N × N pixels in each N-Gram (N > 1) of zuni interact with each other by window
self-attention (WSA) and N × N average-pooling, thereby producing the forward N-Gram feature
zfng . For this step, sliding-WSA (Fig. 5(a)) is implemented as sliding-window-convolution done in
CNN. It computes self-attention in each N × N window, rather than convolution. As illustrated
in Fig. 5(b), (N − 1) size of paddings are applied on the lower-right side of zuni by sequentially
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(a) forward N-Gram sliding WSA + Avgpool (b) sequentially-reflected-window-padding (seq-refl-win-pad)

Figure 5: (a) As the window slides through uni-Gram context, WSA and avg-pool are applied in
each window, to get N-Gram context. (b) (left) Before padding. (right) After padding. The areas at
the right/lower side out of the red lines are padded areas. In both cases (a) and (b), N = 2.

reflected window padding (seq-refl-win-pad). Based on the outermost low/right windows, it uses the
upper/left (N−1) rows/columns of windows as padding values. It allows some uni-Grams to interact
with their padded neighbors, instead of trivial “zero” padding values. Subsequently, backward N-
Gram feature zbng can be obtained by reversed seq-refl-win-pad (i.e., upper/left side padding). When
calculating bi-directional N-Gram features, the sliding-WSA weights are shared. Note that since
image is 2D data, our N-Gram can be seen from four directions (lower-right, lower-left, upper-right,
upper-left), unlike text that can see max bi-direction. But, as shown in Tab. 5, trade-off between
performance and efficiency is optimized when N-Gram neighbors are seen from bi-direction.

Third, zfng and zbng are concatenated and, then merged by a 1 × 1 convolutional layer to produce
N-Gram context zng ∈ RD×wh×ww .

Finally, zng is added window-wise to the partitioned windows from zk−1
enci . It is worth noting that the

reduction of channel and resolution by uni-Gram embedding makes N-Gram WSA more efficient.
Considering the complexity of WSA (4hwD2 + 2M2hwD), halved D and M2 times reduced hw
highly decrease computational burdens. The flow after window partitioning follows that of SwinV2
Block: cyclic window-shift, scaled cosine self-attention, window unpartioning, reversed window-
shift, layer-norm, residual connection, feed-forward network, layer-norm, and residual connection.

The cascading mechanism exists between NSTBs within a stage (within-stage-cascading). It doesn’t
require pooling layers and concatenation of intermediary features. Instead, the NSTBs are simply
residually connected, in both the encoder and decoder. This approach is illustrated in Fig. 8(c).

3.4 SCDP BOTTLNECK

Most SISR models (Zhang et al., 2018; Niu et al., 2020; Chen et al., 2021; Liang et al., 2021)
commonly never use the hierarchical encoder, which downsamples the resolutions of features after
one stage. As demonstrated in Tab. 6, it is because getting SR images from the space preserving
high-resolution information richly has a significant advantage over from the space preserving insuf-
ficiently. However, since the resolution in our encoder is reduced highly due to the patch-merging,
only using zK3

enc3 ∈ RHW/42×D (from the last NSTB in the last encoder stage) as an input to the
bottleneck makes it more challenging to restore high-frequency information.

In contrast with the bottleneck in standard U-Net architecture (Ronneberger et al., 2015; Wang
et al., 2022) that takes the output of the last encoder layer, our SCDP bottleneck takes all outputs of
the shallow network and the last NSTB in each encoder stage. SCDP stands for pixel-Shuffle,
Concatenation, Depth-wise convolution, and Point-wise projection. The steps are as followed.
First, the outputs of the last NSTB in each encoder stage are upsampled into the resolution identical
to that of ILR, by pixel-shuffle layer (Shi et al., 2016). Mapping function is formulated as:

z′enci = Gshuffle(z
Ki
enci + z(i)s ), zKi

enci ∈ R
HW

(2i−1)2
×D

, z′enci ∈ RHW× D

(2i−1)2 , (2)

where z(i)s comes from downsizing zs into the resolution of each zKi
enci by iterative 2×2 maxpoolings

followed by LeakyReLU non-linearity, and is residually added to each zKi
enci . Second, all z′enci
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Table 2: Comparison of efficient (lightweight) super-resolution results. NGswin-me reduces window
size (8×8 by default) to 4×4 and is made more efficient. D2K stands for DIV2K dataset we use
to train NGswin. DF2K indicates a merged dataset of D2K and Flickr2K (Timofte et al., 2017)
containing 800 + 2,650 HR-LR image pairs. 291 images dataset is from Yang et al. (2010), Arbelaez
et al. (2010). The best, second best, and third best performances are in red, blue, and underline.

Method Scale Training Mult-Adds #Params Set5 Set14 BSD100 Urban100 Manga109
Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-baseline ×2 D2K 316.3G 1,370K 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.54 0.9769
MemNet ×2 291 2,662.4G 677K 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 - -
CARN ×2 D2K+291 222.8G 1,592K 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN ×2 D2K 158.8G 694K 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LatticeNet ×2 D2K 169.5G 756K 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
RFDN-L ×2 D2K 145.8G 626K 38.08 0.9606 33.67 0.9190 32.18 0.8996 32.24 0.9290 38.95 0.9773

SRPN-Lite ×2 DF2K 139.9G 609K 38.10 0.9608 33.70 0.9189 32.25 0.9005 32.26 0.9294 - -
FMEN ×2 DF2K 172.0G 748K 38.10 0.9609 33.75 0.9192 32.26 0.9007 32.41 0.9311 38.95 0.9778
HNCT ×2 D2K 82.4G 356K 38.08 0.9608 33.65 0.9182 32.22 0.9001 32.22 0.9294 38.87 0.9774

NGswin ×2 D2K 140.4G 998K 38.05 0.9609 33.78 0.9200 32.26 0.9007 32.44 0.9312 38.87 0.9777
NGswin-me ×2 D2K 122.3G 919K 38.00 0.9606 33.72 0.9189 32.21 0.9000 32.12 0.9285 38.77 0.9773

EDSR-baseline ×3 D2K 160.2G 1,555K 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439
MemNet ×3 219 2,662.4G 677K 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 - -
CARN ×3 D2K+291 118.8G 1,592K 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN ×3 D2K 71.5G 703K 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LatticeNet ×3 D2K 76.3G 765K 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -
RFDN-L ×3 D2K 65.6G 633K 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547 33.78 0.9458

SRPN-Lite ×3 DF2K 62.7G 615K 34.47 0.9276 30.38 0.8425 29.16 0.8061 28.22 0.8534 - -
FMEN ×3 DF2K 77.2G 757K 34.45 0.9275 30.40 0.8435 29.17 0.8063 28.33 0.8562 33.86 0.9462
ESRT ×3 D2K 96.4G 770K 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
HNCT ×3 D2K 37.2G 363K 34.47 0.9275 30.44 0.8439 29.15 0.8067 28.28 0.8557 33.81 0.9459

NGswin ×3 D2K 66.5G 1,007K 34.54 0.9284 30.52 0.8457 29.18 0.8077 28.47 0.8590 33.84 0.9468
NGswin-me ×3 D2K 54.7G 927K 34.40 0.9273 30.44 0.8439 29.13 0.8062 28.19 0.8536 33.67 0.9454

EDSR-baseline ×4 D2K 114.0G 1,518K 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067
MemNet ×4 291 2,662.4G 677K 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 - -
CARN ×4 D2K+291 90.9G 1,592K 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN ×4 D2K 40.9G 715K 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

LatticeNet ×4 D2K 43.6G 777K 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -
RFDN-L ×4 D2K 37.4G 643K 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883 30.61 0.9096

SRPN-Lite ×4 DF2K 35.8G 623K 32.24 0.8958 28.69 0.7836 27.63 0.7373 26.16 0.7875 - -
FMEN ×4 DF2K 44.2G 769K 32.24 0.8955 28.70 0.7839 27.63 0.7379 26.28 0.7908 30.70 0.9107
ESRT ×4 D2K 67.7G 751K 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
HNCT ×4 D2K 21.5G 372K 32.31 0.8957 28.71 0.7834 27.63 0.7381 26.20 0.7896 30.70 0.9112

NGswin ×4 D2K 36.4G 1,019K 32.34 0.8966 28.72 0.7849 27.65 0.7394 26.35 0.7942 30.77 0.9127
NGswin-me ×4 D2K 33.2G 939K 32.18 0.8949 28.65 0.7831 27.60 0.7375 26.12 0.7874 30.57 0.9097

HR Urban100 ×3 img 076 LR (bicubic) EDSR-baseline CARN

IMDN SwinIR-light HNCT NGswin (ours)

Figure 6: Visual Comparisons. More results are illustrated in A.5

are concatenated in channel (network dimension) space. Third, it passes through a depth-wise
convolutional layer for learning spatial representations in each channel space. Finally, a point-wise
linear projection layer is applied to adjust the dimension matching D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training. We use 800 training HR-LR image pairs from DIV2K (Agustsson & Timofte, 2017)
dataset. We randomly crop LR images into 64×64 size of patches, following the recent works
(Liang et al., 2021; Fang et al., 2022). Our model minimizes L1 pixel-loss between ISR and the

7



Under review as a conference paper at ICLR 2023

Table 3: Comparison with SwinIR-light. hier. denotes if hierarchical network is used. Swin dep.
and ver. denote the total number and version of Swin Transformer layers, respectively.

Method Scale Mult-Adds #Params Feature Enhancement hier. Swin Swin window Set5 Set14 BSD100
dep. ver. size PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR-light ×2
243.7G 910K appended convolution No 24 V1

8× 8
38.14 0.9611 33.86 0.9206 32.31 0.9012

NGswin 140.4G 998K N-Gram interaction Yes 20 V2 38.05 0.9609 33.78 0.9200 32.26 0.9007
SwinIR-light ×3

109.5G 918K appended convolution No 24 V1
8× 8

34.62 0.9289 30.54 0.8463 29.20 0.8082
NGswin 66.5G 1,007K N-Gram interaction Yes 20 V2 34.54 0.9284 30.52 0.8457 29.18 0.8077

SwinIR-light ×4
61.7G 930K appended convolution No 24 V1

8× 8
32.44 0.8976 28.77 0.7858 27.69 0.7406

NGswin 36.4G 1,019K N-Gram interaction Yes 20 V2 32.34 0.8966 28.72 0.7849 27.65 0.7394

Table 4: Ablation study on N-Gram context use.

scale N-Gram Mult-Adds #Params Set14 Urban100 manga100
PSNR SSIM PSNR SSIM PSNR SSIM

×2 without / with 138.20G / 140.41G 750K / 998K 33.70 / 33.78 0.9194 / 0.9200 32.39 / 32.44 0.9304 / 0.9312 38.86 / 38.87 0.9775 / 0.9777
×3 without / with 65.48G / 66.52G 759K / 1,007K 30.48 / 30.52 0.8452 / 0.8457 28.37 / 28.47 0.8573 / 0.8590 33.81 / 33.84 0.9464 / 0.9468
×4 without / with 35.83G / 36.38G 771K / 1,019K 28.70 / 28.72 0.7844 / 0.7849 26.25 / 26.35 0.7918 / 0.7942 30.70 / 30.77 0.9123 / 0.9127

ground truth IHR: L = ∥IHR − ISR∥1, with Adam optimizer. Other experimental details and
discussions are in A.4.

Evaluation. We test NGswin on the five popular benchmark datasets, composed of Set5 (Bevilacqua
et al., 2012), Set14 (Zeyde et al., 2010), BSD100 (Martin et al., 2001), Urban100 (Huang et al.,
2015), and Manga109 (Matsui et al., 2017). LR images are acquired by the MATLAB bicubic
kernel from corresponding HR images matching each upscaling task. We use PSNR (dB) and SSIM
scores on the Y channel of the YCbCr space as the metrics to evaluate reconstruction performance.

4.2 COMPARISONS WITH LEADING MODELS

In Tab. 2, we compare NGswin with other efficient SISR models, including EDSR-baseline (Lim
et al., 2017, CVPR2017 workshop), MemNet (Tai et al., 2017, ICCV2017), CARN (Ahn et al., 2018,
ECCV2018), IMDN (Hui et al., 2019, ACMMM2019), LatticeNet (Luo et al., 2020, ECCV2020),
RFDN-L (Liu et al., 2020, ECCV2020), SRPN-Lite (Zhang et al., 2021, ICLR2021), FMEN (Du
et al., 2022, CVPR2022 workshop), ESRT (Lu et al., 2021, CVPR2022 workshop), and HNCT (Fang
et al., 2022, CVPR2022 workshop). PSNR and SSIM scores on the three upscaling tasks with the
five benchmark test sets are evaluated. Training dataset, Mult-Adds (evaluated on a 1280× 720 HR
image), and the number of parameters are reported for comparing the network efficiency. NGswin
outperforms or matches previous leading models on all of the benchmarks, with relatively efficient
structure. Note that although HNCT adapts Swin Transformer more efficiently than ours, it fails to
optimize the trade-off between performance and efficiency. Additionally, our more efficient model,
NGswin-me, reduces window size (by default 8×8) to 4×4 and shows competitive results. The
visual comparisons of SR results are supplied in Fig. 6 (more in A.5).

We conduct a comparative analysis of our model and SwinIR-light (Liang et al., 2021) (SwinIR) in
various aspects, as shown in Tab. 3. NGswin requires about 1.65∼1.74 times fewer operations than
SwinIR, and maintains around 1M parameters, which is tolerable for contemporary semiconductor.
With fewer operations and modest number of parameters, our model achieved a close performance
to SwinIR. Our efficiency results from the hierarchical encoder and the shallower depths, compared
with SwinIR. Notice that SwinIR paper omitted relative position bias tables, a key component for
WSA stated in Liu et al. (2021), from the number of parameters. Thus we correct the omission and
include the positional bias tables of both methods in the total number of parameters.

4.3 ABLATION STUDIES AND DISCUSSIONS

Tab. 4 demonstrates that our proposed N-Gram context is effective on SISR. Considering the mar-
gins of the metrics between NGswin and other models, it is impossible for NGswin to outperform
other methods unless N-Gram context expands the regions seen for reconstruction. As proven, our
introduction of N-Gram from text to image domain helps the network to utilize contextual infor-
mation of each degraded pixel and to reconstruct high-frequency information. Especially, N-Gram
context is useful in recovering highly distorted textures such as Urban100 dataset. Fig. 7 visualizes
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HR Urban100 ×3 img 062 LR (bicubic) w/ N-Gram w/o N-Gram

Figure 7: Visual comparisons of w/ and w/o N-Gram context. With N-Gram context, NGswin can
consider broader regions to recover highly distorted textures.

Table 5: Ablation study on the number of N-Gram directions to be seen from. inf means divergence.

Model N-Gram uni-Gram directional Mult-Adds #Params Set14 Urban100 Manga109
direction dimension weight sharing PSNR SSIM PSNR SSIM PSNR SSIM

NGswin-me 1 D yes 168.28G 1,158,312 33.72 0.9189 32.15 0.9289 38.78 0.9774
NGswin-me 4 D/4 yes 119.00G 855,528 inf inf inf inf inf inf
NGswin-me 2 (default) D/2 yes 122.27G 918,640 33.72 0.9189 32.12 0.9285 38.77 0.9773

Table 6: Ablation study on SCDP bottleneck. dep.: # of NSTBs / resol.: input resolution.

stages SCDP Mult-Adds #Params BSD100 encoder1 encoder2 encoder3 encoder4 decoder1 decoder2
PSNR SSIM dep. resol. dep. resol. dep. resol. dep. resol. dep. resol. dep. resol.

extra w/o 87.98G 997,064 32.20 0.8999 4 64×64 4 32×32 4 16×16 4 8×8 2 32×32 2 64×64
default w/o 138.88G 992,464 32.23 0.9002 6 4 4 - - 6 64×64 - -
default w/ 140.41G 998,384 32.26 0.9007 6 64×64 4 32×32 4 16×16 - - 6 64×64 - -

this strength by contrasting the networks with and without N-Gram context. With N-Gram context,
NGswin can expand sight and recover more accurate textures than an approach without N-Gram.

N-Gram direction in Tab. 5 counts how many directions are considered to see N-Gram neighbors.
If it is set to 2, the algorithm is the same as the bi-direction explained in sec. 3.3. When set to 1,
the network sees the neighbors from a lower-right direction only (uni-direction). For uni-directional
N-Gram, uni-Gram embedding never reduces channels, which shows the reasonable performance
but loses an efficient structure. In the case of 4 directions, neighbors from quad-direction including
lower-right, lower-left, upper-right, and upper-left, are considered as N-Gram. For implementation
of quad-directional N-Gram, uni-Gram embedding layer outputs 1

4 times D and then all of 1
4D N-

Gram contexts are concatenated into D dimension. But this setting ends up with network divergence
(i.e., infinite loss) at around the 120-th epoch. We hypothesize that too many operations share the
same weights of sliding-WSA, which makes back-propagation more challenging and unstable.

In Tab. 6, we examin negative effect of extra stages appended to the encoder and the decoder. While
default and extra stages network have the same number of NSTBs, the extra stages handle lower
resolution (8×8 in encoder and 32×32 in decoder). Those additionally reduced features drop the
performance of SISR neural network, which is different from neural networks of high-level vision
tasks such as ResNet50 (He et al., 2016) for classification. That is, because it is easier to reconstruct
the high-frequency information from the space preserving HR information richly than from the
space preserving HR information insufficiently. Our SCDP bottleneck takes all outputs (i.e., various
resolutions) of the encoder stages. Thanks to this property of SCDP bottleneck, we can prevent the
network from greatly reducing the performance.

5 CONCLUSION

In this paper, we introduce N-Gram context to deep learning in images for the first time in the his-
tory. The proposed approaches, including N-Gram interaction with sliding-WSA, SCDP bottleneck,
and pooling-cascading mechanism, compensate for the limitation of Swin Transformer backbone
in which the broad regions that are beneficial to recovering degraded pixels are not considered due
to window size. To enhance the network efficiency, the hierarchical encoder with patch-merging,
asymmetric decoder, and uni-Gram embedding are utilized, all of which significantly decrease the
computational operations. With all the methods above, NGswin achieves better or close reconstruc-
tion performance, compared with other leading SISR methods. We demonstrate that the concept
from other domain (text analysis) can help to solve the problem in vision domain. For the further
works, we hope that our proposed N-Gram context succeeds on other low-level vision tasks, such as
denosing, deblurring, and deraining.
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A APPENDIX

A.1 MOTIVATION.

After Vision Transformer (ViT) (Dosovitskiy et al., 2020) was proposed, ViT family models such as
DeiT (Touvron et al., 2021), T2T-ViT, and Swin Transformer (Liu et al., 2021; 2022) have showed
outstanding performance in high-level vision tasks. In fact, these models originate from Transformer
(Vaswani et al., 2017) in NLP domain, such as BERT (Devlin et al., 2018) and GPT-3 (Brown et al.,
2020). More recently, encouraged by masked language modeling (MLM), the masked image mod-
els (MIM) are proposed, and have become a mainstream of self-supervised learning (Bao et al.,
2021; He et al., 2022; Xie et al., 2022; Chen et al., 2022). We are hugely inspired by this domain-
integration and investigate some approaches from other domain (NLP or audio) that can enhance
understanding of low-level vision tasks. We find that although the N-Gram language model (LM)
seems to hand over the throne to deep learning LM, some recent studies (Pagliardini et al., 2017;
Lopez-Gazpio et al., 2019; Diao et al., 2019; Song et al., 2021) explored N-Gram methods in deep
learning field and still showed comparable performance to the word-embedding based approaches.
Motivated by these attempts, we assume that considering N-Gram can help to handle problems in
SISR. As stated in He et al. (2022), heavy spatial redundancy property of images boosts recon-
struction of some degraded (or even lost) pixels by use of contextual information of the neighboring
pixels or patches. Therefore, we explore the impact of N-Gram context to enhance image restoration
performance and achieve competitive performance. As further works, we will carry on examining
domain-integration approaches to learn meaningful representation for low-level vision tasks.

A.2 CASCADING MECHANISM FOR SISR AND DIFFERENCE FROM NGSWIN

The cascading residual network (CARN) for SISR is proposed by Ahn et al. (2018). This approach
gives the effect to reflect the flow of the information and gradient in the previous layers, which helps
to get more meaningful representations and easy optimization, at not many extra computational
costs. As shown in 8, all intermediary features from the encoder cascading blocks are accumu-
latively concatenated, and this aggregation is taken as input by the next cascading block, starting
with a linear projection layer for dimensional reduction. Different from our across-stage-pooling-
cascading, there is no pooling layer before concatenation. It is because CARN did not use hier-
archical network, which makes NGswin have efficiently fewer operations. In addition, cascading
connection between residual blocks in each cascading block is made following the same way above.
While the former and the latter are named as the global and local cascading in the original paper
(Fig. 8 (a) and (b)), we call them as across-stage and within-stage cascading (sec. 3.2 and 3.3),
as to prevent confusion with the local window self-attention. As mentioned in main contents, our
within-stage-cascading avoids concatenation of intermediary features to make overall network effi-
cient. Instead, the residual connections between NSTBs are made as in Fig. 8(c), which specifically
depicts the small and rounded light green arrows of Fig. 1.

With this mechanism, the extended work is done in PCARN (Ahn et al., 2022). In this version,
PCARN explored how to reconstruct more visually natural SR images, by use of substituted ob-
jective functions, such as adversarial loss and VGG loss. By doing so, they result in much more
photo-realistic and detailed textures. Considering CARN is proposed in 2018 but the cascading
mechanism is still valid to the reconstruction task, it can be explored to further increase the effec-
tiveness and efficiency of deep learning models for other low-level vision tasks.
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(a) Global Cascading (b) Local Cascading in a Cascading Block (c) within-stage-cascading (ours)

Figure 8: The cascading mechanisms in CARN and NGswin. (a) Cascading blocks in CARN en-
coder are globally cascaded into next layers. (b) Each cascading block is composed of locally
cascaded residual blocks. Each residual block consists of conv-ReLU-conv-skip connection-ReLU.
(c) within-stage-cascading between our proposed NSTBs (sec. 3.3).

Figure 9: Reconstruction modules for ×2, ×3, and ×4 tasks. What are in parentheses denote change
of channel (dimension).

A.3 RECONSTRUCTION MODULE

For final reconstruction module, as following previous methods such as VDSR (Kim et al., 2016),
EDSR (Lim et al., 2017), CARN (Ahn et al., 2018), RFDN (Liu et al., 2020), and SwinIR (Liang
et al., 2021), we exploit a 3 × 3 convolutional (conv) layer (channel reducing), pixel-shuffler (sub-
pixel operation from Shi et al. (2016)), and a final 3×3 conv layer (equivalent channel). Adding a fi-
nal conv is difference between ours and previous models. The visualized structures are in Fig. 9. Be-
fore reconstruction module, overall architecture including a shallow network, three encoder stages,
SCDP bottleneck, and a decoder, equals among all upscaling tasks. In reconstruction phase, the first
conv layer of reconstruction module reduces channel from D to r2 × 3, where r is an upscaling
factor (e.g., ×2). After that, pixel-shuffler downsizes channel to 3 (RGB) and upsizes resolution of
HR images. Then, the final conv layer processes the output of pixel-shuffler while keeping channel
as 3 (RGB channels). At inference and test, with the output of reconstruction module, we clamp the
values below 0.0 or over 1.0 into 0.0 or 1.0, respectively.

A.4 EXPERIMENT DETAILS AND OTHER FINDINGS ABOUT TRAINING STRATEGIES

In this section, we explain experiment settings and our findings from the results of various learning
strategies. We hope that future researchers can get insight from our findings. More strategies not
mentioned in this section will be investigated in further works.
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Model and Hyper-Parameters. The number of both NSTBs in encoder and decoder,
{K1,K2,K3,Kdec}, is set to {6, 4, 4, 6}. The number of WSA heads equals the settings above.
By default, we set the network dimension D, hidden dimension of FFN after WSA, window size
M , and N-Gram size N to 64, 128, 8, and 2, respectively. The batch size and training epochs are
set to 64 and 500, respectively. We train the network from scratch for ×2 task. Whereas, for ×3
and ×4 tasks, warm-start and fine-tuning process (Lin et al., 2022) is employed using pretrained
weights on ×2 task. The epochs of the warm-start and fine-tuning are set to 50 and 250, respec-
tively (i.e., total 300 epochs). The process of warm-start is as followed: During the first 50 epochs
(warm-start epochs) of training, the network freezes all layers but final reconstruction module and
updates reconstruction module only. After warm-start epochs, entire weights are updated by back-
propagation. With this strategy, we significantly reduces training times, compared with learning
from scratch. For the network optimization, Adam optimizer is used as mentioned in main contents
with {β1, β2} = {0.9, 0.999} and ϵ = 1e-8. The initial learning rate is set to 0.0004 and decayed
by half (half-decay) after {200, 300, 400, 425, 450, 475} epochs, with 20 warmup epochs (linearly
increasing from 0.0 to 0.0004). At warm-start phase for ×3 and ×4 tasks, learning rate is kept
as 0.0004 (initial learning rate). During whole fine-tuning, 10 epochs are used as warmup epochs
and the learning rate is reduced in half after {50, 100, 150, 175, 200, 225} epochs. We implement
the model configuration, training process, and testing process by Pytorch (Paszke et al., 2019) on 4
NVIDIA TITAN Xp GPUs.

Dataset. The whole training dataset is repeatedly used 80 times in each epoch to maximize the
merits of random-crop strategy, same as common settings. That is, NGswin is trained for 500K
iterations, same as SwinIR. By doing so, the number of total patches (64 × 64) used in training
is 32M (800 images × 80 repeats × 500 epochs). In augmentation, random horizontal flip and
random 90◦, 180◦, 270◦ rotation are applied. Also we normalize the train images with mean and
standard deviation (std) of 800 LR images (matching each upscaling task) from DIV2K (Agustsson
& Timofte, 2017). When calculating loss function between SR and HR images, the normalized
SR images are de-normalized (inverse of normalization). While we train NGswin with different
normalization strategies including setting std to 1.0 and not de-normalizing before loss function,
those strategies fall behind the aforementioned strategy. The entire images including test data are
converted from “.png” files to “.npy” (numpy) files, for loading data faster.

Learning Rate. As a result of using various learning rate (lr) and batch size (bs), we discover
the best lr for NGswin is when lr = 0.0004 × bs/64. When we can utilize extra computational
resources for training, if bs goes up, lr is correspondingly increased following the formula above.
That strategy is equally applied on all of experiments mentioned in this paper. And, it is observed
that too high learning rate (matching or over 0.0064) causes the objective function to diverge to the
infinity.

Learning Rate Decay. We figure out that cosine learning rate decay (cosine-decay) is not good for
SISR. It is because the underfitting (not overfitting) is a crucial issue to SISR (Lin et al., 2022), unlike
the high-level vision tasks such as classification, object detection, and semantic segmentation. The
cosine-decay tends to reduce the learning rate much faster than the half-decay (keeping a constant
learning rate for long phases) and lead to the underfitted model. But as is commonly known, even
if half-decay helps the network converge to around the optimal point fast, it is almost impossible to
reach the global optimum without the proper decay point. We observed that too early or late decay
point, rather, leaded to a wrong converging point.

Regularization. We find that the regularization strategies such as weight decay, gradient clipping,
and layer-wise learning rate decay have bad effect on the optimization. At ×2 task (learning from
scratch), we apply 0.05 weight decay and 5.0 gradient clipping, but this strategy drops the perfor-
mance of NGswin. Layer-wise learning rate decay improved the performance of high-level vision
tasks when fine-tuning Transformer models (Bao et al., 2021; He et al., 2022). But when we fine-
tune NGswin on ×3 and ×4 tasks with 0.9 or 0.75 layer-wise decay hyper-parameter, the model
cannot learn representation for reconstructing high-frequency information well. This is also because
SISR task suffers from underfitting unlike classification task.
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Table 7: Ablation study on NGswin-me. Experimentally comparative components are highlighted.

Model Scale N-Gram Swin training Mult-Adds #Params Set5 Set14 Manga109
ver. epochs PSNR SSIM PSNR SSIM PSNR SSIM

×2

w/o V2 400 114.39G 731,944 37.96 0.9605 33.67 0.9189 38.62 0.9768
NGswin-me w/ V2 400 122.27G 918,640 38.00 0.9606 33.72 0.9187 38.73 0.9772

(4×4 window) w/ V1 200 122.27G 918,432 37.80 0.9599 33.48 0.9171 38.30 0.9763
w/ V2 200 122.27G 918,640 37.88 0.9602 33.55 0.9175 38.45 0.9767

A.5 MORE VISUAL COMPARISONS

In Fig. 10 and 11, we show additional visual comparisons with other models. As NGswin utilzes
longer-span and contextual information, highly degraded pixels by bi-cubic interpolation are re-
stored with more accurate textures.

A.6 ABLATION STUDIES ON SMALL MODEL

We already demonstrate the impact of N-Gram context for NGswin, in Tab. 4. Since it is proven that
the window size is a crucial factor to improve our model, we additionally conduct further ablation
study on NGswin-me that has 4×4 window size, to verify whether our model architecture has power
on SISR performances. We evaluate the effects of N-Gram context as shown in Tab. 7 on ×2 task
only. N-Gram context consistently shows the meaningful results for reconstruction task with our
small model. Moreover, we explore the performance difference between Swin Transformer versions
(V1 & V2). When the backbone network is replaced with Swin V1, pre-normalization and standard
scaled-dot-product-attention are employed. Because changing the position of layer-norm does not
adds any extra multiplications or parameters. In contrast, as scaled-cosine-attention come back to
scaled-dot-product-attention, a learnable scalar τ is gone, which very slightly reduces the number
of parameters. As a result, Swin V2 (we adopt) is much better than Swin V1 at around middle of
training phase, general trend of which tends to be maintained during later epochs (according to our
experiences). Note that we report the results of NGswin-me at 400-th and 200-th epochs for w/o vs.
w/ N-Gram and Swin V1 vs. Swin V2, respectively. It is because this ablation studies is stopped at
those epochs, to conduct other ablation studies mentioned in the main contents.
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HR BSD100 ×3 148026 LR (bicubic) EDSR-baseline CARN

IMDN SwinIR-light HNCT NGswin (ours)

HR Urban100 ×4 img 012 LR (bicubic) EDSR-baseline CARN

IMDN SwinIR-light HNCT NGswin (ours)

HR BSD100 ×4 102061 LR (bicubic) EDSR-baseline CARN

IMDN SwinIR-light HNCT NGswin (ours)

HR Manga109 ×4 MariaSamaNihaNaisyo LR (bicubic) EDSR-baseline CARN

IMDN SwinIR-light HNCT NGswin (ours)

Figure 10: More visual comparisons with other models.
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HR Urban100 ×3 img 078 LR (bicubic) w/ N-Gram w/o N-Gram

HR Urban100 ×4 img 078 LR (bicubic) w/ N-Gram w/o N-Gram

HR Urban100 ×3 img 059 LR (bicubic) w/ N-Gram w/o N-Gram

HR Urban100 ×4 img 059 LR (bicubic) w/ N-Gram w/o N-Gram

HR Manga109 ×3 YumeiroCooking LR (bicubic) w/ N-Gram w/o N-Gram

HR Manga109 ×4 YumeiroCooking LR (bicubic) w/ N-Gram w/o N-Gram

Figure 11: More visual comparisons of w/ and w/o N-Gram context.
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