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Abstract

Most video-anomaly research stops at frame-wise detection, offering little insight
into why an event is abnormal, typically outputting only frame-wise anomaly
scores without spatial or semantic context. Recent video anomaly localization
and video anomaly understanding methods improve explainability but remain
data-dependent and task-specific. We propose a unified reasoning framework
that bridges the gap between temporal detection, spatial localization, and textual
explanation. Our approach is built upon a chained test-time reasoning process that
sequentially connects these tasks, enabling holistic zero-shot anomaly analysis
without any additional training. Specifically, our approach leverages intra-task
reasoning to refine temporal detections and inter-task chaining for spatial and
semantic understanding, yielding improved interpretability and generalization in
a fully zero-shot manner. Without any additional data or gradients, our method
achieves state-of-the-art zero-shot performance across multiple video anomaly
detection, localization, and explanation benchmarks. The results demonstrate that
careful prompt design with task-wise chaining can unlock the reasoning power
of foundation models, enabling practical, interpretable video anomaly analysis
in a fully zero-shot manner. Project Page: https://rathgrith.github.io/
Unified_Frame_VAA/.

1 Introduction

Video anomaly analysis is a key application of computer vision for public security. Most early works
formulate the task as temporal Video Anomaly Detection (VAD): mark the segments whose behavior
deviates from learned normal patterns. Traditional detectors have reached high performance on
benchmarks, yet they output only frame-wise scores and provide no insight into why the segment
is abnormal. These limitations of interpretability motivate a broader shift from temporal detection
to more downstream anomaly analysis tasks with user-friendly and explainable outputs, including
spatial Video Anomaly Localization (VAL) [Liu and Ma, 2019, Weng et al., 2022] and textual
Video Anomaly Understanding (VAU) tasks [Du et al., 2024, Tang et al., 2024, Zhang et al., 2024b]
utilizing fine-tuned MLLMs. While these works provide either spatial or textual cues for better
explainability to video anomalies separately, the previous works were mostly focused on a certain
type of downstream tasks, which do not provide a holistic analysis to video anomalies, resulting in

“incompleteness” from existing video anomaly analysis methods.

A further challenge is the heavy reliance on dataset-specific supervision. Traditional VAD and VAL
models require temporal masks or spatial bounding boxes, yet anomaly definitions vary widely across
datasets [Wu et al., 2020, Lu et al., 2013, Mahadevan et al., 2010], so a model tuned on one domain
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Table 1: Comparison of scopes and requirements of recent VLM-based methods. ✓ = supported
tasks, ✗ = not supported. Our framework is the only strictly zero-shot approach that handles all three.
Method Supervision Fine-tuning Temporal Spatial Textual

LAVAD [Zanella et al., 2024] None None ✓ ✗ ✗
CUVA [Du et al., 2024] Text Prompt-tuning ✗ ✗ ✓
STPrompt [Wu et al., 2024b] Weak class (closed-set) Prompt-tuning ✓ ✓ ✗
Hawk [Tang et al., 2024] Instr. tuning Projection ✗ ✗ ✓
HolmesVAU [Zhang et al., 2024b] Instr. tuning LoRA ✓ ✗ ✓
VERA [Ye et al., 2025] Weak class Verbalized prompt learning ✓ ✗ ✗

Ours None None ✓ ✓ ✓

often fails on another [Wu et al., 2024a]. Also, in real-world applications, due to privacy and security
concerns, the training data could be unavailable for some sensitive scenes. As partial remedies,
recent work has explored zero- and few-shot approaches using frozen vision-language backbones
or MLLMs as we summarized in Table 1. We observed that most of the VLM-based works have
limited task scope and still rely on annotated datasets. The only strictly zero-shot method is solely
focusing on temporal VAD which makes it less user-friendly [Zanella et al., 2024]. For prompt-based
methods [Yang et al., 2024, Ye et al., 2025, Wu et al., 2024b], they inevitably require induction on
an annotated training set, which comes at the cost of generality as prompts are often learned to be
task/domain-specific. This generality problem even exacerbates for instruct-tuned MLLMs [Tang
et al., 2024, Zhang et al., 2024b] which are optimized to return answers from seen QA pairs focused
on describing a closed set of anomaly types [Ding and Wang, 2024].

In recognition of these problems, given that multimodal LLMs already encode rich visual-semantic
priors for commonsense reasoning [Zhao et al., 2023, Zhang et al., 2025b, Ren et al., 2025], fine-
tuning may be unnecessary for certain tasks, as long as we can effectively reason about task contexts
at test time [Minaee et al., 2025, Ma et al., 2024]. Specifically for video anomaly analysis, we may
consider each of the previous benchmark tasks as answering specific questions (When, where, what,
and why?) about visual anomalies, among which each can be seen as a sub-problem contributing
to holistic analysis. Therefore, solving these tasks represents naturally stratified reasoning contexts
contributing towards holistic anomaly analysis. Inspired by this, we propose a unified reasoning-
driven chain framework that conditionally connects different MLLM-based task solvers during test
time.

Specifically, our framework operates systematically across three clearly defined stages rather than
merely concatenating separate tasks. First, an initial Video Anomaly Detection (VAD) computes a
surrogate anomaly probability at the video level and extracts a contextual tag list corresponding to the
most suspicious segments, thereby providing individualized context cues for each sample. Following
this, a score-gated refinement utilizes both the contextual tag list and preliminary anomaly scores to
perform conditional score adjustments, refining the VAD task based on the inferred contexts. Lastly,
the final anomaly scores and contextual tag lists jointly guide the downstream spatial Video Anomaly
Localization (VAL) and further textual Video Anomaly Understanding (VAU) tasks, where textual
and visual prompts are dynamically refined based on the VAD scores. In summary, each stage of
our framework employs frozen Vision-Language Models (VLMs), with dynamic prompts iteratively
inferred from preceding stages.

We conduct extensive experiments on UCF-Crime, XD-Violence, UBnormal and MSAD [Sultani
et al., 2018, Wu et al., 2020, Acsintoae et al., 2022, Zhu et al., 2024]. The proposed framework
achieves state-of-the-art performance on three separate tasks under a zero-shot setting, achieving an
overall 4-6% AUC improvement on VAD, and consistent improvements over diverse metrics for VAL
and VAU tasks. These results show that our training-free, unified video anomaly analysis framework
is interpretable, extensible, and robust across various domains and tasks.

2 Related Works

Traditional video anomaly analysis. Early Video Anomaly Detection (VAD) works typically
fall into three major supervision regimes: one-class models trained only on normal clips and used
compact embeddings or memory banks to detect outliers [Sohrab et al., 2018, Wang and Cherian,
2019, Micorek et al., 2024]; fully unsupervised methods rely on reconstruction or future-frame
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Figure 1: Overview of the unified holistic anomaly analysis framework. Left: A preliminary
step extracting the most suspicious intervals of a video and extracts anomaly tag lists reflecting
possible anomaly contexts. Right: Illustraction of how the priors are used to refine each of the tasks.
Low-confidence samples in Temporal VAD are refined by a selective Intra-Task Reasoning step. The
Inter-Task Chaining further connects it to downstream, including spatial VAL and textual VAU into a
cascaded chain for a unified holistic anomaly analysis.

prediction losses [Hasan et al., 2016, Thakare et al., 2022]; and weakly-supervised MIL frameworks
used video-level tags to rank anomalous snippets [Sultani et al., 2018, Feng et al., 2021, Joo et al.,
2023]. All of them need to be re-trained for unseen domains or anomaly types and provide no
semantic rationale for their decisions [Ramachandra et al., 2020, Wu et al., 2024b]. To address this,
open-set detectors emerged: OVVAD fuses LLM semantics so the system can both detect and classify
novel anomalies [Wu et al., 2024a]. However, such open-set detectors still require task-specific
training and provide very limited textual insight into why frames may be abnormal, motivating the
move toward vision-language solutions with task formulations beyond temporal detection.

VLM-based video anomaly analysis. LAVAD [Zanella et al., 2024] introduces a fully training-free
pipeline for temporal detection: a frozen VLM captions each frame; a prompted LLM converts the
caption stream into frame-wise anomaly scores that are further refined by ensembles of foundation
models. While effective when anomalies are clearly distinguishable from normality, it occasionally
fails to distinguish more complex anomaly types [Ding and Wang, 2024], and lacks direct semantic
explanations, providing only default VLM captions alongside computed anomaly scores. Prompt-
tuning variants [Du et al., 2024, Wu et al., 2024b, Yang et al., 2024, Ye et al., 2025] optimize textual
prompts to guide frozen MLLMs for certain tasks. While they reveal strong performance, they remain
dependent on annotated data and deal with limited task scopes [Zhang et al., 2024b].

Video anomaly understanding and multimodal LLMs. With the need for deeper semantic
reasoning, instruction-tuning methods such as Hawk [Tang et al., 2024] and Holmes-VAU [Zhang
et al., 2024b] fine-tune VLMs on detailed, anomaly-captioned video clips to produce narrative
explanations. These works have achieved more accurate descriptions but require extensive annotation
and computational resources, and remain tied to seen anomaly types [Liu et al., 2025].

To sum up, we observe: strictly zero-shot methods such as Zanella et al. [2024] support temporal
detection but lack spatial grounding and textual insights. Prompt-tuning variants [Du et al., 2024, Wu
et al., 2024b, Ye et al., 2025] are mostly focused on only a subset of tasks/domains as the prompts are
often task/domain-specific. Instruction-tuned models [Tang et al., 2024, Zhang et al., 2024b] produce
rich narrative explanations, yet lack either temporal or spatial coverage and incur high annotation
costs. These gaps motivate our effort to unify these tasks under a zero-shot setting.

3 Methodology

We show an overview of this framework in Figure 1. The video anomaly analysis task is decomposed
into three major sub-tasks, as formulated in previous works, and our framework exploits the inherent
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connection among them. Our unified framework can be summarized in two major components: 1)
An Intra-Task Reasoning (IntraTR) extracts anomaly priors through the temporal video anomaly
detection (VAD) task and then refines the temporal detection through a gated additional reasoning
step. 2) Building on the reasoning process in IntraTR, an additional Inter-Task Chaining (InterTC)
connects the extracted tag list and temporal score results from the initial VAD results to enable
subsequent localization and understanding tasks in a cascaded manner. Detailed explanations for
each component are provided in Section 3.1 and Section 3.2 respectively.

3.1 Intra-Task Reasoning (IntraTR) for temporal anomaly detection

Problem formulation. VAD can be formulated as a binary (0-1) classification at frame level.
Ideally, for each input frame fi, the objective is to predict an anomaly probability si. For baseline
methods utilizing LLM and VLM [Zanella et al., 2024], it can be formulated as:

si = θLLM
(
pVAD ⊕ θVLM(ci, pcaption)

)
, SV =

[
s1, . . . , sT

]
, (1)

where T is the number of frames in video V , ci is a short video clip representing events around
frame fi and pVAD, pcaption represents prompts used respectively for video anomaly detection and
clip captioning. Vector SV therefore provides a first-pass anomaly estimate for every frame, obtained
without fine-tuning. However, beyond this baseline, can we further leverage SV for improved
reasoning?

Trying to answer this question, our VAD pipeline treats SV not only as the final answer but also as a
starting point for a structured intra-task reasoning step performed at test time. Figure 2 provided an
overview of the proposed IntraTR pipeline.
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Figure 2: Intra-Task Reasoning pipeline: (1)
the Initial Scorer produces a score curve; (2) peak
detection truncates a suspicious window and the
Tag Extractor generates anomaly tags tV ; (3) a
reasoning gate refines low-confidence predictions
via the Score Updater.

Score-guided anomaly extraction. To iden-
tify the potential anomalies present in the video,
we first conduct one forward pass producing
frame-wise anomaly scores SV =

[
s1, . . . , sT

]
for a video V with T frames, where each
si ∈ [0, 1]. Intuitively, an anomalous event
e should occupy a contiguous window We =
{t, . . . , t+ ℓ−1}, ℓ ≪ |SV | reflects a local seg-
ments. Denote the mean score inside any win-
dow W by µ(W ) = 1

|W |
∑

j∈W sj . Following
the intuition that anomaly events should main-
tain consistently high scores, in an anomalous
video, we expect to find:

∃We : |We| = ℓ, such that µ(We) ≥ τ, (2)

where τ is a natural decision boundary (e.g.
τ = 0.5).

To find whether such a window We exists in the video, at inference time, we slide a window of
admissible length ℓ and select:

Wmax = arg max
W⊆{1,...,T}, |W |=ℓ

µ(W ), (3)

s̃V = µ(Wmax), (4)

where Wmax is the most suspicious segment and s̃V ∈ [0, 1] is the surrogate video-level anomaly
probability. After identifying the most suspicious part of the video Vsus indicated by Wmax, we
extract text contexts related to anomalies by querying VLM to generate a list of concise phrases tV
summarizing the possibly related anomaly activities in the video clip Vsus as follows:

Vsus = [fj ] , j ∈ Wmax, (5)

tV = θVLM (Vsus, pextract) . (6)

We then pass Wmax, s̃V and tV to later stages for further processing.

4



Score-based reasoning gate. Recent studies reveal a non-monotonic trade-off between reasoning
depth and accuracy in large language models: while a short chain of thought can boost performance,
excessive steps often induce “over-thinking” and hallucinations [Huang and Chang, 2023, Chen et al.,
2025]. Inspired by this observation, we trigger an additional reasoning pass only when the first-pass
score is ambiguous via a score-based gate component with motivation explained below.

Starting from the raw frame scores SV , we obtain the surrogate video-level probability s̃V . If
s̃V /∈ [0.5−m, 0.5+m], the model is considered confident about its first round predictions as the
prediction is positioned far from the decision boundary [El-Yaniv and Wiener, 2010]. Therefore,
a gating mechanism with width 2m allows borderline/ambiguous videos with s̃V ∈ [0.5±m] to
proceed to a second reasoning stage. With the tag list tV extracted from frames in Wmax, the task
prompt is refined to p∗VAD = tV ⊕ pVAD.

Intuitively, m quantifies the degree of “suspicion”, which can be either a fixed value or adaptive
w.r.t. each sample. For the setting of m specifically, we offer two options. It could be either 1) a
fixed heuristic constant over all samples that allowing user to control the degree of suspicion, 2) or
as an adaptive sample-specific variable estimated from current V by m̃V = Var(SV) reflecting the
diversion of normal/abnormal frame scores may exist in current video. We compare and discuss the
impact of m in Section 4.2 and Appendix B.1 correspondingly.

Based on the above, querying the scorer LLM once more with refined prompts when s̃V ∈ [0.5±m]:

S∗
V = θLLM

(
p∗VAD ⊕ θVLM(ci, pcaption)

)
, i = 1, . . . , T. (7)

The refinement yields updated frame scores S∗
V , replacing the initial SV for the final decision.

Following established practices in prior works [Ye et al., 2025, Tran et al., 2022], we run a standard
gaussian smoothing to post-process the refined SV , resulting in the final Spred

V . By allocating the
costly reasoning step only when the score near the margin indicates uncertainty, the method inherits
the computational efficiency and robustness of selective prediction while mitigating “over-thinking”
hallucinations observed in unrestricted chain-of-thought generation.

Beyond the IntraTR-assisted VAD above, we further explore leveraging the reasoning steps from the
VAD task to assist downstream tasks through InterTC component in Section 3.2 and Section 3.2.

3.2 Inter-Task Chaining (InterTC) for holistic anomaly analysis

In this section, we cover the design of InterTC for two key sub-tasks in anomaly analysis, namely 1)
spatial Video Anomaly Localization (VAL) and 2) textual Video Anomaly Understanding (VAU).

Algorithm 1: Inter-Task Chaining prompt re-
finement for VAU
Input: video V = [f1, . . . , fT ];
tag list tV ;
base prompt pVAU;
localization prompt pLOC;
surrogate anomaly score s̃V ;
most suspicious window Wmax

Output: final description d∗

VAD-prior Prompt Refinement:
p∗VAU ← tV ⊕ pVAU;

Score-gated Localization Overlay (optional):
if s̃V > 0.5 then
Fsel ← sample_frames(V,Wmax);

bboxes← θLOC

(
Fsel, tV ⊕ pLOC

)
;

Vquery ← draw_boxes(V, bboxes);
else Vquery ← V ;

Final description:
d∗ ← θVLM

(
Vquery, p

∗
VAU

)
;

return d∗

InterTC from temporal detection to spa-
tial localization. Video Anomaly Localization
(VAL) aims to predict spatial bounding boxes for
regions in the frame f containing the anomalous
activities. The InterTC connects VAD with VAU
using a straightforward method. Specifically,
we utilized a frozen VLM θLOC(pLOC ⊕ f),
guided by a base localization task prompt pLOC

for frame f . And then inject tV to the pLOC,
producing a refined prompt p∗LOC using a pre-
defined template. Therefore, p∗LOC is expected
to be a more sample-specific and clearer guid-
ing prompt for spatial localization and thereby
improving its performance. Detailed prompt
templates are included in Appendix C.1.

Cascaded InterTC for video anomaly under-
standing. Given an untrimmed surveillance
video V = (f1, . . . , fT ), video-level anomaly
understanding (VAU) aims to 1) decide whether
V containing an abnormal event and 2) output a human-readable description d∗ that explains anoma-
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lies from the visual inputs. Formally,

ΘVAU : V −→ (ŷV , d
∗), ŷV ∈ {0, 1}. (8)

Unlike earlier works that train task-specific models via instruction tuning [Tang et al., 2024, Zhang
et al., 2024b], our approach to ΘVAU operates in a fully zero-shot manner. It reuses the frame-level
scores SV , the tag list tV , and the suspicious window Wmax obtained during the earlier temporal
detection and spatial localization steps to refine the anomaly understanding prompt at inference time.

Algorithm 1 provides an overview of the full prompt refinement step for downstream VAU task
leveraging the reasoning steps from the preceding VAD and VAL tasks. Specifically, we begin with
VAD-prior Prompt Refinement which incorporates the tag list tV from the VAD task into the anomaly
description prompts, forming a more context-aware textual query p∗VAU = tV ⊕ pVAU.

Next, we apply a visual prompt enhancement called Score-gated Localization Overlay. Specifically,
the surrogate probability s̃V gates a visual-prompt enhancement stage: only when s̃V > 0.5. i.e. the
VAD detector already believes an anomaly is present, allowing us to trust that object-level cues are
meaningful and beneficial to include. For such videos we 1) sample frames inside Wmax. 2) invoke a
detection-capable VLM with tV ⊕ pLOC to obtain bounding boxes, and 3) overlay those boxes onto
the corresponding frames in original video V , producing an annotated Vquery. If s̃V ≤ 0.5 we skip
the bounding box overlay and retain the original, unmodified video.

Finally, the VLM receives Vquery (either annotated or not) together with p∗VAU and outputs the
description d∗. Since localization is performed only when the detector is confident that an anomaly
exists, the inserted boxes act as reliable visual prompts rather than noisy clutters.

4 Experiments

4.1 Experimental setup

Datasets & evaluation metrics. We evaluate on the official test splits of three benchmarks: 1)
UCF-Crime [Sultani et al., 2018] (real-world CCTV and crowd-sourced, 13 anomaly types); 2)
XD-Violence [Wu et al., 2020] (800 test videos from movies, sports clips, CCTV, dashcam, cartoons);
3) UBnormal [Acsintoae et al., 2022] (211 fully synthetic surveillance videos across 29 virtual
environments); 4) a more recent MSAD [Zhu et al., 2024] (14 distinct scenarios captured from
various camera views, containing 360 test videos) which is less likely to overlap with pre-train data.

According to previous works, we primarily evaluate Area Under the Curve (AUC) score for the
Receiver Operating Characteristic (ROC) Curve on all the datasets. Since several studies also report
Average Precision (AP) on XD-Violence [Wu et al., 2020], we include AP results for reference.

Finally, for Video Anomaly Understanding (VAU) task, to fairly evaluate the quality of the generated
d∗, we adopted all the video-level annotations from HIVAU-70k [Zhang et al., 2024b]. Spanning
1051 video descriptions, with 251 test videos from UCF-Crime, and 800 videos from XD-Violence,
which is larger than the original video-level test set in Zhang et al. [2024b] (398 samples). In addition
to traditional NLP metrics [Papineni et al., 2002, Vedantam et al., 2015, Banerjee and Lavie, 2005,
Lin, 2004], we also evaluate GPT-guided scores following recent works [Tang et al., 2024, Li et al.,
2024a]. More details are available in Appendix C.

Hyperparameters & experiment details. For VAD tasks, clip-level scoring operates on the full
video with a 16-frame stride (see details in Appendix C.2). The suspicious window size for the prior
extraction step is set to ℓ = max(300, T/10) and fixed m = 0.05. We evenly subsample at most
180 frames from the window Wmax due to the limited context capacity of the VLM model to get tV .
As for the default VLM and LLM tested in the framework, we choose VideoLLaMA3-7B [Zhang
et al., 2025a] and Llama-3.1-8B-Instruct [Grattafiori et al., 2024]. To reduce computational cost,
we subsample all videos at a frame sampling stride of 16. We run all experiments on two NVIDIA
GeForce RTX 3090 GPUs. Further implementation details, prompts and hyperparameter stability
tests are provided in Appendix C and Appendix B.1.

Additionally, we adopted Qwen2.5-VL-7B [Bai et al., 2025] as the default localization VLM for VAL
task, and varied different baseline VLMs including Zhang et al. [2025a], Li et al. [2024b], Bai et al.
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Table 2: VAD Performance comparison across UCF-Crime, XD-Violence, UBNormal and
MSAD. ✓ / ✗ indicate whether a method is zero-shot and training-free in terms of model parameters.

Method Zero-shot Training-free UCF-Crime XD-Violence UBNormal MSAD
AUC(%) AUC(%) AP(%) AUC(%) AUC(%) AP(%)

Sultani et al. [2018] ✗ ✗ 77.92 - 73.20 50.30 - -
GODS [Wang and Cherian, 2019] ✗ ✗ 70.46 61.56 - - - -
RTFM [Tian et al., 2021] ✗ ✗ 83.31 - 77.81 60.94 86.7 66.3
AccI-VAD [Reiss and Hoshen, 2022] ✗ ✗ - - - 66.51 - -
CLIP-TSA [Joo et al., 2023] ✗ ✗ 87.58 - 82.19 - - -
MGFN [Chen et al., 2023b] ✗ ✗ 86.98 - 80.11 - 85.0 63.5
STPrompt [Wu et al., 2024b] ✗ ✗ 88.08 - - 63.98 - -
OVVAD [Wu et al., 2024a] ✗ ✗ 86.40 - 66.53 62.94 - -
Holmes-VAU [Zhang et al., 2024a] ✗ ✗ 88.96 - 87.68 - - -
MULDE [Micorek et al., 2024] ✗ ✗ 78.50 - - 72.80 - -
EGO [Ding et al., 2024] ✗ ✗ 81.71 - 65.77 - 87.3 64.4
AnomalyRuler [Yang et al., 2024] ✗ ✓ - - - 71.90 - -
VERA [Ye et al., 2025] ✗ ✓ 86.55 88.26 70.54 - - -
HolmesVAU [Zhang et al., 2024b] (ZS) ✓ ✗ - - - 58.54† - -

AnomalyRuler [Yang et al., 2024] (ZS) ✓ ✓ - - - 65.40† - -
UR-DMU [Zhou et al., 2023] (ZS) ✓ ✓ - - - - 74.3 53.4
CLIP [Radford et al., 2021] (ZS) ✓ ✓ 53.16 38.21 17.83 - - -
LLAVA-1.5 [Liu et al., 2024] (ZS) ✓ ✓ 72.84 79.62 50.26 - - -
VideoLLaMA3-7B + Llama3.1-8B (ZS) ✓ ✓ - - - - 78.7 68.5
GLM-4.1V-9B-Thinking (ZS CoT)‡ ✓ ✓ 61.80 72.73 52.93 60.81 - -
LAVAD [Zanella et al., 2024] ✓ ✓ 80.28 85.36 62.01 51.06 - -
Ours (fixed constant m) ✓ ✓ 84.28 91.34 68.07 68.98 85.9 76.4
Ours (adaptive m̃V ) ✓ ✓ 84.08 91.23 68.03 69.02 86.0 75.9

† The result is from a direct evaluation of the method trained on other non-overlapping datasets, reflecting its zero-shot performance.
‡ Zero-shot chain-of-thought (CoT) inference VAD performance using GLM-4.1V-9B-Thinking [Team et al., 2025].

Table 3: (a) Ablation of inference steps. showing the effectiveness of each reasoning component.
(b) Ablation on video-level anomaly priors. toracle uses ground-truth types, and tV are actual local
anomaly priors we extracted during the reasoning step.

(a) Inference component effectiveness ablations

➀ LLM-Scoring ➁ Prior Reasoning ➂ Score-gated Reasoning AUC (%)
✗ ✗ ✗ 77.67 (+0.00)
✓ ✓ ✗ 77.40 (-0.27)
✓ ✗ ✗ 80.38 (+2.71)
✓ ✓ ✓ 84.28 (+6.61)

(b) Reasoning prior ablations

Anomaly Priors AUC (%)
pVAD 81.86
⊕ toracle 83.91
⊕ tV (Ours) 84.28

[2025] for VAU task. Moreover, for both VAL and VAU tasks, we leverage the anomaly priors (e.g.
tV , s̃V ,Wmax) obtained under the default configuration of IntraTR in Section 3.1.

For the Video Anomaly Localization (VAL) task, following previous works, we evaluate temporal
IoU (TIoU) [Liu and Ma, 2019, Wu et al., 2024b] for each anomalous frame fj (j = 1, . . . , N),
the localization head θLOC(fj , p

∗
LOC) outputs a confidence Cj and a box Bj . Then, the TIoU is

computed as: 1
N

∑N
j=1

Area(Bj∩Gj)
Area(Bj∪Gj)

I[Cj ≥ τ ], with Gj the ground-truth bboxes, where the indicator
I ∈ {0, 1} judges whether the confidence Cj is above the default threshold τ = 0.5.

4.2 VAD results

Table 2 summarizes the results across the three benchmarks. Across all datasets, our zero-shot,
training-free framework outperforms the previous best zero-shot detectors by 4−6% on UCF-Crime
and XD-Violence, 3% on UBnormal, and also generalises well on MSAD. Our method also showed
competitive performance to those baselines requiring additional supervision, data or CoT reasoning
steps, further proving the benefit of IntraTR component we proposed. Figure 3 qualitatively compares
our method with the baseline [Zanella et al., 2024] showing significantly reduced false positive
predictions. More examples are provided in Appendix D.1.

We also find that a fixed margin m already performs well, although it introduces an unavoidable
assumption on the test domain, while variance estimated m̃V also provides similar performances
without posing any assumption on the test domain. This sample-specific “suspicion” accounts for
its superiority on a synthetic dataset (UBNormal) where samples are peculiar to natural videos. We
further discuss the impact of m values in Appendix B.1.
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Figure 3: Anomaly scores on a video from
UCF-Crime with an “Arrest” incident.

Table 4: Comparison with previous supervised
works on temporal-IoU (%) metric using zero-
shot Qwen2.5-VL-7B. tV comes from IntraTR,
toracle from ground-truth class names.

Method TIoU

VadCLIP [Wu et al., 2024c] 22.05
STPrompt [Wu et al., 2024b] 23.90

Qwen2.5-VL-7B (baseline) 24.09
⊕ tV 25.17
⊕ toracle 25.21

Table 5: Video anomaly understanding performance comparison on two benchmark datasets.
The results are computed against ground-truth descriptions provided by [Zhang et al., 2024b]. Apart
from the traditional NLP metrics (BLEU, CIDEr, ROUGE, METEOR), we also provide GPT-R,
GPT-D, GPT-C metrics Reasonability, Detail and Consistency computed against against
the ground-truth using API calls to OpenAI-GPT4.1 [OpenAI, 2025] correspondingly following
previous works [Tang et al., 2024, Li et al., 2024a].

Method UCF-Crime [Sultani et al., 2018] XD-Violence [Wu et al., 2020]

BLEU CIDEr METEOR ROUGE GPT-R GPT-D GPT-C BLEU CIDEr METEOR ROUGE GPT-R GPT-D GPT-C

InternVideo2.5-8B [Wang et al., 2025] 0.159 0.011 0.088 0.103 0.240 0.266 0.205 0.209 0.013 0.119 0.130 0.456 0.447 0.433

VideoChat-Flash-2B [Li et al., 2024b] 0.165 0.008 0.108 0.168 0.488 0.283 0.404 0.277 0.026 0.144 0.186 0.690 0.576 0.627
+ InterTC VAU refine (Ours) 0.297 0.022 0.157 0.188 0.509 0.427 0.438 0.324 0.033 0.158 0.187 0.715 0.649 0.655

VideoLLaMA3-7B [Zhang et al., 2025a] 0.215 0.014 0.117 0.156 0.463 0.289 0.384 0.290 0.022 0.141 0.169 0.568 0.487 0.499
+ InterTC VAU refine (Ours) 0.345 0.023 0.175 0.188 0.512 0.428 0.444 0.399 0.029 0.198 0.200 0.721 0.707 0.668

Hawk [Tang et al., 2024] † 0.379 0.008 0.217 0.187 0.255 0.580 0.214 0.375 0.016 0.176 0.188 0.408 0.586 0.365
HolmesVAU [Zhang et al., 2024b] † 0.435 0.021 0.194 0.257 0.448 0.356 0.391 0.376 0.011 0.182 0.253 0.715 0.581 0.673

† Re-evaluated on our new evaluation set strictly following its default configurations.

Ablation on test-time reasoning steps. Table 3a evaluates the individual contributions of the three
components of our inference loop. The simplest baseline, single-round direct query to a frozen
VLM achieves 77.67% (row 1). Introducing the ➀ LLM-based Scoring component and the ➁
Prior-Reasoning step without the subsequent score-gated reasoning yields only 77.40% (row 2).
In contrast, keeping the LLM scorer but dropping the prior reasoning module lifts performance to
80.38% (row 3), indicating that unrestricted “overthinking” across all samples without selective
gating can conversely inject noise, causing hallucination, degrading performance. Activating all three
stages, including the ➂ score-gated reasoning, further raises the result to 84.28% (row 4), a gain of
6.61% over the raw VLM baseline. These results validate our hypothesis that confidence in anomaly
presence can act as a metric to evaluate the quality of first-round prediction and therefore effectively
control a proper reasoning depth for test samples.

Ablation on tV . Table 3b isolates the effects of incorporating the textual video-level anomaly priors
in the second-round reasoning for VAD. The baseline score-gated reasoning module under fixed small
margin value m = 0.05 with an empty tV achieves a lower performance of 81.86%. Replacing the
tV with ground-truth oracle class names from annotations (e.g. “Arson, RoadAccident”) (toracle)
lifts performance to 83.91%, confirming that accurate anomaly priors improve detection performance.
Interestingly, our automatically extracted priors tV even surpassed the oracle class names, reaching
84.28%, demonstrating that the local anomaly extraction step could effectively finalize the anomaly
priors to clearer contexts than rough anomaly classes (e.g. class label “Arrest” is ambiguous,
while extracted tV may include “physical altercation” which is more informative) in ground-truth.
Exploiting clearer contexts leads to superior frame-wise anomaly detection performance.

4.3 VAL results

Table 4 shows that the zero-shot MLLM baseline already outperforms earlier supervised detectors,
and that injecting anomaly tags, either from the automatically derived tag list tV in IntraTR or
the ground-truth class name, yields an additional ∼ 1% absolute gain in quantitative TIoU metric.
Also, the tiny gap between the results using tV and the ground-truth toracle suggests our tV captures
near-optimal semantic cues the oracle provides, yet without requiring any manual annotation. These
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Ground-truth
"The anomaly exists, specifically identified as \"Shoplifting\". The anomaly event involves the bearded man approaching the glass cabinet, gazing at the mobile
phones on display, and then carefully taking one of the phones out of the cabinet without anyone noticing. He then discreetly puts the phone in his pocket,
making no attempt to pay for it or interact with the sales staff, and walks away as if nothing out of the ordinary had occurred. The basis for judging this anomaly
is the unexpected and unauthorized removal of an item from a store display, which deviates from the normal and expected behavior of a customer in a retail
environment, where customers are typically expected to browse, ask for assistance, and make purchases through legitimate means."

"The video appears normal. The scene shows a
man in a blue shirt and shorts standing at a
counter in a mobile phone store. He is looking at
the phones on display and occasionally picking
one up to examine it. There are other people in
the background, but they are not interacting
with the man. The man does not appear to be
doing anything unusual or anomalous.“

“The anomaly is shoplifting. A man in a black
jacket and shorts is seen picking up a phone
from the display case and putting it in his
pocket. He then walks away with the phone.”

"The video depicts a series of mundane
events where a man in a blue shirt and glasses
approaches the counter, takes out a phone,
and then leaves the counter, with no unusual
or suspicious activities occurring throughout
the video.“

HolmesVAUVideoLlama3-7B Baseline Ours

Figure 4: Qualitative results of video anomaly understanding. Descriptions for a video containing
an incident of “Shoplifting” from different methods, where green text highlights correct descrip-
tions/rationale about the anomaly, and red highlights statements inconsistent with the ground truth.

Table 6: Ablation study of InterTC prompt refinement steps on description quality.
Dataset Method Tag tV bboxes BLEU CIDEr METEOR ROUGE

UCF-Crime

ZS CoT Baseline† – – 0.3172 0.0193 0.1651 0.1820

InterTC (Ablated) ✗ ✗ 0.2147 0.0143 0.1167 0.1564
InterTC (Ablated) ✓ ✗ 0.3328 0.0183 0.1684 0.1920
InterTC (Full) ✓ ✓ 0.3453 0.0232 0.1750 0.1878

XD-Violence

ZS CoT Baseline† – – 0.3682 0.0381 0.1824 0.1876

InterTC (Ablated) ✗ ✗ 0.2897 0.0219 0.1410 0.1690
InterTC (Ablated) ✓ ✗ 0.3857 0.0270 0.1931 0.1993
InterTC (Full) ✓ ✓ 0.3993 0.0288 0.1980 0.1997

† ZS CoT: The zero-shot VAU performance of a reasoning VLM: GLM-4.1V-9B-Thinking [Team et al., 2025],
which is capable of long chain-of-thought (CoT) inference.

observations confirm that even lightweight semantic priors effectively improve spatial localization
without retraining. Additional qualitative examples of localization are included in Appendix D.

4.4 VAU results

Experiment results. Table 5 compares our InterTC refinement to direct VLM inference baselines
and recent instructed-tuned VAU MLLMs [Tang et al., 2024, Zhang et al., 2024b] on two different
test domains, against the ground-truth description provided by HIVAU-70k [Zhang et al., 2024b]. On
both domains, InterTC-refined query prompts improve the base VLM on both traditional NLP metrics
and all GPT-scores (Reasonability, Detail, Consistency) of the outputs, narrowing much of the gap to
instruction-tuned methods [Tang et al., 2024, Zhang et al., 2024b] and even surpassing instruct-tuned
methods on several metrics. Qualitatively, we also demonstrate the descriptive capability of our
framework in Figure 4. On a shoplifting clip, the baseline VLM [Zhang et al., 2025a] and HolmesVAU
both fail to identify the abnormal act, whereas our method reports the key action (“puts the phone in
his pocket”) and labels the event as shoplifting. More examples are provided in Appendix D.3. These
findings confirm that 1) the tag-based prompt enrichment injects crucial context and 2) localization
cues further enhance narrative detail without any additional training.

Ablation to prompt refinement steps. To isolate the improvement of VAU metrics to each compo-
nent of InterTC-assisted VAU process, we conduct corresponding ablations. As shown in Table 6,
across both UCF-Crime and XD-Violence, simply enhancing the prompt with the tag list tV from
VAD-priors to the base prompt accounts for the majority of the observed gains. In contrast, Inter-task
chaining from the spatial localization overlay to VAU step yields a smaller, incremental lift on top of
that strong improvement. We suspect primarily because the frozen VLMs have not been fine-tuned
on large-scale data featuring overlaid bounding boxes, resulting in a rather marginal improvements.
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While the generic “thinking” VLM [Team et al., 2025] underperforms on the more specialized VAD
task (see Table 2), it performs better on VAU than zero-shot baselines. This indicates that chained
inference idea adopted in both Team et al. [2025] and our InterTC can enrich textual anomaly under-
standing by encouraging more detailed, stepwise descriptions. However, general-purpose reasoning
of Team et al. [2025] may not generalise well on the niche and complex anomaly video understanding
task [Shojaee* et al., 2025], introducing content weakly related to the true anomalies. In contrast,
our InterTC-guided prompts focus the description on anomaly-relevant evidence, yielding superior
scores on most metrics across all video-anomaly tasks. Overall, VAD prior textual prompt refinement
plays a more major role in prompt refinement, while localization visual prompts could be an optional
enhancement when extra compute is available.

5 Conclusion

In this work, we introduced a unified, training-free framework for holistic video anomaly analysis
by chaining temporal detection, spatial localization, and textual understanding in a single inference
pass. Our zero-shot system consistently outperforms prior training-free baselines and approaches
supervised methods across all three sub-tasks.

By structuring our pipeline as a sequence of gated reasoning steps, each sub-task enriches the next
with semantic or visual priors drawn from the model’s own outputs, enabling self-correction and
deeper interpretability without any additional training. In video anomaly analysis specifically, where
events unfold over time and space, such multi-stage inference captures structure that single-pass
models miss or fail, yielding both accurate detection and user-friendly explanations without any
additional training. Despite some possible limitations and potential societal impacts it may bring about
a powerful yet bulky VLM system for sensitive video analysis (see more discussion in Appendix F
and Appendix G), we believe this framework of treating inference as an active, context-driven process
can foster more robust video analytics and may generalize to other complex vision-language tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make clear statements in both abstract and introduction for the main
contribution of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included discussions on the limitations in the supplementary material
Appendix F and Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included all the necessary details to reproduce the experiment results,
and we have released the code implementation in the project page.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is released in the project page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We covered all these detailed settings in both the main text and the supplemental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not typically reported in the field of video anomaly analysis
since it would be too computationally expensive. We run all the experiments under a fixed
seed, and the gaps between the previous/baseline works in our main experiments are large
enough even considering the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We disclosed the computation resources that have been used in the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential impacts in supplemental material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our paper utilized pretrained models, and each of them are protected separately
by their original providers.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited and credited all the resources used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crownsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crownsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLMs only function as a standard component in our methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Appendix Roadmap

In this appendix, we cover the following materials:

• Additional ablation study (Appendix B)
• Additional implementation details (Appendix C)
• Additional qualitative results (Appendix D)
• Running-time Analysis (Appendix E)
• Limitations (Appendix F)
• Broader impacts (Appendix G)

B Additional ablation study

B.1 Hyperparameter sensitivity tests

Senstitivity on m We study performances under different decision-boundary-margin width values
m ∈ (0, 0.5) and dynamic m̃V = Var(SV ) presented in Table 7. Performance remains stable
for m ≤ 0.2 and m̃V and drops significantly on UCF-Crime and XD-Violence when m = 0.4,
presumably because an overly wide margin labels many true positives as “uncertain”, resulting in
unnecessary hallucinations. In contrast, UBnormal [Acsintoae et al., 2022] benefits from larger m;
the synthetic clips are originally ambiguous for pretrained models such that additional skepticism is
beneficial [Yang et al., 2024]. As m∈ [0.05, 0.2] yields near-optimal AUC on all real-world datasets,
we adopt the smallest value m = 0.05 as the default setting for constant m.

To further investigate how the IntraTR step affect model behaviours, we further visualize the density
of samples with respect to the l1 distance of their video-level scores to the decision boundary |S̃V −τ |
that measures the confidence of predictions in Figure 5. Specifically, we observe that both smaller
constant m and the dynamic m̃V can effectively produce more high-confidence predictions, while a
larger m conversely results in more confusion and therefore less confident predictions overall.

Sensitivity on window length ℓ: We heuristically set our minimal suspicious window ℓ =
max(300, T/10), in which 300 frames is a floor for the shortest window Wmax. Since a clip ci
(the smallest scoring unit) also spans 300 frames ≈ 10s, lowering this floor has little effect.

As a result shown in Table 8, an overly large ℓ (as a result of a smaller divisor on video length T )
degrades the performance. We suspect that a large window size ℓ hides fleeting anomalies as the
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Figure 5: ∆ of Score density with regards to distance to decision boundary. For all samples in
UCF-Crime and XD-Violence, it is shown that high m value resulted in more ambiguious predictions
with |S̃V − τ | → 0 while a small or local variance based m effectively pushes the predictions away
from decision boundary as we expected.
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Table 7: Impact of several margin values (m ∈ (0, 0.5)) on VAD performance. All settings
outperform the baseline, with stable results across different m values.

Margin values UCF-Crime (AUC) XD-Violence (AP) XD-Violence (AUC) UBNormal (AUC)
m = 0.05 84.28 68.07 91.34 68.97
m = 0.10 83.10 68.16 91.40 69.52
m = 0.20 83.57 68.36 91.60 70.33
m = 0.40 79.21 67.45 90.81 70.59
m̃V = Var(SV ) 84.08 68.03 91.23 69.02

Table 8: Impact of several window lengths (ℓ) on VAD performance
Window length ℓ = max(300, T/5) ℓ = max(300, T/10) ℓ = max(300, T/15)

UCF AUC (%) 81.07 84.28 83.66

window may have higher probability of containing benign frames with lower scores, resulting in a
lower estimate of the surrogate video-level anomaly probability s̃V . In addition to such heuristics
we used, it is also possible to introduce an additional time series segmentation model [Lovrić et al.,
2014] to identify abnormal event intervals from sequences of frame scores.

Impact of post-processing In addition to m, we also evaluate the impact of the Gaussian smoothing
parameter used in score post-processing. It’s typical to conduct postprocessing (Gaussian, EMA)
to the anomaly scores for VAD tasks [Zanella et al., 2024, Ye et al., 2025]. We followed this
typical practice and implemented a simple Gaussian filter on the final score. The following Figure 6
demonstrate the robustness of our method on different σ values we use for gaussian smoothing
post-processing.

B.2 Impact of different VLM/LLM components

Ablation on Monolithic Multimodal LLMs In our work, by default, we followed modular
architecture of VLM + LLM from previous baseline [Zanella et al., 2024]. There are also other
experiments and claims supporting this design.

In Table 3a, we have provided ablation to end-to-end VLM performance when used for scoring on
every 16 frames clips. As a result, our discrete VLM, LLM framework provide better performance
(84.28% against 77.67%). Which aligns with the trend reported in the baseline [Zanella et al., 2024].
We also tested a even simpler baseline of using VideoLLaMA3-7B to conduct direct end-to-end QA
with complete video inputs and asking for timestamps of anomalous intervals. The Table 9 shows
that such simple design gives much poorer performances even poorer overall performance.

Besides these experimental support for the modular design. Another earlier work [Chen et al., 2023a]
also suggests such capability of LLMs to coordinate separate VLM models for better reasoning.
Especially for cases where the task domain is a niche one under-represented in the massive pretraining
data. These rationales justify our modular VLM/LLM design over single model.

Modular Ablation on Different Multimodal LLMs To validate the generality of our method
across different MLLM components. Table 10 varies the checkpoints plugged into our pipeline.
With the LLM fixed (θLLM = Llama-3.1-8B-Instruct), downgrading the vision backbone from
VideoLLaMA3-7B to a 2B variant or to a Qwen2.5-VL results in only a marginal drop ≤1% AUC,
indicating that the reasoning loop compensates for weaker video features. Conversely, keeping the
same VLM and swapping the LLM shows larger but still moderate drops: a 3B instruct model loses
∼3% AUC, whereas an older Llama-2-13B loses ∼4%. Overall, every combination remains above
80% AUC, confirming the plug-and-play nature of our framework: it can enhance a wide range
of pre-trained VLM/LLM pairs with minimal performance degradation, and it benefits most from
stronger language reasoning while being relatively insensitive to vision backbone capabilities, by
reducing holistic understanding into a chained process of solving simpler, modular tasks.

Furthermore, to show that our performance gain is not solely from the stronger capability of newer
VLM and LLM, we run modernised baseline method [Zanella et al., 2024] under newer VideoLLama3-
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Figure 6: VAD performance stability w.r.t. Gaussian smoothing σ. Performance remains stable
across different σ values. We simply choose a default value σ = 10 and a SciPy’s default truncate
= 4.0 (which yields an effective radius of 4σ) for all the VAD experiments.

Table 9: VideoLLaMA3-7B End-to-end VAD QA Results
UCF AUC (%) XD AUC (%) XD AP (%) UBN AUC (%)

Direct QA 58.68 62.52 33.76 53.73
Ours (Full) 84.28 91.23 68.03 69.02

7B [Zhang et al., 2025a] and Llama3.1-8B [Grattafiori et al., 2024] backbones. In Table 11, we
observed a drop in single VLM performance when using newer model under Zanella et al. [2024] on
UCF-Crime. This may be due to the limited capability of sentence encoding VLM [Girdhar et al.,
2023], which may fail to recognise more nuanced frame caption from newer models. This problem
is mitigated on XD-Violence, where more dramatic videos than mundane surveillance footage of
UCF-Crime makes raw captions encoded more recognisable in the representation space.

C Additional implementation details

C.1 Detailed prompts

We provide all the used prompts in this part.

Prompts used in VAD Firstly, we used the same pcaption across all datasets. Specifically:

Prompts for pcaption

“role”: “system”,
“content”: (

"You are an AI assistant analyzing this video segment. "
"Summarize the main events or actions in a concise way.

)

As for pVAD, we mainly adopted base prompts from Zanella et al. [2024]. Following their design,
we also applied dataset priors to the prompts, as the definition of anomaly varied for each of
them. Specifically, we have a base definition of anomaly events denoted as dataset_prior =
“suspicious activities”. For UCF-Crime, we change it to “suspicious or potentially
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Table 10: Ablation of pretrained VLM/LLM models used on UCF-Crime. We varied different
checkpoints for the components in our framework.

θVLM θLLM AUC (%)

VideoLLaMA3-7B
Llama-3.1-8B-Instruct

84.28%
VideoLLaMA3-2B 83.35%
Qwen2.5-VL-7B 83.23%

VideoLLaMA3-7B
Llama-3.1-8B-Instruct 84.28%
Llama-2-13B-Chat 80.70%
Llama-3.2-3B-Instruct 81.09%

Table 11: Performance of “modernised” baselines [Zanella et al., 2024] with newer backbone models
Zhang et al. [2025a] and Grattafiori et al. [2024].

Method UCF AUC (%) XD AUC (%) XD AP (%)
Zanella et al. [2024] (BLIP2 FLAN-T5-XL + Llama2-13B-chat ) 74.19 85.16 61.09
Zanella et al. [2024] (VideoLLama3-7B + Llama3.1-8B) 72.99 84.64 61.20
Ours (VideoLLama3-7B + Llama3.1-8B) 84.28 91.34 68.07

criminal”, and for XD-Violence, we opt to “suspicious or violent” subject to the clear
definition of anomalies within each of them [Sultani et al., 2018, Wu et al., 2020]. However, on
UBNormal [Acsintoae et al., 2022], where the anomalies span a wide range of spontaneous activities
that may not be considered malicious by commonsense, we simply keep the base dataset_prior.

Prompts for pVAD

“role”: “system”,
“content”: (

f"How would you rate the scene described on a scale from 0 to 1, with 0 representing a
standard scene and 1 denoting a scene with {dataset_prior} activities?"

"Please provide the response in the form of a Python list and respond with only one
number in the provided list below [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] without any
textual explanation. It should begin with ‘[’ and end with ‘]’."
)

“role”: “user”,
“content”: (

f"{θVLM(ci, pcaption)}"
)

Table 12: Ablation of dataset-level anomaly priors.

Dataset Priors UCF-Crime (AUC) XD-Violence (AUC)

✗ 82.94% 90.72%
✓ 84.28% 91.34%

We also conducted an ablation study for
the incorporation of dataset priors in Ta-
ble 12, which has shown a similar trend
to previous works [Ye et al., 2025, Zanella
et al., 2024]. Specifically, the overall VAD
performance benefited from injecting even
a small context prior. Providing even brief
contextual definitions of anomaly events improves baseline model performance, providing a stronger
motivation for the automated extraction and utilization of the sample-specific anomaly prior we have
proposed in our work.

As we described in Section 3.2, after we identified Wmax, we got a segment of video Vsus, we queried
the θVLM with the Vsus and pextract to get the tag list tV .
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Prompts for pextract

“role”: “system”,
“content”: (

“You are an AI assistant analyzing a suspicious segment of a video. ”
)

“role”: “user”,
“content”: (

f"{Vsus}"
"Analyze the video interval to identify any possible suspicious behaviors. "
"Return your answer strictly as a Python-style list of phrases that could briefly describe "
"the suspicious scene split by commas. "
"No additional commentary or text, return only the list."’

)

To produce p∗VAD, during inference, we augment pVAD prompts with a template sentence containing
tV . Specifically, we inject the following sentences: template(tV) = f“In addition, we have
identified certain {dataset_prior} behaviors that may appear in the video.
Please consider these carefully when deciding on the final anomaly rating.
[Potentially reported suspicious activities: {tV }]” right after the first system
prompt part of pVAD.

Prompts used in VAL During spatial localization of anomaly regions in video frames, we use the
simplest default prompt provided by the official release document of Qwen2.5-VL [Bai et al., 2025].

Prompts for pLOC

“role”: “user”,
“content”: (

f"{fi}"
"Analyze this image and identify any suspicious or anomalous region, if present."
"Return your answer in JSON format: "
"[{"bbox_2d": [x1, y1, x2, y2], "confidence": c}]."

)

To incorporate ground-truth or extracted anomaly priors tV , toracle, we simply augment the pLOC by
adding them at the start of user prompts as hints to the model. Specifically:

Prompts for p∗LOC

“role”: “user”,
“content”: (

f"{fi}"
"The video could contain the following anomaly type: ’{tV }’."
"Localize the suspicious region or individual in this image."
"Return your answer in JSON format: "
"[{"bbox_2d": [x1, y1, x2, y2], "confidence": c}]."

)

Prompts used in VAU For VAU task, we fixed pVAU across different test domains (UCF-Crime,
XD-violence), but varied them across different pretrained θVLM for the best baseline performance,
which are:
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Prompts for pVAU (Videochat-Flash-2B) [Li et al., 2024b]

user prompt = f"Please analyze the video for any anomaly activities. If there is any anomaly,
describe the anomaly activities present in the video. After description, analyze why it is an
anomaly without timestamps. If no anomalies are found, state that the video appears normal
and then describe the scene in detail.{V }"

Prompts for pVAU (VideoLLaMA3-7B) [Zhang et al., 2025a]

“role”: “system”,
“content”: (

"You are an AI assistant analyzing a video."
)

“role”: “user”,
“content”: (

f"{V }"
"Please analyze the video for any anomaly activities in detail. "
"If there is any anomaly, describe the anomaly activities present in the video in detail.

After description, analyze why it is an anomaly without timestamps."
"If no anomalies are found, state that the video appears normal and then describe the scene

in detail."
)

As covered in the main text, producing p∗VAU is simply appending template prompts with tV
to the end of the system prompt ( or before the user prompt if the model does not support cus-
tomizing the system prompt) of pVAU. Specifically, templateVAU(tV ) ="For better anomaly
detection and description in detail, a preliminary analysis suggests that
the suspicious activity could be related to tV . Use these information to
guide your anomaly detection analysis.".

C.2 Detailed sampling strategies

Sampling clip ci around fi in VAD Recent VLMs gain capability to process multiple frames
as videos [Bai et al., 2025, Li et al., 2024b, Zhang et al., 2025a]. This is a desirable functionality
we would like to exploit when dealing with frame-wise VAD. As a single frame may not be able
to represent contiguous events. Therefore, following previous works sampling multiple frames to
predict si [Zanella et al., 2024, Ye et al., 2025], we opt to input a series of frames ci around the target
fi instead of taking fi only. Specifically, we sample ci by following steps.

Let the video run at fps = rf and denote by ω [s] the dataset-specific temporal radius we keep on
either side of fi. Empirically, we set ω = 10 s for UCF-Crime and XD-Violence, and ω = 5 s
for UBnormal (in which most clips are only 10-15 s long). The total window length in frames is
L = 2ω rf + 1 and the half-width is δ = ⌊L/2⌋. Bounding the window to the video limits,

a = max
(
1, i− δ

)
, b = min

(
T, i+ δ

)
,

we draw N = 10 evenly spaced indices

I(i) =
⌊
linspace

(
a, b, N

)⌋
, ci = {fj | j ∈ I(i)}.

Thus, ci always contains 10 frames centered as much as possible on fi. That means, for 30 fps videos
in UCF-Crime, the sampling spans up to ±150 frames (5 s) on either side, automatically shrinking
near the video boundaries.

Sampling for downstream tasks For VAL task, we sample all the frames containing anomalies
following to practice in previous works [Liu and Ma, 2019, Wu et al., 2024b]. For VAU task, we
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adhere to the default configuration in Zhang et al. [2024b], which samples 16 frames per video for all
the methods taking frame inputs.

(a) tV = “physical altercation, assault,
fighting”, toracle = “Assault”

(b) tV = “crosswalk, traffic light”,
toracle = “Normal”

(c) tV = “attempted break-in, attempted
burglary”, toracle = “Burglary”

(d) tV = “kidnapping, assault”, toracle =
“Robbery”

(e) tV = “kidnapping, fighting, choking,
kicking, punching”, toracle = “Fighting,
Shooting”

(f) tV = “fighting, hitting with sticks,
throwing objects, running away”, toracle =
“Fighting”

(g) tV = “[]”, toracle = “[]” (h) tV = “fighting, hitting, pushing”,
toracle = “Fighting”

Figure 7: Frame-wise anomaly score plots for eight representative clips. Our method exhibit
consistent performance on various video/anomaly types. The comparison between tV and toracle (The
original class annotated in Sultani et al. [2018], Wu et al. [2020]) is given for each sample, suggesting
the qualitative performance of the anomaly prior extraction step.
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Figure 8: Qualitative examples of our localisation outputs. Each plot the compares detected
anomaly window using baseline prompts and InterTC-refined prompts against the ground truth
bounding boxes.

D Additional qualitative results

D.1 More results on frame-level video anomaly detection

We show additional qualitative temporal VAD results with the corresponding tV tags extracted
in Figure 7. For most samples, there are clear and reasonable tags tV extracted. There
are also ambiguous tags, e.g., Appendix C.2, while the performance of the VAD task re-
mains stable. Another interesting observation here is that the tV extracted, in most cases,
are analytical tags for rough toracle categories. For example, in Appendix C.2, the elaborated
tV = “fighting, hitting with sticks, throwing objects, running away” are more
tractable then the rough toracle = “Fighting”, which explained the observed gap of quantitative
performances when using different anomaly priors for VAD task in Table 3b.

As it is shown, despite our method exhibit decent performance in flagging various kinds of anomalies,
it failed occasionally on small event gaps (e.g. in Figure 7e). We suspect that this insensitivity may
be due to the uniform sampling around fi we employed to obtain ci. This may result in the ci do not
have the necessary granularity to represent extremely short video clips. While this is not our focus in
this work, future works may consider a dynamic sampling strategy to improve the baseline VLM for
VAD.

D.2 More results on spatial video anomaly localization

The additional localization visualization in Figure 8 gives clear evidence proving the performance
gain by incorporating Inter-Task Chaining of anomaly priors. The tV text prompts suggesting possible
anomaly contexts allow for more accurate and reasonable groundings.

D.3 More qualitative results on video anomaly understanding

In addition to the results shown in Figure 4, we include extra qualitative comparisons in Figure 9 and
Figure 10. The results clearly show that MLLMs assisted with Inter-Task Chaining produced excellent
VAU results, which accounted for the quantitative performance gains in terms of both traditional NLP
metrics and preference on several dimensions of GPT-based evaluations [Tang et al., 2024]. However,
we also noticed that sometimes our method produced overly verbose answers compared with other
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counterparts. This actually aligns with a trend of redundant outputs discovered in LLM reasoning
[Sui et al., 2025]. Despite this drawback, the majority contents in our generated descriptions are still
focused on the desired topic of anomaly analysis and providing additional details, further enhancing
explainability.

Ground-truth
No anomaly exists in the video. The video depicts a mundane scene where a man wearing pink takes out some money and places it on a counter, then later puts the
money in front of him and displays it, with no unusual or out-of-the-ordinary events occurring throughout the entire clip.

"The video appears normal.” “The video appears normal. The man is seen
standing behind a counter in a store, handling
money and counting it. He then puts the
money in his pocket and walks away. There are
no apparent anomalies in the video.”

"The video depicts a mundane scene where a
man in a pink shirt is seen handling a small
object, possibly a piece of paper or a card,
and then proceeds to take out a few items
from a box, which appears to be a small
container or a box of items. The man then
places the items back into the box, and the
video ends with the man looking at the items
in the box."

HolmesVAUVideoLlama3-7B Baseline Ours

Ground-truth
"There is an anomaly in the video, specifically Arson. The anomaly event shows a man attempting to light a Christmas tree, but instead of a controlled and
intentional action, the flame suddenly and unexpectedly spreads rapidly, engulfing the tree and surrounding environment, indicating intentional damage or harm. The
basis for judging this anomaly is that the man's actions initially appear intentional and controlled, but the sudden and uncontrolled spread of the flame suggests a loss
of control, implying a deliberate act of arson."

"The video appears normal. The scene is a hallway
with a Christmas tree, a shelf, and a door. A person
enters the frame, walks towards the door, opens
it, and exits. The person then returns to the
frame, walks towards the shelf, and bends down to
pick something up. The person then stands up and
walks out of the frame. The video ends with the
hallway empty.",

VideoLlama3-7B Baseline

The video begins with a view of a room decorated
for Christmas, with a Christmas tree and wreaths
visible. A man enters the room and appears to be
setting up or adjusting something on a shelf. He
then exits the room. Shortly after, smoke begins
to fill the room, obscuring the view. The smoke
becomes denser over time, eventually filling the
entire frame. The source of the smoke is not
visible in the video. This video contains an
anomaly as it shows smoke filling the room, which
is not a normal occurrence in a decorated room.
The smoke could be caused by a fire or other
hazardous situation, which would require
immediate attention and action to ensure the
safety of those in the room.

Ours

The anomaly event involves the man in black
entering the room, opening the door, and then
leaving the room, which is a suspicious and
unusual behavior that deviates from normal and
expected actions in a typical household setting.

HolmesVAU

Ground-truth
"The anomaly exists and its specific name is \"Explosion\". The anomaly event is a machine explosion that emits a large amount of sparks and smoke, occurring
suddenly and intensely, with a rapid release of energy and materials that deviates from normal machine operation. The basis for judging this anomaly is the sudden
and intense release of energy and materials, indicating a potentially hazardous and unexpected event."

"The video begins with a view of an industrial
setting, showing a large piece of machinery and a
control panel. A man in a hard hat is seen working on
the control panel, manipulating switches and
buttons. The scene then transitions to a dark,
blurry image of a building at night, followed by a
series of black frames with the text \"LiveLeak\"
visible. There are no apparent anomalies in the
video content."

“The video begins with a man in an orange hard
hat standing in front of a large electrical panel.
He is looking at the panel and appears to be
inspecting it. The man then reaches out and
touches one of the switches on the panel.
Suddenly, there is a bright flash of light and a
loud explosion. The man is thrown back by the
force of the blast and the electrical panel is
destroyed. The video ends with a shot of the
damaged panel and the surrounding area.\n\n This
video is an anomaly because it shows a man
intentionally causing an explosion in an electrical
panel. This is not a normal or expected behavior
and could potentially cause serious harm to the
man and others in the vicinity."

“The anomaly event involves a man in a white shirt
and black pants walking towards the camera, and
then a man in a white shirt and black pants
walking towards the camera, with a fire burning in
the background, suggesting a potential explosion or
fire.”

HolmesVAUVideoLlama3-7B Baseline Ours

Figure 9: Representative qualitative results for the video-anomaly understanding task (part-
2). Green parts represents correct description/reasoning about the anomaly and the red parts
highlight the statements inconsistent with the ground-truth.
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Ground-truth
There is no anomaly in the video. The video depicts a series of normal and playful interactions between two mascots, one in an orange costume and the other in a
grey or grey wolf costume, on a basketball court, where they perform antics, dance, and engage with players and staff members on the sidelines, ultimately
culminating in a series of dance moves and acrobatic stunts, and showcasing various activities such as walking, playfully wrestling, interacting, and performing a dance
routine, while players and coaches are seen in the background, stretching, sitting on the sidelines, or watching the interaction.

“The video appears normal. The scene takes
place on a basketball court where two mascots,
one orange and one gray, are performing a dance
routine. They interact with each other and the
players, who are seen stretching and preparing
for the game. The mascots‘ movements are
energetic and entertaining, adding to the pre-
game atmosphere.”

“The video is an analysis of a basketball court
where two mascots, one in an orange bird
costume and the other in a gray wolf costume,
are engaging in playful interactions. The mascots
are seen running around, jumping, and playfully
wrestling with each other. The scene appears to
be part of a pre-game or halftime entertainment
segment. There are no visible anomalies in the
video; it seems to be a normal, lighthearted
interaction between the mascots.”

“The anomaly events involve a series of
physical altercations between mascots and
players, including a player in a white jersey
being knocked to the ground by a mascot, a
player in a white jersey being pushed to the
ground by a mascot, and a player in a white
jersey being knocked to the ground by a
mascot, with the mascots engaging in
aggressive behavior and physical contact
with the players”

HolmesVAUVideoLlama3-7B Baseline Ours

Ground-truth
“The anomaly exists and is specifically identified as \”Fighting\“. The anomaly event involves a series of physical altercations between individuals, showcasing
various martial arts techniques, including blocking, striking, and evasive maneuvers, as well as attempts to overpower each other. The events unfold in different
settings, including an outdoor area with laundry hanging in the background, and feature different individuals, such as a man in a dark jacket and cap, a man in black,
and a man in blue. The anomaly events are characterized by violent and aggressive behavior, including grappling, holding, and choreographed combat routines, which
deviate from normal and peaceful human interactions. The basis for judging this anomaly is the clear depiction of aggressive and violent behavior between
individuals, which is a significant deviation from normal human interactions.”

"The video appears to be a scene from a movie
or TV show, featuring a man in a black outfit
engaging in various activities. He is seen talking
to another man, performing martial arts moves,
and interacting with different people in the
environment. The setting includes outdoor
locations with greenery, buildings, and laundry
hanging on lines. There are no apparent
anomalies in the video.“

"The video begins with a man in a black
uniform standing in front of a green door,
gesturing with his hands. The scene then
shifts to a man in a blue jacket and cap
standing in front of a building with the
number \"160\" on it. He is seen pushing
another man, who is wearing a black uniform,
against a wall. The man in the blue jacket
then punches the man in the black uniform,
causing him to fall to the ground. The man
in the blue jacket then stands over the fallen
man, looking down at him.\n\nThe anomaly in
this video is the physical confrontation
between the two men. This type of behavior
is not typically seen in public spaces and could
be considered aggressive or violent. It is
possible that the two men were involved in a
dispute or altercation that escalated into
physical violence. However, without further
context or information, it is difficult to
determine the exact circumstances
surrounding the confrontation.”

"The anomaly events involve a series of
intense and confrontational physical
interactions between two individuals,
including punches, kicks, and grappling, with
one individual appearing to be in a defensive
stance and the other in a more aggressive
stance, suggesting a potential fight or
altercation“

HolmesVAUVideoLlama3-7B Baseline Ours

Figure 10: Representative qualitative results for the video-anomaly understanding task (part-
1). Green parts represents correct description/reasoning about the anomaly and the red parts
highlight the statements inconsistent with the ground-truth.

Table 13: Amortised per-frame processing time (sec/frame) for a full UCF-Crime test run, model
loading excluded, smaller value means faster.

Method VLM Captioning Caption Cleaning LLM Summary LLM Scoring Score Refinement VAD Overall
Zanella et al. [2024] 0.06736 0.01490 0.01684 0.01109 0.00673 0.11691
Ours 0.02587 — — 0.00314 0.00026 0.02927

E Running-time analysis

As we mentioned earlier in Section 3.1, our method has a relatively efficient inference process due to
the selective prediction nature saving unnecessary thinking on samples where the first round scores
show enough confidence. Beyond this, we also find that our method is faster than previous baseline
zero-shot LLM work [Zanella et al., 2024] by design. In the following, we provide a complexity
analysis of our inference steps and compare it with that of the prior work.

Our test-time IntraTR pipeline for VAD requires 1 VLM captioning query and 1 LLM scoring query
per 16 frames, along with a single VLM query per suspicious video to extract tags. For videos flagged
as “uncertain”, we perform an additional LLM scoring query per 16 frames. In total, our method
performs at most 1 VLM and 2 LLM queries per 16 frames, plus fewer than 1 VLM query per video
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Figure 11: Failure video anomaly analysis cases. Both contains nuanced anomaly events that
may be hard to determine. We find that for both cases, the model can still reasonable anomaly tags
tV despite unsatisfactory VAD scores, therefore still yielding partially correct (Green/Red fonts
represents Correct/Wrong statements) textual anomaly descriptions.

on average. In contrast, full method of previous work [Zanella et al., 2024] performs up to 5 VLM
captions per frame and 2 additional LLM queries for summarising and scoring per 16 frame. It also
requires additional refinement steps that introduce massive costs of encoding captions and vector
searching.

Table 13 reports the amortized processing clock time inference speed on 2 RTX 3090 GPUs for a full
run of the UCF-Crime test set (model loading time excluded). This gives clear supporting evidence
of our efficiency advantage over the previous work.

F Limitations

Despite its effectiveness, our method exhibits several limitations. First, its performance is funda-
mentally constrained by the representational capabilities and prior knowledge of the underlying
frozen multimodal large language models, which may occasionally introduce semantic biases or
inaccuracies inherited from their pretraining data (see failure cases in Figure 11). Secondly, due
to reliance on frozen models, our approach may suffer from reduced sensitivity in detecting highly
subtle or domain-specific anomalies compared to explicitly fine-tuned models.

G Broader Impacts

Our work aims at enhancing public safety through better anomaly detection and interpretability in
surveillance systems. However, broader deployment raises ethical considerations regarding privacy
and potential misuse. Improved localization and descriptive capabilities could inadvertently facilitate
invasive surveillance practices or profiling if misapplied without proper governance. Thus, any practi-
cal application of our method should be carefully regulated, ensuring transparency, accountability,
and compliance with privacy laws and ethical guidelines to prevent societal harm while benefiting
public security and safety.
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