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Abstract

This work studies the problem of time series analysis with generalist models, or models
trained across many data domains. Drawing inspiration from the widespread success of
large language models, we consider the simple strategy of discretely tokenizing time series
data drawn from a myriad of datasets via self-supervision, then using the fixed tokenization
to solve a variety of tasks across many data domains. Canonically time series models are
either trained on a single dataset, or built in a task specific manner (e.g. only a forecaster),
or use patches of time as inputs to the model. As such, performant generalist, multi-task,
discrete representation time series models are of value. Our method, TOkenized Time Series
EMbeddings (TOTEM), produces such generalist time series models with minimal or no
fine-tuning, while exhibiting strong zero-shot performance. We evaluate TOTEM extensively
over nearly 500 experiments on three commonly-studied time series tasks with real-world data:
imputation (17 baselines, 12 datasets), anomaly detection (19 baselines, 25 datasets), and
forecasting (14 baselines, 12 datasets). We conclude that TOTEM matches or outperforms
existing state-of-the-art models in both the canonical specialist setting (i.e., training one
model on one domain) as well as the generalist setting (i.e., training a single model on many
domains), which demonstrates the efficacy of tokenization for general time series analysis.

1 Introduction

We study generalist time series models with unified discrete data representations across many tasks. Generalist
models are trained on many data domains simultaneously, which contrasts specialist models that are trained
on a single time series domain Zhou et al. (2023); Wu et al. (2022a); Nie et al. (2022), Figure 1A.

Time series analysis has typically been restricted by task, where methods study only imputation Luo et al.
(2018; 2019); Talukder et al. (2022), or anomaly detection Xu et al. (2021); He & Zhao (2019), or forecasting
Wu et al. (2021); Woo et al. (2022) among others. Recently, the field has become increasingly unified with
respect to model architecture, with methods Zhou et al. (2023); Wu et al. (2022a) exploring language and
vision backbones on various time series tasks. These backbones, like previous methods, utilize specialist
training (e.g., training separate imputers on each dataset).

Time series analysis has also become increasingly unified with respect to data representations (Yue et al.,
2022; Yang & Hong, 2022; Tonekaboni et al., 2021; Franceschi et al., 2019), some of which are discrete
(Lin et al., 2007; Van Den Oord et al., 2017; Baevski et al., 2020; Rabanser et al., 2020). Unified discrete
data representations, both statistical and learnt, have been more extensively studied in language and vision
modeling (Gage, 1994; Van Den Oord et al., 2017; Esser et al., 2021; Rombach et al., 2022).

When considering model evaluation, both specialist and generalist models can be tested under various regimes.
Within in-domain-testing, a model is tested on the same domain(s) it was trained on. In zero-shot-testing,
a model is tested on different domains(s) than it was trained on, Figure 1B. Most time series methods are
evalutated via in-domain-testing. Some methods have begun to explore the idea of zero-shot forecasting
where (1) a forecaster trains on one dataset then predicts on a separate dataset (Zhou et al., 2023), or (2) a
forecaster trains on a subset of channels (which we call sensors) from one dataset then zero-shot forecasts
on the remaining sensors in the same dataset (Liu et al., 2023). However, both of these models would be
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Figure 1: TOTEM Overview, Training Schemas, Inference Regimes & Tasks. (a) TOTEM’s
VQVAE enables generalist training, i.e., on many data domains jointly, and specialist training, i.e., on
one data domain at a time. The TOTEM VQVAE architecture consists of an 1D strided CNN encoder E ,
quantizer, latent codebook, and 1D strided transpose CNN decoder D. (b) TOTEM’s discrete, self-supervised
codebook is frozen then leveraged for both in domain and zero shot testing across many tasks.

considered specialists, as they were trained on only one (or a subset of one) dataset. In this paper we move
beyond specialist zero-shot forecasting and extensively study zero-shot performance in generalist models
across multiple tasks.

Our approach to studying what is a performant general time series data representation shares a philosophical
alignment with the development of large generalist models in natural language processing, which are also
based on having a common tokenized representation Gage (1994); Radford et al. (2018). Through extensive
evaluations we find that a good discrete token representation is a key building block for performant generalist
models with strong zero shot performance. Leveraging 17 baselines and 12 datasets in imputation, 19
baselines and 25 datasets in anomaly detection, and 14 baselines and 12 datasets in forecasting we evaluate
TOTEM in the (1) standard specialist regime and (2) generalist regime with both in-domain and zero shot
testing. In the specialist setting, TOTEM matches or outperforms SOTA when compared to many heavily
customized task-specific models, despite the fact that TOTEM has minimal to no tuning. In the generalist
setting, TOTEM also matches or outperforms SOTA. Our contributions include (1) providing a simple
yet performant implementation amongst a vast technical landscape, specifically a single vector quantized
variational autoencoder architecture that can be applied to a variety of tasks and data domains with minimal
or no tuning, for generalist and specialist imputers, anomaly detectors, and forecasters, and (2) performing an
exhaustive evaluation across tasks (imputation, anomaly detection, forecasting), model categories (specialist,
generalist), evaluation schemas (in-domain, zero-shot), baselines (17 imputation, 19 anomaly detection, 14
forecasting), and real world datasets (12 imputation, 25 anomaly detection, 12 forecasting) resulting in nearly
500 experiments.

2 Related Work

Time series modeling methods utilize many techniques, ranging from statistical methods Winters (1960);
Holt (1957); Anderson (1976); Hyndman & Athanasopoulos (2018); Taylor & Letham (2018) to multilayer
perceptrons (MLPs) Zeng et al. (2023); Li et al. (2023); Das et al. (2023a); Challu et al. (2023); Chen et al.
(2023); Zhang et al. (2022); Oreshkin et al. (2019) to convolutional neural networks (CNNs) Wu et al. (2022a);
Liu et al. (2022a); He & Zhao (2019); Franceschi et al. (2019); Bai et al. (2018) to recurrent neural networks
(RNNs) Salinas et al. (2020); Shen et al. (2020); Hochreiter & Schmidhuber (1997) to transformers Zhou et al.
(2023); Liu et al. (2023); Nie et al. (2022); Zhang & Yan (2022); Woo et al. (2022); Zhou et al. (2022); Liu et al.
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(2022b); Wu et al. (2022b); Xu et al. (2021); Wu et al. (2021); Liu et al. (2021); Zhou et al. (2021); Kitaev
et al. (2020); Li et al. (2019). Many models are hybrid solutions that blend aforementioned approaches.

Most of these methods intake time and then perform various combinations of normalization (Kim et al.,
2021), frequency transformations (Wu et al., 2022a; Zhou et al., 2022), and patchification (Nie et al., 2022).
Time and sensor patch dependencies are then learned, via an attention mechanism, convolution, recurrence,
or linear layer, across the temporal dimension, sensor dimension, or both the temporal and sensor dimensions
(Zhang & Yan, 2022). For multisensor modeling, one can model all sensors jointly or independently (i.e.,
forecast each sensor independently (Nie et al., 2022)).

The time series community has long valued discrete data representations (Baevski et al., 2020; Rabanser et al.,
2020; Oord et al., 2016; Lin et al., 2007), unified data representations Yang & Hong (2022); Yue et al. (2022);
Tonekaboni et al. (2021); Barnum et al. (2020); Franceschi et al. (2019), and models’ performance on multiple
tasks (Zhou et al., 2023; Wu et al., 2022a; Lin et al., 2007). Additionally, since the success of large language
and vision models, work concurrent or subsequent to our own has begun to focus on generalist training, where
models are trained on multiple domains at once (Das et al., 2023b; Ansari et al., 2024; Goswami et al., 2024).
In the following sections we further discuss generalist training, discrete data representations, and tasks.

Specialist vs Generalist Training. Historically, specialist training, where models are only trained on a
single time series domain, has been the most common amongst prior work (Zhou et al., 2023; Wu et al., 2022a;
Nie et al., 2022; Zhang & Yan, 2022). These specialist models are primarily evaluated via in-domain-testing,
where the test set is from the same domain as the train set. Recently, some methods (Zhou et al., 2023; Liu
et al., 2023) have begun to explore specialist zero-shot forecasting capabilities. Generalist training, where
models are trained on multiple domains at once (e.g. weather, traffic, and electricity), is an emerging regime
that concurrent and subsequent work to our own have begun to adopt (Das et al., 2023b; Ansari et al., 2024;
Goswami et al., 2024). However, unlike TOTEM (Ours), none of these methods explore all three dimensions
of generalist training, discrete tokenization, and multiple tasks, see Table 1.

Patches vs Discrete Data Representations. Much prior work does not leverage discrete data representa-
tions for time series, instead relying on patchification either along the time dimension (Liu et al., 2023; Zhang
& Yan, 2022; Nie et al., 2022), or sensor dimension Li et al. (2019); Zhou et al. (2021); Wu et al. (2021); Liu
et al. (2021)1. Patches are simply chunks of time. Patch lengths range from a single time-step/sensor, also
known as point-wise, to the length of the entire time series/all sensors. These methods learn the underlying
data representations end-to-end with the downstream task (e.g., forecasting). Prior work that leverages
discrete data representations study varying methods including product quantization (Baevski et al., 2020),
binning (Rabanser et al., 2020), symbolic representations (Lin et al., 2007), and vector quantization (Van
Den Oord et al., 2017). Unlike TOTEM (Ours), none of these methods explore all three dimensions of
generalist training, discrete tokenization, and multiple tasks, see Table 1.

Discrete unified representations, both statistical and learnt, have been more extensively studied in language
and vision modeling (Gage, 1994; Van Den Oord et al., 2017; Esser et al., 2021; Rombach et al., 2022). The
vision modeling field distinguishes between discrete, learnt, tokens (Van Den Oord et al., 2017; Esser et al.,
2021; Rombach et al., 2022) and patches (Dosovitskiy et al., 2020). Patches have been extensively studied in
modern time series modeling (Zhou et al., 2023; Nie et al., 2022; Zhang & Yan, 2022). Given the success of
vector quantized variational autoencoders (VQVAEs) in both the audio and vision domains (Van Den Oord
et al., 2017; Esser et al., 2021; Rombach et al., 2022), we utilize the VQVAE to create discrete tokens for
general time series analysis across multiple tasks. TOTEM’s representation is independent of the downstream
model, similar to byte pair encoding in large language modeling (Gage, 1994; Radford et al., 2018).

Time Series Tasks. In time series analysis there are many tasks: such as forecasting (with both long term
and short term horizons), anomaly detection, imputation, and classification. Most prior work focuses on a
single task (Zhang & Yan, 2022; Nie et al., 2022; Xu et al., 2021), with a few exploring multiple specialist
trained models on many tasks (Zhou et al., 2023; Wu et al., 2022a). Concurrent and subsequent work is also
mainly focused on single task models (Ansari et al., 2024; Das et al., 2023b), with fewer focusing on multiple

1In time series analysis, sensors, channels, and variates are synonymous terms; in this paper we adopt the sensor terminology.
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tasks (Goswami et al., 2024). Unlike TOTEM (Ours), none of these methods study all three dimensions of
generalist training, discrete tokenization, and multiple tasks, see Table 1.

The long term forecasting task uses standardized input-to-output dimensionalities consistent across datasets.
An input dimension of 96 and output dimensions of 96, 192, 336, and 720 is the standard enforced by Liu
et al. (2023); Wu et al. (2022a); Liu et al. (2022b); Zhou et al. (2022) among others2. Our method, TOTEM,
follows this standard. On the other hand, short term forecasting has highly non-standard and dataset-specific
input-to-output dimensionalities (see Table 15), and this lack of standardization impedes generalist training
(one model trained over many domains)3. In classification and anomaly detection, many modern baselines
are leaky (Zhou et al., 2023; Wu et al., 2022a; Xu et al., 2021), where leakage is defined as using the test
set in the training and validation process. We felt strongly about not propagating leaky SOTA results,
because that further promotes faulty baselines. In classification others have already built off of TOTEM and
demonstrated SOTA performance for neural decoding utilizing clean datasets and non-leaky practices (Chau
et al., 2024). In anomaly detection we were able to establish TOTEM as a non-leaky SOTA baseline, even
when comparing against leaky baselines. Beyond the leaky training setup, the canonical anomaly detection
benchmark datasets used by (Zhou et al., 2023; Wu et al., 2022a; Xu et al., 2021) are additionally flawed
(Wu & Keogh, 2021). Therefore we include the flawed benchmarks to enable comparison to prior work 5, 6,
7 and also included comparisons to 15 unflawed benchmarks 9 from Wu & Keogh (2021) in the Appendix.
Given the considerations towards building generalist models, not propagating leaky baselines, and utilizing
clean datasets while still enabling prior comparisons, we study long term forecasting (henceforth referred to
as forecasting), imputation, and anomaly detection in this paper.

Generalist Training Discrete Tokenization Multiple Tasks

Pr
io

r GPT2 (Zhou et al., 2023)
TiNet (Wu et al., 2022a)

W2V2.0 (Baevski et al., 2020)
SAX (Lin et al., 2007)

C
/S

TimesFM (Das et al., 2023b)
Chronos (Ansari et al., 2024)
MNT (Goswami et al., 2024)

TOTEM (Ours)

Table 1: Related Work Overview. TOTEM (Ours) explores all three dimensions of generalist training,
discrete tokenization, and multiple tasks unlike prior and much concurrent/subsequent (C/S) work. Generalist
training is training on multiple data domains at once; discrete tokenization is using a fixed number of
representations; multiple tasks is studying numerous tasks, e.g. imputation, anomaly detection & forecasting.

3 Method

3.1 Design Decisions

When designing the TOTEM training and testing stack to enable generalist-training and zero-shot testing
across many tasks there were three important design decisions to consider (1) two stage learning, (2) operating
across the time dimension, and (3) no data engineering.

Two Stage Learning. We learn a tokenizer, Figure 1a, independently from a downstream model (e.g.
forecaster), Figure 1b and Figure 4. This design decision enables exploration of (1) downstream architectures
with fixed representations and (2) zero shot capabilities with data scale and diversity. When exploring (1)
the value of differing downstream architectures, we utilize either a transformer encoder or MLP, Table 17A &

2Some methods utilize a 512 input dimension, which make consistent comparisons challenging; despite this field-wide
inconsistency we include some of these results in the Appendix 16. TOTEM (Ours) outperforms other methods across lookback
lengths 96, 512 at 58.3% AvgWins , the next best is GPT2 at 8.3% AvgWins .

3Despite this we demonstrate that TOTEM and GPT2 outperform all other methods on a subset of short term forecasting
lengths and datasets in the Appendix 14.
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E. It is important for these models to pull from the same representation as the two stage learning framework
disentangles modeling a data representation from modeling interactions across time, unlike end-to-end learnt
representations. This is significant as much modern time series literature (Ekambaram et al., 2023; Das
et al., 2023a; Zeng et al., 2023) questions the value of transformers when compared to MLPs. Ultimately
studying which architecture is suited to which function, e.g. representing or learning interactions, is valuable
to the community. We leave in-depth analysis on the merits of transformers versus MLPs to future work,
but note that discrete tokens lead to better performance when compared to patches for both model types:
transformer (67.9% to 39.3% AvgWins ) and MLP (66.1% to 37.5% AvgWins ), Figure 8. When exploring (2)
zero shot capabilities with data scale and diversity we take inspiration from large language models. In large
language models a byte-pair-encoding (BPE) Gage (1994); Radford et al. (2018) representation is calculated
on large amounts of diverse data before downstream modeling. At test time unseen data can be successfully
represented by these pre-calculated BPE tokens and then fed into the pre-trained downstream model for
zero-shot performance. In language modeling, this two-step represent then solve-task process has been wildly
successful as training data quantity and diversity increases. Indeed, in our experiments on time series, we
find that as we increase data scale and diversity TOTEM performs better on zero-shot datasets, Figure 11 &
Table 21. We believe that as we further scale the number of diverse training time series TOTEM could create
powerful fixed representations that accurately represent a wide array of domains that, significantly, do not
need to be recalculated when representing new domains, akin to BPE for language modeling.

Figure 2: Specialist vs. Generalist Po-
tential Tokenization Dimensions. Left,
with specialist models tested via in-domain
testing, tokenziation can be applied along E,
S, or T . Right, with either generalist mod-
els or zero-shot testing tokenization should
be applied along T .

Operating Across the Time Dimension. A time series
dataset consists of E examples (i.e. number of distinct record-
ings), S sensor channels, and T time steps, and can be formally
expressed as {xj}E

j=1 ⊂ RS×T . Prior work commonly patches
(not tokenizes) along either the sensor dimension Li et al. (2019);
Zhou et al. (2021); Wu et al. (2021); Liu et al. (2021), or time
dimension Liu et al. (2023); Zhang & Yan (2022); Nie et al.
(2022). When considering specialist trained models and in-
domain testing, e.g. an electricity forecaster where the train
and test sets are derived from the same dataset, tokenization
can be applied across any dimension E, S, or T , Figure 2 left.
However when moving to either generalist trained models, e.g. a
forecaster trained on electricity and traffic and weather domains
whose S and E dimensions all differ, or the zero-shot testing
regime, e.g. testing on domains which can have differing S and
E dimensions, operating along the time dimension is necessary,
Figure 2 right. Our tokenizer handles varying dimensionality
across E, S, and T by creating discrete non-overlapping tokens
along the time-dimension of length F , where F < T , thereby
promoting training and testing on variable length examples, E,
sensors, S, and time steps T . This design decision enables generalist training and zero shot testing.

No Data Engineering. Most prior work leverages normalization, and we do not consider this to be data
engineering. Manipulations in prior work that we do consider to be data engineering include the use of
auxiliary features (e.g. day of the month, or minute in the hour, etc.) Chen et al. (2023); Salinas et al. (2020),
or frequency transformations Wu et al. (2022a); Zhou et al. (2022). We forego any data engineering and
operate directly on time steps. This enables generalist training and zero shot testing as differing data domains
have widely varying sampling rates, Table 3, leading to distinct auxiliary features and frequency profiles.

3.2 Task Definitions

There are numerous tasks to tackle in time series analysis. Three significant ones are imputation, anomaly
detection, and forecasting. In imputation, models intake a masked time series xm ∈ RS×Tin , and then
reconstruct and impute x ∈ RS×Tin . In anomaly detection, models intake a corrupted time series xcorr ∈
RS×Tin and reconstruct the data x ∈ RS×Tin . The amount of corruption is considered known, at A%. In
forecasting, models intake a time series x ∈ RS×Tin and predict future readings y ∈ RS×Tout , where S is the
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number of sensors and Tin, Tout signify the durations of the preceding and succeeding time series, respectively.
When implementing a tokenizer, it should be performant across all tasks despite their distinct representational
requirements with minimal to no tuning while maintaining the same architecture and objective regardless of
the downstream task.

3.3 Tokenizer Implementation

Figure 3: TOTEM flattens the sensor di-
mension, S, and example dimension, E, into
the batch and learns a discrete representa-
tion along the time dimension, T. Tokens
can be learnt in a normalized space.

To realize a single tokenizer architecture that enables generalist
modeling across differing domains and tasks we take inspiration
from the VQVAE (Van Den Oord et al., 2017). The original
VQVAE leverages a dilated convolutional architecture with a
stride of 2 and window-size of 4, similar to the WaveNet (Oord
et al., 2016) dilated, causal, convolutional decoder. A dilated
convolution skips inputs allowing a filter to operate on a larger
input area / coarser scale. Utilizing dilated convolutions is an
architectural decision rooted in the high sampling rates of raw
audio waveforms (Oord et al., 2016; Van Den Oord et al., 2017).
High sampling rates are not a trait shared by many time series
domains, Table 3. When training the tokenizer we stride all input data by 1 time step, while keeping a long
(e.g. 96 time steps) input. This enables the tokenizer to see every possible combination of time when learning
a discrete number of codewords to represent the training set while enabling a large receptive field, see Figure
14 for codebook visualizations. Finally the tokenizer can also learn codewords in a normalized space, Figure
3. This enables the codewords to represent normalized waveforms instead of taking both scale and waveform
into account. Scale (mean and std. dev.) can be returned in the downstream modeling, see Figure 4 if needed
for the task. Using a strided non-causal convolutional architecture with no dilation, pre-striding the data by
1, training on long time series inputs, and enabling the separation between scale and waveform allows the
tokenizer to capture maximal information within a large receptive field.

The TOTEM VQVAE consists of an encoder, quantizer, latent codebook, and decoder. It takes in a univariate
time series {xi ∈ RT }E·S

i=1 obtained by flattening the sensor channel of the multivariate data, Figure 3. This
makes TOTEM’s VQVAE sensor-agnostic, enabling TOTEM’s generalist-training and zero-shot-testing. The
encoder E consists of strided 1D convolutions compressing the time series by a cumulative stride of F . E maps
a univariate time series x ∈ RT to a latent representation z = E(x) ∈ RT/F ×D, where D is the the hidden
dimension. The latent codebook C = {ci}K

i=1 consists of K D-dim codewords ci ∈ RD. During quantization,
the codebook is used to replace z with ẑ ∈ RT/F ×D such that ẑj = ck, where k = arg mini ||zj − ci||2. The
decoder D follows the reverse architecture of the encoder E , consisting of 1D transpose convolutions with
a cumulative stride of 1/F mapping the quantized ẑ to a reconstructed time series x̂ = D(ẑ) ∈ RT . We
exclusively use a compression factor of F = 4, Table 25. We learn E , D, and C by optimizing the objective
L = Lrec + Lcmt consisting of a reconstruction loss Lrec = 1

E·S
∑

i ||xi − x̂i||22 and a commitment loss Lcmt,
which follows a similar formulation but allows the codebook to update despite the the non-differentiable
arg min operation during quantization. Notably, this objective does not change even when the underlying
task, time series length, data masking, normalization schema, or data domain changes. See §A.9 & §A.10 for
additional details.

3.4 Downstream Model Implementation

Notably imputation and anomaly detection can be directly solved with just TOTEM’s VQVAE, see Figures
12 and 13, as they are fundamentally data representation tasks, whereas in forecasting further modeling
is required, see Figure 4. In forecasting, the trained, frozen, codebook representation converts a sensor’s
observed measurements xs ∈ RTin to a sequence of Tin/F discrete tokens. The forecaster transformer encoder
processes these tokenized time series independently for each sensor, adding time-based positional encodings
to each token along the time dimension. Using a series of multi-head attention layers, the model predicts
the forecasted measurements ȳs ∈ RTout for s = 1, ..., S, applying the attention mechanism along the time
dimension T . In parallel, the forecaster takes in xs and predicts the future’s mean, µs, and standard deviation,
σs, for each sensor s = 1, ..., S to unnormalize the data. The final forecasted prediction is ys = σs · ȳs + µs.
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Figure 4: Forecaster Modeling. The forecasting
task requires modeling beyond the VQVAE. We lever-
age TOTEM’s pretrained, learnt, discrete codes as a
the input data representation and train a transformer
encoder. We add positional embeddings along the time
dimension, and use linear layers before the final output
as well as to un-normalize the resulting forecast.

The forecaster is trained in a supervised fashion by
minimizing three smooth L1 losses between predic-
tions {ȳs, µs, σs} and their ground truth respectively.

Our proposed two-step discrete time series tokeniza-
tion then modeling framework enables the design
of general models across a variety of time series do-
mains, tasks, and evaluation schemas, Figure 1. We
design a single tokenizer architecture that is gener-
ally applicable without extensive data engineering
while being suitable for varying data dimensionalities
across different tasks. There are many possibilities
for how to introduce a discrete time series tokenizer,
we extensively study one such methodology that
maintains the same architecture and objective re-
gardless of the downstream task and satisfies the
aforementioned design criteria. See §A.9 & §A.10
for additional details.

4 Experimental Setup

4.1 Imputation.

Baselines. For the specialist setting, we compare
against 11 baselines spanning linear models, transformers, and convoultional neural networks. These eleven
include two recent models that explore multiple tasks, the transformer based GPT2 (Zhou et al., 2023) and
the convolutional TimesNet [TiNet] (Wu et al., 2022a). For models which were only designed for a single task
we compare against PatchTST [Patch] (Nie et al., 2022), ETSFormer [ETS] (Woo et al., 2022), Fedformer
[FED] (Zhou et al., 2022), Non-stationary trans. [Stat] (Liu et al., 2022b), Autoformer [Auto] (Wu et al.,
2021), Informer [Inf] (Zhou et al., 2021), Reformer [Re] (Kitaev et al., 2020), LightTS [LiTS] (Zhang et al.,
2022), DLinear [DLin] (Zeng et al., 2023). We pull these values from (Zhou et al., 2023). Additionally in
the Appendix, Table 5, we compare to 5 additional baselines spanning variational autoencoders, recurrent
neural networks, and score-based diffusion models: V-Rin(Mulyadi et al., 2021), BRITS(Cao et al., 2018),
RDIS(Choi et al., 2023), unconditional and CSDI(Tashiro et al., 2021). These values are taken from (Tashiro
et al., 2021). We also setup GPT2 (Zhou et al., 2023) to run in a generalist manner. In total we use or
train 17 imputation baselines. Datasets. We evaluate on 6 benchmark datasets: weather [W], electricity [E],
ETTm1 [m1], ETTm2 [m2], ETTh1 [h1], ETTh2 [h2], which are most recently used by Zhou et al. (2023).
For the zero shot settings, we use 5 benchmark datasets: neuro2 [N2], neuro5 [N5] Peterson et al. (2022), and
saugeen river flow [R], U.S. births [B], and sunspot [S] Godahewa et al. (2021). Additionally in the Appendix,
Table 5, we utilize the PhysioNet Challenge 2012 dataset (Silva et al., 2012). In total we use 12 datasets
for imputation. Metrics. Consistent with prior work, we report mean squared error MSE (lower is better ↓),
mean absolute error MAE (↓).

4.2 Anomaly Detection.

Baselines. For the specialist setting, we compare against 15 baselines spanning linear models, transformers,
and convoultional neural networks; namely: GPT2, TiNet, Anomaly trans. [ATran](Xu et al., 2021), Patch,
ETS, FED, Stat, Auto, Pyraformer [Pyra] (Liu et al., 2021), Inf, Re, LogTrans. [LogTr] (Li et al., 2019), Trans.
[Trans] (Vaswani et al., 2017), LiTS, and DLin. These values come from (Zhou et al., 2023). Additionally in
the Appendix, Table 9, we compare to 3 additional baselines DGHL (Challu et al., 2022) and work that is
concurrent/subsequent to our own MNT-0, and MNT-LP(Goswami et al., 2024). These values come from
(Goswami et al., 2024). We also setup GPT2 (Zhou et al., 2023) to run in a generalist manner. In total we
use or train 19 anomaly detection baselines. Datasets. We leverage 5 recent(Zhou et al., 2023) SMD, MSL,
SMAP, SWAT, PSM anomaly detection datasets, as well as 5 datasets for zero shot: neuro2 [N2], neuro5 [N5]
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Peterson et al. (2022), and saugeen river flow [R], U.S. births [B], and sunspot [S] Godahewa et al. (2021). In
the Appendix, Table 9, we also use 15 dataset from (Wu & Keogh, 2021). In total we use 25 datasets for
anomaly detection. Metrics. Consistent with prior work, we report precision P (higher is better ↑), recall R
(↑), and adjusted F1 score (↑).

4.3 Forecasting.

Baselines. For the specialist setting, we compare against 11 baselines spanning linear models, transformers,
and convoultional neural networks: GPT2, TiNet, iTrans. [iTrans] Liu et al. (2023), Patch, Crossformer
[Cross] Zhang & Yan (2022), FED, Stat, TiDE Das et al. (2023a), RLinear [RLin] Li et al. (2023), DLin, and
SciNet [SCi] Liu et al. (2022a). We run GPT2 with a lookback length of 96 as they originally report varying,
dataset-specific, lookback lengths. Numbers for other methods are from (Liu et al., 2023). In the Appendix,
Table 16, we additionally compare to N-Beats(Oreshkin et al., 2019) and work that is concurrent/subsequent
to our own MNT (Goswami et al., 2024). Additionally, we implement the GPT2 forecasting generalist. In
total we use or train 14 baselines for forecasting. Datasets. We evaluate on 7 benchmark datasets: weather
[W], electricity [E], traffic [T], ETTm1 [m1], ETTm2 [m2], ETTh1 [h1], ETTh2 [h2]; and 5 zero shot datasets
neuro2 [N2], neuro5 [N5] Peterson et al. (2022), and saugeen river flow [R], U.S. births [B], and sunspot [S]
Godahewa et al. (2021). In total we use 12 datasets for forecasting. Metrics. Consistent with prior work, we
report mean squared error MSE (lower is better ↓), mean absolute error MAE (↓).

5 Results

Through experiments in imputation (§5.1), anomaly detection (§5.2), and forecasting (§5.3), our goal is
to explore the efficacy of TOTEM on new general settings, as well as standard specialist benchmarks. To
briefly refresh: specialist refers to training on a single domain (Tables 2D, 6, 10). Generalist refers to training
on multiple domains (Tables 2B&C, 7, 11). Finally, in-domain refers to testing on the training domain,
and zero-shot to testing on a separate domain from training, for a recap see Figure 1. We compare to two
families of approaches: methods designed for multiple tasks (multitask) – TOTEM belongs in this category
– and methods designed for a specific task (singletask), which may be adapted to other tasks. We present
summary results in Figures 2A, 5, 6, for the full tables see the Appendix. For all experiments & models
in the main paper, we run three seeds and report the mean; standard deviations in the Appendix. Since
evaluation metrics differ across tasks, (↓) will denote a metric where lower is better and (↑) will denote a
metric where higher is better. Given the varied metrics we calculate the average number of best results, or
AvgWins , for each method and highlight the best, second best, and third best methods. In the following
subsections we will discuss the baselines, datasets, and metrics for each task. We emphasize that no domain,
sampling rate, or sensor dimension is shared between the training sets and zero-shot testing sets, see Table 3
for additional dataset details. For additional architecture and training details see §A.9 & §A.10.

5.1 Imputation

In imputation, models intake a masked time series xm ∈ RS×Tin , and then reconstruct and impute x ∈ RS×Tin ,
see Figure 12. We experiment with four canonical masking percentages at 12.5%, 25%, 37.5%, 50%, and report
MSE and MAE . Specialist. In Figure2A & Table 2D we compare TOTEM to baselines. All models are trained
and evaluated on the same dataset (in-domain). TOTEM has the highest AvgWins with 52.1%, followed by
GPT2 at 35.4%, and TiNet at 18.8%. TOTEM performance for m1 and h1 is lower; notably these datasets
are the minute and hour resampling of the same raw data respectively. We investigate and discuss TOTEM’s
success across different domains in Table 21. Generalist. In Figure2A & Table 2B&C we compare TOTEM
to GPT2 (best performing models above), when both models are trained on the aggregate of W, E, m1, m2,
h1, h2. We test them on the in-domain and zero-shot test sets. TOTEM outperforms GPT2 in-domain,
58.3% vs. 43.8% , and by a much larger margin in zero-shot, 80% vs. 20%. TOTEM’s performance across all
experiments demonstrate that tokens are a performant representation for imputation. We visualize codebook
examples in Figure 14, and imputation examples in Figure 15.
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B. Generalist In Domain
Model TOTEM GPT2
Metric MSE MAE MSE MAE

W

12.5% 0.029 0.060 0.029 0.045
25% 0.030 0.060 0.033 0.048

37.5% 0.032 0.062 0.037 0.054
50% 0.036 0.067 0.043 0.061

E

12.5% 0.065 0.171 0.080 0.186
25% 0.071 0.179 0.091 0.197

37.5% 0.080 0.189 0.108 0.213
50% 0.095 0.205 0.132 0.236

m
1 12.5% 0.041 0.132 0.052 0.141

25% 0.044 0.135 0.065 0.154
37.5% 0.048 0.139 0.085 0.171
50% 0.058 0.152 0.117 0.196

m
2 12.5% 0.040 0.125 0.029 0.095

25% 0.041 0.126 0.033 0.101
37.5% 0.043 0.129 0.038 0.110
50% 0.048 0.136 0.045 0.121

h1

12.5% 0.100 0.201 0.113 0.217
25% 0.108 0.209 0.131 0.231

37.5% 0.122 0.220 0.153 0.247
50% 0.144 0.237 0.182 0.266

h2

12.5% 0.075 0.175 0.067 0.155
25% 0.076 0.177 0.071 0.160

37.5% 0.093 0.195 0.077 0.167
50% 0.089 0.192 0.086 0.179

AvgWins 58.3% 43.8%

C. Generalist Zero Shot
Model TOTEM GPT2
Metric MSE MAE MSE MAE

N
2 12.5% 0.029 0.120 0.047 0.145

25% 0.033 0.127 0.064 0.164
37.5% 0.041 0.139 0.090 0.191
50% 0.056 0.160 0.131 0.228

N
5 12.5% 0.017 0.085 0.021 0.095

25% 0.019 0.090 0.028 0.107
37.5% 0.022 0.098 0.039 0.123
50% 0.029 0.110 0.055 0.145

R

12.5% 0.071 0.109 0.093 0.119
25% 0.087 0.117 0.125 0.134

37.5% 0.112 0.129 0.167 0.154
50% 0.148 0.147 0.220 0.182

B

12.5% 0.632 0.642 0.392 0.496
25% 0.693 0.665 0.444 0.523

37.5% 0.761 0.692 0.498 0.553
50% 0.827 0.718 0.591 0.599

S

12.5% 0.057 0.160 0.070 0.173
25% 0.061 0.168 0.084 0.189

37.5% 0.069 0.178 0.103 0.209
50% 0.082 0.193 0.128 0.234

AvgWins 80.0% 20.0%
D. Specialist In Domain

Model TOTEM GPT2 TiNet Patch ETS FED Stat Auto Inf Re LiTS Dlin
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W

12.5% 0.028 0.046 0.026 0.049 0.025 0.045 0.029 0.049 0.057 0.141 0.041 0.107 0.027 0.051 0.026 0.047 0.037 0.093 0.031 0.076 0.047 0.101 0.039 0.084
25% 0.029 0.047 0.028 0.052 0.029 0.052 0.031 0.053 0.065 0.155 0.064 0.163 0.029 0.056 0.030 0.054 0.042 0.100 0.035 0.082 0.052 0.111 0.048 0.103

37.5% 0.031 0.048 0.033 0.060 0.031 0.057 0.035 0.058 0.081 0.180 0.107 0.229 0.033 0.062 0.032 0.060 0.049 0.111 0.040 0.091 0.058 0.121 0.057 0.117
50% 0.033 0.052 0.037 0.065 0.034 0.062 0.038 0.063 0.102 0.207 0.183 0.312 0.037 0.068 0.037 0.067 0.053 0.114 0.046 0.099 0.065 0.133 0.066 0.134

E

12.5% 0.054 0.154 0.080 0.194 0.085 0.202 0.055 0.160 0.196 0.321 0.107 0.237 0.093 0.210 0.089 0.210 0.218 0.326 0.190 0.308 0.102 0.229 0.092 0.214
25% 0.059 0.160 0.087 0.203 0.089 0.206 0.065 0.175 0.207 0.332 0.120 0.251 0.097 0.214 0.096 0.220 0.219 0.326 0.197 0.312 0.121 0.252 0.118 0.247

37.5% 0.067 0.169 0.094 0.211 0.094 0.213 0.076 0.189 0.219 0.344 0.136 0.266 0.102 0.220 0.104 0.229 0.222 0.328 0.203 0.315 0.141 0.273 0.144 0.276
50% 0.079 0.183 0.101 0.220 0.100 0.221 0.091 0.208 0.235 0.357 0.158 0.284 0.108 0.228 0.113 0.239 0.228 0.331 0.210 0.319 0.160 0.293 0.175 0.305

m
1 12.5% 0.049 0.125 0.017 0.085 0.019 0.092 0.041 0.130 0.067 0.188 0.035 0.135 0.026 0.107 0.034 0.124 0.047 0.155 0.032 0.126 0.075 0.180 0.058 0.162

25% 0.052 0.128 0.022 0.096 0.023 0.101 0.044 0.135 0.096 0.229 0.052 0.166 0.032 0.119 0.046 0.144 0.063 0.180 0.042 0.146 0.093 0.206 0.080 0.193
37.5% 0.055 0.132 0.029 0.111 0.029 0.111 0.049 0.143 0.133 0.271 0.069 0.191 0.039 0.131 0.057 0.161 0.079 0.200 0.063 0.182 0.113 0.231 0.103 0.219
50% 0.061 0.139 0.040 0.128 0.036 0.124 0.055 0.151 0.186 0.323 0.089 0.218 0.047 0.145 0.067 0.174 0.093 0.218 0.082 0.208 0.134 0.255 0.132 0.248

m
2 12.5% 0.016 0.078 0.017 0.076 0.018 0.080 0.026 0.094 0.108 0.239 0.056 0.159 0.021 0.088 0.023 0.092 0.133 0.270 0.108 0.228 0.034 0.127 0.062 0.166

25% 0.017 0.081 0.020 0.080 0.020 0.085 0.028 0.099 0.164 0.294 0.080 0.195 0.024 0.096 0.026 0.101 0.135 0.272 0.136 0.262 0.042 0.143 0.085 0.196
37.5% 0.018 0.084 0.022 0.087 0.023 0.091 0.030 0.104 0.237 0.356 0.110 0.231 0.027 0.103 0.030 0.108 0.155 0.293 0.175 0.300 0.051 0.159 0.106 0.222
50% 0.020 0.088 0.025 0.095 0.026 0.098 0.034 0.110 0.323 0.421 0.156 0.276 0.030 0.108 0.035 0.119 0.200 0.333 0.211 0.329 0.059 0.174 0.131 0.247

h1

12.5% 0.119 0.212 0.043 0.140 0.057 0.159 0.093 0.201 0.126 0.263 0.070 0.190 0.060 0.165 0.074 0.182 0.114 0.234 0.074 0.194 0.240 0.345 0.151 0.267
25% 0.127 0.220 0.054 0.156 0.069 0.178 0.107 0.217 0.169 0.304 0.106 0.236 0.080 0.189 0.090 0.203 0.140 0.262 0.102 0.227 0.265 0.364 0.180 0.292

37.5% 0.138 0.230 0.072 0.180 0.084 0.196 0.120 0.230 0.220 0.347 0.124 0.258 0.102 0.212 0.109 0.222 0.174 0.293 0.135 0.261 0.296 0.382 0.215 0.318
50% 0.157 0.247 0.107 0.216 0.102 0.215 0.141 0.248 0.293 0.402 0.165 0.299 0.133 0.240 0.137 0.248 0.215 0.325 0.179 0.298 0.334 0.404 0.257 0.347

h2

12.5% 0.040 0.129 0.039 0.125 0.040 0.130 0.057 0.152 0.187 0.319 0.095 0.212 0.042 0.133 0.044 0.138 0.305 0.431 0.163 0.289 0.101 0.231 0.100 0.216
25% 0.041 0.131 0.044 0.135 0.046 0.141 0.061 0.158 0.279 0.390 0.137 0.258 0.049 0.147 0.050 0.149 0.322 0.444 0.206 0.331 0.115 0.246 0.127 0.247

37.5% 0.043 0.136 0.051 0.147 0.052 0.151 0.067 0.166 0.400 0.465 0.187 0.304 0.056 0.158 0.060 0.163 0.353 0.462 0.252 0.370 0.126 0.257 0.158 0.276
50% 0.047 0.142 0.059 0.158 0.060 0.162 0.073 0.174 0.602 0.572 0.232 0.341 0.065 0.170 0.068 0.173 0.369 0.472 0.316 0.419 0.136 0.268 0.183 0.299

AvgWins 52.1% 35.4% 18.8% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 2: Imputation Summary. In all categories TOTEM has SOTA AvgWins . In the specialist TOTEM
has 52.1% AvgWins ; in generalist in domain TOTEM has 58.3%; in generalist zero shot TOTEM has 80.0%.

5.2 Anomaly Detection

Figure 5: Anomaly Detection Summary. In all cat-
egories TOTEM has SOTA AvgWins . In the specialist
TOTEM has 33.3%; in generalist in domain TOTEM
has 80.0%; in generalist zero shot TOTEM has 73.3%.

In anomaly detection, models intake a corrupted time
series xcorr ∈ RS×Tin and reconstruct the data x ∈
RS×Tin , where the amount of corruption is considered
known, at A%, see Figure 13. We report % Precision
P (↑), Recall R (↑), and F1 Score (↑). The standard
practice in machine learning, which we adopt, is to
have a held out test set that is not used for tuning the
model or learning algorithm. One aspect that makes
comparing with several prior works challenging is
that they use the test set as a validation set for early
stopping of the learning algorithm, which can often
inflate their performance. Despite this inconsistency,
we compare our performance against these reported
performances, whenever available. In Table 9 we
additionally include comparisons to 15 datasets from
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(Wu & Keogh, 2021) as Wu and Keogh identified flaws in the canonical anomaly detection benchmarks;
TOTEM is SOTA or comparable across the 15 new benchmarks. We include all datasets to enable comparison
to prior work, as well as promote the usage of new benchmarks.

Specialist. In Figure 5 & Table 6 we evaluate TOTEM against numerous specialist baselines. TOTEM has
the highest AvgWins at 33.3% followed by a tie between GPT2, TiNet, ATrans, ETS, and LogTr at 13.3%.
Generalist. In Figure 5 & Table 7 we compare generalist-trained TOTEM and GPT2. On the in-domain
test sets TOTEM outperforms 80% to 20%. In the zero-shot test sets TOTEM outperforms 73.3% to 26.7%.
TOTEM’s AvgWins across the specialist and generalist settings demonstrate that tokens are a performant
representation for anomaly detection. We visualize codebook examples in Figure 14.

5.3 Forecasting

Figure 6: Forecasting Summary. In all cate-
gories TOTEM has SOTA AvgWins . In the specialist
TOTEM has 28.6%; in generalist in domain TOTEM
has 67.9%; in generalist zero shot TOTEM has 90.0%.

In forecasting, models intake a time series x ∈ RS×Tin

and predict future readings y ∈ RS×Tout , where S
is the number of sensors and Tin, Tout signify the
durations of the preceding and succeeding time se-
ries, respectively. The pairs (x, y) are generated by
striding the original time series data. All models
have a lookback of Tin = 96, with prediction lengths
Tout = {96, 192, 336, 720}. Numbers for other meth-
ods are from Liu et al. (2023). We run GPT2 with
Tin = 96 as they originally report varying, dataset-
specific, lookback lengths. We report MSE (↓) and
MAE (↓). See Figure 6 for an overview.

Specialist. From Figure 6 & Table 10 we find that
TOTEM achieves the highest AvgWins at 28.6% fol-
lowed by iTrans at 26.8%. TOTEM has first finishes
in five datasets while iTrans’ first finishes are concen-
trated in only electricity and traffic. Generalist. In
Figure 6 & Table 11 we compare generalist TOTEM
and GPT2. TOTEM outperforms GPT2 for both in-domain (67.9% vs. 33.9%) and zero-shot (90.0% vs.
12.5%). TOTEM’s AvgWins forecasting performance across the training and testing regimes demonstrates
that tokens are a performant representation for forecasting. See example codebooks and forecasts in Figures
14 and 15.

6 Ablations

Figure 7: Discrete Token Ablation. In
all categories the discrete token representa-
tion (TOTEM) has SOTA AvgWins over the
patch representation (PatchTOTEM).

Discrete Tokens vs. Patches To evaluate if tokens enable
TOTEM’s performance, we implement PatchTOTEM. Patch-
TOTEM has the identical architecture to TOTEM, except we
replace the VQVAE with an MLP trained end-to-end with the
downstream forecaster. We compare Totem vs. PatchTOTEM
in the specialist in-domain, and generalist in-domain and zero-
shot regimes, Figure 7 & Table 17. In all cases TOTEM outper-
forms PatchTOTEM - specialist: 67.9% vs. 39.3%, generalist
in-domain: 78.6% vs. 23.2%, generalist zero-shot: 67.5% vs.
35.0%. TOTEM’s performance demonstrates that tokens, when
compared to patches, lead to better performance.

Downstream Architecture & Discrete Tokens vs.
Patches. In Figure 8 & Table 17 we explore the affect of
discrete tokens versus patches for two separate forecasting
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Figure 8: Discrete Token vs. Patches
with MLP. For both the transformer (left)
and MLP (right) the discrete token repre-
sentation (TOTEM) outperforms the patch
respresentation (PatchTOTEM).

architectures the transformer encoder discussed above, §3.3 &
Figure 4, and an MLP. The MLP has 3-layers with ReLUs, uses
dropout with p=0.1 after the second layer, and concludes with
a layernorm; the architecture is modeled after similar parsimo-
nious forecasters in the literature like (Das et al., 2023a). The
no-token MLP takes in uncompressed time series. The purpose
of these ablations are not to compare the transformer to the
MLP, but within each architecture to compare whether or not
the discrete tokenized representation or the patch representation
leads to better performance. We find that for both architec-
tures the discrete token representation outperforms the patch
representation; in the transformer 67.9% to 39.3% AvgWins and
MLP 66.1% to 37.5% AvgWins .

Codebook Size. In Figure 9 left & Table 17 we explore the
affect of the codebook size, K, on the VQVAE’s MSE and MAE
reconstruction performance. As expected, we find that as K
increases from 32 to 256 to 512 the reconstruction performance
improves. However during downstream tasks, e.g. forecasting, it
is beneficial to model the interactions between fewer codewords.
Therefore we use K = 256 codewords. In Figure 9 middle we plot the average generalist codebook error over
the downstream forecasting error demonstrating that most error does not come from a shared representation
but the difficulty of the downstream task. This gives evidence that time series can have a single unified
representation across multiple domains, akin to BPE in language modeling. In Figure 9 right, we plot the
specialist codebook errors over the downstream forecasting errors to demonstrate that the finding of most
error coming from the difficulty of the downstream task is not just a phenomenon found in the generalist.

Figure 9: Codebook Ablation. Left, as the codebook size, K, increases the reconstruction performance of
the VQVAE decreases. Middle, the generalist codebook error is smaller than the generalist forecasting error,
demonstrating the promise of a single unified pre-trained representation for general time series. Right the
specialist codebook error is smaller the the specialist codebook error.

7 Exploratory Studies in Generalist Modeling

Figure 10: Generalist codebooks outperform
specialist codebooks.

Generalist Codebooks. To further explore the capabilities
of a generalist codebook data representation we train models
that utilize a general codebook but dataset-specific transformer
forecasters, e.g. a TOTEM VQVAE trained on multiple domains
with a forecaster trained only on electricity, Figure 10 & Table 20.
We compare these mixed models to generalist and specialist
models trained on the same domains. All models use the same
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codebook hyperparameters (number of codewords K = 256, compression factor F = 4, code dimensionality
D = 64) as well as the forecaster transformer architecture to ensure a fair comparison.

Since we are evaluating specialists, mixed-models, and a generalist on in-domain test data one might expect
the TOTEM specialists to significantly outperform all models. Surprisingly this intuition is not correct. When
comparing models trained using specialist codebooks to models trained using a single generalist codebook
we find that generalist codebook models outperform specialists: 66.1% vs. 57.1%. Upon further inspection
we find that the fully-generalist model (right Table 20) significantly outperforms the mixed-models (middle
Table 20) in traffic (T) and electricity (E). This performance is puzzling until considering the training sizes.

The largest training set across domains belongs to traffic (T) at 10.2M training examples. In dataset T,
the fully generalist models achieves 100% AvgWins . The second largest training set belongs to electricity
(E) at 5.8M training examples, with 75% AvgWins for the fully-generalist model. Unfortunately there is a
sharp drop off in training set sizes, with the rest of the data domains collectively comprising 1.6M training
examples. These results evoke questions. For instance: does training on the smaller datasets act like form
of regularization? Or: how does in-domain generalist performance scale with dataset size? We leave these
exciting directions for future work. The generalist codebook’s performance across datasets highlights the
potential of unified, discrete, token representations for in-domain evaluations.

Figure 11: Zero Shot Vignette. The gen-
eralist has the highest zero shot performance
at 85.0% AvgWins , when compared to the
two largest specialists: Traffic and Elec.

Zero Shot Vignette: Training Size & Data Diversity.
Here we further explore generalist and specialist zero-shot test-
ing capabilities, Figure 11 & Table 21. We take the two largest
TOTEM specialist, traffic at 10.2M and electricity at 5.8M
training examples, and test their zero-shot capabilities com-
pared to the TOTEM generalist. We expect that the gener-
alist will perform best as it was trained on the most data at
17.6M training examples as well as the most domains. We
predict the generalist will be followed by TOTEM-traffic then
TOTEM-electricity as they are both trained on only one domain
but traffic has 4.4M more training examples than electricity.
As expected the generalist outperforms both TOTEM-traffic
and TOTEM-electricity with 85.0% AvgWins . However, curi-
ously TOTEM-electricity outperforms TOTEM-traffic: 12.5%
vs. 2.5% despite having 4.4M fewer training examples. Why
is the smaller training set outperforming the larger training
set? One possible explanation is that the electricity domain
is more similar than the traffic domain to neuro, river, births,
and sunspot. Another possible explanation comes from the raw time series dimensionality. Despite having
fewer training examples, electricity has a higher number of raw time steps4 compared to traffic: 26304 vs.
17544. However, traffic has a larger number of sensors: 862 vs. 321. This limited analysis suggests that a
higher number of raw time steps is more valuable than more sensor readings. Untangling these possibilities
and beginning to answer the questions: what is a unit of data in time series? And how does this unit scale
as the time steps, sensors, and examples scale? are valuable future directions. The zero shot vignette has
demonstrated the power of the token-enabled generalist over the traffic and electricity specialists, and has
opened up exciting training size and data diversity questions.

8 Conclusion

We present TOTEM: a simple, performant tokenizer that works across domains thereby enabling generalist
modeling across tasks. TOTEM demonstrates strong in-domain and zero-shot capabilities that match or
outperform existing state-of-the-art approaches. Moving forward, an interesting limitation is that TOTEM
does not support variable token lengths. Dynamic token lengths could potentially enhance unified data repre-
sentations and further improve task performance. Other interesting directions include further investigating
the relationship between generalist data representations, token length, data size, and domain diversity.

4Raw time steps for all data. The train:val:test ratio is 7:1:2.
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9 Broader Impact Statement

There are no immediate ethical concerns that arise from our work. However, as with all data driven methods,
certain societal consequences are important to be discussed, in this case surrounding time series modeling. A
few are reported below:

Privacy Concerns. Time series data, especially when sourced from personal devices or applications, can
contain sensitive information about individuals, e.g. for health domains. In this work, no time series were
sourced from personal devices.

Misuse. Time series forecast models can be misused. For instance, if a model forecasts stock prices or
market movements, it could be exploited for insider trading or other illegal financial activities. In this work,
we are focused on domains pertinent to scientific disciplines.

Economic Impacts. Automated forecasts and decisions based on time series models can significantly impact
industries and labor markets both positively and negatively. For instance, if a model can accurately predict
weather patterns, it might affect farmers and their crop decisions, or if it can forecast energy consumption, it
could impact the energy sector.
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A Appendix

A.1 Dataset.

Dataset Sampling Rate Number Sensors
Imputation & Forecasting Training Sets

Weather Every 10 min 21
Traffic Every hour 862

Electricity Every hour 321
Etth1, ETTh2 Every hour 7

Ettm1, ETTm2 Every 15 min 7
Anomaly Detection Training Sets

SMD (Sever Machine) Every min 38
MSL (Mars Rover) Every min 55

SMAP (Soil Moisture) Every min 25
SWAT (Water Treatment) Every sec 51

PSM (Pooled Server) Every min 25
Zero Shot Testing Sets for Imputation, Forecasting & Anomaly Detection

Neuro2 Every 0.002 sec 72
Neuro5 Every 0.002 sec 106

Saugeen River Flow Every day 1
US Birth Rate Every day 1

Sunspot Every day 1

Table 3: Dataset Information Table. Notably no sampling rate or sensor number is shared between the
training sets and testing sets for any task.

A.2 Imputation.

Figure 12: Imputation Visualization. The VQVAE architecture does not change for the imputation
task. The data passed in has a mask applied to it so that the VQVAE solves the task of reconstruction and
imputation simultaneously.
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Table 4: Means & Stds. for the Imputation Task. A. is the TOTEM specialist, B. is the TOTEM
generalist, C. is the GPT2 generalist which we setup to run in a generalist manner.

A. TOTEM - Specialist Imputation (↓)
Metric MSE MAE

W

12.5% 0.028 ± 0.0000 0.046 ± 0.0006
37.5% 0.029 ± 0.0000 0.047 ± 0.0010
50% 0.031 ± 0.0006 0.048 ± 0.0015
25% 0.033 ± 0.0000 0.052 ± 0.0006

E

12.5% 0.054 ± 0.0006 0.154 ± 0.0015
25% 0.059 ± 0.0006 0.160 ± 0.0010

37.5% 0.067 ± 0.0006 0.169 ± 0.0012
50% 0.079 ± 0.0012 0.183 ± 0.0012

m
1 12.5% 0.049 ± 0.0000 0.125 ± 0.0006

25% 0.052 ± 0.0006 0.128 ± 0.0006
37.5% 0.055 ± 0.0000 0.132 ± 0.0006
50% 0.061 ± 0.0006 0.139 ± 0.0006

m
2 12.5% 0.016 ± 0.0006 0.078 ± 0.0010

25% 0.017 ± 0.0006 0.081 ± 0.0006
37.5% 0.018 ± 0.0000 0.084 ± 0.0006
50% 0.020 ± 0.0000 0.088 ± 0.0000

h1

12.5% 0.119 ± 0.0010 0.212 ± 0.0006
25% 0.127 ± 0.0015 0.220 ± 0.0006

37.5% 0.138 ± 0.0012 0.230 ± 0.0006
50% 0.157 ± 0.0006 0.247 ± 0.0010

h2

12.5% 0.040 ± 0.0006 0.129 ± 0.0017
25% 0.041 ± 0.0010 0.131 ± 0.0012

37.5% 0.043 ± 0.0006 0.136 ± 0.0006
50% 0.047 ± 0.0006 0.142 ± 0.0012

B. TOTEM - Generalist Imputation (↓)
Metric MSE MAE

W

12.5% 0.029 ± 0.0012 0.060 ± 0.0047
25% 0.030 ± 0.0006 0.060 ± 0.0047

37.5% 0.032 ± 0.0006 0.062 ± 0.0030
50% 0.036 ± 0.0006 0.067 ± 0.0036

E

12.5% 0.065 ± 0.0020 0.171 ± 0.0032
25% 0.071 ± 0.0015 0.179 ± 0.0031

37.5% 0.080 ± 0.0025 0.189 ± 0.0032
50% 0.095 ± 0.0026 0.205 ± 0.0032

m
1 12.5% 0.041 ± 0.0006 0.132 ± 0.0015

25% 0.044 ± 0.0000 0.135 ± 0.0010
37.5% 0.048 ± 0.0006 0.139 ± 0.0040
50% 0.058 ± 0.0010 0.152 ± 0.0000

m
2 12.5% 0.040 ± 0.0020 0.125 ± 0.0067

25% 0.041 ± 0.0015 0.126 ± 0.0058
37.5% 0.043 ± 0.0015 0.129 ± 0.0049
50% 0.048 ± 0.0010 0.136 ± 0.0038

h1

12.5% 0.100 ± 0.0049 0.201 ± 0.0049
25% 0.108 ± 0.0049 0.209 ± 0.0038

37.5% 0.122 ± 0.0064 0.220 ± 0.0044
50% 0.144 ± 0.0078 0.237 ± 0.0049

h2

12.5% 0.075 ± 0.0012 0.175 ± 0.0053
25% 0.076 ± 0.0006 0.177 ± 0.0036

37.5% 0.093 ± 0.0222 0.195 ± 0.0200
50% 0.089 ± 0.0010 0.192 ± 0.0035

Zero-Shot

N
2 12.5% 0.029 ± 0.0015 0.120 ± 0.0045

25% 0.033 ± 0.0010 0.127 ± 0.0035
37.5% 0.041 ± 0.0006 0.139 ± 0.0025
50% 0.056 ± 0.0006 0.160 ± 0.0012

N
5 12.5% 0.017 ± 0.0010 0.085 ± 0.0030

25% 0.019 ± 0.0010 0.090 ± 0.0030
37.5% 0.022 ± 0.0006 0.098 ± 0.0025
50% 0.029 ± 0.0006 0.110 ± 0.0025

R

12.5% 0.071 ± 0.0070 0.109 ± 0.0040
25% 0.087 ± 0.0064 0.117 ± 0.0031

37.5% 0.112 ± 0.0050 0.129 ± 0.0035
50% 0.148 ± 0.0032 0.147 ± 0.0023

B

12.5% 0.632 ± 0.0087 0.642 ± 0.0068
25% 0.693 ± 0.0070 0.665 ± 0.0047

37.5% 0.761 ± 0.0055 0.692 ± 0.0023
50% 0.827 ± 0.0044 0.718 ± 0.0000

S

12.5% 0.057 ± 0.0012 0.160 ± 0.0023
25% 0.061 ± 0.0006 0.168 ± 0.0021

37.5% 0.069 ± 0.0006 0.178 ± 0.0021
50% 0.082 ± 0.0010 0.193 ± 0.0015

C. GPT2 - Generalist Imputation (↓)
Metric MSE MAE

W

12.5% 0.029 ± 0.0000 0.045 ± 0.0006
25% 0.033 ± 0.0006 0.048 ± 0.0006

37.5% 0.037 ± 0.0006 0.054 ± 0.0012
50% 0.043 ± 0.0012 0.061 ± 0.0017

E

12.5% 0.008 ± 0.0020 0.186 ± 0.0035
25% 0.091 ± 0.0020 0.197 ± 0.0025

37.5% 0.108 ± 0.0021 0.213 ± 0.0026
50% 0.132 ± 0.0026 0.236 ± 0.0026

m
1 12.5% 0.052 ± 0.0012 0.141 ± 0.0016

25% 0.065 ± 0.0021 0.154 ± 0.0021
37.5% 0.085 ± 0.0038 0.171 ± 0.0026
50% 0.117 ± 0.0052 0.196 ± 0.0026

m
2 12.5% 0.029 ± 0.0000 0.095 ± 0.0006

25% 0.033 ± 0.0006 0.101 ± 0.0006
37.5% 0.038 ± 0.0006 0.110 ± 0.0012
50% 0.045 ± 0.0006 0.121 ± 0.0012

h1

12.5% 0.113 ± 0.0012 0.217 ± 0.0021
25% 0.131 ± 0.0010 0.231 ± 0.0015

37.5% 0.153 ± 0.0012 0.247 ± 0.0017
50% 0.182 ± 0.0006 0.266 ± 0.0012

h2

12.5% 0.067 ± 0.0010 0.155 ± 0.0015
25% 0.071 ± 0.0006 0.160 ± 0.0015

37.5% 0.077 ± 0.0010 0.167 ± 0.0015
50% 0.086 ± 0.0032 0.179 ± 0.0038

Zero-Shot

N
2 12.5% 0.047 ± 0.0006 0.145 ± 0.0015

25% 0.064 ± 0.0017 0.164 ± 0.0015
37.5% 0.090 ± 0.0036 0.191 ± 0.0032
50% 0.131 ± 0.0051 0.228 ± 0.0044

N
5 12.5% 0.021 ± 0.0006 0.095 ± 0.0012

25% 0.028 ± 0.0006 0.107 ± 0.0010
37.5% 0.039 ± 0.0015 0.123 ± 0.0015
50% 0.055 ± 0.0015 0.145 ± 0.0023

R
12.5% 0.093 ± 0.0010 0.119 ± 0.0015
25% 0.125 ± 0.0006 0.134 ± 0.0026

37.5% 0.167 ± 0.0021 0.154 ± 0.0042
50% 0.220 ± 0.0045 0.182 ± 0.0057

B

12.5% 0.392 ± 0.0064 0.496 ± 0.0023
25% 0.444 ± 0.0071 0.523 ± 0.0029

37.5% 0.498 ± 0.0080 0.553 ± 0.0023
50% 0.591 ± 0.0700 0.599 ± 0.0275

s

12.5% 0.070 ± 0.0012 0.173 ± 0.0017
25% 0.084 ± 0.0010 0.189 ± 0.0015

37.5% 0.103 ± 0.0010 0.209 ± 0.0021
50% 0.128 ± 0.0015 0.234 ± 0.0021

Table 5: Imputation on PhysioNet 2012 Dataset. We report MAE where lower is better. TOTEM has
the best performance in all three scenarios of percent missing.

Method 10% Missing 50% Missing 90% Missing
V-Rin 0.271 0.365 0.606
BRITS 0.284 0.368 0.517
RDIS 0.319 0.419 0.613

Unconditional 0.326 0.417 0.625
CSDI 0.217 0.301 0.481

TOTEM (Ours) 0.126 0.134 0.143
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A.3 Anomaly Detection.

Figure 13: Anomaly Detection Visualization. The VQVAE architecture does not change for the
anomaly detection task. The training data passed in must be clean such that the VQVAE can learn clean
representations. At test time, when anomaly data is passed in with anomaly A% (in this case 25%), the
worst A% reconstructed is set to the anomaly.

Table 6: Specialist Anomaly Detection (↑). TOTEM has the highest AvgWins at 33.3% followed by a
five-way tie between GPT2, TiNet, ATrans, ETS, and LogTr at 13.3%. Some prior methods use the test set
as a validation set for early stopping of the learning algorithm, which can inflate performance. We do not
adopt this practice and train TOTEM for a set number of iterations.

Model TOTEM GPT2 TiNet ATran Patch ETS FED Stat Auto Pyra Inf Re LogTr Trans LiTS DLin

F1

SMD 79.62 86.89 84.61 85.49 84.62 83.13 85.08 84.62 85.11 83.04 81.65 75.32 76.21 79.56 82.53 77.10
MSL 82.58 82.45 81.84 83.31 78.70 85.03 78.57 77.50 79.05 84.86 84.06 84.40 79.57 78.68 78.95 84.88

SMAP 94.02 72.88 69.39 71.18 68.82 69.50 70.76 71.09 71.12 71.09 69.92 70.40 69.97 69.70 69.21 69.26
SWAT 94.27 94.23 93.02 83.10 85.72 84.91 93.19 79.88 92.74 91.78 81.43 82.80 80.52 80.37 93.33 87.52
PSM 95.87 97.13 97.34 79.40 96.08 91.76 97.23 97.29 93.29 82.08 77.10 73.61 76.74 76.07 97.15 93.55

R

SMD 76.06 84.98 81.54 82.23 82.14 79.23 82.39 81.21 82.35 80.61 77.23 69.24 70.13 76.13 78.42 71.52
MSL 82.85 82.91 75.36 87.37 70.96 84.93 80.07 89.14 80.92 85.93 86.48 83.31 87.37 87.37 75.78 85.42

SMAP 94.04 60.95 56.40 58.11 55.46 55.75 58.10 59.02 58.62 57.71 57.13 57.44 57.59 57.12 55.27 55.41
SWAT 95.91 96.34 95.40 97.32 80.94 80.36 96.42 96.75 95.81 96.00 96.75 96.53 97.32 96.53 94.72 95.30
PSM 94.21 95.68 96.20 94.72 93.47 85.28 97.16 96.76 88.15 96.02 96.33 95.38 98.00 96.56 95.97 89.26

P

SMD 83.54 88.89 87.91 88.91 87.26 87.44 87.95 88.33 88.06 85.61 86.60 82.58 83.46 83.58 87.10 83.62
MSL 82.32 82.00 89.54 79.61 88.34 85.13 77.14 68.55 77.27 83.81 81.77 85.51 73.05 71.57 82.40 84.34

SMAP 94.00 90.60 90.14 91.85 90.64 92.25 90.47 89.37 90.40 92.54 90.11 90.91 89.15 89.37 92.58 92.32
SWAT 92.68 92.20 90.75 72.51 91.10 90.02 90.17 68.03 89.85 87.92 70.29 72.50 68.67 68.84 91.98 80.91
PSM 97.58 98.62 98.51 68.35 98.84 99.31 97.31 97.82 99.08 71.67 64.27 59.93 63.06 62.75 98.37 98.28

AvgWins 33.3% 13.3% 13.3% 13.3% 0% 13.3% 0% 6.7% 0% 0% 0% 0% 13.3% 0% 0% 0%
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Table 7: Generalist Anomaly Detection (↑). We train TOTEM & GPT2 on all datasets and then perform
in-domain and zero-shot evaluations. A. In-Domain Performance. TOTEM outperforms GPT2: 80.0%
vs. 20.0%. B. Zero-Shot Performance. TOTEM again outperforms GPT2: 73.3% vs. 26.7%.

A. In-Domain Performance
Model TOTEM GPT2

F1
SMD 78.64 79.73
MSL 83.29 80.17

SMAP 92.51 67.05
SWAT 94.37 89.62
PSM 95.78 90.47

R

SMD 72.07 73.42
MSL 82.96 78.48

SMAP 91.48 53.42
SWAT 96.13 87.53
PSM 93.90 87.76

P

SMD 86.66 87.44
MSL 83.64 81.95

SMAP 93.56 90.01
SWAT 92.68 91.83
PSM 97.74 93.39

AvgWins 80.0% 20.0%

B. Zero-Shot Performance
Model TOTEM GPT2

F1

N2 51.29 39.02
N5 51.28 42.19
R 49.39 36.14
B 49.15 20.81
S 52.17 38.12

R

N2 76.88 33.69
N5 76.84 36.77
R 70.49 29.66
B 73.71 17.67
S 77.36 31.83

P

N2 38.49 46.43
N5 38.48 49.58
R 38.02 46.30
B 36.86 25.33
S 39.35 47.72

AvgWins 73.3% 26.7%

Table 8: Means & Stds. for the Anomaly Detection Task. A. is the TOTEM specialist, B. is the
TOTEM generalist, C. is the GPT2 generalist which we setup to run in a generalist manner.

A. TOTEM - Specialist Anomaly Detection (↑)
Mean ± Std

F1

SMD 0.7962 ± 0.0137
MSL 0.8258 ± 0.0052

SMAP 0.9402 ± 0.0008
SWAT 0.9427 ± 0.0006
PSM 0.9587 ± 0.0008

R

SMD 0.7606 ± 0.0207
MSL 0.8285 ± 0.0071

SMAP 0.9404 ± 0.0013
SWAT 0.9591 ± 0.0012
PSM 0.9421 ± 0.0004

P

SMD 0.8354 ± 0.0054
MSL 0.8232 ± 0.0033

SMAP 0.9400 ± 0.0004
SWAT 0.9268 ± 0.0003
PSM 0.9758 ± 0.0012

B. TOTEM - Generalist Anomaly Detection (↑)
Mean ± Std

F1

SMD 0.7864 ± 0.0386
MSL 0.8329 ± 0.0020

SMAP 0.9251 ± 0.0014
SWAT 0.9437 ± 0.0005
PSM 0.9578 ± 0.0002
N2 0.5129 ± 0.0397
N5 0.5128 ± 0.0390
R 0.4939 ± 0.0625
B 0.4915 ± 0.0229
S 0.5217 ± 0.0418

R

SMD 0.7207 ± 0.0565
MSL 0.8296 ± 0.0046

SMAP 0.9148 ± 0.0020
SWAT 0.9613 ± 0.0010
PSM 0.9390 ± 0.0004
N2 0.7688 ± 0.0594
N5 0.7684 ± 0.0582
R 0.7049 ± 0.0825
B 0.7371 ± 0.0340
S 0.7736 ± 0.0581

P

SMD 0.8666 ± 0.0114
MSL 0.8364 ± 0.0014

SMAP 0.9356 ± 0.0009
SWAT 0.9268 ± 0.0001
PSM 0.9774 ± 0.0002
N2 0.3849 ± 0.0299
N5 0.3848 ± 0.0294
R 0.3802 ± 0.0502
B 0.3686 ± 0.0172
S 0.3935 ± 0.0325

C. GPT2 - Generalist Anomaly Detection (↑)
Mean ± Std

F1

SMD 0.7973 ± 0.0326
MSL 0.8017 ± 0.0205

SMAP 0.6705 ± 0.0041
SWAT 0.8962 ± 0.0016
PSM 0.9047 ± 0.0759
N2 0.3902 ± 0.0596
N5 0.4219 ± 0.0047
R 0.3614 ± 0.0204
B 0.2081 ± 0.0462
S 0.3812 ± 0.0621

R

SMD 0.7342 ± 0.0559
MSL 0.7848 ± 0.0277

SMAP 0.5342 ± 0.0051
SWAT 0.8753 ± 0.0033
PSM 0.8776 ± 0.0624
N2 0.3369 ± 0.0592
N5 0.3677 ± 0.0498
R 0.2966 ± 0.0218
B 0.1767 ± 0.0426
S 0.3183 ± 0.0648

P

SMD 0.8744 ± 0.0029
MSL 0.8195 ± 0.0130

SMAP 0.9001 ± 0.0007
SWAT 0.9183 ± 0.0006
PSM 0.9339 ± 0.0925
N2 0.4643 ± 0.0561
N5 0.4958 ± 0.0396
R 0.4630 ± 0.0139
B 0.2533 ± 0.0498
S 0.4772 ± 0.5000
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Table 9: Extra Anomaly Detection (↑). We present the the Adj. F1 metric the table (higher is better),
then calculate the AvgWins . The selection criteria for the 15 datasets from (Wu & Keogh, 2021; Goswami
et al., 2024) was the following. First, based only on the names in (Goswami et al., 2024), it was often
ambiguous which data file was used. In these cases, we excluded the dataset. Second, we had difficulty
verifying whether the default train/val/test ratios specified in the (Goswami et al., 2024) code matched what
was reported. We found for the majority of datasets that the defaults resulted in test sets with no anomalies,
when anomalies should be present. These were also excluded. From the results we could obtain, TOTEM
matches or beats all other methods.

Model TOTEM ATran MNT-0 MNT-LP DGHL GPT2 TiNet
CIMIS44AirTemperature3 73.8 6.0 100.0 98.0 50.0 18.0 47.0

GP711MarkerLFM5z4 96.7 76.0 69.0 97.0 31.0 48.0 90.0
InternalBleeding5 100.0 94.0 100.0 100.0 100.0 92.0 100.0

MesoplodonDensirostris 99.4 100.0 91.0 84.0 79.0 100.0 100.0
TKeepSecondMARS 100.0 83.0 95.0 100.0 16.0 12.0 95.0
WalkingAceleration5 100.0 99.0 100.0 100.0 91.0 87.0 93.0

insectEPG2 100.0 12.0 11.0 23.0 14.0 81.0 96.0
ltstdbs30791AS 100.0 100.0 100.0 100.0 100.0 100.0 100.0

park3m 67.2 15.0 56.0 64.0 20.0 63.0 93.0
s20101mML2 100.0 69.0 65.0 71.0 15.0 5.0 8.0

sddb49 99.8 89.0 100.0 100.0 88.0 94.0 100.0
sel840mECG1 99.5 16.0 61.0 66.0 28.0 21.0 36.0
sel840mECG2 86.8 15.0 36.0 39.0 32.0 28.0 21.0

tiltAPB2 68.5 92.0 96.0 98.0 36.0 83.0 38.0
tiltAPB3 23.4 17.0 48.0 85.0 3.0 5.0 9.0

AvgWins 53.5% 13.3% 33.3% 53.5% 13.3% 13.3% 33.3%
Avg. Best Adj. F1 87.7 58.9 75.2 81.7 46.9 55.8 68.4
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A.4 Forecasting.

Table 10: Specialist Forecasting (↓). TOTEM has the best AvgWins (28.6%), followed by iTrans (26.8%).
Notably, TOTEM has first place finishes in 5 datasets, while iTrans’ first places are concentrated in only
electricity and traffic. All models have lookback Tin = 96.

Model TOTEM GPT2 TiNet iTrans Patch Cross FED Stat TiDE RLin DLin SCi
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W

96 0.165 0.208 0.184 0.224 0.172 0.220 0.174 0.214 0.177 0.218 0.158 0.230 0.217 0.296 0.173 0.223 0.202 0.261 0.192 0.232 0.196 0.255 0.221 0.306
192 0.207 0.250 0.231 0.263 0.219 0.261 0.221 0.254 0.225 0.259 0.206 0.277 0.276 0.336 0.245 0.285 0.242 0.298 0.240 0.271 0.237 0.296 0.261 0.340
336 0.257 0.291 0.285 0.302 0.280 0.306 0.278 0.296 0.278 0.297 0.272 0.335 0.339 0.380 0.321 0.338 0.287 0.335 0.292 0.307 0.283 0.335 0.309 0.378
720 0.326 0.340 0.362 0.351 0.365 0.359 0.358 0.349 0.354 0.348 0.398 0.418 0.403 0.428 0.414 0.410 0.351 0.386 0.364 0.353 0.345 0.381 0.377 0.427

E

96 0.178 0.263 0.186 0.272 0.168 0.272 0.148 0.240 0.195 0.285 0.219 0.314 0.193 0.308 0.169 0.273 0.237 0.329 0.201 0.281 0.197 0.282 0.247 0.345
192 0.187 0.272 0.190 0.278 0.184 0.289 0.162 0.253 0.199 0.289 0.231 0.322 0.201 0.315 0.182 0.286 0.236 0.330 0.201 0.283 0.196 0.285 0.257 0.355
336 0.199 0.285 0.204 0.291 0.198 0.300 0.178 0.269 0.215 0.305 0.246 0.337 0.214 0.329 0.200 0.304 0.249 0.344 0.215 0.298 0.209 0.301 0.269 0.369
720 0.236 0.318 0.245 0.324 0.220 0.320 0.225 0.317 0.256 0.337 0.280 0.363 0.246 0.355 0.222 0.321 0.284 0.373 0.257 0.331 0.245 0.333 0.299 0.390

T

96 0.523 0.303 0.471 0.311 0.593 0.321 0.395 0.268 0.544 0.359 0.522 0.290 0.587 0.366 0.612 0.338 0.805 0.493 0.649 0.389 0.650 0.396 0.788 0.499
192 0.530 0.303 0.479 0.312 0.617 0.336 0.417 0.276 0.540 0.354 0.530 0.293 0.604 0.373 0.613 0.340 0.756 0.474 0.601 0.366 0.598 0.370 0.789 0.505
336 0.549 0.311 0.490 0.317 0.629 0.336 0.433 0.283 0.551 0.358 0.558 0.305 0.621 0.383 0.618 0.328 0.762 0.477 0.609 0.369 0.605 0.373 0.797 0.508
720 0.598 0.331 0.524 0.336 0.640 0.350 0.467 0.302 0.586 0.375 0.589 0.328 0.626 0.382 0.653 0.355 0.719 0.449 0.647 0.387 0.645 0.394 0.841 0.523

m
1 96 0.320 0.347 0.328 0.363 0.338 0.375 0.334 0.368 0.329 0.367 0.404 0.426 0.379 0.419 0.386 0.398 0.364 0.387 0.355 0.376 0.345 0.372 0.418 0.438

192 0.379 0.382 0.368 0.382 0.374 0.387 0.377 0.391 0.367 0.385 0.450 0.451 0.426 0.441 0.459 0.444 0.398 0.404 0.391 0.392 0.380 0.389 0.439 0.450
336 0.406 0.402 0.400 0.404 0.410 0.411 0.426 0.420 0.399 0.410 0.532 0.515 0.445 0.459 0.495 0.464 0.428 0.425 0.424 0.415 0.413 0.413 0.490 0.485
720 0.471 0.438 0.462 0.440 0.478 0.450 0.491 0.459 0.454 0.439 0.666 0.589 0.543 0.490 0.585 0.516 0.487 0.461 0.487 0.450 0.474 0.453 0.595 0.550

m
2 96 0.176 0.253 0.178 0.263 0.187 0.267 0.180 0.264 0.175 0.259 0.287 0.366 0.203 0.287 0.192 0.274 0.207 0.305 0.182 0.265 0.193 0.292 0.286 0.377

192 0.247 0.302 0.245 0.307 0.249 0.309 0.250 0.309 0.241 0.302 0.414 0.492 0.269 0.328 0.280 0.339 0.290 0.364 0.246 0.304 0.284 0.362 0.399 0.445
336 0.317 0.348 0.307 0.346 0.321 0.351 0.311 0.348 0.305 0.343 0.597 0.542 0.325 0.366 0.334 0.361 0.377 0.422 0.307 0.342 0.369 0.427 0.637 0.591
720 0.426 0.410 0.410 0.409 0.408 0.403 0.412 0.407 0.402 0.400 1.730 1.042 0.421 0.415 0.417 0.413 0.558 0.524 0.407 0.398 0.554 0.522 0.960 0.735

h1

96 0.380 0.394 0.379 0.397 0.384 0.402 0.386 0.405 0.414 0.419 0.423 0.448 0.376 0.419 0.513 0.491 0.479 0.464 0.386 0.395 0.386 0.400 0.654 0.599
192 0.434 0.427 0.438 0.427 0.436 0.429 0.441 0.436 0.460 0.445 0.471 0.474 0.420 0.448 0.534 0.504 0.525 0.492 0.437 0.424 0.437 0.432 0.719 0.631
336 0.490 0.459 0.474 0.448 0.491 0.469 0.487 0.458 0.501 0.466 0.570 0.546 0.459 0.465 0.588 0.535 0.565 0.515 0.479 0.446 0.481 0.459 0.778 0.659
720 0.539 0.513 0.496 0.475 0.521 0.500 0.503 0.491 0.500 0.488 0.653 0.621 0.506 0.507 0.643 0.616 0.594 0.558 0.481 0.470 0.519 0.516 0.836 0.699

h2

96 0.293 0.338 0.295 0.348 0.340 0.374 0.297 0.349 0.302 0.348 0.745 0.584 0.358 0.397 0.476 0.458 0.400 0.440 0.288 0.338 0.333 0.387 0.707 0.621
192 0.375 0.390 0.384 0.402 0.402 0.414 0.380 0.400 0.388 0.400 0.877 0.656 0.429 0.439 0.512 0.493 0.528 0.509 0.374 0.390 0.477 0.476 0.860 0.689
336 0.422 0.431 0.418 0.432 0.452 0.452 0.428 0.432 0.426 0.433 1.043 0.731 0.496 0.487 0.552 0.551 0.643 0.571 0.415 0.426 0.594 0.541 1.000 0.744
720 0.610 0.567 0.423 0.446 0.462 0.468 0.427 0.445 0.431 0.446 1.104 0.763 0.463 0.474 0.562 0.560 0.874 0.679 0.420 0.440 0.831 0.657 1.249 0.838

AvgWins 28.6% 1.8% 1.8% 26.8% 14.3% 3.6% 5.4% 0% 0% 25% 0% 0%

Table 11: Generalist Forecasting (↓). Here we evaluate the generalist TOTEM and GPT2 models. A.
In-Domain Performance. TOTEM outperforms GPT2: 67.9% to 33.9%. B. Zero-Shot Performance.
TOTEM outperforms GPT2: 90.0% to 12.5%.

A. In-Domain Performance
Model TOTEM GPT2
Metric MSE MAE MSE MAE

W

96 0.172 0.216 0.201 0.237
192 0.217 0.256 0.247 0.275
336 0.266 0.295 0.298 0.311
720 0.334 0.342 0.372 0.360

E

96 0.179 0.264 0.194 0.278
192 0.181 0.267 0.199 0.284
336 0.196 0.283 0.214 0.300
720 0.230 0.314 0.255 0.331

T

96 0.507 0.284 0.484 0.320
192 0.511 0.282 0.488 0.320
336 0.535 0.292 0.502 0.326
720 0.580 0.309 0.534 0.343

m
1 96 0.374 0.384 0.487 0.468

192 0.400 0.399 0.516 0.480
336 0.432 0.424 0.548 0.499
720 0.487 0.460 0.581 0.511

m
2 96 0.198 0.275 0.243 0.315

192 0.266 0.319 0.297 0.346
336 0.365 0.377 0.349 0.376
720 0.588 0.511 0.439 0.423

h1

96 0.382 0.404 0.421 0.408
192 0.463 0.435 0.480 0.436
336 0.507 0.463 0.518 0.453
720 0.517 0.500 0.517 0.467

h2

96 0.307 0.345 0.298 0.343
192 0.406 0.403 0.381 0.392
336 0.505 0.460 0.406 0.419
720 0.661 0.557 0.423 0.438

AvgWins 67.9% 33.9%

B. Zero-Shot Performance
Model TOTEM GPT2
Metric MSE MAE MSE MAE

N
2 96 1.138 0.777 1.332 0.830

192 1.149 0.785 1.416 0.863
336 1.092 0.770 1.358 0.851
720 1.045 0.754 1.308 0.840

N
5 96 0.483 0.484 0.528 0.499

192 0.495 0.491 0.578 0.524
336 0.468 0.483 0.548 0.515
720 0.451 0.477 0.537 0.511

R

96 1.120 0.582 1.465 0.725
192 1.242 0.635 1.638 0.785
336 1.237 0.626 1.601 0.769
720 1.182 0.604 1.552 0.760

B

96 0.805 0.739 0.838 0.762
192 0.836 0.752 0.837 0.752
336 0.809 0.748 0.792 0.738
720 0.896 0.794 0.927 0.806

S

96 0.446 0.482 0.443 0.478
192 0.462 0.491 0.481 0.499
336 0.521 0.525 0.541 0.533
720 0.717 0.625 0.773 0.643

AvgWins 90.0% 12.5%
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Table 12: Means and Stds. for the Forecasting Specialits. A. is the TOTEM specialist, B. is the
GPT2 specialist which we setup to run with a consistent lookback.

A. TOTEM - Specialist Forecasting (↓)
Mean ± Std

Metric MSE MAE

W
96 0.165 ± 0.0015 0.208 ± 0.0012
192 0.207 ± 0.0006 0.250 ± 0.0012
336 0.257 ± 0.0002 0.291 ± 0.0006
720 0.326 ± 0.0035 0.340 ± 0.0023

E

96 0.178 ± 0.0015 0.263 ± 0.0010
192 0.187 ± 0.0015 0.272 ± 0.0015
336 0.199 ± 0.0012 0.285 ± 0.0012
720 0.236 ± 0.0035 0.318 ± 0.0031

T

96 0.523 ± 0.0010 0.303 ± 0.0006
192 0.530 ± 0.0030 0.303 ± 0.0017
336 0.549 ± 0.0017 0.311 ± 0.0021
720 0.598 ± 0.0095 0.331 ± 0.0062

m
1 96 0.320 ± 0.0006 0.347 ± 0.0006

192 0.379 ± 0.0017 0.382 ± 0.0012
336 0.406 ± 0.0040 0.402 ± 0.0026
720 0.471 ± 0.0006 0.438 ± 0.0010

m
2 96 0.176 ± 0.0006 0.253 ± 0.0010

192 0.247 ± 0.0012 0.302 ± 0.0015
336 0.317 ± 0.0046 0.348 ± 0.0031
720 0.426 ± 0.0085 0.410 ± 0.0062

h1

96 0.380 ± 0.0006 0.394 ± 0.0000
192 0.434 ± 0.0010 0.427 ± 0.0006
336 0.490 ± 0.0023 0.459 ± 0.0015
720 0.539 ± 0.0031 0.513 ± 0.0020

h2

96 0.293 ± 0.0015 0.338 ± 0.0006
192 0.375 ± 0.0031 0.390 ± 0.0026
336 0.422 ± 0.0046 0.431 ± 0.0031
720 0.610 ± 0.0095 0.567 ± 0.0081

B. GPT2 - Specialist Forecasting, Lookback of 96 ↓
Mean ± Std

Metric MSE MAE

W

96 0.184 ± 0.0013 0.224 ± 0.0014
192 0.231 ± 0.0012 0.263 ± 0.0009
336 0.285 ± 0.0015 0.302 ± 0.0013
720 0.362 ± 0.0016 0.351 ± 0.0008

E

96 0.186 ± 0.0004 0.272 ± 0.0005
192 0.190 ± 0.0007 0.278 ± 0.0008
336 0.204 ± 0.0003 0.291 ± 0.0005
720 0.245 ± 0.0012 0.324 ± 0.0014

T

96 0.471 ± 0.0016 0.311 ± 0.0016
192 0.479 ± 0.0017 0.312 ± 0.0010
336 0.490 ± 0.0009 0.317 ± 0.0010
720 0.524 ± 0.0019 0.336 ± 0.0018

m
1 96 0.328 ± 0.0022 0.363 ± 0.0014

192 0.368 ± 0.0006 0.382 ± 0.0004
336 0.400 ± 0.0013 0.404 ± 0.0011
720 0.462 ± 0.0010 0.440 ± 0.0009

m
2 96 0.178 ± 0.0000 0.263 ± 0.0000

192 0.245 ± 0.0000 0.307 ± 0.0000
336 0.307 ± 0.0000 0.346 ± 0.0000
720 0.410 ± 0.0000 0.409 ± 0.0000

h1

96 0.379 ± 0.0032 0.397 ± 0.0007
192 0.438 ± 0.0037 0.427 ± 0.0004
336 0.474 ± 0.0045 0.448 ± 0.0004
720 0.496 ± 0.0066 0.475 ± 0.0033

h2

96 0.295 ± 0.0000 0.348 ± 0.0000
192 0.384 ± 0.0000 0.402 ± 0.0000
336 0.418 ± 0.0000 0.432 ± 0.0000
720 0.423 ± 0.0000 0.446 ± 0.0000

Table 13: Means and Stds. for the Forecasting Generalist. A. is the TOTEM generalist, B. is the
GPT2 generalist which we setup to run in a generalist manner.

A. TOTEM - Generalist and Zero-Shot Forecasting (↓)
Mean ± Std

Metric MSE MAE

W

96 0.172 ± 0.0010 0.216 ± 0.0006
192 0.217 ± 0.0006 0.256 ± 0.0006
336 0.266 ± 0.0015 0.295 ± 0.0015
720 0.334 ± 0.0010 0.342 ± 0.0012

E

96 0.179 ± 0.0006 0.264 ± 0.0012
192 0.181 ± 0.0006 0.267 ± 0.0000
336 0.196 ± 0.0020 0.283 ± 0.0015
720 0.230 ± 0.0035 0.314 ± 0.0029

T

96 0.507 ± 0.0020 0.284 ± 0.0006
192 0.511 ± 0.0030 0.282 ± 0.0006
336 0.535 ± 0.0076 0.292 ± 0.0012
720 0.580 ± 0.0046 0.309 ± 0.0006

m
1 96 0.374 ± 0.0000 0.384 ± 0.0006

192 0.400 ± 0.0015 0.399 ± 0.0023
336 0.432 ± 0.0040 0.424 ± 0.0015
720 0.487 ± 0.0081 0.460 ± 0.0017

m
2 96 0.198 ± 0.0006 0.275 ± 0.0012

192 0.266 ± 0.0035 0.319 ± 0.0021
336 0.365 ± 0.0115 0.377 ± 0.0038
720 0.588 ± 0.0699 0.511 ± 0.0281

h1

96 0.382 ± 0.0364 0.404 ± 0.0012
192 0.463 ± 0.0025 0.435 ± 0.0006
336 0.507 ± 0.0025 0.463 ± 0.0010
720 0.517 ± 0.0010 0.500 ± 0.0017

h2

96 0.307 ± 0.0012 0.345 ± 0.0015
192 0.406 ± 0.0038 0.403 ± 0.0023
336 0.505 ± 0.0114 0.460 ± 0.0035
720 0.661 ± 0.0514 0.557 ± 0.0215

Zero-Shot

N
2 96 1.138 ± 0.0032 0.777 ± 0.0012

192 1.149 ± 0.0026 0.785 ± 0.0012
336 1.092 ± 0.0062 0.770 ± 0.0026
720 1.045 ± 0.0040 0.754 ± 0.0023

N
5 96 0.483 ± 0.0012 0.484 ± 0.0012

192 0.495 ± 0.0021 0.491 ± 0.0015
336 0.468 ± 0.0035 0.483 ± 0.0029
720 0.451 ± 0.0023 0.477 ± 0.0023

R

96 1.120 ± 0.0081 0.582 ± 0.0036
192 1.242 ± 0.0151 0.635 ± 0.0074
336 1.237 ± 0.0153 0.626 ± 0.0076
720 1.182 ± 0.0151 0.604 ± 0.0050

B

96 0.805 ± 0.0070 0.739 ± 0.0035
192 0.836 ± 0.0040 0.752 ± 0.0021
336 0.809 ± 0.0038 0.748 ± 0.0021
720 0.896 ± 0.0137 0.794 ± 0.0085

S

96 0.446 ± 0.0032 0.482 ± 0.0017
192 0.462 ± 0.0015 0.491 ± 0.0010
336 0.521 ± 0.0122 0.525 ± 0.0068
720 0.717 ± 0.0096 0.625 ± 0.0040

B. GPT2 - Generalist and Zero-Shot Forecasting (↓)
Mean ± Std

Metric MSE MAE

W

96 0.201 ± 0.0017 0.237 ± 0.0012
192 0.247 ± 0.0020 0.275 ± 0.0015
336 0.298 ± 0.0006 0.311 ± 0.0006
720 0.372 ± 0.0010 0.360 ± 0.0006

E

96 0.194 ± 0.0012 0.278 ± 0.0021
192 0.199 ± 0.0006 0.284 ± 0.0006
336 0.214 ± 0.0012 0.300 ± 0.0015
720 0.255 ± 0.0006 0.331 ± 0.0012

T

96 0.484 ± 0.0046 0.320 ± 0.0042
192 0.488 ± 0.0006 0.320 ± 0.0006
336 0.502 ± 0.0020 0.326 ± 0.0021
720 0.534 ± 0.0021 0.343 ± 0.0021

m
1 96 0.487 ± 0.0106 0.468 ± 0.0035

192 0.516 ± 0.0071 0.480 ± 0.0021
336 0.548 ± 0.0015 0.499 ± 0.0015
720 0.581 ± 0.0031 0.511 ± 0.0012

m
2 96 0.243 ± 0.0021 0.315 ± 0.0021

192 0.297 ± 0.0012 0.346 ± 0.0010
336 0.349 ± 0.0025 0.376 ± 0.0020
720 0.439 ± 0.0010 0.423 ± 0.0010

h1

96 0.421 ± 0.0058 0.408 ± 0.0010
192 0.480 ± 0.0026 0.436 ± 0.0020
336 0.518 ± 0.0161 0.453 ± 0.0070
720 0.517 ± 0.0036 0.467 ± 0.0035

h2

96 0.298 ± 0.0090 0.343 ± 0.0049
192 0.381 ± 0.0153 0.392 ± 0.0072
336 0.406 ± 0.0271 0.419 ± 0.0144
720 0.423 ± 0.0078 0.438 ± 0.0051

Zero-Shot

N
2 96 1.332 ± 0.0012 0.830 ± 0.0010

192 1.416 ± 0.0080 0.863 ± 0.0025
336 1.358 ± 0.0123 0.851 ± 0.0042
720 1.308 ± 0.0026 0.840 ± 0.0010

N
5 96 0.528 ± 0.0006 0.499 ± 0.0010

192 0.578 ± 0.0015 0.524 ± 0.0006
336 0.548 ± 0.0040 0.515 ± 0.0015
720 0.537 ± 0.0006 0.511 ± 0.0006

R

96 1.465 ± 0.0185 0.725 ± 0.0031
192 1.638 ± 0.0280 0.785 ± 0.0078
336 1.601 ± 0.0244 0.769 ± 0.0060
720 1.552 ± 0.0110 0.760 ± 0.0035

B

96 0.838 ± 0.0149 0.762 ± 0.0071
192 0.837 ± 0.0095 0.752 ± 0.0040
336 0.792 ± 0.0104 0.738 ± 0.0050
720 0.927 ± 0.0066 0.806 ± 0.0038

S

96 0.443 ± 0.0010 0.478 ± 0.0006
192 0.481 ± 0.0006 0.499 ± 0.0006
336 0.541 ± 0.0010 0.533 ± 0.0006
720 0.773 ± 0.0020 0.643 ± 0.0010

Metric Tin →Tout Train Test TOTEM (Ours) GPT2 TiNet Patch DLin Re Inf Auto Fed LiTS
sMAPE 24 →18 M4-M M3-M 14.4 14.1 14.0 14.7 15.7 14.8 15.9 16.9 15.1 24.6
sMAPE 48 →24 M3-M M4-M 14.6 14.6 16.2 14.7 14.8 15.6 23.5 25.1 18.2 15.2
MAPE 12 →4 M4-Y Tour.-Y 31.8 27.2 35.6 33.2 39.6 33.9 41.2 51.2 43.4 138.2
NDx100 30 →168 M4-H Elec.-H 17.6 17.2 19.3 17.3 17.6 21.6 21.2 33.9 18.4 19.6

Table 14: Short term forecasting results (lower is better). We randomly choose settings across varying
input-to-output dimensionalites, train and test datasets, and find that TOTEM (Ours) and GPT2 outperform
all other methods.
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Table 15: Long term vs. short term forecasting lookback and lookahead lengths. We see that long
term forecasting is far more stereotyped, and therefore easier to build generalist models for, than short term
forecasting.

Dataset Input →Output
Long Term Forecasting; In-Domain Testing

All Datasets (enforced by us, Liu et al. (2023); Wu et al. (2022a); Liu et al. (2022b); Zhou et al. (2022) 96 → 96, 192, 336, 720
Long Term Forecasting; Zero Shot Testing

All Datasets 96 → 96, 192, 336, 720
Short Term Forecasting; In Domain Testing

M4-Y 12 → 6
M4-Q 16 → 8
M4-M 36 → 18
M4-W 26 → 13
M4-D 28 → 14
M4-H 96 → 48

Short Term Forecasting; Zero Shot Testing
M4-Y, M3-Y 12 → 6
M4-Q, M3-Q 24 → 8
M4-M, M3-M 24 → 18
M4-M, M3-O 16 → 8
M3-Q, M4-Q 16 → 8
M3-M, M4-M 48 → 24
M3-Y, M4-Y 9 → 6
M3-M, M4-W 65 → 13
M3-M, M4-D 9 → 14
M3-O, M4-H 2 → 48

M4-Y, Tour.-Y 12 → 4
M4-Q, Tour.-Q 24 → 8
M4-M, Tour.-M 36 → 24
M4-H, Elec.-H 30 → 168

*Y=Yearly, Q=Quarterly, M=Monthly, W=Weekly, D=Daily, H=Hourly, O=Other

Table 16: 96 and 512 Lookback Lengths. We compare various forecasters with a lookback length of 96
and 512, across all lookback lengths and datasets TOTEM has the most AvgWins at 58.3% followed by GPT2
at 8.3%.

Tin=512 Model TOTEM (Ours) GPT2 MNT Patch N-Beats
Run By TOTEM (Ours) GPT2 MNT Patch MNT

Dataset Metric MSE, MAE MSE, MAE MSE, MAE MSE, MAE MSE, MAE
W 96 0.147, 0.196 0.162, 0.212 0.154, 0.209 0.149, 0.198 0.152, 0.210
W 192 0.195, 0.242 0.204, 0.248 N/A, N/A 0.194, 0.241 N/A, N/A
W 336 0.248, 0.283 0.254, 0.286 N/A, N/A 0.245, 0.282 N/A, N/A
W 720 0.314, 0.330 0.326, 0.337 0.315, 0.336 0.314, 0.334 0.331, 0.359
E 96 0.135, 0.231 0.139, 0.238 0.138, 0.242 0.129, 0.222 0.131, 0.228
E 192 0.151, 0.245 0.153, 0.251 N/A, N/A 0.147, 0.240 N/A, N/A
E 336 0.168, 0.265 0.169, 0.266 N/A, N/A 0.163, 0.259 N/A, N/A
E 720 0.200, 0.292 0.206, 0.297 0.211, 0.305 0.197, 0.290 0.208, 0.298
T 96 0.369, 0.241 0.388, 0.282 0.391, 0.282 0.360, 0.249 0.375, 0.259
T 192 0.383, 0.242 0.407, 0.290 N/A, N/A 0.379, 0.256 N/A, N/A
T 336 0.397, 0.248 0.412, 0.294 N/A, N/A 0.392, 0.264 N/A, N/A
T 720 0.446, 0.275 0.450, 0.312 0.450, 0.310 0.431, 0.286 0.508, 0.335

Tin=96 Model TOTEM (Ours) GPT2 MNT Patch N-Beats
Run By TOTEM (Ours) TOTEM (Ours) N/A Trans N/A

W 96 0.165, 0.208 0.184, 0.224 N/A, N/A 0.177, 0.218 N/A, N/A
W 192 0.207, 0.250 0.231, 0.263 N/A, N/A 0.225, 0.259 N/A, N/A
W 336 0.257, 0.291 0.285, 0.302 N/A, N/A 0.278, 0.297 N/A, N/A
W 720 0.326, 0.340 0.362, 0.351 N/A, N/A 0.354, 0.348 N/A, N/A
E 96 0.178, 0.263 0.186, 0.272 N/A, N/A 0.195, 0.285 N/A, N/A
E 192 0.187, 0.272 0.190, 0.278 N/A, N/A 0.199, 0.289 N/A, N/A
E 336 0.199, 0.285 0.204, 0.291 N/A, N/A 0.215, 0.305 N/A, N/A
E 720 0.236, 0.318 0.245, 0.324 N/A, N/A 0.256, 0.337 N/A, N/A
T 96 0.523, 0.303 0.471, 0.311 N/A, N/A 0.544, 0.359 N/A, N/A
T 192 0.530, 0.303 0.479, 0.312 N/A, N/A 0.540, 0.354 N/A, N/A
T 336 0.549, 0.311 0.490, 0.317 N/A, N/A 0.551, 0.358 N/A, N/A
T 720 0.598, 0.331 0.524, 0.336 N/A, N/A 0.586, 0.375 N/A, N/A

AvgWins 58.3% 8.3% 0% 35.4% 0%
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A.5 Ablation Details.

Table 17: Ablations (↓). Across the Tokens vs. Time (TvT) experiments tokens out perform time. (A)
specialist: 67.9% to 39.3%, (B) in-domain generalist: 78.6% to 23.2% , and (C) zero-shot generalist: 67.5% to
35%. (D) As the codebook size K increases the VQVAE reconstruction performance improves.

A. TvT Specialist
Model TOTEM TimeTOTEM
Metric MSE MAE MSE MAE

W

96 0.165 0.208 0.164 0.209
192 0.207 0.250 0.209 0.251
336 0.257 0.291 0.261 0.293
720 0.326 0.340 0.332 0.340

E

96 0.178 0.263 0.179 0.262
192 0.187 0.272 0.185 0.269
336 0.199 0.285 0.204 0.289
720 0.236 0.318 0.244 0.325

T

96 0.523 0.303 0.528 0.310
192 0.530 0.303 0.500 0.349
336 0.549 0.311 0.531 0.365
720 0.598 0.331 0.578 0.398

m
1 96 0.320 0.347 0.326 0.355

192 0.379 0.382 0.377 0.386
336 0.406 0.402 0.409 0.409
720 0.471 0.438 0.469 0.441

m
2 96 0.176 0.253 0.176 0.254

192 0.247 0.302 0.247 0.303
336 0.317 0.348 0.318 0.350
720 0.426 0.410 0.419 0.411

h1

96 0.380 0.394 0.377 0.395
192 0.434 0.427 0.428 0.428
336 0.490 0.459 0.480 0.462
720 0.539 0.513 0.530 0.522

h2

96 0.293 0.338 0.294 0.338
192 0.375 0.390 0.373 0.389
336 0.422 0.431 0.423 0.433
720 0.610 0.567 0.591 0.556

AvgWins 67.9% 39.3%

B. TvT In-Domain Generalist
Model TOTEM TimeTOTEM
Metric MSE MAE MSE MAE

W

96 0.172 0.216 0.173 0.218
192 0.217 0.256 0.218 0.261
336 0.266 0.295 0.267 0.299
720 0.334 0.342 0.337 0.347

E

96 0.179 0.264 0.183 0.267
192 0.181 0.267 0.189 0.275
336 0.196 0.283 0.204 0.291
720 0.230 0.314 0.242 0.325

T

96 0.507 0.284 0.517 0.293
192 0.511 0.282 0.526 0.296
336 0.535 0.292 0.552 0.304
720 0.580 0.309 0.602 0.326

m
1 96 0.374 0.384 0.428 0.420

192 0.400 0.399 0.438 0.427
336 0.432 0.424 0.469 0.447
720 0.487 0.460 0.546 0.493

m
2 96 0.198 0.275 0.207 0.286

192 0.266 0.319 0.269 0.325
336 0.365 0.377 0.358 0.377
720 0.588 0.511 0.521 0.482

h1

96 0.382 0.404 0.401 0.410
192 0.463 0.435 0.453 0.441
336 0.507 0.463 0.496 0.468
720 0.517 0.500 0.518 0.510

h2
96 0.307 0.345 0.305 0.346
192 0.406 0.403 0.396 0.402
336 0.505 0.460 0.492 0.458
720 0.661 0.557 0.599 0.531

AvgWins 78.6% 23.2%

C. TvT Zero-Shot Generalist
Model TOTEM TimeTOTEM
Metric MSE MAE MSE MAE

N
2 96 1.138 0.777 1.127 0.773

192 1.149 0.785 1.169 0.793
336 1.092 0.770 1.115 0.780
720 1.045 0.754 1.070 0.766

N
5 96 0.483 0.484 0.481 0.483

192 0.495 0.491 0.508 0.500
336 0.468 0.483 0.481 0.491
720 0.451 0.477 0.467 0.488

R

96 1.120 0.582 1.102 0.578
192 1.242 0.635 1.207 0.628
336 1.237 0.626 1.190 0.613
720 1.182 0.604 1.149 0.596

B

96 0.805 0.739 0.825 0.751
192 0.836 0.752 0.847 0.761
336 0.809 0.748 0.831 0.764
720 0.896 0.794 0.928 0.813

S

96 0.446 0.482 0.446 0.481
192 0.462 0.491 0.478 0.499
336 0.521 0.525 0.535 0.532
720 0.717 0.625 0.736 0.631

AvgWins 67.5% 35.0%

D. Codebook Size Ablations
Codebook Size K

32 256 512
MSE

All 0.0451 0.0192 0.0184
T 0.0312 0.0120 0.0101
E 0.0463 0.0209 0.0152
W 0.0393 0.0161 0.0128

MAE
All 0.1460 0.0937 0.0913
T 0.1204 0.0749 0.0685
E 0.1520 0.1027 0.0878
W 0.1122 0.0673 0.0607

AvgWins 0% 0% 100%
E. TvT MLP Specialist

Model TOTEM TimeTOTEM
Metric MSE MAE MSE MAE

W

96 0.164 0.210 0.180 0.224
192 0.207 0.252 0.212 0.254
336 0.259 0.293 0.273 0.302
720 0.330 0.342 0.345 0.350

E

96 0.183 0.268 0.186 0.265
192 0.188 0.275 0.190 0.271
336 0.203 0.290 0.203 0.285
720 0.240 0.323 0.240 0.319

T

96 0.539 0.330 0.556 0.332
192 0.551 0.332 0.567 0.326
336 0.565 0.336 0.577 0.329
720 0.608 0.354 0.622 0.351

m
1 96 0.332 0.362 0.335 0.368

192 0.379 0.390 0.392 0.404
336 0.418 0.423 0.421 0.421
720 0.466 0.454 0.470 0.456

m
2 96 0.178 0.257 0.179 0.259

192 0.253 0.307 0.258 0.313
336 0.336 0.361 0.333 0.359
720 0.475 0.423 0.467 0.426

h1

96 0.391 0.409 0.407 0.419
192 0.493 0.441 0.481 0.446
336 0.642 0.506 0.541 0.468
720 0.679 0.523 0.727 0.572

h2

96 0.362 0.368 0.326 0.353
192 0.438 0.410 0.436 0.411
336 0.543 0.457 0.922 0.676
720 1.007 0.614 0.824 0.577

AvgWins 66.1% 37.5%
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Table 18: Mean & Stds. for the PatchTOTEM Ablation. Left is the specialist, right is the generalist.

Specialist Forecasting
Mean ± Std

MSE MAE

W

96 0.164 ± 0.0006 0.209 ± 0.0006
192 0.209 ± 0.0017 0.251 ± 0.0023
336 0.261 ± 0.0012 0.293 ± 0.0017
720 0.332 ± 0.0023 0.340 ± 0.0006

E

96 0.179 ± 0.0015 0.262 ± 0.0015
192 0.185 ± 0.0006 0.269 ± 0.0000
336 0.204 ± 0.0055 0.289 ± 0.0061
720 0.244 ± 0.0040 0.325 ± 0.0036

T

96 0.528 ± 0.0081 0.310 ± 0.0092
192 0.500 ± 0.0606 0.349 ± 0.0699
336 0.531 ± 0.0424 0.365 ± 0.0852
720 0.578 ± 0.0361 0.398 ± 0.1103

m
1 96 0.326 ± 0.0006 0.355 ± 0.0006

192 0.377 ± 0.0023 0.386 ± 0.0012
336 0.409 ± 0.0006 0.409 ± 0.0006
720 0.469 ± 0.0015 0.441 ± 0.0000

m
2 96 0.176 ± 0.0010 0.254 ± 0.0006

192 0.247 ± 0.0031 0.303 ± 0.0026
336 0.318 ± 0.0006 0.350 ± 0.0021
720 0.419 ± 0.0067 0.411 ± 0.0044

h1

96 0.377 ± 0.0010 0.395 ± 0.0006
192 0.428 ± 0.0015 0.428 ± 0.0015
336 0.480 ± 0.0021 0.462 ± 0.0012
720 0.530 ± 0.0110 0.522 ± 0.0108

h2

96 0.294 ± 0.0021 0.338 ± 0.0010
192 0.373 ± 0.0023 0.389 ± 0.0032
336 0.423 ± 0.0031 0.433 ± 0.0025
720 0.591 ± 0.0145 0.556 ± 0.0051

Generalist In Domain & Zero Shot Forecasting
Mean ± Std

Metric MSE MAE

W

96 0.173 ± 0.0012 0.218 ± 0.0006
192 0.218 ± 0.0006 0.261 ± 0.0006
336 0.267 ± 0.0006 0.299 ± 0.0006
720 0.337 ± 0.0010 0.347 ± 0.0006

E

96 0.183 ± 0.0012 0.267 ± 0.0012
192 0.189 ± 0.0006 0.275 ± 0.0000
336 0.204 ± 0.0010 0.291 ± 0.0010
720 0.242 ± 0.0006 0.325 ± 0.0006

T

96 0.517 ± 0.0000 0.293 ± 0.0029
192 0.526 ± 0.0030 0.296 ± 0.0006
336 0.552 ± 0.0015 0.304 ± 0.0015
720 0.602 ± 0.0046 0.326 ± 0.0015

m
1 96 0.428 ± 0.0090 0.420 ± 0.0040

192 0.438 ± 0.0015 0.427 ± 0.0010
336 0.469 ± 0.0062 0.447 ± 0.0042
720 0.546 ± 0.0081 0.493 ± 0.0017

m
2 96 0.207 ± 0.0015 0.286 ± 0.0020

192 0.269 ± 0.0015 0.325 ± 0.0010
336 0.358 ± 0.0199 0.377 ± 0.0091
720 0.521 ± 0.0165 0.482 ± 0.0026

h1
96 0.401 ± 0.0006 0.410 ± 0.0006
192 0.453 ± 0.0010 0.441 ± 0.0010
336 0.496 ± 0.0017 0.468 ± 0.0006
720 0.518 ± 0.0020 0.510 ± 0.0017

h2

96 0.305 ± 0.0006 0.346 ± 0.0006
192 0.396 ± 0.0015 0.402 ± 0.0001
336 0.492 ± 0.0310 0.458 ± 0.0131
720 0.599 ± 0.0105 0.531 ± 0.0026

N
2 96 1.127 ± 0.0017 0.773 ± 0.0006

192 1.169 ± 0.0032 0.793 ± 0.0010
336 1.115 ± 0.0010 0.780 ± 0.0006
720 1.070 ± 0.0035 0.766 ± 0.0010

N
5 96 0.481 ± 0.0015 0.483 ± 0.0006

192 0.508 ± 0.0012 0.500 ± 0.0000
336 0.481 ± 0.0006 0.491 ± 0.0006
720 0.467 ± 0.0010 0.488 ± 0.0010

R

96 1.102 ± 0.0031 0.578 ± 0.0021
192 1.207 ± 0.0036 0.628 ± 0.0017
336 1.190 ± 0.0021 0.613 ± 0.0010
720 1.149 ± 0.0017 0.596 ± 0.0020

B

96 0.825 ± 0.0079 0.751 ± 0.0076
192 0.847 ± 0.0021 0.761 ± 0.0012
336 0.831 ± 0.0066 0.764 ± 0.0042
720 0.928 ± 0.0131 0.813 ± 0.0050

S

96 0.446 ± 0.0015 0.481 ± 0.0010
192 0.478 ± 0.0015 0.499 ± 0.0000
336 0.535 ± 0.0012 0.532 ± 0.0006
720 0.736 ± 0.0025 0.631 ± 0.0006

Table 19: Mean and Stds. for the Codebook Ablation (↓)

Mean ± Std
K MSE MAE

A
ll 32 0.0451 ± 0.0014 0.1460 ± 0.0030
256 0.0192 ± 0.0003 0.0937 ± 0.0007
512 0.0184 ± 0.0025 0.0913 ± 0.0062

W

32 0.0393 ± 0.0005 0.1122 ± 0.0064
256 0.0161 ± 0.0004 0.0673 ± 0.0011
512 0.0128 ± 0.0011 0.0607 ± 0.0032

E

32 0.0463 ± 0.0007 0.1520 ± 0.0016
256 0.0209 ± 0.0012 0.1027 ± 0.0029
512 0.0152 ± 0.0005 0.0878 ± 0.0014

T

32 0.0312 ± 0.0007 0.1204 ± 0.0008
256 0.0120 ± 0.0003 0.0749 ± 0.0007
512 0.0101 ± 0.0012 0.0685 ± 0.0044
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A.6 Further Exploration Details.

Table 20: Generalist codes beat specialist codes: 66.1% vs 57.1%.

Codebook Specialist Generalist Generalist
Forecaster Specialist Specialist Generalist

Metric MSE MAE MSE MAE MSE MAE

W

96 0.165 0.208 0.164 0.208 0.172 0.216
192 0.207 0.250 0.208 0.251 0.217 0.256
336 0.257 0.291 0.258 0.290 0.266 0.295
720 0.326 0.340 0.329 0.338 0.334 0.342

E
96 0.178 0.263 0.178 0.263 0.179 0.264
192 0.187 0.272 0.187 0.273 0.181 0.267
336 0.199 0.285 0.199 0.285 0.196 0.283
720 0.236 0.318 0.238 0.320 0.230 0.314

T

96 0.523 0.303 0.521 0.301 0.507 0.284
192 0.530 0.303 0.530 0.303 0.511 0.282
336 0.549 0.311 0.555 0.313 0.535 0.292
720 0.598 0.331 0.605 0.337 0.580 0.309

m
1 96 0.320 0.347 0.328 0.352 0.374 0.384

192 0.379 0.382 0.377 0.383 0.400 0.399
336 0.406 0.402 0.408 0.404 0.432 0.424
720 0.471 0.438 0.470 0.440 0.487 0.460

m
2 96 0.176 0.253 0.175 0.253 0.198 0.275

192 0.247 0.302 0.247 0.302 0.266 0.319
336 0.317 0.348 0.318 0.348 0.365 0.377
720 0.426 0.410 0.427 0.410 0.588 0.511

h1

96 0.380 0.394 0.382 0.395 0.382 0.404
192 0.434 0.427 0.437 0.427 0.463 0.435
336 0.490 0.459 0.490 0.460 0.507 0.463
720 0.539 0.513 0.536 0.512 0.517 0.500

h2

96 0.293 0.338 0.294 0.339 0.307 0.345
192 0.375 0.390 0.375 0.391 0.406 0.403
336 0.422 0.431 0.421 0.431 0.505 0.460
720 0.610 0.567 0.610 0.567 0.661 0.557

AvgWins 57.1% 66.1%
Table 21: Zero Shot Vignette: Training Size & Diversity

Model TOTEM TOTEM TOTEM
Generalist Specialist Specialist

Train Domain ALL Traffic Electricity
Sensor Num (S) - 862 321
Raw Length (T ) - 17544 26304

Train Size 17.6M 10.2M 5.8M
Metric MSE MAE MSE MAE MSE MAE

N
2 96 1.138 0.777 1.194 0.798 1.193 0.802

192 1.149 0.785 1.218 0.808 1.300 0.845
336 1.092 0.770 1.190 0.804 1.260 0.837
720 1.045 0.754 1.117 0.784 1.234 0.832

N
5 96 0.483 0.484 0.515 0.505 0.489 0.490

192 0.495 0.491 0.535 0.514 0.555 0.527
336 0.468 0.483 0.524 0.513 0.538 0.525
720 0.451 0.477 0.500 0.507 0.533 0.527

R

96 1.120 0.582 1.171 0.635 1.141 0.579
192 1.242 0.635 1.273 0.673 1.297 0.652
336 1.237 0.626 1.232 0.653 1.247 0.628
720 1.182 0.604 1.198 0.642 1.236 0.633

B

96 0.805 0.739 0.812 0.749 0.820 0.756
192 0.836 0.752 0.858 0.767 0.843 0.759
336 0.809 0.748 0.826 0.759 0.791 0.741
720 0.896 0.794 0.919 0.803 0.886 0.790

S

96 0.446 0.482 0.476 0.508 0.460 0.487
192 0.462 0.491 0.511 0.528 0.505 0.511
336 0.521 0.525 0.576 0.568 0.569 0.545
720 0.717 0.625 0.795 0.685 0.764 0.641

AvgWins 85.0% 2.5% 12.5%
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Table 22: Means and Stds. Mixed Models - Forecasting (↓)

Mean ± Std
Metric MSE MAE

W

96 0.164 ± 0.0010 0.208 ± 0.0012
192 0.208 ± 0.0010 0.251 ± 0.0015
336 0.258 ± 0.0012 0.290 ± 0.0015
720 0.329 ± 0.0021 0.338 ± 0.0015

E

96 0.178 ± 0.0006 0.263 ± 0.0010
192 0.187 ± 0.0021 0.273 ± 0.0017
336 0.199 ± 0.0012 0.285 ± 0.0017
720 0.238 ± 0.0012 0.320 ± 0.0012

T

96 0.521 ± 0.0010 0.301 ± 0.0010
192 0.530 ± 0.0023 0.303 ± 0.0012
336 0.555 ± 0.0080 0.313 ± 0.0072
720 0.605 ± 0.0097 0.337 ± 0.0075

m
1 96 0.328 ± 0.0036 0.352 ± 0.0006

192 0.377 ± 0.0021 0.383 ± 0.0012
336 0.408 ± 0.0035 0.404 ± 0.0021
720 0.470 ± 0.0035 0.440 ± 0.0021

m
2 96 0.175 ± 0.0006 0.253 ± 0.0010

192 0.247 ± 0.0006 0.302 ± 0.0010
336 0.318 ± 0.0006 0.348 ± 0.0031
720 0.427 ± 0.0012 0.410 ± 0.0067

h1

96 0.382 ± 0.0025 0.395 ± 0.0015
192 0.437 ± 0.0012 0.427 ± 0.0006
336 0.490 ± 0.0015 0.460 ± 0.0021
720 0.536 ± 0.0031 0.512 ± 0.0032

h2

96 0.294 ± 0.0010 0.339 ± 0.0012
192 0.375 ± 0.0025 0.391 ± 0.0023
336 0.421 ± 0.0050 0.431 ± 0.0031
720 0.610 ± 0.0089 0.567 ± 0.0075

Table 23: Mean and Stds. Traffic Only - Specialist Zero-Shot Performance (↓)

Mean ± Std
Metric MSE MAE

N
2 96 1.194 ± 0.0062 0.798 ± 0.0020

192 1.218 ± 0.0074 0.808 ± 0.0023
336 1.190 ± 0.0153 0.804 ± 0.0052
720 1.117 ± 0.0137 0.784 ± 0.0056

N
5 96 0.515 ± 0.0026 0.505 ± 0.0012

192 0.535 ± 0.0051 0.514 ± 0.0028
336 0.524 ± 0.0071 0.513 ± 0.0030
720 0.500 ± 0.0064 0.507 ± 0.0032

R

96 1.171 ± 0.0023 0.635 ± 0.0019
192 1.273 ± 0.0090 0.673 ± 0.0042
336 1.232 ± 0.0055 0.653 ± 0.0022
720 1.198 ± 0.0057 0.642 ± 0.0041

B

96 0.812 ± 0.0037 0.749 ± 0.0025
192 0.858 ± 0.0025 0.767 ± 0.0015
336 0.826 ± 0.0041 0.759 ± 0.0030
720 0.919 ± 0.0063 0.803 ± 0.0037

S

96 0.476 ± 0.0012 0.508 ± 0.0012
192 0.511 ± 0.0005 0.528 ± 0.0005
336 0.576 ± 0.0024 0.568 ± 0.0009
720 0.795 ± 0.0017 0.685 ± 0.0012

Table 24: Means and stds. Electricity Only - Specialist Zero-Shot Performance (↓)

Mean ± Std
Metric MSE MAE

N
2 96 1.193 ± 0.0059 0.802 ± 0.0020

192 1.300 ± 0.0016 0.845 ± 0.0003
336 1.260 ± 0.0162 0.837 ± 0.0055
720 1.234 ± 0.0054 0.832 ± 0.0016

N
5 96 0.489 ± 0.0024 0.490 ± 0.0011

192 0.555 ± 0.0012 0.527 ± 0.0007
336 0.538 ± 0.0064 0.525 ± 0.0033
720 0.533 ± 0.0010 0.527 ± 0.0006

R

96 1.141 ± 0.0056 0.579 ± 0.0028
192 1.297 ± 0.0162 0.652 ± 0.0079
336 1.247 ± 0.0108 0.628 ± 0.0059
720 1.236 ± 0.0053 0.633 ± 0.0070

B

96 0.820 ± 0.0065 0.756 ± 0.0034
192 0.843 ± 0.0042 0.759 ± 0.0022
336 0.791 ± 0.0023 0.741 ± 0.0019
720 0.886 ± 0.0059 0.790 ± 0.0020

S

96 0.460 ± 0.0017 0.487 ± 0.0010
192 0.505 ± 0.0017 0.511 ± 0.0008
336 0.569 ± 0.0020 0.545 ± 0.0011
720 0.764 ± 0.0046 0.641 ± 0.0014
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A.7 Codebook Visualizations.
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Figure 14: TOTEM Codebooks. We visualize all 256 codes for the generalist (All), and three specialists
(Traffic, Electricity, and Weather). The top row visualizes codes in the latent space, the bottom row visualizes
codes in the decoded time space. We additionally highlight codeword pairs matched via low MSE between
All-Traffic, All-Electricity, and All-Weather in the bottom row.

A.8 TOTEM Examples.

Figure 15: TOTEM Examples. In the top row we visualize four weather forecasts for Tin=96 and Tout=96.
In the bottom row we visualize four ETTm2 imputations. In all cases the model input is in grey, the
predictions are in blue, and the ground truth is in green.

A.9 Architecture Details.

VQVAE. For imputation, anomaly detection, and forecasting the VQVAE’s number of residual layers = 2,
residual hidden size = 64, and block hidden size = 128 for all datasets. Each residual block has 2 non-causal,
non-dilated 1D convolutional layers. The residual blocks are paired with additional non-causal, non-dilated
1D convolutional layers, where the number of additional layers is determined by the desired compression
factor. See Table 25 for more hyperparameter details.
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Table 25: VQVAE Hyperparameters (A) Imputation generalist (All) and specialists. (B) Anomaly
detection generalist (All) and specialists. The anomaly %s for all of the zero shot datasets are 2%. (C)
Forecasting generalist (All) and specialists.

A. Imputation.
Dataset LR Iter. BS # CW CW Dim. CF

All 1e-3 120000 8192 512 64 4
Elec. 1e-3 15000 8192 512 64 4

Weather 1e-3 15000 8192 512 64 4
ETTm1 1e-3 15000 8192 512 64 4
ETTm2 1e-3 15000 8192 512 64 4
ETTh1 1e-3 15000 8192 512 64 4
ETTh2 1e-3 15000 8192 512 64 4

B. Anomaly Detection.
Dataset LR Iter. BS # CWCW Dim.CF Anomaly %

All 1e-31200004096 1024 64 4 Varies by test set.
SMD 1e-3 60000 4096 1024 64 4 0.5
MSL 1e-3 15000 4096 1024 64 4 2
PSM 1e-3 60000 4096 1024 64 4 1

SMAP 1e-3 15000 4096 1024 64 4 1
SWAT 1e-3 15000 4096 1024 64 4 1

C. Forecasting.
Dataset LR Iter. BS # CW CW Dim. CF

All 1e-3 15000 4096 256 64 4
Elec. 1e-3 15000 4096 256 64 4

Weather 1e-3 15000 4096 256 64 4
Traffic 1e-3 15000 4096 256 64 4

ETTm1 1e-3 15000 4096 256 64 4
ETTm2 1e-3 15000 4096 256 64 4
ETTh1 1e-3 15000 4096 256 64 4
ETTh2 1e-3 15000 4096 256 64 4

Downstream Forecaster. The downstream forecaster has two components the transformer encoder that
intakes codes and outputs a normalized time forecast, and the feedforward neural network that takes in time
and outputs predictions for the forecast’s mean and standard deviation. The downstream forecaster is a
transformer encoder with a model dimension = 64, hidden dimension = 256, number of heads = 4, number of
layers = 4. The transformer encoder applies a sin / cos positional embedding along the time dimension and
applies its attention mechanism to each sensor independently. There is a single linear layer applied after the
transformer encoder output. The feedforward neural network takes in the input time steps, and predicts the
future’s mean and standard deviation.

A.10 Training Details.

In imputation, anomaly detection, and forecasting the VQVAE is trained with a learning rate of 0.001 using
the Adam optimizer, embedding dimension of 64, commitment cost of 0.25, and compression factor of 4; see
Table 25 for more hyperparameters. The codewords are uniformly randomly initialized over [ −1

K , 1
K ], where

K is the number of codewords and D is the latent dimension. In all tasks there is a global normalization,
and local normalization Kim et al. (2021); both are standard throughout prior work. In imputation we
only leverage global normalization, in anomaly detection and forecasting we utilize both global and local
normalization. In anomaly detection we evaluate the models we run, TOTEM and GPT2, with both local
normalized data and non-local normalized data for each method and report whichever schema leads to the
best performance. In forecasting the downstream model is a transformer encoder with 4 layers and 4 attention
heads and a feed-forward hidden dimension of 256. We train using Adam with a base learning rate of 0.0001
and a one cycle learning rate scheduler in accordance with Nie et al. (2022) on A100s.
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