
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MPCACHE: MPC-FRIENDLY KV CACHE EVICTION
FOR EFFICIENT PRIVATE LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Private LLM inference based on multi-party computation (MPC) offers
cryptographically-secure protection for both user prompt and proprietary model
weights. However, it suffers from large latency overhead for long input sequences.
While key-value (KV) cache eviction algorithms have been proposed to reduce
the computation and memory cost for plaintext inference, they are not designed
for MPC and may even introduce more overhead. In this paper, we propose an ac-
curate and MPC-friendly KV cache eviction framework, dubbed MPCache. MP-
Cache is built on the observation that historical tokens in a long sequence may
have different effects on the downstream decoding. Hence, MPCache combines
a look-once static eviction algorithm to discard unimportant tokens and a query-
aware dynamic selection algorithm to further choose a small subset of tokens for
attention computation. As existing dynamic selection algorithms incur too much
latency, we propose a series of optimizations to drastically reduce the KV cache
selection overhead, including MPC-friendly similarity approximation, hierarchi-
cal KV cache clustering, and layer-wise index sharing strategy. With extensive
experiments, we demonstrate that MPCache consistently outperforms prior-art
KV cache eviction baselines across different LLM generation tasks and achieves
1.8 ⇠ 2.01⇥ and 3.39 ⇠ 8.37⇥ decoding latency and communication reduction
on different sequence lengths, respectively. Our anonymous code repository can
be found here.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable ability in a wide range of
applications such as document summarization (Huang et al., 2021; Narayan et al., 2018; Zhang
et al., 2024a), question answering (Kočiskỳ et al., 2018; Dasigi et al., 2021; Yang et al., 2018), and
dialogue systems (Thoppilan et al., 2022; Chiang et al., 2023; Taori et al., 2023). However, LLM-
based machine learning as a service (MLaaS) on the cloud has raised serious privacy concerns as
the users are required to upload their prompts to the cloud, which may contain sensitive personal
information. Meanwhile, the service provider is unwilling to offload the trained model to the user
to protect the proprietary model weights. Secure multi-party computation (MPC)-based private
inference has been proposed to address the privacy concerns (Goldreich, 1998; Mohassel & Rindal,
2018; Huang et al., 2022; Rathee et al., 2020; Gupta et al., 2023). MPC enables the users and
the cloud to conduct the LLM inference jointly, but nothing else can be derived beyond the final
inference results.

However, MPC-based LLM inference faces serious efficiency challenges, especially for long input
sequences. We profile the decoding efficiency of GPT-2 with the Secretflow framework (Ma et al.,
2023) using recent 2-party computation (2PC) (Lu et al., 2023) and 3-party computation (3PC)
protocols (Dong et al., 2023). As can be observed in Figure 1(a) and (b), attention dominates the
latency and communication for both 2PC and 3PC protocols. Moreover, Softmax accounts for the
majority of the overall cost, especially with an increasing sequence length.

To reduce the cost of private LLM inference, previous works focus on developing more efficient
MPC protocols (Lu et al., 2023; Dong et al., 2023; Pang et al., 2023; Hou et al., 2023), replacing
non-linear activation functions with more MPC-friendly operators (Liu & Liu, 2023; Li et al., 2022;
Zeng et al., 2023), or directly modifying the model architecture (Rathee et al., 2024). However,

1

https://anonymous.4open.science/r/mpcache-iclr/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1e1
(a) Breakdown of Transformer (c) Challenge of KV Cache Eviction

3PC
3PC

2PC
2PC

Attn:MatMul Attn:Softmax MLP:MatMul MLP:GeLU LayerNorm

0% 20% 40% 60% 80% 100%

B
efore

A
fter

B
efore

A
fter

Similarity Approx. Top-k Token Gathering

0 2 4 6 8 10 12 14 16

C
om

m
. (

M
B

)
L

at
. (

s)
Extra Cost

Extra CostC
om

m
. (

M
B

)
L

at
. (

s)

(b) Softmax with Sequence Lengths

40
96

Se
q.

 L
en

gt
h

10
24

25
6

64

0 10 20 30 40 50 60 70
Proportion Comm. (MB) Inference Cost

Figure 1: (a) Breakdown of decoding latency and communication for one token generation with a
sequence length of 512. Attention dominates the latency and communication for both 3PC and 2PC
protocols. (b) The cost of Softmax scales with the sequence length. (c) Inference cost before and
after KV cache eviction. Blocks in slash indicate the extra overhead introduced by eviction.

they still incur significant overhead or require expensive finetuning or re-training, and cannot be
directly applied to LLMs. Another line of works leverages key-value (KV) cache eviction to reduce
the number of tokens involved in the attention computation (Zhang et al., 2024d; Ge et al., 2023;
Liu et al., 2024c; Zhao et al., 2024; Zhang et al., 2024c; Fu et al., 2024). Although they have
demonstrated significant memory and computation reduction for plaintext LLM inference without
the need of finetuning, they are not MPC-friendly. As shown in Figure 1(c), directly applying
an existing KV cache eviction algorithm (Liu et al., 2024b) incurs even more communication and
latency overhead over the baseline model since it introduces expensive operators in MPC, including
top-k selection, token gathering, etc, as elaborated in Section 3. Therefore, there is an urgent need for
an MPC-friendly KV cache eviction algorithm to improve the efficiency of private LLM inference
without fine-tuning.

To overcome the heavy overhead of attention computation, we make the following observations
that motivate our MPCache: 1) the LLM attention maps are overall sparse for long input prompts,
motivating us to perform static eviction and directly prune the KV cache of unimportant tokens; 2)
the attention maps show token-wise locality (Liu et al., 2023), motivating us to build an efficient
hierarchical clustering algorithm for dynamic selection of the KV cache; 3) the attention maps of
adjacent layers show similar patterns, motivating us to share the KV cache selection for adjacent
layers to further improve efficiency. Our contributions can be summarized as follows:

• We observe the cost of MPC-based LLM inference mainly comes from attention computation and
propose MPCache, an MPC-efficient KV cache eviction framework to reduce the LLM inference
latency and communication.

• We identify the challenges when applying KV cache eviction in MPC. To tackle the problems,
MPCache combines look-once static KV cache eviction and query-aware dynamic selection with a
series of optimizations, including MPC-friendly similarity approximation, hierarchical KV cache
clustering, and a layer-wise index sharing strategy.

• With extensive experiments, we demonstrate the performance of MPCache consistently exceeds
the prior-art KV cache eviction algorithms across different generation tasks and achieves upto
2.01⇥ and 8.37⇥ decoding latency and communication, respectively.

2 PROBLEM FORMULATION AND BACKGROUND

2.1 PROBLEM FORMULATION

Generative LLM inference can be divided into prefill and generation stages (refer to Appendix A).
We formally describe the generation process with KV cache eviction in Algorithm 1. The KV cache
eviction policy, denoted as P , aims to minimize the attention computation by only preserving a sub-
set of tokens, which typically involves three steps: 1) P first computes the similarity between the
query and key cache of previous tokens (line # 1); 2) P then ranks the previous tokens based on the
similarity score and applies the top-k algorithm to determine the indices of relevant tokens (line #
2); 3) the KV cache is then retrieved based on the indices, denoted as token gathering (line # 3),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1: Problem formulation of KV cache eviction for one layer

Input : Query, key, and value cache q 2 RH⇥1⇥d
,K 2 RH⇥T⇥d, and V 2 RH⇥T⇥d, where T,H, d

denote the sequence length, number of heads, and embedding dimension.
Output: Sparse attention output O 2 RH⇥1⇥d.

1 sim = SimApprox(q,K); . Similarity approximation
2 indices = topk(sim, k = k); . Top-k selection
3 K

0 = K.gather[indices], V0 = V.gather[indices]; . Token gathering based on indices
4 O = Softmax(q ·K0>

/
p
d) ·V0; . Sparse attention

5 return O.

Table 1: Qualitative comparison with prior works.

Representative
Work Method Similarity

Approximation Top-k Selection Token
Gathering

Layer-wise
Optimization

MPC
Efficiency

Model
Performance

Li et al. (2022) Non-linear
Replacement - - - - Fine-tuing

Required
Not Applied

to LLM
Xiao et al. (2023) Fixed-pattern - - Token-wise - High Low

Li et al. (2024) Static Accumulated Attention Score Once during Prefill Token-wise - High Low
Liu et al. (2024b) Dynamic Token-wise Cosine Similarity Token-wise per Step Token-wise - Low High

MPCache (ours) Static+Dynamic Hierarchical Clustering,
Cluster-wise Similarity

Parallelled,
Cluster-wise per Step Cluster-wise Adjacent Layer

Sharing High High

followed by sparse attention computation with the selected KV cache (line # 4). To compute the
similarity in line # 1, existing works have used accumulated attention score of the historical tokens
(Liu et al., 2024c; Zhang et al., 2024d; Zhao et al., 2024; Yang et al., 2024; Zhang et al., 2024c) or
cosine similarity (Liu et al., 2024b; Xiao et al., 2024). KV cache eviction reduces the attention com-
putation complexity from O(Td) to O(kd), where T, d denote the sequence length and embedding
dimension, respectively, and k ⌧ T . However, it introduces MPC-unfriendly operations, including
similarity approximation, top-k selection, and token gathering, hindering its benefits in MPC-based
LLM inference. Hence, the goal of our paper can be summarized as follows:

“How can we design an MPC-friendly KV cache eviction algorithm P
⇤

to minimize MPC-based

LLM inference latency without sacrificing LLM performance?”

2.2 BACKGROUND

Related works. There has been a surge in improving the efficiency of private LLM inference. Ex-
isting works focus on the protocol optimization (Pang et al., 2023; Dong et al., 2023; Lu et al., 2023;
Hou et al., 2023) or directly replace non-linear functions with MPC-friendly operators (Liu & Liu,
2023; Li et al., 2022; Zeng et al., 2023; Mishra et al., 2020; Dhyani et al., 2023). However, they
either still incur large overhead for long input sequences or require expensive re-training. KV cache
eviction has been widely explored for plaintext inference and can be classified into 3 categories: 1)
fixed-pattern algorithms like Xiao et al. (2023) and Beltagy et al. (2020) always keep the tokens at
the same position across generation steps, lacking flexibility for different LLMs and contexts; 2)
static algorithms like Zhang et al. (2024d); Zhao et al. (2024); Zhang et al. (2024c); Li et al. (2024);
Ge et al. (2023) discard tokens based on the accumulated attention scores of historical tokens, which
are efficient as the KV cache eviction is usually only conducted once but suffer from large per-
formance degradation when the compression ratio is high; 3) dynamic algorithms like Xiao et al.
(2024); Tang et al. (2024b); Liu et al. (2024b) compute the similarity between the query and keys for
each generation step, which is more accurate but requires repetitive selection at each generation step.
Different from prior works in Table 1, MPCache is a training-free framework that combines static
and dynamic algorithms, and leverages hierarchical clustering with a series of MPC-friendly opti-
mizations, achieving high efficiency and performance simultaneously. We leave a detailed review of
existing works in Appendix A.

MPC preliminaries. MPC (Goldreich, 1998) is a cryptographic technique recently developed and
leveraged to enable LLM inference while protecting the privacy of both data and model. In an MPC
framework, to protect a certain tensor, it is often split into multiple secret shares and distributed
across different parties involved in the computation (Lu et al., 2023; Dong et al., 2023; Mohassel
& Rindal, 2018). Dedicated protocols have been developed to support LLMs’ linear and non-linear

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Left: 600 Left: 600

Left: 420

Left: 1200

0 20 40 60 80 100
Static Eviction Ratio (%)

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (%

)

0

20

40

60

80

100

(a) Motivatin of Static Eviction (b) Motivatin of Dynamic Selection

Layer Index
0 305 10 15 20 25

0

20

40

60

80

100

C
on

tr
ib

ut
ed

 T
ok

en
s

(%
)

2 4 6 8

0.8

1.0

0.2

0.4

0.6

C
om

m
on

al
ity

 S
co

re

(c) Layer-wise Commonality

Adjacent Layers

Full Cache

<20% tokens are important

Most adjacent layers
exhibit >80% similarity

0.85

0.70
0.57

0.52

0.0

0.33

12

Figure 3: Motivating inspirations of MPCache. (a) Statically evicting almost 60% tokens during the
prefill stage still maintains the performance; (b) less than 20% tokens contribute to token decoding;
(c) layer-wise top-k commonality among different numbers of adjacent layers.

operations (Lu et al., 2023; Pang et al., 2023; Dong et al., 2023). In this work, we adopt an honest-
but-curious threat model and apply MPCache to both 2PC and 3PC protocols, which involve 2
parties and 3 parties in the computation, respectively. We refer interested readers to Appendix B,
where the threat model and 2PC/3PC protocols are more clearly explained. Following Li et al.
(2022); Zeng et al. (2023), MPCache is built upon existing cryptographic primitives and focuses on
optimizing the LLM inference algorithm. The security can hence be guaranteed.

3 MOTIVATIONS AND CHALLENGES

In this section, we discuss the key observations that motivate MPCache.

0 1 2 3 4 5 6 7

0

1

3

2

4

5

6

7

0 1 2 3 4 5 6 7

0

1

3

2

4

5

6

7

(a) Layer 6 Head 20 (b) Layer 18 Head 0

IA Tokens
(Always Preserved) UIA Tokens

(Statically Evicted)

IC Tokens
(Dynamiclly Selected)

IC Tokens
(Dynamiclly Selected)

Layer
30

Figure 2: (Upper) token types in attention
maps where X means the token is selected and
7 means the token is not selected. (Lower)
three types can be observed in the attention
map with more tokens.

Observation 1: the attention map of a long in-
put sequence is usually sparse, and the KV cache
of historical tokens demonstrates different im-
pacts over the downstream decoding. We show
the attention map of different heads and layers of
LLaMA-2-7B in Figure 2 and leave visualizations
of larger attention maps in Appendix C. From Fig-
ure 2, we can classify different tokens into three cat-
egories: 1) important to all tokens (IA in red box):
the attention scores remain high for the entire col-
umn, e.g., 0th and 1st columns in Figure 2(a), in-
dicating these tokens are important for the genera-
tion of all downstream tokens and hence, need to
be always preserved; 2) un-important to all tokens
(UIA in blue box): the attention scores remain low
for the entire column, e.g., 2nd and 3rd columns
in Figure 2(a), indicating these tokens can be dis-
carded without impacting the downstream decod-
ing; 3) important to certain tokens (IC in orange
box): the attention scores vary for different tokens,
e.g., 4th and 5th columns in Figure 2(a), indicating these tokens impact a subset of downstream
tokens, and hence, cannot be directly pruned.

We verify the observation on LLaMA-2-7B with different input sequence lengths. As shown in
Figure 3(a), almost 60% tokens can be statically evicted while preserving the LLM performance.
While further pruning the remaining KV cache starts to degrade the LLM performance, as shown
in Figure 3(b), in each decoding step, only less than 20% of the remaining tokens contribute to the
decoding. The above observation motivates us to statically evict the KV cache of UIA tokens and

dynamically select a subset of IC tokens in each decoding step.

Observation 2: dynamic KV cache selection incurs non-negligible overhead in MPC. While dy-
namic KV cache selection reduces the attention computation cost, it incurs non-negligible overhead
due to MPC-unfriendly operations. In Figure 1(c), we show the extra overhead when 5% tokens are
dynamically selected. The MPC-unfriendly operations mainly include:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Overview of our proposed MPCache.

• Similarity computation (Algorithm 1 line # 1): cosine similarity is widely used for similarity
measurement, which requires computing the multiplication between the current query with the
key cache of all previous tokens;

• Top-k selection (Algorithm 1 line # 2): to compute the indices of relevant tokens, top-k is usually
inevitable (Zhang et al., 2024d; Ge et al., 2023; Zhao et al., 2024; Yang et al., 2024). Unlike
plaintext inference, top-k selection in MPC involves frequent comparison protocol, which incurs
high latency and communication cost (Rathee et al., 2020).

• Token gathering (Algorithm 1 line # 3): after the top-k selection, the KV cache of selected tokens
is gathered based on the indices. Unlike plaintext inference, such gathering protocol in MPC is
much more inefficient since both KV cache and indices are ciphertexts. Therefore, as described
in Algorithm 2, each index is first converted to a one-hot vector and then multiplied with the KV
cache, requiring repetitively invoking MPC-unfriendly comparison protocols.

Inspired by token-wise locality (Liu et al., 2023; Zhu et al., 2023), our key insight is to group the
adjacent tokens into clusters, which can reduce the complexity of dynamic selection in proportion to
the cluster size. However, this introduces extra questions on how to measure the similarity between
a cluster and the current query, how to build the cluster, etc, which is discussed in Section 4.3.

Observation 3: adjacent layers share similar top-k ranking of KV cache, providing an extra
opportunity for efficiency optimization. Due to the residual, we hypothesize adjacent layers may
share a similar top-k ranking of the KV cache. To verify the assumption, we define commonality
score to measure the ratio of common top-k indices of m adjacent layers as below:

1

k(L � m)

L�mX

l=1

�����

l+m\

i=l

idxi[: k]

����� , (1)

where idxi[: k] denotes the set of top-k indices for i-th layer, L is the number of layers, and |·|

counts the number of elements in a set. As shown in Figure 3(c), adjacent layers demonstrate a high
similarity of top-k indices, which indicates the query tends to focus on the KV cache of the similar
tokens. The similarity score reduces when m is large, which motivates us to share the indices of
selected tokens among adjacent layers to trade off efficiency and performance.

4 MPCACHE: AN MPC-FRIENDLY PRIVATE LLM INFERENCE FRAMEWORK

4.1 OVERVIEW OF MPCACHE

Framework. Driven by the observations, we propose an MPC-friendly KV cache eviction frame-
work, dubbed MPCache. The overview is shown in Figure 4, and it consists of two steps: 1) look-
once static eviction during the prefill stage to discard the UIA tokens (Section 4.2); 2) query-aware
dynamic selection during the decoding stage to choose only a small subset of the remaining IC
tokens for sparse attention (Section 4.3). A series of MPC-friendly optimizations are proposed to
reduce the overhead of dynamic selection. The pseudocode is shown in Algorithm 3 in Appendix D.

Symbol definition. For clarity, we summarize the symbols used in this section. We define L as
the number of layers, H as the number of attention heads, T as the number of tokens, d as the
embedding dimension, s as the cluster size, and C as the number of clusters.

4.2 STEP 1: LOOK-ONCE STATIC KV CACHE EVICTION ALGORITHM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Key Cache
… …

Level n-1

Level n

Evicted Cluster

Preserved Cluster

To be Determined

Current QueryPast Key Clusters

Approximated Similarity

…

s=4

s=2

Head 1

Similarity
Distribution

Top-k

Head 2
Head 3

(a) Hierarchical Clustering of Key Cache (b) Dynamic Similarity Approximation

Figure 6: Hierarchical and dynamic KV cache clustering and selection procedure.

1.0

0.4

0.5

0.2

0.25

0.6

0.3

0.4

0.15

0.2

0.1

0.05

0.3

0.15 0.4

0.45 0.55 0.15 0.45 0.4
<latexit sha1_base64="RzCc9dLOlccKVgNHS18DbSyS4NY=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy60V0F+wBbJJlO26F5kUyKpbjwB9zqn4l/oH/hnXEKahGdkOTMufecmXuvF/silY7zmrPm5hcWl/LLhZXVtfWN4uZWI42yhPE6i/woaXluyn0R8roU0uetOOFu4Pm86Q3PVbw54kkqovBajmPeCdx+KHqCuVJR7TQLboslp+zoZc+CigElmFWLii9oo4sIDBkCcISQhH24SOm5QQUOYuI6mBCXEBI6znGPAmkzyuKU4RI7pG+fdjeGDWmvPFOtZnSKT29CSht7pIkoLyGsTrN1PNPOiv3Ne6I91d3G9PeMV0CsxIDYv3TTzP/qVC0SPZzqGgTVFGtGVceMS6a7om5uf6lKkkNMnMJdiieEmVZO+2xrTaprV711dfxNZypW7ZnJzfCubkkDrvwc5yxoHJQrx+Wjq8NS9cyMOo8d7GKf5nmCKi5QQ528B3jEE56tSyuyRtbdZ6qVM5ptfFvWwwfJnpDe</latexit>X

Statically Evicted

Last Few
Tokens

Figure 5: The illustra-
tion of static eviction.

To prune the KV cache of UIA tokens as observed in Section 3, we use
static eviction during the prefill stage. To measure the token importance
and identify UIA tokens, we compute the attention map and then, ac-
cumulate the attention scores for each token. Similar to Zhang et al.
(2024d); Liu et al. (2024c); Li et al. (2024), we find it is sufficient to
only sum up the scores of the last 20% tokens in the prompt. Then, we
rank the accumulated attention scores to select the top-� KV cache with
the highest scores and discard the rest UIA tokens.

Protocol complexity analysis. Compared to the baseline computation of
the prefill stage, static eviction only involves accumulating the attention
scores, which are local without any communication, and a top-� selec-
tion. Because the static eviction is performed only once, the cost of top-�
selection can be amortized by the entire generation process, and hence,
becomes negligible. Meanwhile, with UIA tokens pruned, the efficiency of the dynamic selection
process can be improved for each generation step. Hence, the static eviction algorithm helps to
improve the overall efficiency.

4.3 STEP 2: MPC-FRIENDLY DYNAMIC KV CACHE SELECTION ALGORITHM

F1
 S

co
re

 (%
) L

atency (s)75

77

79

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0 MP Avg
<latexit sha1_base64="0QVzpAfoKeGLkI68o6C0dHrwXQ8=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EdxUsA9oi0ym0zY2L5OJWIsrf8Ct/pj4B/oX3hkjqEV0QpIz595zZu69TuS5ibSsl5wxNT0zO5efLywsLi2vFFfX6kmYxlzUeOiFcdNhifDcQNSkKz3RjGLBfMcTDWd4rOKNaxEnbhicy1EkOj7rB27P5UwSVW8zLxqwi2LJKlt6mZPAzkAJ2aqGxWe00UUIjhQ+BAJIwh4YEnpasGEhIq6DMXExIVfHBe5QIG1KWYIyGLFD+vZp18rYgPbKM9FqTqd49MakNLFFmpDyYsLqNFPHU+2s2N+8x9pT3W1Efyfz8omVGBD7l+4z8786VYtED4e6BpdqijSjquOZS6q7om5ufqlKkkNEnMJdiseEuVZ+9tnUmkTXrnrLdPxVZypW7XmWm+JN3ZIGbP8c5ySo75Tt/fLe2W6pcpSNOo8NbGKb5nmACk5QRY28L/GARzwZp8aVcWPcfqQauUyzjm/LuH8HvReRow==</latexit>

↵

Figure 7: Comparison among maxi-
mum dot product (MP), average, and our
method with different ↵’s on TriviaQA.

To reduce the overhead of dynamic token selection as
shown in Figure 1(c), we propose to group the KV
cache of adjacent tokens into clusters as shown in Fig-
ure 6. The most important question is “how to aggre-
gate the information of a cluster and measure the im-
portance of each cluster accurately and efficiently?”

MPC-friendly similarity approximation with clus-
tering. A naive method for similarity approximation is
to compute the average of the key cache within a clus-
ter and directly compute the cosine similarity with the
average. However, as shown in Figure 7, the naive approach incurs large performance degrada-
tion. Our intuition is the approximation should preserve the impact of important tokens as much
as possible. Hence, we use the maximum dot product between the query and the key cache cluster.
Specifically, given a query q 2 R1⇥d, a key cache cluster of s tokens Kc 2 Rs⇥d, the similarity can
be designed as

SimApprox(q,Kc) = max
k2Kc

q · k = max
k2Kc

d�1X

i=0

qiki

d�1X

i=0

max
k2Kc

qiki, (2)

where we obtain the upper bound of similarity. We further have

max
k2Kc

qiki =

⇢
qi maxk2Kc ki if qi � 0,

qi mink2Kc ki if qi < 0.
(3)

Define r
max and r

min, where r
max
i

= maxk2Kc ki and r
min
i

= mink2Kc ki. Then, we have

SimApprox(q,Kc)
d�1X

i=0

max
k2Kc

qiki =
d�1X

i=0

max(qir
max
i

,qir
min
i

). (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The complexity analysis of token gathering protocol where k1 = 0.25T, k2 = 0.25C.

Bit Width # Comparison Lat. Comm. Example Lat. Example Comm.
Baseline Protocol log T T O(T log T) O(k1T log T) 4.780s 416.0MB
MPCache (ours) log C C O(C log C) O(k2C log C) 0.065s 1.125MB

Improvement log T

logC
⇥

T

C
⇥

T log T

C logC
⇥

k1T log T

k2C logC
⇥ 73.5⇥ 369.8⇥

Protocol complexity analysis. During the decoding stage, rmax and r
min of each cluster only need to

be computed once. Hence, the computation cost can be amortized and become negligible. However,
for each generation step, we still need to compute O(LCd) multiplications, i.e., qir

max
i

and qir
min
i

,
as well as O(LCd) max operations in Equation (4), which still incur non-negligible overhead.

Linearization and Reordering. To avoid the MPC-unfriendly max operation in Equation (4), we
further propose to approximate the similarity score as below:

SimApprox(q,Kc) ⇡
d�1X

i=0

↵ · qir
max
i

+ (1 � ↵) · qir
min
i

, (5)

where ↵ 2 [0, 1] is a hyperparameter. As can be observed, when ↵ = 1, qir
max
i

is always selected
while qir

min
i

is always selected when ↵ = 0. After the linearization, there is an opportunity to
further reduce the multiplications by reordering the computation as

d�1X

i=0

↵ · qir
max
i

+ (1 � ↵) · qir
min
i

=
d�1X

i=0

qi · (↵r
max
i

+ (1 � ↵)rmin
i

). (6)

↵r
max
i

and (1 � ↵)rmin
i

are first added up without introducing extra communication, and the mul-
tiplication with qi is reduced by 2⇥. Compared with the maximum dot product in Figure 7, our
method significantly reduces the cost while maintaining the performance. We empirically choose
↵ = 0.6, and leave more discussions to Appendix F and a theoretical analysis to Appendix G.

Protocol complexity analysis. MPCache reduces the number of max operations from O(LCd) to
0 and reduce the multiplication complexity by 2⇥. Clustering also benefits the token gathering
protocol: 1) the number of comparisons in one-hot vector conversion is reduced by T

C
⇥; 2) the

bit width of one-hot vector is reduced by log T

logC
⇥. Table 2 shows an example of selecting top-25%

tokens with T = 1024, C = 64, and can be observed that the overhead is drastically reduced.

Hierarchical KV cache clustering. Another question is “how to build the KV cache cluster?”
Since larger cluster sizes have higher selection efficiency at the cost of worse performance, our
key insight is to trade off the selection overhead and model performance. Inspired by hierarchical
reinforcement learning (Xu et al., 2023), we propose to cluster the KV cache of adjacent tokens
with a hierarchical structure as shown in Figure 6 that conducts coarse-grained (with larger cluster
size) to fine-grained (with smaller cluster size) selection. Generally, we divide the KV cache into n

levels and progressively select the clusters level by level from the coarse-grained one. Then, at the
fine-grained level, we only need to select from the remaining clusters, thereby reducing the selection
complexity. Hierarchical structure, including the cluster size and selection ratios at different levels,
can influence the performance-efficiency trade-off, which is discussed in Section 5.4.

4.4 LAYER-WISE INDEX SHARING FOR FURTHER EFFICIENCY OPTIMIZATION

0 2 4 6 8 10 12 14

0.8

1.0

0.2

0.4

0.6

C
om

m
on

al
ity

 S
co

re

Pair-wise Layer Index

0.0
Layer 0 & Layer 1

Figure 8: Commonality score
between two adjacent layers on
LLaMA-2-7B.

To leverage the observation that adjacent layers share simi-
lar top-k ranking of KV cache, we propose a layer-wise index
sharing strategy that enables adjacent layers to share the same
selected token indices to further reduce the cost of dynamic
selection. Since two adjacent layers show the highest com-
monality score in Figure 3(c), we choose to share the indices
between two adjacent layers. In Figure 8, we observe the first
two layers have a low commonality score while other layers
have higher scores due to the residual, so we do not apply
sharing to the first two layers. Layer-wise index sharing ef-
fectively reduces the extra overhead introduced by dynamic
selection. We discuss how the number of adjacent layers affects the trade-off in Section 5.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5% 10% 20% 30%

TriviaQA

F1
 S

co
re

 (%
)

60

40

50

70

80

KV Cache Budget

HotpotQA

F1
 S

co
re

 (%
)

0

5

10

15

20

25

30

KV Cache Budget
5% 10% 20% 30%

PassageRetrieval

KV Cache Budget

A
cc

ur
ac

y
(%

)

5

10

15

20

25

30

5% 10% 20% 30%

10% 20% 40% 80%

Qaspare

KV Cache Budget

F1
 S

co
re

 (%
)

14
16
18
20
22
24
26
28

KV Cache Budget
5% 10% 20%

11
12
13
14
15
16
17

NarrativeQA

F1
 S

co
re

 (%
)

35%10% 20%5%

GovReport

KV Cache Budget

22

24

26

28

30

R
O

U
G

E
-L

 (%
)

Figure 9: Comparison with fixed-pattern and static KV cache eviction baselines.

5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUPS

Models and datasets. Our experiments are based on LongChat-7B-V1.5-32K (Li et al., 2023) on
LongBench (Bai et al., 2023)1: HotpotQA (Yang et al., 2018), NarrativeQA (Kočiskỳ et al., 2018),
Qasper (Dasigi et al., 2021), GovReport (Huang et al., 2021), TriviaQA (Joshi et al., 2017), and
PassageRetrieval (Bai et al., 2023). We also apply our method to LLaMA-2-7B/13B (Touvron et al.,
2023) on 5-shot XSUM (Narayan et al., 2018) and LLaMA-3-8B-Instruct (Dubey et al., 2024) on
LongBench. To save GPU memory when processing long-context tasks, we leverage FlashAttention
(Dao et al., 2022) during the prefill stage.

Baselines. For comparison, we choose prior-art static and dynamic KV cache eviction baselines,
including H2O (Zhang et al., 2024d), StreamingLLM (Xiao et al., 2023), TOVA (Oren et al., 2024),
SnapKV (Li et al., 2024), InfLLM (Xiao et al., 2024), and LongCache (Liu et al., 2024b). Detailed
descriptions of the baselines and our setups can be found in Appendix F.

Experimental environment. For performance evaluation, our experiments are conducted based
on LongBench on an NVIDIA A100 80GB GPU. For efficiency evaluation, our experiments are
based on Secretflow (SPU (Ma et al., 2023) V0.9.1) and follow the protocols of PUMA (Dong et al.,
2023)2. We optimize the top-k protocol in Secretflow with computation parallelization. The latency
is evaluated under the LAN setup (Rathee et al., 2020). We evaluate the efficiency using GPT-2
and LLaMA-2, and since securely evaluating a full-size 7B model in SPU exceeds our hardware
resources, we set a smaller hidden dimension of 1024 in our evaluation.

5.2 PERFORMANCE EVALUATION

In Figure 9 and Table 4, we comprehensively compare MPCache with prior-art KV cache eviction
methods and make the following observations: 1) comparison with fixed-pattern and static al-
gorithms. MPCache consistently outperforms prior-art methods, including H2O, StreamingLLM,
TOVA, and SnapKV across different datasets. These methods statically discard the tokens while
MPCache dynamically selects a subset of tokens based on the current queries. MPCache shows
decent scalability to different KV cache budgets. For example, on HotPotQA and NarrativeQA,
MPCache achieves comparable performance as full cache, even only ⇠5% KV cache preserved;
2) comparison with dynamic algorithms. MPCache achieves comparable and even better perfor-
mance compared with InfLLM and LongCache. For example, on NarrativeQA, MPCache achieves
1.32⇥ and 2.39⇥ latency reduction with a higher F1 score compared with InfLLM and LongCache,
respectively; 3) scalability of MPCache. We extend our method to LLaMA-2-13B in Figure 3 and
LLaMA-3-8B-Instruct in Table 5, demonstrating the superior performance of MPCache.

1
https://github.com/THUDM/LongBench

2
https://github.com/secretflow/spu

8

https://github.com/THUDM/LongBench
https://github.com/secretflow/spu

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison with dynamic eviction baselines on different datasets and budgets. “(a⇥)”
means MPCache achieves a⇥ efficiency improvement compared with baselines.

Dataset Cache Budget
InfLLM LongCache MPCache (ours)

Perf. (%)" Lat. (s)# Perf. (%)" Lat. (s)# Perf. (%)" Lat. (s)#

HotpotQA
Full 31.16 75.52 31.16 75.52 31.16 75.52
5% 28.20 51.64 (1.30⇥) 24.31 89.46 (2.24⇥) 30.27 39.85

10% 29.01 68.04 (1.28⇥) 24.69 123.1 (2.30⇥) 30.05 53.32

TriviaQA
Full 82.67 75.52 82.67 75.52 82.67 75.52
5% 75.65 51.64 (1.38⇥) 59.85 89.46 (2.39⇥) 75.61 37.37

10% 82.75 68.04 (1.34⇥) 60.56 123.1 (2.43⇥) 82.45 50.75

NarrativeQA
Full 17.02 75.52 17.02 75.52 17.02 75.52
5% 12.80 47.74 (1.32⇥) 14.65 86.42 (2.39⇥) 17.23 36.13

10% 13.74 63.49 (1.28⇥) 15.69 121.4 (2.45⇥) 17.35 49.46

PassageRetrieval
Full 32.50 75.52 32.50 75.52 32.50 75.52
5% 6.161 51.64 (1.15⇥) 21.42 89.46 (1.99⇥) 19.75 44.82

10% 8.872 68.04 (1.16⇥) 24.92 123.1 (2.10⇥) 27.75 58.47

Qasper
Full 27.58 75.52 27.58 75.52 27.58 75.52
8% 20.53 64.52 (1.45⇥) 24.53 136.9 (3.08⇥) 23.86 44.39

16% 23.90 72.84 (1.33⇥) 26.07 225.9 (4.12⇥) 24.95 54.77

Table 5: Extension to LLaMA-3-8B-Instruct on with an average KV cache size of 2048.

Method Qasper
(F1 Score)

MultiFieldQA
(F1 Score)

HotpotQA
(F1 Score)

2WikiMultihopQA
(F1 Score)

MuSique
(F1 Score)

TriviaQA
(F1 Score)

TREC
(Accuracy)

SAMSum
(Rouge-L)

Full Cache 29.75 41.12 45.55 35.87 22.35 90.56 73.0 41.88
SnapKV 25.78 38.13 40.12 32.01 16.86 83.22 70.0 31.75

H2O 26.85 39.54 44.30 32.92 21.09 90.56 53.0 41.84
MPCache (ours) 29.45 40.30 44.32 35.91 22.66 90.43 73.0 42.42

1

0

0.25
0.50
0.75

N
or

m
al

iz
ed

 L
at

. (
s)

N
or

m
al

iz
ed

 C
om

m
. (

G
B

)

2.64x 2.01x 1.97x 1.80x
3.21x 4.18x 5.92x 8.37x

>200>100
Full KV Cachew/o KV Cache Head Merging MPCache-10% MPCache-5%

Seq. Length=512 Seq. Length=512Seq. Length=512 Seq. Length=512Seq. Length=1024 Seq. Length=1024Seq. Length=2048 Seq. Length=2048

GPT-2 LLaMA-2LLaMA-2 LLaMA-2 GPT-2 LLaMA-2 LLaMA-2 LLaMA-2

LongCache-5%

2

Figure 10: Evaluation on per-token generation latency and communication.

5.3 INFERENCE EFFICIENCY EVALUATION

Table 3: Comparison of LLMs with
different parameter scales on XSUM.

Budget 10% 5%
Scale 7B" 13B" 7B" 13B"

Full Cache 11.90 13.60 11.90 13.60
H2O 10.50 13.24 4.886 9.081

MPCache (ours) 11.10 13.44 10.08 13.08

In Figure 10, we benchmark the generation efficiency with
different sequence lengths ranging from 512 to 2048. We
compare MPCache with model without KV cache, with full
KV cache, LongCache, and head merging (Rathee et al.,
2024; Bian et al., 2021). From the results, we make the fol-
lowing observations: 1) KV cache is crucial for private LLM
inference since it avoids re-computation of the KV cache of
the previous tokens. As shown in the purple bar, the over-
head increases by hundreds of times compared with using
the KV cache; 2) compared with full KV cache on LLaMA-2, MPCache achieves 1.59 ⇠ 2.01⇥,
1.46 ⇠ 1.97⇥, and 1.26 ⇠ 1.8⇥ latency reduction and 3.39 ⇠ 4.18⇥, 4.33 ⇠ 5.92⇥, and
5.51 ⇠ 8.37⇥ communication reduction with different sequence lengths, respectively; 3) com-
pared with LongCache which dynamically selects tokens without static eviction and clustering on
LLaMA-2, MPCache even achieves 3.85⇥ and 19.47⇥ latency and communication reduction, re-
spectively. We further discuss the 2PC protocol Lu et al. (2023) in Section 5.4.

5.4 ABLATION STUDY OF MPCACHE

Effectiveness of different optimizations. In Figure 11, we demonstrate the effectiveness of our
proposed optimizations by adding them step by step on LLaMA-2-7B with a sequence length of
1024 and static eviction ratio of 75%. We make the following observations: 1) directly applying

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Full KV Cache

+Static
Eviction
+Top-k

Parallel.
+Token

Clustering
+Linearization

&Reordering

+Dynamic
Selection

0 40 80 120 160 0 500 1000 1500 2000
Latency (s) Communication (MB) Performance

11.9%

10.3%

10.9%

10.9%

9.3%

10.2%

10.1%

31.1%

30.3%

30.4%

30.4%

24.3%

25.3%

25.3%

H2O: 28%H2O: 4.8%

XSUM HotpotQA

Final KV Cache
Budget: 5%

1.9x 5.9x
+Layer Index

Sharing
(MPCache)

Figure 11: Step-by-step ablation study of MPCache.

Level 1
Coarse-grained

Level 2
Fine-grained F1 Score (%) Comm. (MB)

s32(0.9) s16(0.22) 29.6 163.5
s32(0.7) s16(0.28) 30.1 144.0
s32(0.5) s16(0.40) 30.2 140.2
s32(0.3) s16(0.67) 29.2 108.8

s64(0.9) s16(0.22) 29.5 158.1
s64(0.7) s16(0.28) 29.3 110.1
s64(0.5) s16(0.40) 29.1 104.9
s64(0.3) s16(0.67) 29.0 69.12

Table 6: Different hierarchical structures
with a dynamic selection ratio of 20%.

dynamic selection, e.g., LongCache to private LLM inference does not provide the expected effi-
ciency improvement and even increases both latency and communication; 2) after static eviction,
latency and communication of dynamic selection are reduced by 1.42⇥ and 2.76⇥, respectively.
3) our MPC-friendly optimizations, including clustering, linearization, reordering, and layer index
sharing further reduce the extra overhead introduced by dynamic selection without sacrificing the
model performance; 4) MPCache eventually achieves 1.9⇥ and 5.9⇥ latency and communication
reduction, respectively, and achieves better performance compared with H2O.

25.0

27.5

30.0

F1
 S

co
re

 (%
)

2 4 8 16 32

30.25

28.65

27.96

25.13

22.21

L
atency (s)

39.0

33.0

36.0

F1 Score
Latency

Adjacent Layers

Figure 12: Effect of # adja-
cent layers.

Effect of hierarchical structure. To trade off the model perfor-
mance and dynamic selection overhead, we evaluate different hier-
archical structures on HotpotQA. Specifically, we choose different
cluster sizes s and selection ratios at different levels (e.g., s32(0.7)
means selecting 70% clusters with s = 32). From Figure 6, we
make the following conclusions: 1) when the gap between two
levels increases or the coarse-grained selection ratio decreases, the
overhead becomes lower and the performance exhibits a downward
trend; 2) appropriate course-grained selection may help improve the
performance, e.g., the ratio changes from 90% to 50% with s = 32;

Effect of the number of adjacent layers for layer index shar-
ing. In response to Section 3, we evaluate the trade-off between
the number of adjacent layers for layer-wise index sharing and model performance on HotpotQA in
Figure 12. As observed, when the number of adjacent layers increases, the latency is reduced at the
cost of the performance degradation.

Normalized
Lat. (s)

Normalized
Comm. (MB)

1.0

31.16% 30.27%

24.31%

Full Cache LongCache
MPCache

31.16% 30.27%
24.31%

F1 Score

F1 Score of
HotpotQA

Figure 13: Extension to
2PC protocol.

Discussion on 2PC protocol. We evaluate the 2PC efficiency in Fig-
ure 13. It is observed that MPCache achieves 1.63⇥ and 1.79⇥ latency
and communication reduction compared with the full cache, and 2.58⇥
and 2.48⇥ latency and communication reduction compared with Long-
Cache. Since the multiplication communication in 2PC is larger than in
3PC, the cost of similarity approximation becomes higher. We can use
random projection (Johnson et al., 1986) to reduce the multiplication
dimensionality, and we leave the research as our future work.

Additional results. We present more experimental results, including
the effect of ↵, the necessity of KV cache, and the comparison with
average-based similarity approximation in Appendix F.

6 CONCLUSION

In this work, we propose an MPC-friendly KV cache eviction framework dubbed MPCache, that
enables accurate and efficient private LLM inference. MPCache is a two-step framework com-
bining static eviction and dynamic selection. To reduce the heavy overhead of dynamic selection,
we propose a series of MPC-friendly optimizations. Extensive evaluations demonstrate that MP-
Cache consistently outperforms prior-art KV cache eviction baselines across different generation
tasks and significantly reduces both latency and communication.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, and Kenneth Church. On attention redun-
dancy: A comprehensive study. In Proceedings of the 2021 conference of the north american
chapter of the association for computational linguistics: human language technologies, pp. 930–
945, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, march 2023. URL https://lmsys. org/blog/2023-03-
30-vicuna, 3(5), 2023.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning, pp.
3947–3961. PMLR, 2022.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Naren Dhyani, Jianqiao Mo, Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, and
Chinmay Hegde. Privit: Vision transformers for fast private inference. arXiv preprint
arXiv:2310.04604, 2023.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Cheng. Puma: Secure inference of llama-7b in five minutes. arXiv
preprint arXiv:2307.12533, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
Lazyllm: Dynamic token pruning for efficient long context llm inference, 2024. URL https:

//arxiv.org/abs/2407.14057.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78(110):1–108,
1998.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. Sigma: Secure gpt inference with function secret sharing. Cryptology ePrint
Archive, 2023.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache:
Accurate and efficient kv cache quantization with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen-jie Lu, Cheng Hong, and Kui Ren. Ciphergpt:
Secure two-party gpt inference. Cryptology ePrint Archive, 2023.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. arXiv preprint arXiv:2104.02112, 2021.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
{Two-Party} deep neural network inference. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 809–826, 2022.

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps
into banach spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

James T Klosowski, Martin Held, Joseph SB Mitchell, Henry Sowizral, and Karel Zikan. Efficient
collision detection using bounding volume hierarchies of k-dops. IEEE transactions on Visual-
ization and Computer Graphics, 4(1):21–36, 1998.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and Peter A Beerel. Learning to linearize
deep neural networks for secure and efficient private inference. arXiv preprint arXiv:2301.09254,
2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

12

https://arxiv.org/abs/2407.14057
https://arxiv.org/abs/2407.14057

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. Mpcformer: fast,
performant and private transformer inference with mpc. arXiv preprint arXiv:2211.01452, 2022.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Fabing Li, Yuanhao Zhai, Shuangyu Cai, and Mingyu Gao. Seesaw: Compensating for nonlinear
reduction with linear computations for private inference. In Forty-first International Conference
on Machine Learning.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.
Journal of cryptology, 22:161–188, 2009.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Xiaoran Liu, Qipeng Guo, Yuerong Song, Zhigeng Liu, Kai Lv, Hang Yan, Linlin Li, Qun Liu, and
Xipeng Qiu. Farewell to length extrapolation, a training-free infinite context with finite attention
scope. arXiv preprint arXiv:2407.15176, 2024b.

Xuanqi Liu and Zhuotao Liu. Llms can understand encrypted prompt: Towards privacy-computing
friendly transformers. arXiv preprint arXiv:2305.18396, 2023.

Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yihua Cheng, Yuyang Huang, Shan Lu, Michael
Maire, Henry Hoffmann, Ari Holtzman, et al. Cachegen: Fast context loading for language
model applications. arXiv preprint arXiv:2310.07240, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
WenGuang Chen. Bumblebee: Secure two-party inference framework for large transformers.
Cryptology ePrint Archive, 2023.

Shi Luohe, Zhang Hongyi, Yao Yao, Li Zuchao, and Zhao Hai. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang, Jin Tan, Chaofan
Yu, Benyu Zhang, and Lei Wang. SecretFlow-SPU: A performant and User-Friendly frame-
work for Privacy-Preserving machine learning. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23). USENIX Association, July 2023.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference system for neural networks. In Proceedings of the 2020 Work-
shop on Privacy-Preserving Machine Learning in Practice, pp. 27–30, 2020.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp.
35–52, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104, 2024.

M Ott. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038,
2019.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. Cryptology ePrint Archive, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 325–342,
2020.

Deevashwer Rathee, Dacheng Li, Ion Stoica, Hao Zhang, and Raluca Popa. Mpc-minimized secure
llm inference. arXiv preprint arXiv:2408.03561, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
Razorattention: Efficient kv cache compression through retrieval heads. arXiv preprint
arXiv:2407.15891, 2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: an instruction-following llama model (2023).
URL https://github. com/tatsu-lab/stanford alpaca, 1(9), 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. arXiv preprint arXiv:2406.18139, 2024.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97–110. IEEE, 2021.

Zihao Wang and Shaoduo Gan. Squeezeattention: 2d management of kv-cache in llm inference via
layer-wise optimal budget. arXiv preprint arXiv:2404.04793, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, and Guoliang Fan. Haven: Hierarchical coopera-
tive multi-agent reinforcement learning with dual coordination mechanism. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 11735–11743, 2023.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528, 2024.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Tong Tong, Wen-jie Lu, Jin Tan, Runsheng Wang, and
Ru Huang. Mpcvit: Searching for accurate and efficient mpc-friendly vision transformer with
heterogeneous attention. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5052–5063, 2023.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
channel: Efficient large language model inference with coupled quantization. arXiv preprint
arXiv:2405.03917, 2024b.

Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, and Qian Lou. Heprune: Fast pri-
vate training of deep neural networks with encrypted data pruning. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024d.

Youpeng Zhao, Di Wu, and Jun Wang. Alisa: Accelerating large language model inference via
sparsity-aware kv caching. arXiv preprint arXiv:2403.17312, 2024.

Fei Zheng, Chaochao Chen, Zhongxuan Han, and Xiaolin Zheng. Permllm: Private inference of
large language models within 3 seconds under wan. arXiv preprint arXiv:2405.18744, 2024.

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and Rynson WH Lau. Biformer: Vision
transformer with bi-level routing attention. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 10323–10333, 2023.

15

	Introduction
	Problem Formulation and Background
	Problem Formulation
	Background

	Motivations and challenges
	MPCache: An MPC-friendly Private LLM Inference Framework
	Overview of MPCache
	Step 1: Look-once Static KV Cache Eviction Algorithm
	Step 2: MPC-friendly Dynamic KV Cache Selection Algorithm
	Layer-wise Index Sharing for Further Efficiency Optimization

	Empirical Evaluation
	Experimental Setups
	Performance Evaluation
	Inference Efficiency Evaluation
	Ablation Study of MPCache

	Conclusion
	Detailed Background and Related Works
	Private LLM inference
	KV cache compression
	Generative LLM Inference in Autoregressive-style

	MPC Protocol Descriptions
	Threat Model and Security
	2PC Protocol
	3PC Protocol
	Token Gathering

	Observation from Pattern Discovery of Large Attention Maps
	Pseudocode of MPCache Algorithm Framework
	Paradigm Comparison with Dynamic Policy
	Supplemental Experiments
	Supplemental Setups
	LLM Architectures
	Detailed Description about Baselines
	Necessity of KV Cache in MPC
	Supplemental Ablation Study

	Theoretical Analysis of Similarity Approximation
	Overall Secure Inference Framework

