Under review as a conference paper at ICLR 2025

MPCACHE: MPC-FRIENDLY KV CACHE EVICTION
FOR EFFICIENT PRIVATE LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Private LLM inference based on multi-party computation (MPC) offers
cryptographically-secure protection for both user prompt and proprietary model
weights. However, it suffers from large latency overhead for long input sequences.
While key-value (KV) cache eviction algorithms have been proposed to reduce
the computation and memory cost for plaintext inference, they are not designed
for MPC and may even introduce more overhead. In this paper, we propose an ac-
curate and MPC-friendly KV cache eviction framework, dubbed MPCache. MP-
Cache is built on the observation that historical tokens in a long sequence may
have different effects on the downstream decoding. Hence, MPCache combines
a look-once static eviction algorithm to discard unimportant tokens and a query-
aware dynamic selection algorithm to further choose a small subset of tokens for
attention computation. As existing dynamic selection algorithms incur too much
latency, we propose a series of optimizations to drastically reduce the KV cache
selection overhead, including MPC-friendly similarity approximation, hierarchi-
cal KV cache clustering, and layer-wise index sharing strategy. With extensive
experiments, we demonstrate that MPCache consistently outperforms prior-art
KV cache eviction baselines across different LLM generation tasks and achieves
1.8 ~ 2.01x and 3.39 ~ 8.37x decoding latency and communication reduction
on different sequence lengths, respectively. Our anonymous code repository can
be found here.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable ability in a wide range of
applications such as document summarization (Huang et al., 2021} Narayan et al., 2018} Zhang
et al.|2024a), question answering (KocCisky et al., 2018} |Dasigi et al.| [2021; | Yang et al.} 2018)), and
dialogue systems (Thoppilan et al., 2022} |Chiang et al., 2023} [Taori et al., [2023)). However, LLM-
based machine learning as a service (MLaaS) on the cloud has raised serious privacy concerns as
the users are required to upload their prompts to the cloud, which may contain sensitive personal
information. Meanwhile, the service provider is unwilling to offload the trained model to the user
to protect the proprietary model weights. Secure multi-party computation (MPC)-based private
inference has been proposed to address the privacy concerns (Goldreich, |1998; Mohassel & Rindal|
2018; [Huang et al., 2022; Rathee et al., [2020; (Gupta et al.| 2023). MPC enables the users and
the cloud to conduct the LLM inference jointly, but nothing else can be derived beyond the final
inference results.

However, MPC-based LLM inference faces serious efficiency challenges, especially for long input
sequences. We profile the decoding efficiency of GPT-2 with the Secretflow framework (Ma et al.|
2023) using recent 2-party computation (2PC) (Lu et al., [2023) and 3-party computation (3PC)
protocols (Dong et al., 2023). As can be observed in Figure a) and (b), attention dominates the
latency and communication for both 2PC and 3PC protocols. Moreover, Softmax accounts for the
majority of the overall cost, especially with an increasing sequence length.

To reduce the cost of private LLM inference, previous works focus on developing more efficient
MPC protocols (Lu et al., 2023} [Dong et al., 2023} [Pang et al., 2023} [Hou et al., 2023)), replacing
non-linear activation functions with more MPC-friendly operators (Liu & Liu, [2023; [Li et al., 2022;
Zeng et al.| [2023), or directly modifying the model architecture (Rathee et al., 2024). However,

https://anonymous.4open.science/r/mpcache-iclr/

Under review as a conference paper at ICLR 2025

O Attn:MatMul O Attn:Softmax BB MLP:MatMul EZIMLP:GeLU [JLayerNorm B Similarity Approx. [Z1 Top-k [Z=2 Token Gathering
(a) Breakdown of Transformer (b) Softmax with Sequence Lengths (c¢) Challenge of KV Cache Eviction
1

el

) . © o — e RN SR e B 3
S | = AR WY7777777777, f{l%
E‘ = - E Extra Cost wl
1n I © I £ 2
o) 3 S| L] Extra Cost | _ _|_ _ .9
) N
- N ¢ 5 = (IR 77777777 7V T7 A
2 . i ¢
= | N = s
0% 20% 40% 60% 80% 100% 0 10 20 30 40 50 60 70 0 2 4 6 8§ 10 12 14 16
Proportion Comm. (MB) Inference Cost

Figure 1: (a) Breakdown of decoding latency and communication for one token generation with a
sequence length of 512. Attention dominates the latency and communication for both 3PC and 2PC
protocols. (b) The cost of Softmax scales with the sequence length. (c) Inference cost before and
after KV cache eviction. Blocks in slash indicate the extra overhead introduced by eviction.

they still incur significant overhead or require expensive finetuning or re-training, and cannot be
directly applied to LLMs. Another line of works leverages key-value (KV) cache eviction to reduce
the number of tokens involved in the attention computation (Zhang et al., 2024d; Ge et al., 2023;
Liu et al.| 2024c} |Zhao et al., [2024; Zhang et al., [2024c; [Fu et al., 2024). Although they have
demonstrated significant memory and computation reduction for plaintext LLM inference without
the need of finetuning, they are not MPC-friendly. As shown in Figure [I[c), directly applying
an existing KV cache eviction algorithm (Liu et al., |2024b)) incurs even more communication and
latency overhead over the baseline model since it introduces expensive operators in MPC, including
top-k selection, token gathering, etc, as elaborated in Section|3| Therefore, there is an urgent need for
an MPC-friendly KV cache eviction algorithm to improve the efficiency of private LLM inference
without fine-tuning.

To overcome the heavy overhead of attention computation, we make the following observations
that motivate our MPCache: 1) the LLM attention maps are overall sparse for long input prompts,
motivating us to perform static eviction and directly prune the KV cache of unimportant tokens; 2)
the attention maps show token-wise locality (Ciu et al.| [2023)), motivating us to build an efficient
hierarchical clustering algorithm for dynamic selection of the KV cache; 3) the attention maps of
adjacent layers show similar patterns, motivating us to share the KV cache selection for adjacent
layers to further improve efficiency. Our contributions can be summarized as follows:

* We observe the cost of MPC-based LLM inference mainly comes from attention computation and
propose MPCache, an MPC-efficient KV cache eviction framework to reduce the LLM inference
latency and communication.

* We identify the challenges when applying KV cache eviction in MPC. To tackle the problems,
MPCache combines look-once static KV cache eviction and query-aware dynamic selection with a
series of optimizations, including MPC-friendly similarity approximation, hierarchical KV cache
clustering, and a layer-wise index sharing strategy.

* With extensive experiments, we demonstrate the performance of MPCache consistently exceeds
the prior-art KV cache eviction algorithms across different generation tasks and achieves upto
2.01x and 8.37x decoding latency and communication, respectively.

2 PROBLEM FORMULATION AND BACKGROUND

2.1 PROBLEM FORMULATION

Generative LLM inference can be divided into prefill and generation stages (refer to Appendix [A).
We formally describe the generation process with KV cache eviction in Algorithm[I] The KV cache
eviction policy, denoted as P, aims to minimize the attention computation by only preserving a sub-
set of tokens, which typically involves three steps: 1) P first computes the similarity between the
query and key cache of previous tokens (line # 1); 2) P then ranks the previous tokens based on the
similarity score and applies the top-k algorithm to determine the indices of relevant tokens (line #
2); 3) the KV cache is then retrieved based on the indices, denoted as token gathering (line # 3),

noR W N =

Under review as a conference paper at ICLR 2025

Algorithm 1: Problem formulation of KV cache eviction for one layer

Input : Query, key, and value cache q € RF*1¥4 K € REXTXd and V ¢ REXT>4 where T, H, d
denote the sequence length, number of heads, and embedding dimension.
Output: Sparse attention output O € R x1%4,

sim = SimApprox(q, K); > Similarity approximation
indices = topk(sim, k = k); > Top-k selection
K’ = K.gather|indices|, V' = V.gather[indices]; > Token gathering based on indices
O = Softmax(q - K'" /vd) - V'; > Sparse attention
return O.

Table 1: Qualitative comparison with prior works.

Representative Method ‘ Similarity Top-k Selection Token Layer-wise MPC Model

‘Work Approximation Gathering Optimization | Efficiency Performance
S i Non-linear Fine-tuing Not Applied
Li etal. (2022) Replacement ‘ Required to LLM
Xiao et al.|(2023) Fixed-pattern - - Token-wise Low
Li et al. (2024) Static Accumulated Attention Score Once during Prefill Token-wise Low
Liu et al. (2024b) Dynamic Token-wise Cosine Similarity =~ Token-wise per Step ~ Token-wise - Low
:) - - Hierarchical Clustering, Parallelled,) . Adjacent Layer
MPCache (ours) ~ Static+Dynamic Cluster-wise Similarity Cluster-wise per Step Cluster-wise Sharing

followed by sparse attention computation with the selected KV cache (line # 4). To compute the
similarity in line # 1, existing works have used accumulated attention score of the historical tokens
(Liu et al.,[2024c; Zhang et al.| [2024d} [Zhao et al., [2024; |Yang et al., |2024; Zhang et al., [2024c) or
cosine similarity (Liu et al.,|2024bj Xiao et al.,|2024). KV cache eviction reduces the attention com-
putation complexity from O(T'd) to O(kd), where T, d denote the sequence length and embedding
dimension, respectively, and k¥ < T'. However, it introduces MPC-unfriendly operations, including
similarity approximation, top-k selection, and token gathering, hindering its benefits in MPC-based
LLM inference. Hence, the goal of our paper can be summarized as follows:

“How can we design an MPC-friendly KV cache eviction algorithm P* to minimize MPC-based
LLM inference latency without sacrificing LLM performance?”

2.2 BACKGROUND

Related works. There has been a surge in improving the efficiency of private LLM inference. Ex-
isting works focus on the protocol optimization (Pang et al.,2023;|Dong et al.,2023; |Lu et al.,[2023;
Hou et al.| 2023) or directly replace non-linear functions with MPC-friendly operators (Liu & Liu,
2023} L1 et al., [2022; |Zeng et al., 2023; Mishra et al., 2020; Dhyani et al., [2023). However, they
either still incur large overhead for long input sequences or require expensive re-training. KV cache
eviction has been widely explored for plaintext inference and can be classified into 3 categories: 1)
fixed-pattern algorithms like [Xiao et al.| (2023)) and [Beltagy et al. (2020) always keep the tokens at
the same position across generation steps, lacking flexibility for different LLMs and contexts; 2)
static algorithms like|Zhang et al.| (2024d); Zhao et al.|(2024);|Zhang et al.| (2024c); |L1 et al. (2024);
Ge et al.| (2023) discard tokens based on the accumulated attention scores of historical tokens, which
are efficient as the KV cache eviction is usually only conducted once but suffer from large per-
formance degradation when the compression ratio is high; 3) dynamic algorithms like Xiao et al.
(2024); [Tang et al.|(2024b); [Liu et al. (2024b) compute the similarity between the query and keys for
each generation step, which is more accurate but requires repetitive selection at each generation step.
Different from prior works in Table [, MPCache is a training-free framework that combines static
and dynamic algorithms, and leverages hierarchical clustering with a series of MPC-friendly opti-
mizations, achieving high efficiency and performance simultaneously. We leave a detailed review of
existing works in Appendix [Al

MPC preliminaries. MPC (Goldreich, |1998) is a cryptographic technique recently developed and
leveraged to enable LLM inference while protecting the privacy of both data and model. In an MPC
framework, to protect a certain tensor, it is often split into multiple secret shares and distributed
across different parties involved in the computation (Lu et al., [2023; Dong et al., [2023; [Mohassel
& Rindall [2018)). Dedicated protocols have been developed to support LLMs’ linear and non-linear

Under review as a conference paper at ICLR 2025

=)

=3
=]
S

_Full Cache Head 0

$ 1 g <
b1 1 2 80 Head's S
E 80 1 E —— Head 20 3
|
E 60 . s 60 E
“E | 3 g
& 40 | — Seq. Length=1500 ! £ 40 g
© Seq. Length=2000 : =2 <20% tokens are important £
g 20 Seq. Length=2800 | R L N G S
= Seq. Length=8200 | 3 ©
gz 0 1 o 0
0 20 40 60 80 100 0 5 10 15 20 25 30
Static Eviction Ratio (%) Layer Index # Adjacent Layers

(a) Motivatin of Static Eviction (b) Motivatin of Dynamic Selection (¢) Layer-wise Commonality

Figure 3: Motivating inspirations of MPCache. (a) Statically evicting almost 60% tokens during the
prefill stage still maintains the performance; (b) less than 20% tokens contribute to token decoding;
(c) layer-wise top-k commonality among different numbers of adjacent layers.

operations (Lu et al.,[2023}; |[Pang et al.} 2023} [Dong et al.,[2023). In this work, we adopt an honest-
but-curious threat model and apply MPCache to both 2PC and 3PC protocols, which involve 2

parties and 3 parties in the computation, respectively. We refer interested readers to Appendix
where the threat model and 2PC/3PC protocols are more clearly explained. Following
(2022); |Zeng et al. (2023), MPCache is built upon existing cryptographic primitives and focuses on
optimizing the LLM inference algorithm. The security can hence be guaranteed.

3 MOTIVATIONS AND CHALLENGES

In this section, we discuss the key observations that motivate MPCache.

Observation 1: the attention map of a long in-
put sequence is usually sparse, and the KV cache
of historical tokens demonstrates different im-
pacts over the downstream decoding. We show
the attention map of different heads and layers of
LLaMA-2-7B in Figure 2] and leave visualizations
of larger attention maps in Appendix [C] From Fig-
ure[2] we can classify different tokens into three cat-
egories: 1) important to all tokens (IA in red box):
the attention scores remain high for the entire col-
umn, e.g., Oth and 1st columns in Figure 2[a), in-
dicating these tokens are important for the genera-
tion of all downstream tokens and hence, need to
be always preserved; 2) un-important to all tokens

(a) Layer 6 Head 20 (b) Layer 18 Head 0

IC Tokens
(Dynamiclly Selected)|

o4
.-)
Ioo

01 2 3

4 5|6 7
T S) _t%?)_ - ! Layer
- — ol ___::?_75] 30

4 o v s W N - o

(UIA in blue box): the attention scores remain low
for the entire column, e.g., 2nd and 3rd columns
in Figure [2[(a), indicating these tokens can be dis-
carded without impacting the downstream decod-
ing; 3) important to certain tokens (IC in orange

Figure 2: (Upper) token types in attention
maps where v' means the token is selected and
X means the token is not selected. (Lower)
three types can be observed in the attention
map with more tokens.

box): the attention scores vary for different tokens,
e.g., 4th and 5th columns in Figure [J[a), indicating these tokens impact a subset of downstream
tokens, and hence, cannot be directly pruned.

We verify the observation on LLaMA-2-7B with different input sequence lengths. As shown in
Figure [3[a), almost 60% tokens can be statically evicted while preserving the LLM performance.
While further pruning the remaining KV cache starts to degrade the LLM performance, as shown
in Figure 3[b), in each decoding step, only less than 20% of the remaining tokens contribute to the
decoding. The above observation motivates us to statically evict the KV cache of UIA tokens and
dynamically select a subset of IC tokens in each decoding step.

Observation 2: dynamic KV cache selection incurs non-negligible overhead in MPC. While dy-
namic KV cache selection reduces the attention computation cost, it incurs non-negligible overhead
due to MPC-unfriendly operations. In Figure[Ifc), we show the extra overhead when 5% tokens are
dynamically selected. The MPC-unfriendly operations mainly include:

Under review as a conference paper at ICLR 2025

Statically Dynamically Dynamically 2} Auto-regressive Decoding MPC-friendly Optimizations
Evicted Selected Evicted t Decoding Step 1 Decoding Step N Sec. MPC-friendly
- SEEEEE .. B-88°8,,. 07200 890 L smop
. COE8aa --- 08 @ scccrn’ @ 0 Qo Sce. | Hierarchical KV
- CEEEeE -— 8 B 0e — @ 0%z - @ ()} 43 | Cache Clustering
Qeeeea .-, O _ 888 .0 07z O O
- OOD00E =" OB 88 "= 80 L n] R —
Query Key Cache Query Key Cache Query Key Cache Query Key Cache 44 Sharing Strategy

Figure 4: Overview of our proposed MPCache.

 Similarity computation (Algorithm |1| line # 1): cosine similarity is widely used for similarity
measurement, which requires computing the multiplication between the current query with the
key cache of all previous tokens;

* Top-k selection (Algorithm|1]line # 2): to compute the indices of relevant tokens, top- is usually
inevitable (Zhang et al., 2024d; Ge et al., |2023; [Zhao et al., |2024; [Yang et al., |2024). Unlike
plaintext inference, top-k selection in MPC involves frequent comparison protocol, which incurs
high latency and communication cost (Rathee et al., [2020).

* Token gathering (Algorithm|I|line # 3): after the top-k selection, the KV cache of selected tokens
is gathered based on the indices. Unlike plaintext inference, such gathering protocol in MPC is
much more inefficient since both KV cache and indices are ciphertexts. Therefore, as described
in Algorithm 2] each index is first converted to a one-hot vector and then multiplied with the KV
cache, requiring repetitively invoking MPC-unfriendly comparison protocols.

Inspired by token-wise locality (Liu et al.; 2023} |Zhu et al., [2023), our key insight is to group the
adjacent tokens into clusters, which can reduce the complexity of dynamic selection in proportion to
the cluster size. However, this introduces extra questions on how to measure the similarity between
a cluster and the current query, how to build the cluster, etc, which is discussed in Section @

Observation 3: adjacent layers share similar top-%£ ranking of KV cache, providing an extra
opportunity for efficiency optimization. Due to the residual, we hypothesize adjacent layers may
share a similar top-k ranking of the KV cache. To verify the assumption, we define commonality
score to measure the ratio of common top-k indices of m adjacent layers as below:

1 L—m |l+m

where idx;[: k] denotes the set of top-k indices for i-th layer, L is the number of layers, and |-|
counts the number of elements in a set. As shown in Figure[3|c), adjacent layers demonstrate a high
similarity of top-k indices, which indicates the query tends to focus on the KV cache of the similar
tokens. The similarity score reduces when m is large, which motivates us to share the indices of
selected tokens among adjacent layers to trade off efficiency and performance.

4 MPCACHE: AN MPC-FRIENDLY PRIVATE LLM INFERENCE FRAMEWORK

4.1 OVERVIEW OF MPCACHE

Framework. Driven by the observations, we propose an MPC-friendly KV cache eviction frame-
work, dubbed MPCache. The overview is shown in Figure , and it consists of two steps: 1) look-
once static eviction during the prefill stage to discard the UIA tokens (Section ; 2) query-aware
dynamic selection during the decoding stage to choose only a small subset of the remaining IC
tokens for sparse attention (Section [4.3). A series of MPC-friendly optimizations are proposed to
reduce the overhead of dynamic selection. The pseudocode is shown in Algorithm[3]in Appendix D.

Symbol definition. For clarity, we summarize the symbols used in this section. We define L as
the number of layers, H as the number of attention heads, 7' as the number of tokens, d as the
embedding dimension, s as the cluster size, and C' as the number of clusters.

4.2 STEP 1: LOOK-ONCE STATIC KV CACHE EVICTION ALGORITHM

Under review as a conference paper at ICLR 2025

| Hoed 7SS ST ST TR Beed G 6 o e et
! 1
kv oo QCOOO0OOCODOC00C000C0 | Preserved Cluser]

Approximated Similarity

1

!
i Similarity |
! Distribution :
1
| !
: @=L
| !
Ay l

Past Key Clusters ~ Current Query ~ Top-k

\
\

CILCDCIjCB‘CIL C@CB‘CIj .

(a) Hierarchical Clustering of Key Cache (b) Dynamic Similarity Approximation

Figure 6: Hierarchical and dynamic KV cache clustering and selection procedure.

To prune the KV cache of UIA tokens as observed in Section [3| we use
static eviction during the prefill stage. To measure the token importance
and identify UIA tokens, we compute the attention map and then, ac-
cumulate the attention scores for each token. Similar to Zhang et al. 05]03]02
(2024d); Liu et al.| (2024c); L1 et al.| (2024), we find it is sufficient to
only sum up the scores of the last 20% tokens in the prompt. Then, we “aFer

Tokens

1.0

04 0.6

02]04]01]03

rank the accumulated attention scores to select the top-y KV cache with i el vl e B
the highest scores and discard the rest UIA tokens. 3045 055 0.15 045 04

Statically Evicted
Protocol complexity analysis. Compared to the baseline computation of
the prefill stage, static eviction only involves accumulating the attention Figure 5: The illustra-
scores, which are local without any communication, and a top-7y selec- tion of static eviction.
tion. Because the static eviction is performed only once, the cost of top-~y
selection can be amortized by the entire generation process, and hence,
becomes negligible. Meanwhile, with UIA tokens pruned, the efficiency of the dynamic selection
process can be improved for each generation step. Hence, the static eviction algorithm helps to
improve the overall efficiency.

4.3 STEP 2: MPC-FRIENDLY DYNAMIC KV CACHE SELECTION ALGORITHM

To reduce the overhead of dynamic token selection as

shown in Figure [[[c), we propose to group the KV 715 FIS°°r°—| S'mApplmle Y

cache of adjacent tokens into clusters as shown in Fig- £ 77| H ’_‘ 408

ure[6] The most important question is “how to aggre- f 75 | ﬂ | | | | 202

gate the information of a cluster and measure the im- =" LLL L1 E1 T4 [0 1] | 0o
0.4

@ 00 02 6 0.8 10 MP Avg

portance of each cluster accurately and efficiently?”

MPC-friendly similarity approximation with clus- Figure 7: Comparison among maxi-
tering. A naive method for similarity approximation iS mum dot product (MP), average, and our
to compute the average of the key cache within a clus- method with different o’s on TriviaQA.
ter and directly compute the cosine similarity with the

average. However, as shown in Figure [/} the naive approach incurs large performance degrada-
tion. Our intuition is the approximation should preserve the impact of important tokens as much
as possible. Hence, we use the maximum dot product between the query and the key cache cluster.
Specifically, given a query q € R**9, a key cache cluster of s tokens K. € R**9, the similarity can
be designed as

d—1 d—1
SimApprox(q, K.) = max q - k = max > aki <Y max ki, 2)
N ¢ =0 i=0 ¢

where we obtain the upper bound of similarity. We further have

; k;, ifq;>0
max q;k; = q; In.anEKC i 1 q; = U, 3)
keK, q; MiNkeK, k;, ifq; <O.
Define r™* and r™i®, where r*®* = maxyek. k; and rmm = minkek, k;. Then, we have
d—1 d—1
SimApprox(q,K.) < [max qik = Zmax (qir™, qrin). 4
i=0 i=0

Under review as a conference paper at ICLR 2025

Table 2: The complexity analysis of token gathering protocol where k1 = 0.257, ko = 0.25C.

| Bit Width | # Comparison | Lat. | Comm. | Example Lat. | Example Comm.
Baseline Protocol logT T O(TlogT) le logT') 4.780s 416.0MB
MPCache (ours) log C C O(Clog C) (k2C'log C) 0.065s 1.125MB
Improvement ‘ L‘)’; o X ‘ g X ‘ Z}g;g ‘ fz'g }g;g ‘ 73.5% ‘ 369.8x

Protocol complexity analysis. During the decoding stage, r™** and r™" of each cluster only need to
be computed once. Hence, the computation cost can be amortized and become negligible. However,
for each generation step, we still need to compute O(LCd) multiplications, i.e., q;r** and q;r™®,

as well as O(LCd) max operations in Equation (4)), which still incur non- neghgible overhead.

Linearization and Reordering. To avoid the MPC-unfriendly max operation in Equation (4}, we
further propose to approximate the similarity score as below:

SimApprox(q, K Za Qr™ + (1 — a) - g™, (5)

where a € [0, 1] is a hyperparameter. As can be observed, when a = 1, q;r;"®* is always selected
while q;r™" is always selected when o = 0. After the linearization, there is an opportunity to
further reduce the multiplications by reordering the computation as

d—1
Z o - qu‘?]aX + (1 _ a m1n Z q; - pnax (1 _ Oé) min). (6)

ar™ and (1 — a) min are first added up without mtroducmg extra communication, and the mul-
tiphcatlon with q; is reduced by 2x. Compared with the maximum dot product in Figure [7, our
method significantly reduces the cost while maintaining the performance. We empirically choose
a = 0.6, and leave more discussions to Appendix[F]and a theoretical analysis to Appendix[G.

Protocol complexity analysis. MPCache reduces the number of max operations from O(LCd) to
0 and reduce the multiplication complexity by 2x. Clustering also benefits the token gathering
protocol: 1) the number of comparisons in one-hot vector conversion is reduced by %x; 2) the

bit width of one-hot vector is reduced by iggg x. Table [2[shows an example of selecting top-25%

tokens with T' = 1024, C' = 64, and can be observed that the overhead is drastically reduced.

Hierarchical KV cache clustering. Another question is “how to build the KV cache cluster?”
Since larger cluster sizes have higher selection efficiency at the cost of worse performance, our
key insight is to trade off the selection overhead and model performance. Inspired by hierarchical
reinforcement learning (Xu et al., [2023), we propose to cluster the KV cache of adjacent tokens
with a hierarchical structure as shown in Figure [6] that conducts coarse-grained (with larger cluster
size) to fine-grained (with smaller cluster size) selection. Generally, we divide the KV cache into n
levels and progressively select the clusters level by level from the coarse-grained one. Then, at the
fine-grained level, we only need to select from the remaining clusters, thereby reducing the selection
complexity. Hierarchical structure, including the cluster size and selection ratios at different levels,
can influence the performance-efficiency trade-off, which is discussed in Section[5.4]

4.4 LAYER-WISE INDEX SHARING FOR FURTHER EFFICIENCY OPTIMIZATION

To leverage the observation that adjacent layers share simi- ¢ '°

lar top-k ranking of KV cache, we propose a layer-wise index % iy
sharing strategy that enables adjacent layers to share the same % zj

selected token indices to further reduce the cost of dynamic £

= Seq. Length=13020 (Head 0)

Seq. Length=13020 (Head 10)

"
|
— Seq. Length=31538 (Head 0)

02 Layer 0 & Layer 1
Ay Ay e Seq. Length=31538 (Head 10)

selection. Since two adjacent layers show the highest com- < [\l
monality score in Figure 3[c), we choose to share the indices © 7 arseLavermdes
between two adjacent layers. In Figure[8] we observe the first

two layers have a low commonality score while other layers Figure 8: Commonality score
have higher scores due to the residual, so we do not apply between two adjacent layers on
sharing to the first two layers. Layer-wise index sharing ef- [.[aMA-2-7B.

fectively reduces the extra overhead introduced by dynamic

selection. We discuss how the number of adjacent layers affects the trade-off in Section [5.4]

Under review as a conference paper at ICLR 2025

TriviaQA PassageRetrieval HotpotQA
=251 /
co [

3
w
S

NN
2y
%
s
2

&

50

F1 Score (%)
3

40

Accuracy (%)
2 5% S

1 Scor
w S >

5% 10% 20% 30% S 10% 20% 30% % 10% 20% 30%

KV Cache Budget KV Cache Budget KV Cache Budget
Qaspare NarrativeQA GovReport

28 30

26 7 -~
< 316 S 28
< 2 < s — = A
Py @ T 26
5 2 ! / = JE—
S S &}
(2T @ 13 o 24
— — 1)
= 16 B 12 & 5

14 11 -

10% 20% 40% 80% 5% 10% 20% % 10% 20% 35%
KV Cache Budget KV Cache Budget KV Cache Budget

Figure 9: Comparison with fixed-pattern and static KV cache eviction baselines.
5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUPS

Models and datasets. Our experiments are based on LongChat-7B-V1.5-32K (Li et al., 2023) on
LongBench (Bai et al., 2023 HotpotQA (Yang et al.| 2018)), NarrativeQA (Kocisky et al.,|2018),
Qasper (Dasigi et al., 2021)), GovReport (Huang et al.| [2021), TriviaQA (Joshi et al., 2017), and
PassageRetrieval (Bai et al., 2023). We also apply our method to LLaMA-2-7B/13B (Touvron et al.,
2023) on 5-shot XSUM (Narayan et al.| [2018) and LLaMA-3-8B-Instruct (Dubey et al., 2024) on
LongBench. To save GPU memory when processing long-context tasks, we leverage FlashAttention
(Dao et al., 2022) during the prefill stage.

Baselines. For comparison, we choose prior-art static and dynamic KV cache eviction baselines,
including H20 (Zhang et al.,|[2024d), Streamingl.LM (Xiao et al.,[2023), TOVA (Oren et al.,|[2024),
SnapKV (Li et al., 2024), InfLLM (Xiao et al., 2024), and LongCache (Liu et al., [2024b). Detailed
descriptions of the baselines and our setups can be found in Appendix [F,

Experimental environment. For performance evaluation, our experiments are conducted based
on LongBench on an NVIDIA A100 80GB GPU. For efficiency evaluation, our experiments are
based on Secretflow (SPU (Ma et al., 2023) V0.9.1) and follow the protocols of PUMA (Dong et al.,
2023 We optimize the top-k protocol in Secretflow with computation parallelization. The latency
is evaluated under the LAN setup (Rathee et al., [2020). We evaluate the efficiency using GPT-2
and LLaMA-2, and since securely evaluating a full-size 7B model in SPU exceeds our hardware
resources, we set a smaller hidden dimension of 1024 in our evaluation.

5.2 PERFORMANCE EVALUATION

In Figure [9] and Table 4 we comprehensively compare MPCache with prior-art KV cache eviction
methods and make the following observations: 1) comparison with fixed-pattern and static al-
gorithms. MPCache consistently outperforms prior-art methods, including H20, StreamingL.LLM,
TOVA, and SnapKV across different datasets. These methods statically discard the tokens while
MPCache dynamically selects a subset of tokens based on the current queries. MPCache shows
decent scalability to different KV cache budgets. For example, on HotPotQA and NarrativeQA,
MPCache achieves comparable performance as full cache, even only ~5% KV cache preserved;
2) comparison with dynamic algorithms. MPCache achieves comparable and even better perfor-
mance compared with InfLLM and LongCache. For example, on NarrativeQA, MPCache achieves
1.32x and 2.39x latency reduction with a higher F1 score compared with InfLLM and LongCache,
respectively; 3) scalability of MPCache. We extend our method to LLaMA-2-13B in Figure [3(and
LLaMA-3-8B-Instruct in Table 5] demonstrating the superior performance of MPCache.

1https ://github.com/THUDM/LongBench
2https ://github.com/secretflow/spu

https://github.com/THUDM/LongBench
https://github.com/secretflow/spu

Under review as a conference paper at ICLR 2025

Table 4: Comparison with dynamic eviction baselines on different datasets and budgets. “(ax)”
means MPCache achieves ax efficiency improvement compared with baselines.

| | InfLLM | LongCache | MPCache (ours)

Dataset | CacheBudget |"perf ()1 Lat. (s)] Perf. (%) Lat. ()l Perf. (%)1 Lat. (5)|
Full 31.16 75.52 3116 75.52 31.16 75.52
HotpotQA 5% 2820 51.64(130x) | 2431 89.46(2.24x) | 3027 39.85
10% 2001 68.04(128x) | 2469 123.1(230x) | 30.05 53.32
Full 82.67 75.52 82.67 75.52 82.67 75.52
TriviaQA 5% 7565 51.64(138x) | 59.85 89.46(2.39x) | 75.61 37.37
10% 8275 68.04(134x) | 60.56 123.1(243x) | 8245 50.75
Full 17.02 75.52 17.02 75.52 17.02 75.52
NarrativeQA 5% 1280 4774 (1.32x) | 1465 8642(2.39x) | 17.23 36.13
10% 1374 6349 (1.28x) | 1569 121.4(245x) | 17.35 49.46
Full 32.50 75.52 32.50 75.52 32.50 75.52
PassageRetrieval 5% 6.161 51.64(L.15x) | 2142 89.46(1.99x) | 1975 44.82
10% 8872 68.04(L.16x) | 2492 123.1(2.10x) | 2775 58.47
Full 27.58 75.52 27.58 75.52 27.58 75.52
Qasper 8% 2053 6452(145x) | 2453 1369(3.08x) | 23.86 4439
16% 2390 72.84(133x) | 2607 2259 (4.12x) | 2495 54.77

Table 5: Extension to LLaMA-3-8B-Instruct on with an average KV cache size of 2048.

Method Qasper MultiFieldQA HotpotQA 2WikiMultihopQA MuSique TriviaQA TREC SAMSum

(F1 Score) (F1 Score) (F1 Score) (F1 Score) (F1Score) (F1Score) (Accuracy) (Rouge-L)
Full Cache 29.75 41.12 45.55 35.87 22.35 90.56 73.0 41.88
SnapKV 25.78 38.13 40.12 32.01 16.86 83.22 70.0 31.75
H20 26.85 39.54 44.30 32.92 21.09 90.56 53.0 41.84
MPCache (ours) 29.45 40.30 44.32 35.91 22.66 90.43 73.0 42.42

22 w/oKV Cache [FullKV Cache [LongCache-5% [Head Merging [MPCache-10% [] MPCache-5%

>100- 1} ™ m m | B o o o 200
| :GPT—Z b :LLaMA-2 h :LLaMA-Z b :LLaMA-Z | = 11GPT-2 1 1 LLaMA-2 | :LLaMA—Z | :LLaMAZ
r (] (]
e i { ¥ | R | | i i
s 1 1 1 1 1 1
o i i i £ : H t
=] !] !] ! ! | S] 0 |]
g 075 b 1 2.01x 1 1.97x 1 1.80x o b o h
] I 2.64x { ! "] - 3.21x | ! 4.18x ! | B ¢
E050 {1 ! 0 | 2 I i 592x 41 8.37x
5 025 1 | | o N | | | |
- | |)
20 4 3 i £ GUNN00 cONN0D NN N
Seq. Length=512 Seq. Length=512 Seq. Length=1024 Seq. Length=2048 Seq. Length=512 Seq. Length=512 Seq. Length=1024 Seq. Length=2048

Figure 10: Evaluation on per-token generation latency and communication.

5.3 INFERENCE EFFICIENCY EVALUATION

In Figure we benchmark the generation efficiency with e 3: Comparison of LLMs with
different sequence lengths ranging from 512 to 2048. We jifferent parameter scales on XSUM.

compare MPCache with model without KV cache, with full

KV cache, LongCache, and head merging (Rathee et al., Budget 10% 5%

2024; Bian et al., 2021)). From the results, we make the fol- Scale 7Bt 13B] 7B 13B]
lowing observations: 1) KV cache is crucial for private LLM Full Cache 1190 13.60 1190 13.60
inference since it avoids re-computation of the KV cache of H20 10.50 1324 4.886 9.081

- . MPCache (ours) 11.10 1344 1008 13.08
the previous tokens. As shown in the purple bar, the over-

head increases by hundreds of times compared with using

the KV cache; 2) compared with full KV cache on LLaMA-2, MPCache achieves 1.59 ~ 2.01x,
1.46 ~ 1.97x, and 1.26 ~ 1.8x latency reduction and 3.39 ~ 4.18x, 4.33 ~ 5.92x, and
5.51 ~ 8.37x communication reduction with different sequence lengths, respectively; 3) com-
pared with LongCache which dynamically selects tokens without static eviction and clustering on
LLaMA-2, MPCache even achieves 3.85x and 19.47x latency and communication reduction, re-
spectively. We further discuss the 2PC protocol [Lu et al (2023) in Section [5.4]

5.4 ABLATION STUDY OF MPCACHE

Effectiveness of different optimizations. In Figure |11| we demonstrate the effectiveness of our
proposed optimizations by adding them step by step on LLaMA-2-7B with a sequence length of
1024 and static eviction ratio of 75%. We make the following observations: 1) directly applying

Under review as a conference paper at ICLR 2025

Full KV Cache [7]
o i Level 1 Level 2 . .
T H] Coarse-grained Fine-grained F1Score (%) Comm. (MB)
i 532(0.9) 516(0.22) 29.6 163.5
! 532(0.7) 516(0.28) 30.1 144.0
i 532(0.5) 516(0.40) 30.2 140.2
| 532(0.3) 516(0.67) 292 108.8
|
og i 564(0.9) 516(0.22) 29.5 158.1
eReondering 1 rakrcue | 564(0.7) 516(0.28) 293 110.1
Layer Index ’ ! 564(0.5) 516(0.40) 29.1 104.9
Sharing 5.9x 564(0.3) 516(0.67) 29.0 69.12

(MPCache)

40 80 120 160 0 500 1000 1500 2000
Latency (s) Communication (MB) Performance

Table 6: Different hierarchical structures
Figure 11: Step-by-step ablation study of MPCache. with a dynamic selection ratio of 20%.

dynamic selection, e.g., LongCache to private LLM inference does not provide the expected effi-
ciency improvement and even increases both latency and communication; 2) after static eviction,
latency and communication of dynamic selection are reduced by 1.42x and 2.76 x, respectively.
3) our MPC-friendly optimizations, including clustering, linearization, reordering, and layer index
sharing further reduce the extra overhead introduced by dynamic selection without sacrificing the
model performance; 4) MPCache eventually achieves 1.9x and 5.9 latency and communication
reduction, respectively, and achieves better performance compared with H20.

Effect of hierarchical structure. To trade off the model perfor-
mance and dynamic selection overhead, we evaluate different hier-
archical structures on HotpotQA. Specifically, we choose different
cluster sizes s and selection ratios at different levels (e.g., $32(0.7)
means selecting 70% clusters with s = 32). From Figure [6] we
make the following conclusions: 1) when the gap between two
levels increases or the coarse-grained selection ratio decreases, the

overhead becomes lower and the performance exhibits a downward : 4 Af,jaceit La]yﬁers .

trend; 2) appropriate course-grained selection may help improve the

performance, e.g., the ratio changes from 90% to 50% with s = 32; Figure 12: Effect of # adja-
cent layers.

30.0 -

N
~
n
©w
N
o

(s) Loude]

F1 Score (%)

e}
b
o

Effect of the number of adjacent layers for layer index shar-
ing. In response to Section [3| we evaluate the trade-off between
the number of adjacent layers for layer-wise index sharing and model performance on HotpotQA in
Figure[T2] As observed, when the number of adjacent layers increases, the latency is reduced at the
cost of the performance degradation.

Discussion on 2PC protocol. We evaluate the 2PC efficiency in Fig- 4 S Full Cache =3 LongCache
ure[I3] It is observed that MPCache achieves 1.63x and 1.79x latency p MPCG::;% fne‘:l -
and communication reduction compared with the full cache, and 2.58 x PN
and 2.48 x latency and communication reduction compared with Long- 1. + LT - -
Cache. Since the multiplication communication in 2PC is larger than in

3PC, the cost of similarity approximation becomes higher. We can use H

random projection (Johnson et al., |1986) to reduce the multiplication ﬂ -

dimensionality, and we leave the research as our future work. Normalized ~ Normalized
Lat. (s) Comm. (MB)

Additional results. We present more experimental results, including)
the effect of «, the necessity of KV cache, and the comparison with Figure 13: Extension to
average-based similarity approximation in Appendix [Fl 2PC protocol.

6 CONCLUSION

In this work, we propose an MPC-friendly KV cache eviction framework dubbed MPCache, that
enables accurate and efficient private LLM inference. MPCache is a two-step framework com-
bining static eviction and dynamic selection. To reduce the heavy overhead of dynamic selection,
we propose a series of MPC-friendly optimizations. Extensive evaluations demonstrate that MP-
Cache consistently outperforms prior-art KV cache eviction baselines across different generation
tasks and significantly reduces both latency and communication.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114—127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, and Kenneth Church. On attention redun-
dancy: A comprehensive study. In Proceedings of the 2021 conference of the north american
chapter of the association for computational linguistics: human language technologies, pp. 930—
945, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, march 2023. URL https://Imsys. org/blog/2023-03-
30-vicuna, 3(5), 2023.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning, pp.
3947-3961. PMLR, 2022.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective [_2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Naren Dhyani, Jiangiao Mo, Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, and
Chinmay Hegde. Privit: Vision transformers for fast private inference. arXiv preprint
arXiv:2310.04604, 2023.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Cheng. Puma: Secure inference of llama-7b in five minutes. arXiv
preprint arXiv:2307.12533, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

Under review as a conference paper at ICLR 2025

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
Lazyllm: Dynamic token pruning for efficient long context llm inference, 2024. URL https:
//arxiv.org/abs/2407.14057.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78(110):1-108,
1998.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. Sigma: Secure gpt inference with function secret sharing. Cryptology ePrint
Archive, 2023.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache:
Accurate and efficient kv cache quantization with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt:
Secure two-party gpt inference. Cryptology ePrint Archive, 2023.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. arXiv preprint arXiv:2104.02112, 2021.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
{Two-Party} deep neural network inference. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 809-826, 2022.

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps
into banach spaces. Israel Journal of Mathematics, 54(2):129-138, 1986.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
IIm. arXiv preprint arXiv:2403.05527, 2024.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and Karel Zikan. Efficient
collision detection using bounding volume hierarchies of k-dops. IEEE transactions on Visual-
ization and Computer Graphics, 4(1):21-36, 1998.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gabor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317-328, 2018.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and Peter A Beerel. Learning to linearize
deep neural networks for secure and efficient private inference. arXiv preprint arXiv:2301.09254,
2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626, 2023.

12

https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2407.14057

Under review as a conference paper at ICLR 2025

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. Mpcformer: fast,
performant and private transformer inference with mpc. arXiv preprint arXiv:2211.01452, 2022.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source 1lms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Fabing Li, Yuanhao Zhai, Shuangyu Cai, and Mingyu Gao. Seesaw: Compensating for nonlinear
reduction with linear computations for private inference. In Forty-first International Conference
on Machine Learning.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.
Journal of cryptology, 22:161-188, 2009.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Xiaoran Liu, Qipeng Guo, Yuerong Song, Zhigeng Liu, Kai Lv, Hang Yan, Linlin Li, Qun Liu, and
Xipeng Qiu. Farewell to length extrapolation, a training-free infinite context with finite attention
scope. arXiv preprint arXiv:2407.15176, 2024b.

Xuangi Liu and Zhuotao Liu. Llms can understand encrypted prompt: Towards privacy-computing
friendly transformers. arXiv preprint arXiv:2305.18396, 2023.

Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yihua Cheng, Yuyang Huang, Shan Lu, Michael
Maire, Henry Hoffmann, Ari Holtzman, et al. Cachegen: Fast context loading for language
model applications. arXiv preprint arXiv:2310.07240, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
WenGuang Chen. Bumblebee: Secure two-party inference framework for large transformers.
Cryptology ePrint Archive, 2023.

Shi Luohe, Zhang Hongyi, Yao Yao, Li Zuchao, and Zhao Hai. Keep the cost down: A review on
methods to optimize 1lm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang, Jin Tan, Chaofan
Yu, Benyu Zhang, and Lei Wang. SecretFlow-SPU: A performant and User-Friendly frame-
work for Privacy-Preserving machine learning. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, July 2023.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference system for neural networks. In Proceedings of the 2020 Work-
shop on Privacy-Preserving Machine Learning in Practice, pp. 27-30, 2020.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In

Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp.
35-52,2018.

13

Under review as a conference paper at ICLR 2025

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104, 2024.

M Ott. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038,
2019.

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng, and Thomas Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. Cryptology ePrint Archive, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 325-342,
2020.

Deevashwer Rathee, Dacheng Li, Ion Stoica, Hao Zhang, and Raluca Popa. Mpc-minimized secure
IIm inference. arXiv preprint arXiv:2408.03561, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
Razorattention: Efficient kv cache compression through retrieval heads. arXiv preprint
arXiv:2407.15891, 2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: an instruction-following llama model (2023).
URL https://github. com/tatsu-lab/stanford_alpaca, 1(9), 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. arXiv preprint arXiv:2406.18139, 2024.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97-110. IEEE, 2021.

Zihao Wang and Shaoduo Gan. Squeezeattention: 2d management of kv-cache in llm inference via
layer-wise optimal budget. arXiv preprint arXiv:2404.04793, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024.

14

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, and Guoliang Fan. Haven: Hierarchical coopera-
tive multi-agent reinforcement learning with dual coordination mechanism. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 11735-11743, 2023.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528, 2024.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Tong Tong, Wen-jie Lu, Jin Tan, Runsheng Wang, and
Ru Huang. Mpcvit: Searching for accurate and efficient mpc-friendly vision transformer with
heterogeneous attention. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5052-5063, 2023.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39-57, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
channel: Efficient large language model inference with coupled quantization. arXiv preprint
arXiv:2405.03917, 2024b.

Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, and Qian Lou. Heprune: Fast pri-
vate training of deep neural networks with encrypted data pruning. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024d.

Youpeng Zhao, Di Wu, and Jun Wang. Alisa: Accelerating large language model inference via
sparsity-aware kv caching. arXiv preprint arXiv:2403.17312, 2024.

Fei Zheng, Chaochao Chen, Zhongxuan Han, and Xiaolin Zheng. Permllm: Private inference of
large language models within 3 seconds under wan. arXiv preprint arXiv:2405.18744, 2024.

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and Rynson WH Lau. Biformer: Vision
transformer with bi-level routing attention. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 10323-10333, 2023.

15

	Introduction
	Problem Formulation and Background
	Problem Formulation
	Background

	Motivations and challenges
	MPCache: An MPC-friendly Private LLM Inference Framework
	Overview of MPCache
	Step 1: Look-once Static KV Cache Eviction Algorithm
	Step 2: MPC-friendly Dynamic KV Cache Selection Algorithm
	Layer-wise Index Sharing for Further Efficiency Optimization

	Empirical Evaluation
	Experimental Setups
	Performance Evaluation
	Inference Efficiency Evaluation
	Ablation Study of MPCache

	Conclusion
	Detailed Background and Related Works
	Private LLM inference
	KV cache compression
	Generative LLM Inference in Autoregressive-style

	MPC Protocol Descriptions
	Threat Model and Security
	2PC Protocol
	3PC Protocol
	Token Gathering

	Observation from Pattern Discovery of Large Attention Maps
	Pseudocode of MPCache Algorithm Framework
	Paradigm Comparison with Dynamic Policy
	Supplemental Experiments
	Supplemental Setups
	LLM Architectures
	Detailed Description about Baselines
	Necessity of KV Cache in MPC
	Supplemental Ablation Study

	Theoretical Analysis of Similarity Approximation
	Overall Secure Inference Framework

