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* LaVCa is the Japanese name for the deep-sea fish Chlamydoselachus anguineus (frilled shark).

A man with a toothbrush 
in his mouth.

A food packaging features a 
smiling person and a cartoon 
character.

This innovative sidewalk 
entrance overlaps with a train 
track and a road bridge.

person train track

A street sign on the side 
of a train track.

One-hot vector

Captioning method
Voxel caption Voxel image

Voxel 1 Voxel 2

Voxel 
(neurons)Brain

Acc. 0.100

Acc. 0.235

Acc. 0.197

Acc. 0.276

Voxel 1

Voxel 2

・・・

Stimuli

Interpret

Measured voxel activation

Figure 1: Illustration of our paper. Our proposed method, LaVCa, produces natural language captions
that provide a fine-grained description of voxel selectivity (representation) and more accurately cap-
ture the characteristics of brain activity in the visual cortex, outperforming conventional approaches.

ABSTRACT

Understanding the properties of neural populations (or voxels) in the human brain
can advance our comprehension of human perceptual and cognitive processing
capabilities and contribute to developing brain-inspired computer models. Recent
encoding models using deep neural networks (DNNs) have successfully predicted
voxel-wise activity. However, interpreting the properties that explain voxel re-
sponses remains challenging because of the black-box nature of DNNs. As a
solution, we propose LLM-assisted Visual Cortex Captioning (LaVCa), a data-
driven approach that leverages large language models (LLMs) to generate natural-
language captions for images to which voxels are selective. By applying LaVCa
for image-evoked brain activity, we demonstrate that LaVCa generates captions
that describe voxel selectivity more accurately than the previous approaches. The
captions generated by LaVCa quantitatively capture more detailed properties than
the existing method at both the inter-voxel and intra-voxel levels. Furthermore, we
find richer representational content within cortical regions that prior neuroimaging
studies have deemed selective for simpler categories. These findings offer profound
insights into human visual representations by assigning detailed captions through-
out the visual cortex while highlighting the potential of LLM-based methods in
understanding brain representations.

1 INTRODUCTION

A primary goal of computer vision is to build systems capable of processing and understanding the
complex visual world in a manner akin to human perception. Studying how the human brain—with
its advanced visual functions—forms its visual representations deepens our understanding of the
brain’s visual network and holds promise for developing next-generation computer vision models.

Over the past decade, encoding models have become the standard tool for this endeavour Kay et al.
(2008); Nishimoto et al. (2011); Naselaris et al. (2011). Early work employed handcrafted, low-level
filters or one-hot semantic labels, yielding interpretable—but coarse—descriptions of voxel-level (the
spatial measurement unit of fMRI) selectivity. Modern approaches substitute deep neural-network
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(DNN) features, which dramatically raise prediction accuracy Güçlü & Van Gerven (2015); Schrimpf
et al. (2021); Takagi & Nishimoto (2023). Yet the very richness that makes DNNs powerful also
renders them opaque: it remains difficult to explain why a given voxel activates, especially at the
single-voxel level where group-averaged semantic axes Huth et al. (2016); Lescroart & Gallant (2019)
are too blunt.

In this study, we address the difficulty of voxel-level interpretation with a new method called LLM-
assisted Visual Cortex Captioning (LaVCa), which generates data-driven captions for individual
voxels (Figure 1). LaVCa proceeds in four steps: (1) building voxel-wise encoding models for brain
activity evoked by images, (2) identifying the optimal images for each voxel’s encoding model using
an augmented image dataset, (3) generating captions for these optimal images, and (4) creating
concise summaries from those captions. By leveraging large language models (LLMs) with access to
a vast, open-ended vocabulary, LaVCa generates diverse inter-voxel captions. Moreover, generating
captions from multiple keywords enables us to capture diverse intra-voxel properties.

LaVCa (Ours)
Concat (Ours)
BrainSCUBA

Figure 2: The relationship between brain ac-
tivity prediction accuracy and voxel caption
length (number of words) for a single subject
(subj01). Numbers next to each point denote
the number of optimal image captions em-
ployed by LaVCa for summarization and by
Concat for direct concatenation.

Our contributions are as follows:

1. We propose LaVCa, which leverages LLMs
to generate natural language captions of
voxel-level visual selectivity. By adopting
a multi-stage design that decomposes the
captioning process into interpretable steps,
LaVCa enhances interpretability compared
to prior work while preserving descriptive
richness.

2. We demonstrate that LaVCa produces more
accurate captions than the earlier method
BrainSCUBA Luo et al. (2023) and better
characterizes voxel-wise visual selectivity
through brain activity prediction.

3. We also demonstrate that LaVCa can gen-
erate highly interpretable and accurate cap-
tions without sacrificing information from
the optimal images (Figure 2).

4. The captions generated by LaVCa quantita-
tively capture more detailed properties than
the existing method at both the inter-voxel
and intra-voxel levels.

5. More detailed analysis of the voxel-
specific properties generated by LaVCa re-
veals richer representational content within
ROIs that prior neuroimaging studies have
deemed selective for simpler categories.

2 RELATED WORK

Two complementary approaches frame modern fMRI research: encoding and decoding models
Naselaris et al. (2011). Encoding models aggregate activity across many stimuli for each voxel to
pinpoint the features that best explain its responses. Decoding models reverse the mapping, pooling
activity across many voxels to reconstruct a participant’s moment-to-moment percepts—ranging
from continuous speech Tang et al. (2023) to images Takagi & Nishimoto (2023). Although both
lines of work exploit powerful deep models, they address distinct questions: decoders ask “What
was the observer perceiving?,” whereas encoders ask “What information does this voxel represent?.”
The present study targets the encoding side, judging captions by how accurately they predict voxel
responses rather than how faithfully they reproduce the original stimulus.

Early encoding work used handcrafted low-level filters or one-hot semantic labels, enabling straight-
forward but coarse voxel interpretation Kay et al. (2008); Nishimoto et al. (2011); Naselaris et al.
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“white animal”,
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“food on the table”,
“interaction between 
humans and animals”

“The smiling child hugs a fluffy 
white animal, showcasing the 

joyful interaction between 
humans and animals.” Trainable

Frozen

Figure 3: Architecture of LaVCa. a We construct a voxel-wise encoding model for a human subject’s
brain activity data (measured using fMRI) while viewing images, using latent representations from a
contrastive vision–language model (VLM). The encoding weight is obtained through ridge regression.
b We identify the optimal images for a given voxel by calculating the inner product between the
contrastive VLM embeddings of external image datasets and the voxel’s trained encoding weight,
selecting the top-N images (the “optimal image set”) that produce the highest predicted activation.
c Next, we use a multimodal large language model (MLLM) to generate captions for each optimal
image set, allowing an LLM to interpret them. d Finally, we prompt an LLM to extract keywords
from the captions, filter these keywords, and feed them into a “Sentence Composer,” producing a
concise voxel caption.

(2011); Huth et al. (2012). Swapping these features for deep-neural-network (DNN) embeddings
dramatically improves prediction accuracy Güçlü & Van Gerven (2015); Schrimpf et al. (2021);
Takagi & Nishimoto (2023); Antonello et al. (2024), yet the high-dimensional representations make
individual voxels hard to explain. Population-level remedies project many voxels onto a few semantic
axes Huth et al. (2016); Lescroart & Gallant (2019); Nakagi et al. (2024), but sacrifice single-voxel
nuance.

To obtain finer, voxel-specific explanations, data-driven text-generation approaches such as Brain-
SCUBA Luo et al. (2023) and SASC Singh et al. (2023) have been proposed. BrainSCUBA is an
end-to-end method that uses an existing image captioning model to produce voxel-wise captions
for the visual cortex, whereas SASC uses an LLM to merge multiple short phrases—those with the
highest predicted voxel activations—into a single, data-driven caption, thus describing the semantic
properties of voxels. However, their reliance on a single captioning model (BrainSCUBA) or on very
short n-gram phrases (SASC) limits lexical richness and adaptability.

By (i) decoupling image selection from caption generation, (ii) using LLM-based keyword extraction
followed by lightweight sentence composition (iii) allowing any vision-language backbone, and (iv)
working with any LLM that has strong language skills without task-specific fine-tuning, LaVCa
retains the high predictive power of brain activity while yielding richer and more controllable
voxel-level descriptions than prior work.

3 METHODS

3.1 FMRI DATASET

This study uses the Natural Scenes Dataset (NSD) Allen et al. (2022) following the same experimental
conditions as in BrainSCUBA. The NSD consists of data collected over 30 to 40 sessions using a 7
Tesla fMRI scanner, with each participant viewing 10,000 images, repeated three times. We analyze
data from the four participants (Subject 01, Subject 02, Subject 05, and Subject 07) who completed
all imaging sessions. The images and captions used in NSD are drawn from MS COCO and resized to
224× 224 pixels to align with the input requirements of the vision models used. We average the brain
activity data for each subject across repeated trials of the same image to improve the signal-to-noise
ratio. Up to 9,000 images per subject are used as training data, and the remaining 1,000 images are
reserved for testing. We use the preprocessed scans with a resolution of 1.8mm provided by NSD for
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the functional data. We use single-trial beta weights estimated via a generalized linear model within
ROIs. Moreover, we standardize the response of each voxel to have a mean of zero and a variance of
one within each session. We use the ROIs provided by NSD, which include early and higher-level
(ventral) visual areas and face, place, body, and word-selective regions.

3.2 LLM-ASSISTED VISUAL CORTEX CAPTIONING (LAVCA)

We propose a method, LaVCa (LLM-assisted Visual Cortex Captioning), to automatically generate
data-driven natural language captions that characterize each voxel’s selectivity in the visual cortex.
LaVCa consists of four stages (Figure 3):

1. Construct voxel-wise encoding models for each subject while they view natural images.
2. Identify the optimal image set by finding the top-N images that most strongly activate each

voxel (according to the trained encoding models).
3. Generate captions for these optimal images using a multimodal large language model

(MLLM) for summarization by an LLM in the next step.
4. Derive concise voxel captions by extracting and filtering keywords from the image captions,

then feeding these keywords into a “Sentence Composer.”

We describe the core pipeline here; ablations are detailed in Appendix A.3.

3.2.1 ENCODING MODEL CONSTRUCTION

First, we construct voxel-wise encoding models to predict each voxel’s activity in response to
natural images (Figure 3a). To obtain high-level feature representations of visual stimuli that can be
linked to neural responses, we use embeddings from a contrastive vision–language model (VLM;
e.g., CLIP Radford et al. (2021)). Specifically, for comparability with BrainSCUBA, we adopt the
projection layer embedding of CLIP’s vision branch and use the same pretrained checkpoint as
reported in that work (see Appendix A.2.3). We also re-implemented BrainSCUBA in-house; note
that our implementation differs in the dataset used for the projection step and in the training approach
for the encoding model (Appendix A.2.4 for details).

For each image stimulus i, we extract its CLIP-Vision projection-layer embedding xi ∈ Rd and pair
it with the measured responses across all voxels yi ∈ Rv. The encoding model assumes a linear
relationship

yi = Wxi + εi,

where W ∈ Rv×d represents the voxel-wise encoding parameters and εi captures residual noise. We
estimate W using ridge regression on the NSD training set.

3.2.2 EXPLORATION OF OPTIMAL IMAGE SETS FOR VOXELS

Next, we identify the optimal image set for each voxel (Figure 3b). We compute the inner product
between the voxel’s encoding weight and CLIP-Vision latent representations from a large-scale
external dataset (distinct from NSD) to obtain predicted voxel responses for each image. We then
select the top-N images that generate the highest predicted activation. This process is equivalent to
calculating the predicted responses of each voxel for every image. This study uses approximately 1.7
million images from OpenImages-v6 Kuznetsova et al. (2020)

3.2.3 CAPTIONING OPTIMAL IMAGE SETS WITH MLLM

To enable an LLM to interpret each voxel’s optimal image set, we first generate captions for these
image sets using an MLLM. We use MiniCPM-V Yao et al. (2024) with the prompt “Describe the
image briefly.” For our accuracy evaluation, we also form a simple baseline by concatenating the
top-N captions from the optimal image set.

3.2.4 GENERATING VOXEL CAPTIONS

Finally, we generate interpretable voxel captions from the image captions. First, we use an LLM to
extract common keywords across the captions within each voxel’s optimal image set (Figure 3d).
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Following the in-context learning prompt approach from Dunlap et al. (2024), we extract multiple key-
words from the caption sets using an LLM (A2 for the prompt). We use gpt-4o (gpt-4o-2024–08–06
in the OpenAI API) as the LLM. To remove irrelevant or noisy keywords, we compute the cosine
similarity between each keyword’s embedding from CLIP’ text branch (prompted as “A photo of
{keyword}.”) and the encoding weight for that voxel, then apply a softmax threshold to retain only
sufficiently relevant keywords. Hereafter, we refer to CLIP’s text branch as “CLIP-Text”. Next, we
transform these filtered keywords into a sentence-level caption using the “Sentence Composer” from
MeaCap Zeng et al. (2024), initially designed to generate image captions from keyword sets. MeaCap
can generate a caption by inputting the target image’s keywords into the Sentence Composer while
referencing similarities to the image features. In this study, we replace image features with encoding
weights so that the model composes a coherent sentence from the voxel-specific keywords (for details,
see Section A.2.1).

3.3 CAPTION EVALUATION

3.3.1 BRAIN ACTIVITY PREDICTION AT SENTENCE LEVEL

A voxel caption that truly reflects a voxel’s selectivity should be more similar to the caption of an
NSD image that strongly activates that voxel, and less similar to captions of images that do not. We
therefore predict voxel-wise brain activity from sentence similarity to evaluate how accurately each
caption captures voxel selectivity (Figure A3a). Importantly, this procedure differs conceptually from
decoding, which predicts a caption for every stimulus. Following Singh et al. (2023), we:

1. Use a pretrained Sentence-BERT to compute text embeddings for each voxel caption and
each NSD image caption.

2. Compute the cosine similarity between the voxel caption embedding and each NSD image
caption embedding.

3. Treat this similarity value as the predicted activity for that voxel on that image.

For each voxel v, we then calculate the Spearman’s rank correlation between the vector of predicted
sentence-level similarities and the measured activity; this correlation coefficient is regarded as the
prediction accuracy for that voxel.

For statistical significance, we use a permutation test to assess voxel-wise prediction accuracy.
Multiple comparisons are corrected using the Benjamini–Hochberg false discovery rate procedure
(α = 0.05). Detailed procedures are provided in Appendix A.2.2.

3.3.2 BRAIN ACTIVITY PREDICTION AT IMAGE LEVEL

Because sentence-based evaluation can be influenced by non-visual linguistic features (e.g., sentence
length, clarity of phrasing, or stylistic variation), we also assess voxel selectivity using image
similarity (Figure A3b). We use FLUX.1-schnell to create a voxel image and then compute vision
embeddings (via CLIP-Vision) for both the generated voxel image and each NSD trial image. We
obtain an image-level metric of predicted brain activity by comparing these embeddings, focusing
purely on visual content. Crucially, this procedure is not image reconstruction in the decoding
sense; it characterises voxel selectivity through images rather than attempting to recreate the stimuli
themselves.

4 RESULTS

4.1 VOXEL ACTIVITY PREDICTION

We examine whether LaVCa can generate concise and interpretable voxel captions without losing
critical information in each voxel’s optimal image set. We compare two approaches from the
perspective of interpretability by varying the number of optimal images used by LaVCa (Top-N ) and
by simply concatenating the captions of the optimal images (Concat-N ). Figure 2 plots prediction
accuracy against the average caption length on the horizontal axis, highlighting the trade-off between
accuracy and interpretability. Concat-N achieves better accuracy as N increases (up to N = 10) but
at the cost of a much longer caption, which can reduce interpretability. In contrast, LaVCa merges
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Figure 4: Mapping of brain activity prediction accuracy (subj01). a The sentence-level prediction
performance is projected onto inflated cortical surfaces (top: lateral, medial, and dorsal views) and
flattened cortical surfaces (bottom, with the occipital areas at the center) for both hemispheres. Voxels
with significant prediction performance are color-coded (all colored voxels P < 0.05, FDR corrected).
The white outlines indicate the ROIs that are among the top two in terms of the total voxel count
across subjects for each semantic category—Body (Extra Striate Body Area; EBA, and Fusiform
Body Area; FBA-2), Face (Fusiform Face Area; FFA-1, and Occipital Face Area; OFA), and Places
(Parahippocampal Place Area; PPA, and Occipital Place Area; OPA). Word areas are shown in Figure
A4. b A comparison of sentence-level prediction performance between our method, LaVCa, and the
existing method, BrainSCUBA on the flattened cortical surface.

information across the optimal image set into a concise summary, retaining interpretability even as N
grows and reaching accuracy comparable to Concat-N (see Figure A6b). Results for all participants
are provided in Figure A6a.

Next, we determine whether the generated captions accurately capture the properties of voxels in
the visual cortex. To this end, we map sentence-level prediction accuracy onto both inflated and
flattened cortical surfaces (Figure 4a). These maps illustrate that LaVCa captions significantly predict
voxel activity throughout the visual cortex (P < 0.05, FDR-corrected). Results for all subjects at the
sentence and image levels are presented in Figures A4 and A5.

Finally, we compare two configurations of LaVCa—its default five-keyword version with the Sentence
Composer and a simplified single-keyword variant without the Sentence Composer—against the
existing method BrainSCUBA and a shuffled variant (LaVCa captions shuffled across voxels) at both
the sentence and image levels, focusing on the top 5,000 voxels with the highest accuracy on the
training data (Table 1). Our proposed method, LaVCa, outperforms BrainSCUBA and the single-
keyword variant (P < 0.05, paired t-test). This finding suggests that using multiple keywords and
composing them into a coherent sentence provides a more accurate explanation of voxel selectivity.
Importantly, LaVCa outperforms BrainSCUBA at the image-level, indicating that the improvement is
not merely due to better handling of non-visual linguistic features (e.g., sentence length or phrasing),
but reflects a genuinely enhanced characterization of visual selectivity. Furthermore, LaVCa achieves
far higher accuracy than the shuffled condition. Results for the top 1,000, 3,000, and 10,000 voxels
appear in Table A6 and A7. After visualizing sentence-level prediction accuracy across the cortex,
we find that LaVCa exceeds BrainSCUBA’s performance throughout the visual cortex (Figure 4b).
See Figure A4 for the results of all subjects.

4.2 LEXICAL AND SEMANTIC DIVERSITY ANALYSIS

We next assess how effectively LaVCa captions capture both lexical and semantic diversity across
voxels, focusing first on inter-voxel diversity (Table A8, left). For this quantitative evaluation, we use
three metrics: (1) the total vocabulary size (excluding stop-words) across all voxel captions (Lexical);
(2) the average variance across each dimension of the CLIP-Text embedding computed on all voxel
captions (Semantic); and (3) the number of principal components (PCs) required to capture 90%
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Table 1: Comparison of brain activity prediction accuracy at the sentence and image levels. For each
subject, the mean and standard deviation of accuracy on the test data are displayed for the top 5,000
voxels with the highest accuracy on the train data.

Sentence level

Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.007 ± 0.199 0.058 ± 0.223 0.068 ± 0.243 0.009 ± 0.175
BrainSCUBA – – 0.207 ± 0.062 0.251 ± 0.071 0.264 ± 0.084 0.182 ± 0.065
LaVCa (Ours) 1 ✗ 0.205±0.068 0.250±0.075 0.272±0.086 0.186±0.072
LaVCa (Ours) 5 ✓ 0.246 ± 0.066 0.287 ± 0.075 0.306 ± 0.084 0.218 ± 0.073

Image level

Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.017 ± 0.163 0.052 ± 0.185 0.066 ± 0.204 0.009 ± 0.149
BrainSCUBA – – 0.188 ± 0.067 0.226 ± 0.070 0.250 ± 0.078 0.169 ± 0.069
LaVCa (Ours) 1 ✗ 0.182 ± 0.063 0.221 ± 0.066 0.252 ± 0.077 0.158 ± 0.064
LaVCa (Ours) 5 ✓ 0.213 ± 0.072 0.250 ± 0.070 0.273 ± 0.079 0.187 ± 0.073

of the variance of CLIP-Text embedding across captions in a principal component analysis (PCA;
Semantic).

First, we evaluate the diversity of LaVCa captions compared with the existing method, BrainSCUBA.
When averaged across subjects, LaVCa markedly outperforms BrainSCUBA in both lexical (16,922
vs. 3,193 in vocab. size) and semantic (0.0642 vs. 0.0588 in variance of embeddings; 219 vs. 127
in PCs required for 90% variance explained) diversity. These findings confirm that our open-ended
LLM–based approach can produce richer word usage and more meaningful captions across inter-voxel
comparisons.

We evaluate the diversity of LaVCa captions compared with more detailed captions. BrainSCUBA
leverages ClipCap Mokady et al. (2021), a model that produces relatively simple image captions.
We use the top-1 captions generated by the MLLM on the optimal image sets (equivalent to the
case where N = 1 in Concat-N ) to compare the diversity of LaVCa with more detailed captions.
When averaged across subjects, Top-1 (13,959 vocab. size, 0.0638 avg. variance, 210 PCs) exhibits
both a vocabulary range and semantic diversity close to LaVCa. However, LaVCa achieves a higher
prediction accuracy (0.264 vs. 0.224), indicating that LaVCa can preserve robust brain activity
prediction performance while enhancing the diversity of generated captions.

Next, we evaluate diversity from an intra-voxel perspective by comparing captions generated by three
models in both lexical and semantic dimensions (Table A8, right). We use three metrics: (1) the
vocabulary size of each voxel’s caption (Lexical), (2) the average sentence length in each voxel’s
caption (Lexical), and (3) the average variance across all dimensions of Word2Vec embeddings of
each caption’s words (excluding stop-words) (Semantic). When averaged across subjects, LaVCa
markedly outperforms BrainSCUBA in both lexical (11.4 vs. 6.09 in vocab. size) and semantic (11.9
vs. 6.19 in avg. length; 0.0199 vs. 0.0160 in variance of semantic embeddings) diversity. This
improvement suggests that LaVCa more precisely captures the fine-grained intra-voxel characteristics.

For examples of voxel captions and images from various OFA and PPA voxels—along with their
corresponding quantitative metrics—compared across three models (LaVCa, BrainSCUBA, Top-1),
see Figures A10, A11, A12, and A13.

4.3 ROI-LEVEL DIVERSITY ANALYSIS

Our results thus far demonstrate that LaVCa produces more accurate voxel captions than BrainSCUBA
and better captures both inter- and intra-voxel diversity. We next ask whether LaVCa can reveal
richer representational content inside ROIs that earlier neuroimaging studies have largely described
as selective for simpler categories—for example, faces in the OFA or places in the PPA Gauthier et al.
(2000); Haxby et al. (2000); Epstein & Kanwisher (1998). We conduct a qualitative and quantitative
evaluation using LaVCa’s captions and generated images to analyze diversity that exists beyond the
known selectivity in the ROI.
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"The animal photos show how 
cute it is to comfort a red 
cardinal by touching zoo noses 
with bread."

"The person holding the object poses 
while breathing while concentrating 
while playing or a person wearing 
athletic clothing during an event 
connected to an outdoor sporting 
activity."

"Woodnut coloured blue eyes 
and a funny face painted by one 
person showing a pig sticking 
out his tongue."

This is undoubtedly looking 
particularly unique coloured 
but exceptional golden ring, 
incredible blue eye pupils and 
a tongue sticking out 
underneath the baby bear."

"A food packaging features 
a smiling person and a 
cartoon character."

"A vintage car with sex clock 
stickers and puppy dog eyes."

"People walking through 
the snowy landscape, 
people standing on a 
body of water."

"A sweet snack food 
item is displayed behind 
the colorful object."

"Eachkristilythemed mug features themed 
fruit bites and other food items resting behind 
the item, with a decorated animal centerpiece 
item and cookies featured as dessert."

"These decorated every food 
item or product registration 
display the brand name."

"How humorous detail after 
detail of brand name candy 
and food."

"A vegetable plant covered with 
colorful gold leaf symbolically faces 
display such images such as a group 
of people dressed in camouflage 
representing the market setting."

"A themed dessert tray 
decorated like pound cake, 
decorated with cupcake 
stamps."

"Pink frosting 
resembles a dessert 
tray and cupcake."

EBA OFA PPA OWFA

no
un

ve
rb

Figure 5: Interpretation of LaVCa captions (subj02). a UMAP projection of caption text across
four ROIs (EBA, OFA, PPA, OWFA), visualized on a flatmap (top). A word cloud of the 100 most
frequent nouns in these captions (middle), colored by location in the UMAP space. A word cloud of
the 100 most frequent verbs (bottom). b Visualization of the top two captions (by accuracy) for eight
clusters on the flatmap in OFA. The images generated for each caption appear to the left or above the
text. Voxels are connected to their corresponding captions and images by lines. The color of each
caption and image border reflects the average UMAP color of all voxels in the cluster.

Qualitative Assessment. We explore the semantic diversity of LaVCa captions across four ROIs
(EBA, OFA, PPA, OWFA) by applying UMAP to their CLIP-Text embeddings and visualizing the
resulting distributions on a flatmap (Figure 5a, top). In each ROI, we observe a broad spectrum of
UMAP colors, indicating multiple meaningful clusters within regions known for distinct category-
selective responses. The presence of this broad spectrum is consistent across participants (Figure A14,
A15).

Across ROIs, we observe diverse nouns and verbs that not only align with prior selectivity profiles
but also reveal richer, voxel-level selectivity for object categories and actions. Both EBA and OFA
frequently include common nouns such as people” and person,” and the verb distributions highlight
ROI-specific action tendencies: EBA is enriched for body-related actions (e.g., hold”), whereas OFA
is enriched for face-related actions (e.g., smile”). These patterns are consistent across participants
(Figure A14, A15).

Finally, to highlight how each caption and its corresponding voxel image relate to specific colors in
semantic space, we project them onto a flatmap (Figure 5b). We divide the samples into eight clusters
by labeling each of the three UMAP dimensions as “High” (≥ 2/3) or “Low” (≤ 1/3). From each
cluster, we pick the two voxels with the highest prediction accuracy (or one if only one qualifies, or
none if none qualify) and illustrate their captions and generated images.

In OFA, some captions are related to faces (e.g., “face,” “person,” “animal”), while particular voxels
encoded more fine-grained features such as “eye,” “tongue,” or “smiling,” and other voxels encoded

8
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Table 2: Average prediction accuracy with standard error across subjects when captions within each
ROI are shuffled (Shuffled) versus used as is (Original).

Body areas Face areas Place areas Word areas

Model EBA FBA-2 OFA FFA-1 OPA PPA OWFA VWFA-1

Shuffled 0.018±0.008 0.018±0.005 0.028±0.004 0.016±0.003 0.116±0.024 0.151±0.028 0.025±0.005 0.034±0.009
Original 0.157±0.005 0.125±0.010 0.095±0.009 0.111±0.003 0.200±0.022 0.213±0.027 0.084±0.013 0.158±0.007

information like “animal,” “bear,” or “cardinal.” Thus, even within this ROI, there appears to be
substantial functional differentiation among inter-voxel that extends beyond a generic “face” category.

Moreover, we observe intra-voxel diversity, where a single caption incorporates multiple ideas (e.g.,
“A food packaging features a smiling person and a cartoon character”), suggesting that individual
voxels can simultaneously encode several distinct concepts. These findings highlight the fine-grained
functional specialization across inter-voxel within the ROI and the diverse nature of intra-voxel
encoding beyond singular concepts.

The results for all participants, visualizing the top two captions for each cluster directly in the UMAP
space, can be found in Figures A16, A17, A18, and A19.

Quantitative Assessment. We next determine how many distinct captions appear in each ROI by
comparing the sentence-level prediction accuracy of each ROI when captions are maintained in their
original form versus shuffled within the ROI (Table 2). For each category (body, face, place, and
word area), we select two ROIs with the largest total voxel count across all subjects, resulting in eight
ROIs in total. In all ROIs, shuffling reduces prediction accuracy significantly. For example, in the
OFA, accuracy drops from 0.0945 (Original) to 0.0280 (Shuffled), a 3.3-fold decrease; in the PPA,
accuracy falls from 0.213 (Original) to 0.151 (Shuffled), a 1.4-fold decrease. Thus, even in regions
traditionally linked to particular concepts, voxels exhibit a range of distinct selectivities. Furthermore,
the average caption similarity between the same ROIs of different subjects is relatively high at 0.227,
compared to 0.171 between different ROIs of different subjects, indicating that such diversity is
reproducible across subjects (Figure A7).

Next, we quantify how many different semantic concepts a single voxel can encode (i.e., its degree
of multi-concept selectivity). We perform the following analysis: (1) extract every unique noun
from all voxel captions within the ROI; (2) obtain CLIP-Text embeddings for each noun using the
prompt “A photo of {word}.” and cluster them with k-means (k = 6); (3) for each voxel, count
how many of its nouns fall into different clusters. Across all ROIs, we find that most voxels are
associated with multiple clusters, indicating multi-concept selectivity (Table A10). Thus, even
within ROIs whose vocabulary is relatively coherent, individual voxels can encode several distinct
concepts. Furthermore, by aggregating the nouns used in this clustering analysis from all subjects
and examining the extent to which each subject’s voxels belong to the subject-shared clusters, we
evaluate the cross-subject reproducibility of ROI diversity (Figure A8). In both the OFA and PPA,
voxels from all subjects populate the same clusters, suggesting that such diversity is, to some extent,
consistent across individuals.

5 DISCUSSION & CONCLUSIONS

In this study, we introduce a novel method called LaVCa, which leverages LLMs to produce data-
driven, natural-language descriptions of voxel selectivity in the human visual cortex. The voxel
captions generated by LaVCa exhibit higher accuracy and greater semantic diversity than those
generated by the existing approach, BrainSCUBA. We attribute this improvement to our mechanism
for integrating multiple keywords extracted by advanced LLMs, which enables a more comprehensive
capture of the diverse selectivity patterns across voxels. Furthermore, LaVCa uncovers richer
representational content within ROIs that earlier neuroimaging studies had characterized as selective
for simpler categories. By revealing that even “category-selective” areas such as the OFA and PPA
encode a broader spectrum of concepts, our findings challenge long-standing assumptions about
functional specialization in the visual cortex. See Sections A.4 and A.5 for the Limitation and Impact
Statement.
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ETHICS STATEMENT

This study did not involve the collection of any new neural recording data. Instead, we relied exclu-
sively on the Natural Scenes Dataset (NSD), which is openly accessible to the research community.
The dataset can be obtained from https://naturalscenesdataset.org/ , subject to their
terms of use.

We conducted all analyses on this publicly released dataset and did not handle any personally
identifiable information. Based on the nature of the data and the scope of our methods, we do not
anticipate harmful applications of this work.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our results. Details of the LaVCa
pipeline, including model architecture, training procedure, and evaluation metrics, are described
in Section 3. Additional implementation details, hyperparameter settings, and preprocessing steps
for the Natural Scenes Dataset (NSD) are provided in the Appendix. Furthermore, we include
anonymized source code and scripts as part of the Supplementary Material to facilitate reproduction
of our experiments.

LLM USAGE

In accordance with the ICLR policy on the use of large language models (LLMs), we report that
LLMs were employed exclusively for language-related assistance. Specifically, we used LLMs to
aid in the translation of text into English and to polish the grammar and style of the manuscript. All
research ideas, experimental design, data analysis, and scientific interpretations were conceived and
conducted entirely by the authors.

The use of LLMs did not contribute to the formulation of research questions, methodology, or
conclusions. The authors take full responsibility for the final content of the paper, including all text
that was assisted by LLM-based tools.
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A APPENDIX

A.1 FULL RELATED WORK

A.1.1 INTERPRETING THE REPRESENTATIONS OF THE BRAIN’S NEURONS.

Encoding models have long been used in neuroscience to interpret neural representations within the
brain Kay et al. (2008); Nishimoto et al. (2011); Naselaris et al. (2011); Huth et al. (2012). These
studies used interpretable features, such as low-level visual attributes, or high-level semantic features,
such as one-hot encoding of words, for straightforward voxel-wise interpretation.

Recent approaches use features derived from DNNs and have demonstrated higher explanatory
power for brain activity than those using simpler, more interpretable features Güçlü & Van Gerven
(2015); Schrimpf et al. (2021); Takagi & Nishimoto (2023); Antonello et al. (2024). However, the
interpretability of these DNN-based encoding models remains challenging, leading to the development
of methods that condense the entire set of voxels into a small number of universal and interpretable
axes Huth et al. (2016); Lescroart & Gallant (2019); Nakagi et al. (2024).

Recent approaches propose data-driven methods to describe the properties of individual brain voxels
using natural language Luo et al. (2023); Singh et al. (2023) when analyzing brain representations
at a finer, voxel-wise level. BrainSCUBA Luo et al. (2023) is an end-to-end method that uses
an existing image captioning model, which provides voxel-wise captions of the visual cortex in a
data-driven manner. BrainSCUBA projects each voxel‘s encoding weight onto the image feature
space via dot-product attention, identifies regions of highest similarity, and then uses a text decoder to
generate captions describing the images to which the voxel is most selective. This approach provides
a data-driven natural-language description of voxel selectivity without additional training. Similarly,
SASC Singh et al. (2023) uses fMRI data collected during speech listening LeBel et al. (2023) to
identify the short phrases that most strongly activate each voxel. It then uses an LLM to combine
these short phrases into a single, data-driven caption describing each voxel’s semantic properties.

Our proposed method also generates data-driven voxel captions but differs in several ways. First,
BrainSCUBA is constrained to pre-existing, end-to-end image captioning models. In contrast, our
approach divides the task into (i) identifying an optimal set of images and (ii) converting these
images into a caption, allowing us to use any vision model aligned with language and any LLM with
advanced language capabilities without requiring specialized fine-tuning. Furthermore, although
SASC uses an LLM to create voxel captions, it primarily synthesizes short, low-information phrases
(e.g., trigrams), producing only simple keyword-based captions. In contrast, our method summarizes
more diverse and informative text and then uses these extracted keywords to compose a complete
sentence, capturing a richer range of voxel-level properties.

A.1.2 INTERPRETING THE REPRESENTATIONS OF ARTIFICIAL NEURONS IN DNNS

Interpreting artificial neurons is a key challenge in understanding how DNNs process information.
We can potentially examine human neural representations at a finer granularity by applying the
data-driven and highly accurate interpretation methods developed for artificial neurons to analyze
human brain voxels.

Numerous studies have aimed to associate artificial neurons with human-interpretable concepts Bau
et al. (2017); Mu & Andreas (2020); Oikarinen & Weng (2022); Kalibhat et al. (2023); Bykov et al.
(2024). These methods link neurons to textual concepts by comparing neuron output feature maps
with outputs from segmentation models. However, these approaches are constrained by predefined
concept sets or limited to the dataset’s words and phrases. MILAN Hernandez et al. (2021) introduced
a generative approach, enabling adaptation to different domains and tasks, but it requires annotated
data, which poses challenges for scalable applications.

LLMs permit open-ended descriptions of artificial neurons without additional model training Singh
et al. (2023); Bai et al. (2024); Wu et al. (2024); Hoang-Xuan et al. (2024). Analogous to these
methods, our study also leverages LLMs to generate open-ended concepts for brain neurons rather
than artificial neurons, seeking flexible and diverse interpretations that do not depend on predefined
vocabularies.
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A.2 IMPLEMENTAION DETAILS

A.2.1 GENERATING VOXEL CAPTIONS

In this study, we leverage the “Sentence Composer” proposed in the image captioning model Mea-
Cap Zeng et al. (2024)—referred to as the “keywords-to-sentence LM” in the original paper—to
generate sentence-level captions from keywords.

Notation

• K = {k1, . . . , km}: keyword set extracted by an LLM.

• W ∈ Rd: voxel-wise encoding weight.

• {c̃1, . . . , c̃k}: top-k captions of the voxel’s optimal images.

• ϕT (·): CLIP-Text embedding operator.

• sim(u,v) =
u⊤v

∥u∥ ∥v∥
: cosine similarity.

Iterative Decoding Procedure We begin with an initial draft caption

c(0) = [k1 k2 . . . km],

obtained by concatenating the keywords K in their given order (separated by spaces). Starting from
this seed, CBART iteratively refines the caption through the following steps:

1. Action prediction. For each position j in the current draft c(t), the encoder assigns one of
the actions COPY, REPLACE, or INSERT.

2. Candidate generation. At positions marked for replacement or insertion, the decoder
proposes the top-n lexical candidates Wj = {wj,1, . . . , wj,n} ranked by the token likelihood
Pθ(w | c(t)<j).

• Fluency (logPθ) ensures linguistic naturalness.
• Image relevance grounds the sentence in visual evidence from the voxel’s optimal

images.
• Voxel relevance (sim(ϕT (w),W )) links the caption to the voxel’s representation.

Each candidate w ∈ Wj is scored by

S(w) = λ1 logPθ

(
w | c(t)<j

)
+ λ2

1

k

k∑
i=1

sim
(
ϕT (w), ϕT (c̃i)

)
+ λ3 sim

(
ϕT (w),W

)
, (A1)

where we set (λ1, λ2, λ3) = (0.2, 0.2, 1.2).

3. Token selection and refinement. The token with the highest S(w) replaces or is inserted
at position j, yielding the updated draft c(t+1). The loop repeats until every position is
predicted as COPY, producing the final caption ĉ.

Rationale

• Fluency
(
logPθ

)
encourages linguistic naturalness.

• Image relevance
(
1
k

∑k
i=1 sim

(
ϕT (w), ϕT (c̃i)

))
grounds the sentence in visual evidence

drawn from the voxel’s optimal images.

• Voxel relevance
(
sim

(
ϕT (w),W

))
ties the caption to the voxel’s learned representation.

By jointly optimizing the score in equation A1, the method transforms discrete keyword sets into a
coherent sentence that is linguistically natural, visually grounded, and specifically aligned with the
voxel’s weights W .
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Table A1: Pretrained checkpoints used in our experiments.
Category Model Repository (Hugging Face)

Contrastive VLM
CLIP openai/clip-vit-base-patch32
SigLIP2 google/siglip2-base-patch16-224
FG-CLIP qihoo360/fg-clip-base

MLLM MiniCPM-Llama3-V2.5 openbmb/MiniCPM-Llama3-V-2_5
BLIP Salesforce/blip-image-captioning-base

LLM gpt-4o N/A (OpenAI API)
Llama 3.1-70B meta-llama/Llama-3.1-70B-Instruct

Sentence Similarity Model Sentence-BERT sentence-transformers/all-MiniLM-L6-v2
MPNet sentence-transformers/all-mpnet-base-v2

Text-to-Image Model FLUX.1-schnell black-forest-labs/FLUX.1-schnell

A.2.2 STATISTICAL TESTING

For each voxel v, the observed prediction accuracy is quantified as Spearman’s rank correlation
ρobs
v . To realize the null hypothesis of no association, the activity vector is randomly permuted B

times, yielding surrogate correlations {ρnull
v,b}Bb=1. Pooling across all N voxels produce a global null

distribution. The one-tailed p-value is computed as

pv =
#{ρnull

v,b ≥ ρobs
v }+ 1

B ×N + 1
.

We control for multiple comparisons using the Benjamini–Hochberg false-discovery-rate (FDR)
procedure (α = 0.05); voxels with q < 0.05 are declared significant. In our experiments, we set
B = 1000.

A.2.3 PRETRAINED CHECKPOINTS

We rely on a variety of pretrained models for different components of our pipeline. Most of the models
are publicly available checkpoints hosted on Hugging Face, including contrastive vision–language
models (CLIP, SigLIP2, FG-CLIP), multimodal LLMs (MiniCPM-Llama3-V2.5, BLIP), LLM (Llama
3.1-70B), sentence similarity models (Sentence-BERT, MPNet), and a text-to-image model (FLUX.1-
schnell). For keyword extraction, we use gpt-4o, which is not available as a checkpoint but is accessed
via the OpenAI API. A complete list of all models and their repositories is summarized in Table A1.

A.2.4 BRAINSCUBA

At the outset of our project in January 2025, the original BrainSCUBA codebase had not yet been
released, so we implemented the method ourselves for this study. In BrainSCUBA, the encoding
weights (linear layers) are learned using gradient descent. In our implementation, consistent with our
proposed method, we trained the encoding weights using L2-regularized linear regression from the
himalaya library package1 La Tour et al. (2022).

Moreover, BrainSCUBA projects each voxel‘s encoding weight into image space using a dataset
of 2 million images, combining OpenImages Kuznetsova et al. (2020) and LAION-A v2 (6+ sub-
set) Schuhmann et al. (2022). However, the specific images selected from each dataset are not
disclosed. We ensure a fair and dataset-independent comparison by relying solely on the 1.7 million
images from OpenImages (the same dataset used by our proposed method, LaVCa). We leverage
the training set of the subset that is accompanied by bounding boxes, object segmentations, visual
relationships, and localized narratives.

For other hyperparameters, we tested temperature values of 1.0, 1/10, 1/100, 1/150 (the value used
in the BrainSCUBA paper), and 1/500 for the softmax projection (Figure A1). We used beam search
with a beam width of 5 to generate the text decoder’s caption as described in the BrainSCUBA paper.

1https://github.com/gallantlab/himalaya
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Figure A1: The change in accuracy of BrainSCUBA with respect to temperature. The error bars rep-
resent standard error. Moreover, the star markers on the plot indicate the point where the temperature
is set to 1/150, as adopted in the original BrainSCUBA paper. The green line represents the average
value of LaVCa.

A.2.5 USED COMPUTE RESOURCES

All experiments are conducted on a single Lambda Labs cloud instance equipped with eight NVIDIA
A100-SXM4 GPUs (40 GB each). The host system features a dual-socket AMD EPYC 7542
processor, providing 124 logical CPU cores and 512 GB of DDR4 RAM.

In this setting, voxel-wise Ridge-regression training for one subject finishes in ~7 s and occupies
5.4 GB of GPU memory. Loading the 1.7 M candidate images for optimal-image search, performed
on the CPU, takes ~1,490 s per subject. The subsequent per-voxel pipeline—optimal-image search,
multimodal-LLM captioning, keyword extraction, and SentenceComposer generation—runs in ~15 s
per voxel with a peak GPU footprint of 5.0 GB. Processing 20,000 voxels for a single subject therefore
requires ~83 h end-to-end, which remains practical for offline analyses in systems neuroscience.
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Table A2: Hyper-parameter settings for gradient-descent training.
Parameter Value
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Batch size 64
Initial learning rate (η0) 3× 10−4

Final learning rate (ηT ) 1.5× 10−4

Scheduler Exponential decay
Decay factor (γ) (ηT /η0)

1/50 = 0.87
Weight decay 2× 10−2

Maximum epochs 50
Early-stopping patience 5 epochs

Table A3: Comparison of prediction accuracy for the encoding model. For each subject, the mean ±
standard error on the test set is reported for the top 5,000 voxels that achieve the highest accuracy on
the train data.

Methods ridge gradient layers voxel-wise shared-weights subj01 subj02 subj05 subj07

Linear
✓ – 1 ✓ – 0.501±0.002 0.524±0.001 0.570±0.001 0.421±0.001
✓ – 1 – ✓ 0.500±0.002 0.523±0.001 0.567±0.001 0.420±0.001
– ✓ 1 – ✓ 0.484±0.002 0.512±0.002 0.563±0.001 0.405±0.002

Nonlinear – ✓ 2 – ✓ 0.492±0.002 0.516±0.001 0.565±0.001 0.411±0.002
– ✓ 3 – ✓ 0.491±0.002 0.518±0.001 0.563±0.001 0.411±0.002

A.3 ABLATION STUDY

A.3.1 ENCODING MODEL

We conduct an ablation study to evaluate how hyper-parameter choices affect prediction accuracy for
the encoding model (Table A3). Here, “accuracy” denotes the correlation coefficient obtained when
predicting brain activity with the encoding model, rather than a voxel-caption–based metric).

Voxel-wise versus shared weights. We compare two variants of ridge regression: a voxel-wise
version that learns an individual weight vector for each voxel and a shared-weights version that
learns a single weight vector common to all voxels. The regularisation coefficient λ is sampled at
25 logarithmically spaced points from 10−4 to 1020, and the optimal value is selected via five-fold
cross-validation. This comparison reveals almost no difference in accuracy between the two variants.

Ridge regression versus gradient descent. We next contrast linear layers trained with ridge
regression against those trained with gradient descent. The hyper-parameter settings for gradient-
descent training are summarised in Table A2. During optimisation, the final 10 % of the training data
are held out for validation, and early stopping is triggered if validation accuracy fails to improve
for five consecutive epochs. To ensure a fair comparison, ridge regression is fitted using only the
first 90 % of the training data, so that both methods see an identical amount of data. Under the
shared-weights setting, ridge regression outperforms gradient descent, indicating that an analytically
derived linear solution is more effective for training the encoding model.

Linear versus non-linear models. Finally, we compare linear and non-linear architectures. For
the non-linear networks, the hidden-layer width is set equal to the input dimensionality (512, cor-
responding to the CLIP-Vision feature size). Introducing non-linearities yields higher accuracy
than the single-layer linear model trained with gradient descent; however, increasing the depth from
two to three layers offers no further benefit. Moreover, none of the non-linear networks surpass the
performance of ridge regression. These findings indicate that, although non-linear models trained
with gradient descent can exceed their linear counterparts, they still fall short of the accuracy achieved
by ridge regression.
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Table A4: Comparison of sentence-level brain activity prediction accuracy using different hyperpa-
rameters. Accuracy is reported as the mean ± standard deviation for the top 5,000 voxels in the test
data, selected by training-set accuracy.

Parameter Setting subj01 subj02 subj05 subj07

Contrastive VLM

SigLIP2 0.232±0.065 0.275±0.075 0.294±0.083 0.206±0.070
FG-CLIP 0.244±0.070 0.285±0.076 0.306±0.086 0.214±0.074
CLIP-Text 0.246±0.067 0.281±0.074 0.309±0.084 0.216±0.071
CLIP-Vision 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073

# optimal images

5 0.239±0.068 0.279±0.073 0.294±0.083 0.209±0.073
10 0.243±0.068 0.281±0.072 0.297±0.083 0.212±0.074
50 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073
100 0.246±0.067 0.285±0.074 0.301±0.083 0.215±0.072

Multimodal LLM MiniCPM-V 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073
BLIP 0.242±0.068 0.285±0.075 0.302±0.084 0.215±0.072

# keywords
1 0.237±0.066 0.274±0.073 0.295±0.085 0.207±0.072
5 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073
10 0.241±0.067 0.279±0.074 0.296±0.084 0.212±0.074

Extraction model
TextGraphParser 0.242±0.067 0.276±0.073 0.296±0.084 0.205±0.071
Llama3.1-70B 0.238±0.067 0.281±0.075 0.298±0.085 0.214±0.073
gpt-4o 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073

Sentence Composer ✓ 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073
✗ 0.230±0.066 0.279±0.078 0.296±0.087 0.201±0.070

A.3.2 CAPTION GENERATION

We investigate how various hyper-parameter settings influence the accuracy of the voxel captions
(Table A4). Unless otherwise specified, we adopt the primary-analysis configuration: CLIP-Vision as
the default contrastive VLM for feature extraction, 50 optimal images per voxel, MiniCPM-V as the
MLLM for captioning the optimal images, five extracted keywords, gpt-4o as the keyword extraction
model, and use of the Sentence Composer.

Contrastive VLM comparison. We next compare different contrastive vision–language mod-
els (VLMs) used to extract latent features for voxel-wise encoding. Specifically, we evaluate
SigLIP2 Tschannen et al. (2025), FG-CLIP Xie et al. (2025), and both the text and vision branches of
CLIP Radford et al. (2021). For CLIP-Text, we obtain projection-layer embeddings from the COCO
captions that were pre-assigned to the NSD image stimuli. Overall, CLIP-based representations
(CLIP-Text and CLIP-Vision) achieve the highest accuracies. FG-CLIP performs comparably to
CLIP-Vision, while SigLIP2 does not surpass CLIP in our setting—despite reports in the original
SigLIP work that it often outperforms CLIP on benchmark tasks—yet its inclusion demonstrates that
LaVCa generalises well across diverse VLM backbones.

Number of optimal images. We vary the number of optimal images used for keyword extraction
from 5 to 10, 50, and 100. Increasing the number up to 50 improves accuracy, presumably because
relying only on top-ranked images can omit useful second- and third-ranked keywords. Using more
images therefore captures a broader range of selective concepts. However, once the number of optimal
images reaches 100, the improvement plateaus, likely because additional concepts can no longer
be adequately represented with only five keywords. These observations suggest that increasing the
number of keywords, rather than merely adding more images, may further enhance accuracy.

Multimodal LLM comparison. We compare two multimodal LLMs for captioning the optimal
images: the state-of-the-art MiniCPM-V and the lighter, less accurate BLIP. MiniCPM-V slightly
outperforms BLIP, indicating that a more capable MLLM can further improve LaVCa’s voxel-caption
accuracy. Conversely, the modest gap between BLIP and MiniCPM-V suggests that our approach
generalises well even with simpler captioning models.
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Table A5: Comparison of sentence similarity models for accuracy evaluation. Accuracy is reported
as the mean ± standard deviation for the top 5,000 voxels in the test data, selected by training-set
accuracy.

Model subj01 subj02 subj05 subj07

MPNet 0.245±0.067 0.287±0.075 0.305±0.088 0.216±0.069
Sentence-BERT 0.246±0.066 0.287±0.075 0.306±0.084 0.218±0.073

Number of extracted keywords. With the number of optimal images fixed at 50, we vary the
number of extracted keywords among 1, 5, and 10. Increasing the output concepts from one to five
boosts accuracy, whereas extending the list to ten decreases accuracy—likely because irrelevant
or noisy concepts are introduced. The improvement at five keywords indicates that voxels encode
multiple concepts, but extracting too many can introduce noise. Thus, expanding the image set
rather than the keyword count may be a more effective strategy for capturing additional informative
concepts.

Keyword-extraction model comparison. We evaluate three models for extracting keywords from
the optimal image set: gpt-4o, an 8-bit-quantised Llama 3.1-70B-Instruct, and the TextGraphParser
Li et al. (2023) employed in MeaCap. gpt-4o surpasses TextGraphParser, showing that an open-ended
LLM makes concept extraction more effective than simply pulling words from captions. It also
exceeds Llama 3.1-70B-8bit, demonstrating that stronger LLMs can further raise accuracy. These
results imply that LaVCa’s interpretability will improve in tandem with future advances in LLM
capability.

Effect of the Sentence Composer. Finally, we assess the Sentence Composer by comparing results
with and without it. Incorporating the Sentence Composer yields higher accuracy than relying on
keywords alone, suggesting that contextual information beyond isolated concepts enables a more
fine-grained interpretation of voxel properties.

A.3.3 SENTENCE SIMILARITY MODEL FOR EVALUATION

We also examine how the choice of sentence similarity model used for evaluation affects voxel-
caption accuracy (Table A5). Specifically, we compare MPNet Song et al. (2020) and Sentence-
BERT Reimers & Gurevych (2019), both widely used models for computing sentence embeddings.
Overall, the two models yield nearly identical accuracies across all subjects, with Sentence-BERT
performing marginally better. This consistency suggests that LaVCa’s evaluation results are robust
to the particular choice of sentence similarity model, and that the observed improvements are not
dependent on model-specific idiosyncrasies.

A.4 LIMITAION

Despite the overall improvement in brain activity prediction, we observe that face-selective regions
do not achieve accuracy levels as high as those in other ROIs (Figure 2). One reason may be that
our current approach uses a Multimodal LLM (MLLM) to produce relatively simple captions for
optimal images, often omitting important local features (e.g., “eyes,” “nose”) and focusing on more
global terms (e.g., “face,” “person”). Consequently, the subsequent summarization step lacks access
to these local details. Because our method relies on language descriptions, it has inherent limitations
in capturing the fine-grained, local selectivity of these voxels. Incorporating recent techniques that
visually interpret local voxel selectivity Luo et al. (2024) could help address this gap.

Furthermore, while our current study describes voxel selectivity primarily in response to visual
stimuli in the occipital cortex, there exist “multimodal voxels” in the brain that are simultaneously
activated by auditory and linguistic information, and higher-order cognitive processes such as
calculations, memory retrieval, and reasoning Nakai & Nishimoto (2020; 2022). Designing stimuli
and experimental tasks encompassing diverse sensory inputs (e.g., auditory, textual) and cognitive
challenges (e.g., recalling past events, performing reasoning tasks) is essential when interpreting
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such voxels. Because our approach uses LLM-based textual summarization, it can be adapted to
represent a wide range of stimuli and cognitive states in text form, providing a unified framework for
multimodal integration. Looking ahead, by jointly modeling images, semantic information, auditory
features, and cognitive tasks, we anticipate capturing the brain’s integrated representation of both
sensory and higher-order cognitive functions with greater accuracy.

A.5 IMPACT STATEMENT

We introduce a data-driven method that uses a large language model to generate natural language
captions of voxel-level visual selectivity. Using the method detailed in this paper, we aim to provide a
more fine-grained understanding of human visual function than previously achieved. We acknowledge
that this human brain research could raise concerns regarding individual privacy. Although the present
study examined relatively coarse-grained voxel-level data, we cannot dismiss the possibility that
future advances in measurement and analysis techniques may enable the extraction of more detailed
individual-specific information. In any case, obtaining explicit informed consent from participants
remains crucial when collecting and using human brain activity data, as with the NSD dataset used in
this study.
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The following are the result of captioning a group of images:

“Three people in a dark room with masks and lights.”
“A band is performing on stage with various instruments and lights.”
“A rock band is performing on a stage with a red Coca-Cola logo.”
“The image depicts a group of people singing together in a room.”
“A band is performing on stage with a singer holding a microphone and a guitarist playing his instrument.”
…

I am a machine learning researcher seeking to elucidate the concepts of this group in order to better 
understand my data.

Come up with 5 distinct concepts that are likely to be true for this group. Please write a list of captions 
separated by bullet points ("*"). For example: 
* "a dog next to a horse"
* "a car in the rain"
* "low quality"
* "cars from a side view"
* "people in a intricate dress"
* "a joyful atmosphere"

Do not talk about the caption, e.g., "caption with one word" and do not list more than one concept. Also 
use singular form unless the concept naturally involves multiple objects.
The hypothesis should be a caption, so hypotheses like "more of ...", "presence of ...", "images with ..." 
are incorrect. Also do not enumerate possibilities within parentheses. Do not provide multiple options by 
using 'or' or '/' to maintain clarity. Here are examples of bad outputs and their corrections:
* INCORRECT: "various nature environment like lake, forest, and mountain" CORRECTED: "nature"
* INCORRECT: "a image caption of household object (e.g. bowl, vacuum, lamp)" CORRECTED: "a 
household object" 
* INCORRECT: "Presence of baby animal" CORRECTED: "a baby animal"
* INCORRECT: "Different types of vehicles including cars, trucks, boats, and RVs" CORRECTED: "a 
vehicle"
* INCORRECT: "Image caption involving interaction between humans and animals" CORRECTED: 
"interaction between humans and animals" 
* INCORRECT: "More realistic image" CORRECTED: "realistic image"
* INCORRECT: "Insect (cockroach, dragonfly, grasshopper)" CORRECTED: "a insect"
* INCORRECT: "newspaper or magazine" CORRECTED: "a print media"

Again, I want to identify the characteristics of this group. List properties that hold more often for the 
images in this group. Answer only with a list (separated by bullet points “*”). Your response: 

Prompt

Figure A2: The prompt used for summarizing the captions of optimal image groups with an LLM.
The text in red represents the captions of the optimal image groups, which vary depending on the
target voxel and the number of optimal images used. The blue number specifies the number of
concepts, which was varied during the ablation study.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Generated voxel caption

image

Generated voxel image

image

Se
nt

en
ce

 s
im

ila
rit

y

“A plate of 
sushi sits 

on…”
“A shiny red 
sports car…”

“A smiling girl 
rides a gentle 

horse...”
“A smiling 

boy holds…”

image

Image stimuli

Caption

a

b

“The smiling child hugs a 
fluffy white animal, 

showcasing the joyful 
interaction between 

humans and animals.”

Spearm
an’ R (ρ)

Image 
Generation Model

Language 
Model

Vision 
Model Input 

images Spearm
an’ R (ρ)

Cosine 
Similarity

Language 
Model

Input 
captions

Vision 
Model

Cosine 
Similarity

“A plate of 
sushi sits 

on…”

“A shiny red 
sports car…”

“A smiling boy 
holds…”

“A smiling girl 
rides a gentle 

horse...”

Predicted voxel activation
(sentence level)

Measured voxel activation

Predicted voxel activation
(image level)

Vo
xe

l a
ct

iv
at

io
n

Im
ag

e 
si

m
ila

rit
y

features

features

features

features

Figure A3: Overview of our evaluation methods. (a) We first obtain text embeddings for both the
generated voxel captions (from the language model) and the NSD image captions. We then compute
the cosine similarity between the voxel caption embeddings and each NSD caption embedding to
derive a rough prediction of voxel activity. Finally, we evaluate text-level prediction performance by
calculating Spearman’s rank correlation coefficient between these predicted values and the actual
voxel responses. (b) We generate voxel images by visualizing voxel captions with an image generation
model and, using the same vision model, compute vision-based embeddings for both the generated
voxel images and the NSD image stimuli. As in (a), we compute the cosine similarity between voxel-
image embeddings and NSD image embeddings and use Spearman’s rank correlation coefficient to
evaluate image-level prediction performance.
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Figure A4: Mapping of brain activity prediction accuracy at the sentence level for LaVCa (left)
and a comparison of brain activity prediction accuracy at the sentence level between LaVCa and
BrainSCUBA (right) onto the flatmap for all subjects. The white outlines indicate Visual Word Form
Area (VWFA-1) and Occipital Word Form Area (OWFA), which are ranked among the top two
Words-category ROIs based on the mean number of voxels across subjects.
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Figure A5: Mapping of brain activity prediction accuracy at the image level for LaVCa (left) and a
comparison of brain activity prediction accuracy at the image level between LaVCa and BrainSCUBA
(right) onto the flatmap for all subjects.
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Table A6: Comparison of sentence-level brain activity prediction performance (all subjects). “Top-N
voxels” refers to the voxels with top-N prediction performance in the training data. Each cell shows
the mean ± standard deviation of prediction performance on the test data. Two additional columns
indicate the hyper-parameter setting of LaVCa variants.

Top1000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – -0.010 ± 0.281 0.094 ± 0.312 0.145 ± 0.331 0.013 ± 0.265
BrainSCUBA – – 0.291 ± 0.049 0.347 ± 0.062 0.378 ± 0.068 0.267 ± 0.055
LaVCa (Ours) 1 ✗ 0.300 ± 0.054 0.352 ± 0.057 0.393 ± 0.059 0.286 ± 0.056
LaVCa (Ours) 5 ✓ 0.338 ± 0.051 0.392 ± 0.057 0.420 ± 0.061 0.320 ± 0.060

Top3000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.000 ± 0.228 0.059 ± 0.255 0.099 ± 0.274 0.004 ± 0.205
BrainSCUBA – – 0.237 ± 0.057 0.284 ± 0.067 0.305 ± 0.077 0.212 ± 0.061
LaVCa (Ours) 1 ✗ 0.240 ± 0.062 0.288 ± 0.068 0.317 ± 0.077 0.221 ± 0.067
LaVCa (Ours) 5 ✓ 0.280 ± 0.059 0.325 ± 0.068 0.349 ± 0.075 0.253 ± 0.069

Top5000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.007 ± 0.199 0.058 ± 0.223 0.067 ± 0.243 0.009 ± 0.175
BrainSCUBA – – 0.207 ± 0.062 0.251 ± 0.071 0.264 ± 0.084 0.182 ± 0.065
LaVCa (Ours) 1 ✗ 0.205 ± 0.068 0.250 ± 0.075 0.272 ± 0.086 0.186 ± 0.072
LaVCa (Ours) 5 ✓ 0.246 ± 0.066 0.287 ± 0.075 0.306 ± 0.084 0.218 ± 0.073

Top10000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.008 ± 0.157 0.039 ± 0.178 0.051 ± 0.192 0.012 ± 0.134
BrainSCUBA – – 0.159 ± 0.071 0.195 ± 0.081 0.199 ± 0.095 0.134 ± 0.072
LaVCa (Ours) 1 ✗ 0.154 ± 0.076 0.190 ± 0.086 0.199 ± 0.101 0.132 ± 0.080
LaVCa (Ours) 5 ✓ 0.191 ± 0.077 0.227 ± 0.086 0.237 ± 0.098 0.163 ± 0.081
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Table A7: Comparison of image-level brain activity prediction performance (all subjects). "Top-N
voxels" refers to the voxels with top-N prediction performance in the training data. Values are mean
± standard deviation on the test data.

Top1000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.022 ± 0.235 0.048 ± 0.254 0.104 ± 0.273 0.036 ± 0.230
BrainSCUBA – – 0.278 ± 0.056 0.322 ± 0.052 0.357 ± 0.057 0.262 ± 0.061
LaVCa (Ours) 1 ✗ 0.267 ± 0.050 0.311 ± 0.047 0.355 ± 0.054 0.241 ± 0.052
LaVCa (Ours) 5 ✓ 0.314 ± 0.059 0.347 ± 0.053 0.379 ± 0.054 0.289 ± 0.060

Top3000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.017 ± 0.187 0.059 ± 0.210 0.087 ± 0.228 0.007 ± 0.174
BrainSCUBA – – 0.220 ± 0.062 0.262 ± 0.063 0.291 ± 0.070 0.201 ± 0.067
LaVCa (Ours) 1 ✗ 0.213 ± 0.058 0.255 ± 0.058 0.292 ± 0.067 0.187 ± 0.061
LaVCa (Ours) 5 ✓ 0.248 ± 0.066 0.286 ± 0.063 0.315 ± 0.068 0.221 ± 0.069

Top5000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.017 ± 0.163 0.052 ± 0.185 0.066 ± 0.204 0.009 ± 0.148
BrainSCUBA – – 0.188 ± 0.067 0.226 ± 0.070 0.250 ± 0.078 0.169 ± 0.069
LaVCa (Ours) 1 ✗ 0.182 ± 0.063 0.221 ± 0.066 0.252 ± 0.077 0.158 ± 0.064
LaVCa (Ours) 5 ✓ 0.213 ± 0.072 0.249 ± 0.070 0.273 ± 0.079 0.187 ± 0.073

Top10000 voxels
Model # keywords Sentence Composer subj01 subj02 subj05 subj07

Shuffled – – 0.010 ± 0.128 0.034 ± 0.145 0.049 ± 0.159 0.006 ± 0.114
BrainSCUBA – – 0.139 ± 0.073 0.170 ± 0.081 0.188 ± 0.090 0.122 ± 0.073
LaVCa (Ours) 1 ✗ 0.134 ± 0.071 0.168 ± 0.076 0.187 ± 0.091 0.114 ± 0.069
LaVCa (Ours) 5 ✓ 0.160 ± 0.078 0.191 ± 0.082 0.208 ± 0.092 0.138 ± 0.077
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subj01 subj02 subj05 subj07a

b

A man wearing a baseball cap is sticking his tongue out.
The image features a girl with cupcakes placed over her eyes, showcasing white and pink frosting with 
smiley and sad faces.
A person with a sticker on their forehead and the Union Jack in their mouth.
A man with a beard and glasses holding an Oreo package.
The image features a cartoon pug wearing a bow tie and is surrounded by a heart with a banner that 
reads "Pugs and Kisses.". 
A man with a blue shirt is holding an iPod and smiling.
A man is holding a box of Kellogg's Pop Tarts that has candles on it.
A child wearing a green and white striped shirt is smiling and holding a mug that says "Happy Easter.". 
A person is holding a can of Birthday Cake Oreo cookies.
A close up of a bag of cat food called Whiskas.
A blue coffee mug with a red heart and a Daddy themed message next to an open creamer packet.
A man with glasses is holding a banana in front of his face.
A young woman with braces is smiling while holding a large waffle in front of her.
A cartoon bear holding a bar of honey.
Three letters, A, B, and C are displayed on a person's tongue.
…

A food packaging features 
a smiling person and a 
cartoon character.

Concat-50

LaVCa-50

Accuracy: 0.235 
Num. of words: 11

Accuracy:  0.195
Num. of words: 680

Figure A6: a Relationship between voxel caption prediction performance and word count (all
subjects). The color of the plot corresponds to the lineage of each model. The numbers associated
with LaVCa indicate the number of optimal images used for summarization, while the numbers
associated with Concat represent the number of captions for concatenated optimal images. Error bars
indicate the standard error. b Comparison of actual voxel captions between Concat-50 and LaVCa-50.
Only a portion of the captions is depicted for Concat-50.
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Table A8: Evaluation of the diversity of three models. PCs (90% Var) means the number of principal
components required to explain 90% variance of the text embeddings. For intra-voxel comparisons,
the mean ± standard deviation across subjects is presented. The inter-subject average (Average) is
presented as the mean ± standard error.

Inter-voxel Intra-voxel

Lexical Semantic Lexical Semantic

Subject Model Acc. Vocab. size Variance PCs (90% Var) Vocab. size Length Variance

subj01
BrainSCUBA 0.207±0.062 3400 0.0591 99 6.21±1.27 6.32±1.46 0.0163±0.0025
Top-1 (Ours) 0.202±0.064 15384 0.0640 210 9.65±3.59 10.0±4.24 0.0194±0.0027
LaVCa (Ours) 0.246±0.066 16477 0.0639 218 11.0±2.89 11.5±3.19 0.0198±0.0025

subj02
BrainSCUBA 0.251±0.071 3287 0.0591 133 6.17±1.32 6.27±1.51 0.0162±0.0026
Top-1 (Ours) 0.251±0.070 14135 0.0632 206 9.99±3.65 10.5±4.28 0.0195±0.0027
LaVCa (Ours) 0.287±0.075 17242 0.0639 218 11.3±3.64 11.8±3.93 0.0198±0.0027

subj05
BrainSCUBA 0.263±0.084 3043 0.0583 127 6.18±1.37 6.26±1.52 0.0159±0.0027
Top-1 (Ours) 0.265±0.081 13485 0.0631 206 9.99±3.68 10.4±4.34 0.0195±0.0028
LaVCa (Ours) 0.306±0.084 17459 0.0644 218 11.8±3.88 12.2±4.14 0.0199±0.0027

subj07
BrainSCUBA 0.182±0.065 3042 0.0587 131 6.23±1.30 6.36±1.47 0.0163±0.0026
Top-1 (Ours) 0.179±0.066 12831 0.0632 203 10.1±3.51 10.6±4.14 0.0197±0.0026
LaVCa (Ours) 0.218±0.073 16508 0.0646 222 11.6±3.76 12.0±4.02 0.0202±0.0026

Average
BrainSCUBA 0.226±0.019 3193±90 0.0588±0.0002 123±7.93 6.20±0.01 6.30±0.02 0.0162±0.0001
Top-1 (Ours) 0.224±0.020 13959±545 0.0634±0.0002 206±1.44 9.93±0.10 10.4±0.132 0.0195±0.0001
LaVCa (Ours) 0.264±0.020 16922±252 0.0642±0.0002 219±1.00 11.4±0.175 11.9±0.149 0.0199±0.0001
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Table A9: The average prediction accuracy for each subject and the inter-subject average prediction
accuracy when captions were shuffled within the ROI (Shuffled) and when they were used as-is
(Original). For each subject, the average prediction accuracy ± standard deviation is depicted, while
for the inter-subject average, the average prediction accuracy ± standard error is presented.

Body areas Face areas
EBA FBA-2 OFA FFA-1

subj01 Shuffled 0.035±0.147 0.014±0.128 0.031±0.067 0.017±0.113
Original 0.169±0.105 0.124±0.102 0.083±0.069 0.117±0.083

subj02 Shuffled 0.010±0.144 0.026±0.109 0.036±0.071 0.024±0.097
Original 0.158±0.101 0.128±0.103 0.079±0.066 0.105±0.078

subj05 Shuffled -0.001±0.148 0.007±0.148 0.017±0.118 0.009±0.116
Original 0.152±0.111 0.149±0.114 0.120±0.100 0.112±0.089

subj07 Shuffled 0.028±0.135 0.025±0.096 0.027±0.096 0.013±0.100
Original 0.149±0.104 0.099±0.099 0.097±0.099 0.108±0.090

Average Shuffled 0.018±0.008 0.018±0.005 0.028±0.004 0.016±0.003
Original 0.157±0.005 0.125±0.010 0.095±0.009 0.111±0.003

Place areas Word areas
OPA PPA OWFA VWFA-1

subj01 Shuffled 0.080±0.108 0.105±0.107 0.015±0.057 0.054±0.114
Original 0.163±0.093 0.172±0.099 0.055±0.048 0.147±0.088

subj02 Shuffled 0.118±0.139 0.178±0.147 0.037±0.071 0.031±0.135
Original 0.204±0.114 0.243±0.139 0.085±0.066 0.150±0.099

subj05 Shuffled 0.184±0.140 0.217±0.153 0.028±0.109 0.039±0.148
Original 0.260±0.124 0.275±0.149 0.118±0.105 0.177±0.108

subj07 Shuffled 0.083±0.119 0.105±0.108 0.020±0.070 0.012±0.159
Original 0.175±0.096 0.163±0.106 0.079±0.069 0.157±0.112

Average Shuffled 0.116±0.024 0.151±0.028 0.025±0.005 0.034±0.009
Original 0.200±0.022 0.213±0.027 0.084±0.013 0.158±0.007
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EBA FBA-2 OFA FFA-1 OPA PPA OWFA VWFA-1

Body areas Face areas Place areas Word areas
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Figure A7: Cross-subject similarity of voxel captions in ROIs. Each cell shows the mean cosine
similarity between sentence embeddings of all voxel captions in the two sets.
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Table A10: Voxel counts for each ROI, categorized by the number of clusters to which each voxel
belongs (# assigned clusters). Average rows show the mean ± standard error across subjects.

Body areas Face areas Place areas Word areas

# assigned clusters EBA FBA-2 OFA FFA-1 OPA PPA OWFA VWFA-1

subj01

1 40 11 10 14 14 14 4 6
2 517 45 39 60 141 90 60 74
3 1083 126 130 151 465 288 136 257
4 904 147 112 165 579 369 165 263
5 377 82 53 84 325 226 83 149
6 50 19 11 10 87 46 16 23

subj02

1 46 13 4 5 20 16 3 2
2 517 137 49 44 182 140 39 32
3 1037 381 124 124 457 380 137 108
4 1081 424 147 112 454 337 207 124
5 624 219 95 52 216 116 106 64
6 134 43 22 3 52 5 27 15

subj05

1 39 7 9 29 19 13 5 8
2 607 72 102 108 178 171 62 55
3 1449 182 257 160 416 444 134 139
4 1446 181 248 111 450 379 147 157
5 829 65 139 41 218 177 73 92
6 214 1 26 3 50 37 17 35

subj07

1 34 11 4 5 34 8 1 6
2 303 69 26 45 193 118 40 34
3 1123 158 88 88 393 298 134 112
4 1041 180 99 113 308 323 267 101
5 492 116 84 72 141 143 155 67
6 69 18 15 23 14 22 31 7

Average

1 40±2 10±1 7±2 13±6 22±4 13±2 3±1 6±1
2 486±65 81±20 54±17 64±15 174±11 130±17 50±6 49±10
3 1173±94 212±58 150±37 131±16 433±17 352±37 135±1 154±35
4 1118±116 233±64 152±34 125±13 448±55 352±13 197±27 161±36
5 580±97 120±35 93±18 62±10 225±38 166±24 104±18 93±20
6 117±37 20±9 18±3 10±5 51±15 28±9 23±4 20±6
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Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

a

b

OFA

subj01 subj02 subj05 subj07

Figure A8: Subject-shared noun cluster analysis in the OFA. a Word clouds and generated images for
the top-5 most frequent nouns in each subject-shared cluster. b Bar graphs showing the number of
voxels assigned to each subject-shared cluster for individual subjects.
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Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

a PPA

b subj01 subj02 subj05 subj07

Figure A9: Subject-shared noun cluster analysis in the PPA. a Word clouds and generated images for
the top-5 most frequent nouns in each subject-shared cluster. b Bar graphs showing the number of
voxels assigned to each subject-shared cluster for individual subjects.
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Examples of OFA (1/2)

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 270546

A group of four hot dogs sitting on 
top of a table.

Six different flavors of Pringles 
chips are lined up side by side.

Each food item in the organizer 
and container bears a colored 
themed decoration with unique 
lettering or name brand logo.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1546

0.06317

0.08565

Acc. 
(Image-level)

0.1034

0.05684

0.08339

Vocab. 
size Length W2V 

variance

14

8

8

14

14

9

0.02239

0.01494

0.02289

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 296456

A store with a lot of signs on the 
wall.

The storefront of PornTip Jewelry 
is brightly colored and has many 
items on display.

A child wearing a themed shirt, or 
someone else brandishing 50 
smiling person holding a sign with 
the food network logo.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1229

0.08345

0.06796

Acc. 
(Image-level)

0.03068

0.02664

0.02695

Vocab. 
size Length W2V 

variance

17

5

9

17

5

9

0.02000

0.01715

0.02171

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 296535

A man with a toothbrush in his 
mouth.

A man wearing a baseball cap is 
sticking his tongue out.

A food packaging features a 
smiling person and a cartoon 
character.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2349

0.1068

0.09994

Acc. 
(Image-level)

0.1999

0.1482

0.1146

Vocab. 
size Length W2V 

variance

8

4

7

8

4

7

0.01908

0.01745

0.01992

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 305512

a close up of a tray of cupcakes 
on a bed

The image shows a collection of 
cupcakes with various medical-
themed decorations.

Custom caricature logo illustration 
featuring the signature logo of 
puppy eyes complete with a clock 
face, child tooth and cute 
cupcake man.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1643

0.1239

0.1084

Acc. 
(Image-level)

0.1186

0.1139

0.1034

Vocab. 
size Length W2V 

variance

18

4

8

19

4

8

0.02306

0.01847

0.01930

Model

Figure A10: Comparison of voxel captions and voxel images in the OFA voxels of subj02 (1/2).
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Examples of OFA (2/2)

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 305843

A bicycle that is leaning against a 
wall.

A white bike with black handlebars 
is leaning against a red brick wall.

Car boot handbag baked in good 
polka dot patterned bicycle 
dessert.

Voxel caption Voxel image
Acc. 

(Text-level)

0.06425

0.008889

0.01513

Acc. 
(Image-level)

0.1166

0.08090

0.08413

Vocab. 
size Length W2V 

variance

11

8

9

11

14

9

0.02518

0.01527

0.01963

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 296456

a close up of a person brushing 
her teeth

A woman with a fake mustache 
and glasses.

The person holding an animal 
mouth is a person wearing 
glasses.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1225

0.04519

0.07279

Acc. 
(Image-level)

0.07516

0.03866

0.04770

Vocab. 
size Length W2V 

variance

7

4

5

8

4

5

0.01924

0.01651

0.02047

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 278988

A banana with a smiley face 
drawn on it.

The image shows two bananas 
with faces drawn on them, 
placed on a blue and white 
striped cloth.

This is a fruit cake with banana 
icing and a decorative design.

Voxel caption Voxel image
Acc. 

(Text-level)

0.06029

0.08880

0.1057

Acc. 
(Image-level)

0.07104

0.09654

0.1013

Vocab. 
size Length W2V 

variance

7

5

13

7

5

13

0.01965

0.01722

0.01781

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 305475

A table topped with cakes and 
cup cakes.

The image features a cowboy-
themed birthday cake with 
number 3 on it, surrounded by 
cupcakes with hat toppers.

Their food design and decoration 
scheme is paired with samples 
from holiday theme trucks.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1953

0.2178

0.2531

Acc. 
(Image-level)

0.1583

0.2058

0.1673

Vocab. 
size Length W2V 

variance

10

5

13

10

6

13

0.02306

0.01670

0.02264

Model

Figure A11: Comparison of voxel captions and voxel images in the OFA voxels of subj02 (2/2).
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Examples of PPA (1/2)

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 210730

A view of a building with a lot of 
neon signs on it.

A restaurant called Fresco is next 
to another restaurant called Kabob.

The digitally decorated room is a 
sign of the modern atmosphere.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2527

0.1888

0.1576

Acc. 
(Image-level)

0.1728

0.0868

0.1307

Vocab. 
size Length W2V 

variance

7

6

7

7

6

9

0.02056

0.01636

0.01683

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 217592

a close up of a stuffed animal on 
a bag

A pile of bread with a gold and 
black label on top.

A shoe sole inside a cake 
depicting a chocolate mannequin.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2022

0.1792

0.1340

Acc. 
(Image-level)

0.1828

0.1154

0.1155

Vocab. 
size Length W2V 

variance

8

4

7

8

4

7

0.02049

0.01653

0.01857

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 217647

a collage of photos with a green 
and black handle

The image showcases a pocket 
knife with various close-up views.

A bathroom fixture, newspaper 
slices and slices of some silver 
computer component, a wooden 
object, covered with the blue 
paint and pattern tool.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2786

0.1775

0.2073

Acc. 
(Image-level)

0.2029

0.1223

0.1433

Vocab. 
size Length W2V 

variance

16

5

8

19

5

8

0.02198

0.01771

0.02239

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 217753

a number of small boats in a body 
of water

People are riding in small boats 
through a waterway at an 
amusement park with palm trees 
and a bridge in the background.

This is the perfect urban setting, 
with a bridge deck and vehicle 
storage below.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1454

0.05586

0.06832

Acc. 
(Image-level)

0.1109

0.02745

0.03552

Vocab. 
size Length W2V 

variance

9

5

12

9

5

12

0.01926

0.01626

0.02358

Model

Figure A12: Comparison of voxel captions and voxel images in the PPA voxels of subj07 (1/2).
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Examples of PPA (2/2)

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 224691

An aerial view of a large pool of 
water.

The image shows a bird's eye view 
of an artificial lake in the middle of 
a resort.

A spiral staircase, an aerial view 
of the bathroom and a modern 
interior.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2733

0.1005

0.04142

Acc. 
(Image-level)

0.2030

0.1185

0.1283

Vocab. 
size Length W2V 

variance

9

6

11

9

6

11

0.02184

0.01630

0.01993

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 239901

A street sign on the side of a train 
track.

A railway track with a sign that 
says "Authorized personnel only."

The pedestrian infrastructure 
shows a train station and railway 
track.

Voxel caption Voxel image
Acc. 

(Text-level)

0.2759

0.1968

0.1597

Acc. 
(Image-level)

0.4021

0.2468

0.1826

Vocab. 
size Length W2V 

variance

8

6

9

8

6

9

0.01811

0.01369

0.02029

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 239644

A row of wooden benches sitting 
on top of a walkway.

The image displays an outdoor 
Asian temple setting with various 
elements like a railing, steps, 
lanterns, and a roof.

The wooden structure, with asian 
architecture, mirrors the zoo gate.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1727

0.1400

0.1930

Acc. 
(Image-level)

0.09343

0.1348

0.1539

Vocab. 
size Length W2V 

variance

9

7

15

10

7

17

0.02312

0.01691

0.02167

Model

Top49 most activated images

BrainSCUBA

Top-1 (Ours)

LaVCa (Ours)

Voxel index: 203319

A bathroom with a sink, mirror, 
toilet and bathtub.

An ornate bathroom with green 
tiles, a wooden door, and stone 
wall.

The interior design highlighted a 
colorful nighttime scene and a 
water feature.

Voxel caption Voxel image
Acc. 

(Text-level)

0.1364

0.2443

0.2115

Acc. 
(Image-level)

0.1183

0.1972

0.1894

Vocab. 
size Length W2V 

variance

9

7

10

9

8

11

0.01651

0.01605

0.01973

Model

Figure A13: Comparison of voxel captions and voxel images in the PPA voxels of subj07 (2/2).
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Figure A14: The UMAP projection of caption text across EBA and OFA for all subjects, visualized
on a flatmap (top). A word cloud of the 100 most frequent nouns in these captions (middle), colored
according to their location in the UMAP space. A word cloud of the 100 most frequent verbs
(bottom).
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Figure A15: The UMAP projection of caption text across PPA and OWFA for all subjects, visualized
on a flatmap (top). A word cloud of the 100 most frequent nouns in these captions (middle), colored
according to their location in the UMAP space. A word cloud of the 100 most frequent verbs
(bottom).
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subj01
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LaVCa BrainSCUBA

subj02

Figure A16: Visualization of OFA captions for subj01 and subj02. For each subject, the captions’
UMAP representations were mapped onto a flatmap (top). The top 2 captions of each cluster in the
UMAP space were visualized (bottom). The horizontal axis represents UMAP2, and the vertical axis
represents UMAP2.
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OFA

subj05

subj07

LaVCa BrainSCUBA

Figure A17: Visualization of OFA captions for subj05 and subj07. The captions’ UMAP representa-
tions were mapped onto a flatmap (top) for each subject. The top 2 captions of each cluster in the
UMAP space were visualized (bottom). The horizontal axis represents UMAP2, and the vertical axis
represents UMAP2.
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Figure A18: Visualization of PPA captions for subj01 and subj02. The captions’ UMAP representa-
tions were mapped onto a flatmap (top) for each subject. The top 2 captions of each cluster in the
UMAP space were visualized (bottom). The horizontal axis represents UMAP2, and the vertical axis
represents UMAP2.
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Figure A19: Visualization of PPA captions for subj05 and subj07. The captions’ UMAP representa-
tions were mapped onto a flatmap (top) for each subject. The top 2 captions of each cluster in the
UMAP space were visualized (bottom). The horizontal axis represents UMAP2, and the vertical axis
represents UMAP2.
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