
Brain-Like Processing Pathways Form in Models With
Heterogeneous Experts

Jack Cook1 Danyal Akarca2 Rui Ponte Costa1,∗ Jascha Achterberg1,∗
1Centre for Neural Circuits and Behaviour, University of Oxford

2Department of Electrical and Electronic Engineering, Imperial College London
∗Joint senior authors

Abstract

The brain is made up of a vast set of heterogeneous regions that dynamically
organize into pathways as a function of task demands. Examples of such pathways
can be found in the interactions between cortical and subcortical networks during
learning, or in sub-networks specializing for task characteristics such as difficulty or
modality. Despite the large role these pathways play in cognition, the mechanisms
through which brain regions organize into pathways remain unclear. In this work,
we use an extension of the Heterogeneous Mixture-of-Experts architecture to
show that heterogeneous regions do not form processing pathways by themselves,
implying that the brain likely implements specific constraints which result in the
reliable formation of pathways. We identify three biologically relevant inductive
biases that encourage pathway formation: a routing cost imposed on the use of
more complex regions, a scaling factor that reduces this cost when task performance
is low, and randomized expert dropout. When comparing our resulting Mixture-
of-Pathways model with the brain, we observe that the artificial pathways in our
model match how the brain uses cortical and subcortical systems to learn and
solve tasks of varying difficulty. In summary, we introduce a novel framework for
investigating how the brain forms task-specific pathways through inductive biases,
and the effects these biases have on the behavior of Mixture-of-Experts models.

1 Introduction

The brain is made up of many heterogeneous regions distinguished by features such as connectivity,
cell types, neurotransmitters, and functional specialization [1–4]. To support complex behavior, the
mammalian brain dynamically organizes these regions into diverse networks and processing pathways
[5], allowing it to adapt to different inputs and task demands. This principle spans sensory systems
[6–8], cognitive networks [9], emotion-related circuits [10], and face perception [11]. Notably,
pathway formation is highly dynamic: regions can participate in many pathways, allowing cognitive
processes to arise from the joint activations of specific groups of regions. While theoretical work
has shown how heterogeneous regions and modules can develop within networks [12–14], how these
organize into large-scale pathways remains poorly understood.

The importance of studying pathway formation and coordination extends beyond neuroscience: it is
also becoming increasingly relevant in machine learning research. As models have evolved from small
networks with a couple of layers to large system-level architectures, achieving complex function while
maintaining efficiency has become critical. One recent development toward this goal is the Mixture-of-
Experts (MoE) architecture [15, 16], which contains specialized experts that are selectively activated
based on the current input. This should create pathways between experts that selectively respond to
inputs of varying complexity [17] to make efficient use of computational resources [18, 19]. However,
this theorized specialization of experts appears to be limited in practice [20, 21], making it difficult
for specialized task-complexity-related pathways to form.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



These findings raise the question, how do stable and functionally relevant pathways form in networks
of distributed heterogeneous experts? Do heterogeneous regions automatically group into such
pathways, or are additional priors required? Once pathways develop in models, do they show the
same context-aware adaptability that has been observed in the brain? To address these questions,
we introduce a neural network architecture made up of heterogeneous experts to study the condi-
tions under which processing pathways form, and the degree to which these pathways resemble
those studied in the brain. Specifically, we adapt the Heterogeneous Mixture-of-Experts (HMoE)
architecture [22, 23], in which information may be dynamically routed to computational experts, or
regions, of varying sizes. In our model, unlike prior work, each expert is implemented as a recurrent
network that could be considered a standalone model or brain region. We study the pathway formation
in this architecture while we train models to learn 82 time-series-based cognitive tasks of varying
difficulty [24]. Through these analyses, we find:

• Layers of heterogeneous experts do not automatically form recognizable pathways.
• Instead, inductive biases are required for pathways to form: (i) a routing cost that penalizes

the model for using larger experts, (ii) scaling the routing cost based on task performance,
and (iii) random expert dropout. These result in the formation of a Mixture-of-Pathways.

• The pathways that form in our new Mixture-of-Pathways architecture mirror the interactions
between cortical and subcortical pathways in the brain during learning, and are in line with
the dynamics of the brain’s multiple-demand system [9, 25].

To arrive at these findings, in the following we start by analyzing the usage of experts of a baseline
model with HMoE layers. We then develop specific inductive biases that encourage pathways to
form, before finally comparing these pathways to observations made in the brain.

2 Related Work

Brain-like modularity and regional heterogeneity can be induced in neural networks through priors
and training procedures to explain how such features develop in the brain [14, 26–30]. The priors
that are especially relevant in the context of this work relate to metabolic cost and energy efficiency,
which are crucial in determining the brain’s circuitry and function [13, 31–34].

While the above work often focuses on starting from fully-connected networks to observe the
formation of modules and regions, modeling multi-region interactions has also become possible with
modern methods [35–40]. This line of work has revealed how joint computation can be implemented
through interactions between independent modules [5]. However, these multi-region models generally
predefine a specific circuit structure with a small set of regions, preventing further study on how
regions come to interact in the first place. Notable work that allows for dynamic (non-fixed) interaction
of multiple independent regions often assumes networks which are not able to learn tasks [41, 42],
though [43] stands out with a trainable network made up of individual RNNs. Their multi-region
networks can change their connectivity during learning, but cannot route information based on task
context. The work most closely aligned with our goal is [44], which studies how spatial (metabolic)
constraints in feed-forward networks can form visual processing streams. However, it too does not
consider how regions may change their interaction as a function of context, and does not allow for
solving standard time-series-based cognitive tasks.

In the context of artificial intelligence, the introduction outlined how the popular Mixture-of-Experts
architecture [15, 16] is relevant to our question of how specialized regions dynamically organize
into processing pathways. Recent efforts to build networks out of experts that vary in terms of their
architecture [17, 22, 23] and function [20] are especially relevant here. Moreover, work has argued
that routing pathways are a powerful method for handling the complex data-flow of these otherwise
efficient architectures [19, 45], but without investigating how adaptable pathways can be encouraged
to form. In neuromorphic computing it has been shown to be possible to implement brain-like visual
processing pathways to achieve efficient processing [46], but with a predefined static architecture.

3 Methods

In this work, we aim to identify the mechanisms by which pathways form between heterogeneous
regions, and how those pathways are used across a diverse set of tasks. To study this computationally,

2



we need a model made up of heterogeneous experts, analogous to brain regions, that work together
to solve many different tasks. We create such a model by extending the Heterogeneous Mixture-of-
Experts architecture [22] and training it on the Mod-Cog set of time-series-based cognitive tasks [24].

3.1 Model Architecture: Heterogeneous Mixture-of-Experts

Figure 1: Schematic of our baseline model archi-
tecture. Information is passed through three layers,
each of which can dynamically route information
to experts of different computational complexity.

Mixture-of-Experts models (MoEs) [15, 16] are
characterized by their layers, which contain mul-
tiple smaller models alongside a router model,
which decides which experts should process the
input at each timestep. Specifically, the router
determines the weight with which each expert
contributes to the layer’s final output. Experts
can also be excluded, by setting an expert’s
weight to zero. In most modern MoEs, the ex-
perts are large scale MLPs placed in between
attention layers, which are typically activated at
every timestep. In Heterogeneous Mixture-of-
Expert models [22] (HMoEs), the experts can
vary in terms of their sizes and activation func-
tions. We extend the HMoE architecture with
several significant adaptations. Namely, each
layer of our model contains three experts: two
GRUs with 16 and 32 neurons respectively, and
one skip connection, which allows the model to
choose to perform no computation for a given
timestep [17]. Our implementation uses GRUs
with 64 neurons as routers and does not include
any additional layers between HMoE layers. We
use this setup as a baseline for our investigations
(Figure 1). In the following sections, we will introduce additional inductive biases to this baseline
architecture, resulting in our final Mixture-of-Pathways model. The algorithm for this full model is
described in Algorithm 1.

Algorithm 1: Mixture-of-Pathways training protocol. Full details in Appendix A.1.
Data: Task dataset D, Experts E = {e1, e2, . . . , en}, Routers R = {r1, r2, . . . , rn}
Initialize routers and heterogeneous experts, set h0 to task input;
for each training step do

Sample batch b from D;
for each task i, timestep t ∈ b do

for each layer l with experts ej ∈ l do
Compute routing weights wj = softmax(rl(hl−1)) ;
Apply expert dropout (Not in baseline architecture; see Section 4.2) ;
Compute expert activations wj for each expert ej ∈ l ;
Combine outputs: hl =

∑
j wjhl,j ;

end
Compute baseline model losses: Lfix and Lresponse,i ;
Compute Lrouting loss (Not in baseline architecture; see Section 4.1) ;
Compute Ltotal = Lfix + Lrouting +

∑
i Lresponse,i;

end
Update parameters using Schedule-Free AdamW optimizer [47];

end

3.2 Evaluation with Cognitive Tasks

To evaluate how pathways are formed and used across tasks with different characteristics, we use the
Mod-Cog task set, which contains 82 time-series-based cognitive tasks [24]. This is an expansion of

3



the popular NeuroGym framework [48], which contains tasks like Go-NoGo or two-stimuli integration
tasks (see Appendix A.2 for task details). Importantly for us, the tasks vary in difficulty due to their
varied inputs, decision rules, and delay lengths. Generally, tasks range from 0.8 to 3 seconds in
duration, during which we sample information at timesteps 100 milliseconds apart. At each timestep,
the model receives a 115-dimensional input made up of four components: a 1-dimensional fixation
input, two 16-dimensional stimuli, and an 82-dimensional one-hot encoding of the active task, which
we pass through a 16-dimensional learned embedding layer. While the fixation input is active, the
model should always output zero. After the fixation period, the model needs to use the observed
information to output the correct choices during the response period.

We train our models over 10 epochs, each containing 1000 training steps. At each training step,
models are given a 128× 350× 115 matrix of input data, representing 128 batches of task sequences
that are 350 timesteps long, with 115 features at each timestep. These task sequences contain many
individual tasks: the average task is about 20 timesteps long, meaning that in each batch, models
observe about 27 trials of each task. Models are trained with a cross entropy loss Lresponse,i for the
correct response during the response period of task i. An additional fixation loss Lfix encourages
the model to output zero during the fixation period. All losses used in our analyses are detailed in
Appendix A.3. Training one model takes roughly 1 hour on a single NVIDIA T4 GPU. Details on
implementation and code access are outlined in Appendix A.1.

Once models have learned to solve each task by routing information between experts, we can study
the conditions under which processing pathways form between layers. In the following we will
first study the routing behavior of our baseline architecture. We will then show how the additional
inductive biases described in Algorithm 1 result in the formation of pathways. Finally, we will test
the degree to which these pathways resemble established processing pathways in the brain.

4 What Causes Pathways to Form?

In this section, we investigate the conditions under which pathways form between layers of heteroge-
neous experts. We set three criteria to determine whether pathways have formed:

1. Pathways should be consistent with respect to tasks, meaning that when two models are
trained to solve the same tasks, they should have structurally similar pathways.

2. Pathways should be self-sufficient, meaning that when experts outside of a pathway are
removed, then the model’s overall performance should remain largely intact.

3. Pathways should be distinct, meaning that several different pathways should be used to
solve groups of tasks with varying characteristics.

4.1 Pathway Consistency

To see if experts form consistent, task-driven pathways, we train 20 randomly initialized models
with the same settings and compare their routing patterns on the same set of 82 cognitive tasks. This
allows us to examine whether models use similar sets of experts to solve the same tasks, such as
whether smaller experts are reliably used to solve simpler tasks, or vice versa. We first do this with a
baseline model made up of three HMoE layers, and then test each model on 50 trials of each task
while recording the routing weights assigned to each expert at each timestep (w values in Figure 1).
To test whether routing is stable across training runs, we use these weights to calculate each model’s
Learned Pathway Complexity for each task i (LPCi) as follows:

LPCi =
1

Ti

Ti∑
t

E∑
j

wi,j,ts
2
j (1)

This metric is calculated by multiplying the weight wi,j,t assigned by the router to each expert j
at each timestep t by the squared size s2j of expert j while the model solves task i. This is then
averaged across the total timesteps Ti of each task i to ensure that longer tasks are not biased toward
having larger LPCs. This results in a LPC value for each of the 82 tasks and 20 model runs (see
Appendix A.4 for an example calculation). The squaring of expert sizes is motivated by the O(s2j )
cost of storing each expert’s weight matrix in memory, and we expand on the suitability of using sj as

4



a measure of each expert’s complexity in Appendix A.5. Skip connections are free to use. To measure
pathway consistency, we can now correlate this list of LPC values across training runs. For the
baseline model, we find that models are not consistent across training runs (mean pairwise correlation
of 0.0324, Figure 2), suggesting that the baseline model does not form any stable and task-related
processing pathways by default. Therefore, we next want to explore which specific inductive biases
may result in such pathways.

Theories of metabolic optimization and cost minimization are core parts of our understanding of
the brain’s computations [33, 49, 50]. The reduction of energy consumption has been a powerful
source of priors for building brain-like neural networks [13, 31, 34] and more generally achieving
brain-inspired computing [46, 51]. Hence we hypothesize that regularizing the routing weights by
making it more expensive to route to more complex experts might cause replicable pathways to
develop, as observed in the brain. We do so by incorporating the LPCi (from Equation 1) into the
model’s loss, making it more costly for the model to activate more complex experts. Finally, to avoid
convergence on the local minimum of only using the smallest experts without solving any tasks1, we
add a normalization strategy, dividing each LPCi by Lresponse,i, the cross-entropy loss measuring the
model’s performance on task i ∈ T . In addition to helping with convergence, this normalization term
can also be viewed as helping our model more directly control the cognitive effort, or processing
power, with which it solves a task. We discuss this further in Section 6.

Adding these additional components to the loss results in the following equation, where Lfix and
Lresponse,i are the standard task-based losses described in Section 3.2. A small value ϵ is added to
ensure that if the model solves tasks perfectly, the routing loss is not ∞. All loss calculations are
outlined in detail in Appendix A.3 and A.4.

L = Lfix +

T∑
i

(Lresponse,i +
αLPCi

Lresponse,i + ϵ
) (2)

−0.25 0.00 0.25 0.50 0.75

Correlation of Routing Activity Between Runs

+ Task Performance
Scaling

+ Routing Cost

Baseline

Figure 2: Models trained with routing cost and task-based
scaling exhibit more stable routing. Correlations are calcu-
lated between the routing patterns across 20 training runs of
each model setup.

We now evaluate the routing consis-
tency of models trained with this cus-
tom loss function. Figure 2 shows that
our expectations are confirmed: on its
own, adding the LPCi for each task
creates more consistent routing (mean
pairwise correlation of 0.15, signif-
icant over baseline with p < 0.01).
Scaling this term by the model’s per-
formance on each task Lresponse,i am-
plifies this effect, encouraging mod-
els across training runs to converge
on more consistent routing patterns
(mean pairwise correlation of 0.71, significant over baseline with p < 0.001).

4.2 Self-Sufficiency of Pathways

Our second criterion measures whether formed pathways are self-sufficient, meaning that removing
an expert that is not part of the currently activated pathway should only minimally impact the
performance of the model. To test for self-sufficiency, we first evaluate whether models are still able
to perform tasks when they are prevented from using experts that have been assigned low routing
weights. We find that our baseline models are extremely sensitive to this deactivation: if they are
prevented from using experts with w < 0.025, which only contribute 2.5% or less to each layer’s
output, average task accuracy drops from 98.2% to 16.4%. This shows that while models learn
replicable routing patterns, these are not yet pathways, as they rely on all the experts.

We speculate that pathway self-sufficiency can be achieved by stochastic dropout of experts with low
routing weights. Dropout is especially interesting as it is an established principle for achieving more

1Note that routers converging to local minima is an established phenomenon in Mixture-of-Experts models,
as there is a bias to rely on the expert that learns the task, or decreases the overall loss as in our case, first [16,
22, 52, 53].

5



robust neural networks [54] and has also been linked to the stochastic nature of signal processing in
neuroscience [55, 56]. We implement expert dropout by randomly deactivating experts that contribute
very little to the output during training. The probability pj with which expert j is deactivated at a
given timestep is determined as follows:

pj =

{
β − β

γwj , if wj < γ

0, otherwise
(3)

0% 20% 40% 60% 80% 100%

Maximum Dropout Probability During Training (β)

0.00

0.05

0.10

0.15

0.20

0.25

D
ro

p
ou

t
T

h
re

sh
ol

d
D

u
ri

n
g

E
va

lu
at

io
n

0%

20%

40%

60%

80%

100%

E
va

lu
at

io
n

A
cc

u
ra

cy

Figure 3: Model accuracy after removing low-weighted experts
across different training dropout levels. If models trained without
dropout (β = 0) are prevented from using experts that contribute
very little to the output, accuracy drops precipitously, from 98.2%
to 15.1%. By comparison, the accuracy of models trained with a
maximum dropout value of β = 0.8 only drops from 86.5% to 77.7%.

We set γ to 0.1, meaning
that experts contributing
10% or more to the output
of a layer are never deacti-
vated. As this contribution
weight decreases to zero,
this probability increases
linearly to β. To identify
how much dropout is
needed to improve robust-
ness, we train 11 groups of
models with β values rang-
ing from 0, 0.1, ..., 0.9, 1
using Equation 3, with 10
models in each group. We
evaluate each model on
50 trials per task, block-
ing experts with routing
weights below 11 values:
0, 0.025, . . . , 0.225, 0.25.
Accuracy is averaged across the 10 models in each group. We find that expert dropout has a relatively
minor impact on performance, while significantly improving the robustness of the pathways that
form. Figure 3 shows that for models trained with a maximum dropout of 80% (β = 0.8), this drop
in accuracy is small (from 85.8% to 74.4%). This motivates us to set β = 0.8 for our models in
the remainder of this work. Note that routing consistency (Section 4.1) remains high with dropout,
shown through an average pairwise correlation of 0.51, which is significant over the baseline with
p < 0.0001 (see Appendix A.4).

4.3 Distinct Pathways Across and Within Tasks

For our final criterion, we want to identify whether meaningful patterns of expert usage develop
across tasks and timescales within our model. To do this, we record the routing patterns across 50
trials of each task for both the baseline model and our final model, which is trained using the routing
cost with task performance scaling and expert dropout. To visualize how routing varies across layers,
tasks, and time, we average routing patterns for each task in three phases: (i) before the stimulus is
shown, (ii) while the stimulus is shown, and (iii) during the response period. We apply K-means
clustering (k = 10) to these matrices to identify groups of tasks that use similar pathways.

In our model, we observe a structured usage of expert pathways (Figure 4): during the pre-stimulus
phase, models primarily rely on the cheap skip connections, as no information needs to be processed
yet. For some tasks, increasingly complex experts are activated with the onset of stimuli. However,
since the model still only needs to output zero during this phase, most tasks continue to leverage the
cheap ‘all-skip’ pathway until the response phase. During this final phase, we see very rich dynamics
of pathways being differentially activated across tasks and time periods in our model. This shows how
processing pathways interact over the time of a trial, with different combinations of experts activated
over tasks and time periods. The following sections analyze these dynamics in more detail, especially
in comparison to the dynamics observed in the brain. Importantly, for the baseline model, clusters
do not seem to employ very different combinations of experts across tasks. The more differentiated
usage of pathways across clusters can be seen in the distribution of the numbers of tasks contained
in a given cluster (Figure 4, left). Here, our model shows a very distinct power-law distribution of
several large clusters containing > 20 tasks and many small clusters capturing task-specific pathway

6



0

20

B
as

el
in

e
N

u
m

b
e
r

o
f

C
lu

st
e
rs

C
lu

st
er

0 20

Tasks in Cluster

0

20

O
u

r
M

o
d

el
N

u
m

b
e
r

o
f

C
lu

st
e
rs

Skip Simple Complex

Pre-stimulus Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3

C
lu

st
er

Skip Simple Complex

Stimulus Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3

Skip Simple Complex

Response Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3
0%

20%

40%

60%

80%

100%

L
ay

er
-w

is
e

E
x
p

er
t

U
sa

ge

Figure 4: Task clustering derived from expert usage patterns. Clusters are averaged over three
phases of each task: the pre-stimulus phase, during which the task is known but no input data is
presented, the stimulus phase, during which input data is presented, and the response phase. Left:
Sizes of clusters across training runs. Right: Average routing weights across training runs by cluster
(y-axis) and task phase. In each phase, expert usages within each layer (across each layer’s skip
connection, simple expert, and complex expert) sum to 100%. The complex expert is rarely used in
the first two phases, during which the model outputs zero, but has an average usage as high as 11% in
the most complex cluster (see Appendix A.8). L1 / L2 / L3 = Layer 1 / Layer 2 / Layer 3.

usages. The baseline model, on the other hand, seems to distribute the tasks more evenly across
clusters, indicating that there are much less distinct routing patterns. This can be shown quantitatively
in the sizes of the largest clusters for each model run, which are significantly larger for our model
than for the baseline model across 10 different random seeds (p < 0.0001). Further visualizations
are provided in Appendices A.7 and A.8.

Our results so far show that pathways do not automatically develop from a heterogeneous mixture
of experts. Training models with a routing-complexity loss, scaling it based on task performance,
and adding expert dropout, all encourage stable pathways to form. These three features define our
Mixture-of-Pathways (MoP) model. In the following section, we investigate whether the pathways
that form in our MoP model mirror the pathways observed within the primate brain.

5 Do Artificial Pathways Behave Like the Brain’s Pathways?

In the previous section, we showed how our brain-inspired architectural contributions resulted in the
formation of a mixture of processing pathways in our model. Now, we will evaluate the degree to
which these artificial pathways resemble the behavior of established processing pathways in the brain.
Our analyses primarily focus on pathways and dynamics of the brain relating to task difficulty.

5.1 Solving Tasks of Varying Difficulty

When analyzing brain activations across tasks with varying levels of difficulty, there is a distinct group
of activations in a large frontoparietal network when solving complicated tasks. Since this network is
activate while solving any difficult task, it was named the multiple-demand (MD) system [57, 58]. It
can be identified both in humans and non-human primates [4, 59]. With this in mind, we now want to
test whether the selection of experts used to solve a task is indicative of task difficulty.

To relate these findings from the MD system to our model, we expect that when solving tasks of
increasing difficulty, our model should learn to activate increasingly complex regions (schematic
in Figure 5). We test this by measuring the correlation between a task’s difficulty and the learned
pathway complexity (LPC) used by the model to solve the task. We quantify the difficulty of a task
by the number of training steps it takes a standalone GRU to learn the task (see Appendix A.9 for
details and alternative ways of quantifying task difficulty). We find that our full MoP model shows a
positive significant relationship, whereas the baseline model does not, matching our expectations.

7



R
el

ia
nc

e 
on

 c
om

pl
ex

 
co

rt
ic

al
 M

D
 s

ys
te

m

Task difficulty

Expected finding:

(a) Expected results

101 102 103

Task Difficulty

1400

1600

L
P

C

Baseline (r=-0.01)

101 102 103

Task Difficulty

400

600

800

Our Model (r=0.51)

0%

50%

100%

A
cc

u
ra

cy
W

it
h

ou
t

C
om

p
le

x
E

x
p

er
ts

(b) Empirical results

Figure 5: Our model allocates less computation toward solving simpler tasks. Additionally, when
the most complex experts in each layer are disabled, our model is still able to solve the simplest tasks
with high accuracy.

R
el

at
iv

e 
re

lia
nc

e 
on

…

Learning duration

C
or

te
x

Su
bc

or
te

x

Expected finding:

Hard task

Simple task

(a) Expected results

0 2 4 6 8 10

Training Epoch

1500

2000

L
P

C
Baseline

0 2 4 6 8 10

Training Epoch

500

1000

1500

Our Model

Easy

Hard

T
as

k
D

iffi
cu

lt
y

101 102 103

Task Difficulty

400

600

800

∆
L

P
C

A
ft

er
E

p
o
ch

1 Baseline (r=-0.48)

101 102 103

Task Difficulty

−250

0

250

Our Model (r=0.31)

(b) Empirical results

Figure 6: Our model moves complex tasks to more complex pathways at the start of training to
support the learning process. (a) Conceptual schematic of cortical-subcortical interactions. (b) Top
row shows the pathway complexity over learning per task averaged across 10 training runs. Lower
row shows the change in pathway complexity between model initialization and the end of the first
epoch as a function of task difficulty. Our model specifically relies on complex pathways to learn
difficult tasks, similar to how the brain relies on complex pathways to support the acquisition of
complex skills, even if they are gradually moved to simpler pathways later on.

Furthermore, it is known that patients with lesions to their MD system struggle solving difficult tasks
but their ability to solve simple tasks usually is unaffected [60, 61]. We find that the same is true in
our models: if the most complex expert in each layer is lesioned, our model can still solve simple
tasks with high accuracy, but accuracy on difficulty tasks drops significantly. The same is not true of
the baseline model: performance on all tasks drops to near-chance.

5.2 Learning Tasks of Varying Difficulty

A more nuanced view of pathways in the brain comes from observing how tasks of varying difficulty
are learned over time. Here, an interesting distinction between complex and simple tasks is observed:
while simple tasks can be learned through simpler (subcortical) regions alone, complex tasks require
more complex (cortical) regions for learning [62–65] (see schematic in Figure 6a). However, as
learning continues, even complex task skills are often “transferred” from complex to simple brain
regions. This is possible despite the simple pathway not being sufficient to drive the learning process
in the first place. We now want to test whether this phenomenon can be observed in our model.

8



Table 1: Task accuracy and pathway metrics for modified versions of our model.

Model Accuracy Fig. 5 Correlation Fig. 6b Correlation
Baseline 91.1% ± 8.9% -0.01 -0.49∗∗∗

Our model† 83.0% ± 15.5% 0.54∗∗∗ 0.31∗∗

Without dropout 90.1% ± 8.9% 0.55∗∗∗ 0.03
α = 1e−4 69.0% ± 20.1% -0.57∗∗∗ -0.37∗∗∗
α = 1e−6 89.7% ± 9.0% 0.62∗∗∗ 0.18
Without task embeddings 83.0% ± 14.2% 0.58∗∗∗ 0.58∗∗∗

Router dim = 32 83.2% ± 14.5% 0.46∗∗∗ 0.33∗∗

Router dim = 128 81.9% ± 16.9% 0.35∗∗ 0.27∗

† With dropout, α = 1e−5, task embeddings, and router dim = 64
* p < 0.05, ** p < 0.01, *** p < 0.001

To study this effect, we track the complexities of the learned pathways across tasks over the duration
of learning. Figure 6 shows these results across models: our MoP model seems to indeed learn
complex tasks by first increasing their pathway complexity, but then reducing it gradually during
learning. In contrast, very simple tasks do not increase in pathway complexity at all over learning.
We now want to quantify this effect. To translate Figure 6a to our models, we can quantify to which
degree the pathway complexity of a given task is increasing or decreasing after the first training epoch.
This is a measure of how much the model specifically uses a more complex pathway to learn a given
task. Based on findings from neuroscience, we would expect complex tasks to be explicitly moved to
more complex pathways, relative to the random starting point, whereas this should not be necessary
for simple tasks [35, 62, 66]. Figure 6b shows that this phenomenon can be observed in our model.
The more difficult a task is, the more its pathway complexity increases at the start of learning, with
the simplest tasks immediately getting routed toward simpler pathways (r = 0.31, p = 0.0040). This
is not true in the baseline model, where we observe the opposite effect: the pathway complexity used
to solve the most difficult tasks increases the least at the start of learning (r = −0.48, p < 0.0001).
Upon further inspection, this happens because in an effort to minimize the routing loss, the baseline
model learns to push tasks that it is unable to solve toward simpler pathways prematurely. As a result,
the baseline model fails to learn the most difficult tasks until the very end of the training process.

5.3 Ablations

Lastly, we investigate how changes made to our model can alter the degree to which it resembles
pathways in the brain, as discussed in Sections 5.1 and 5.2. Table 1 shows the effects of design
parameters on the correlations reported in Figures 5 and 6. Notably, we found that when trained with
our loss function that scales based on LPC but without dropout, our model exhibits the effect shown
in Figure 5, but not the effect shown in Figure 6. This indicates that the finding in Figure 6 is due to
an interaction between the LPC scaling in our loss function and dropout, and can not be explained
by training with the LPC regularization alone. We speculate that expert dropout forces the model to
be explicit about which pathway is used in learning, and is crucial for creating brain-like learning
dynamics. This finding highlights how our model’s behavior specifically results from the interplay of
all three of our proposed inductive biases.

We also find that removing the task embedding layer improves the finding in Figure 6, however its
removal drastically slows down training since the active task is represented with 82 dimensions at each
timestep rather than 16 (see Section 3.2). Changing the router’s hidden size does not meaningfully
affect our results. Increasing or decreasing the penalty for using large experts (α) naturally has a
meaningful effect on the results, where too strong of a penalty inhibits learning the tasks as well as
general convergence of the model, and too weak of a penalty does not sufficiently motivate the model
to reduce its usage of complex experts. All rows in the table are averaged over 10 runs.

6 Discussion

In this work, we adapted the heterogeneous Mixture-of-Experts architecture to investigate how brain-
like processing pathways can form between layers of heterogeneous experts. While these experts do

9



not form pathways on their own, once trained with a routing-cost loss, task-performance scaling, and
expert dropout, we find that they create a Mixture of Pathways. Our model provides an account of
task-specific brain-wide pathways commonly observed in neuroscience.

These findings are relevant for neuroscience, as energetic and processing complexity related priors
have been key explanatory mechanisms for how the structure and function of the brain arises [13, 32,
49, 50]. We show that incentivizing models to learn to prioritize simple experts drives the development
of brain-like processing pathways from a heterogeneous set of expert models. Additionally, we show
how stochasticity of signals is important for learning self-sufficient processing networks. Our model
represents an exciting new architecture which can be expanded in the future to study additional
heterogeneities present in the connectome, such as varying cell-types and neurotransmitters. Region-
specific models, such as those for the hippocampus [67], could be integrated within our architecture.

The brain’s implementation of the complexity-guided routing mechanism would likely be found
in thalamic nuclei, which regulate information flow between cortical regions [68]. Two systems
could modulate pathway selection based on metabolic costs: norepinephrine release from the locus
coeruleus, which controls cognitive effort and processing power allocation [69–71], and hypocre-
tin/orexin neurons in the hypothalamus, which govern metabolic resource budgets [72]. Both systems
project strongly to thalamic nuclei and could influence routing decisions between simple and complex
processing pathways. This suggests our model’s routing-cost mechanism may reflect how the brain
balances computational demands against metabolic constraints through neuromodulatory control
of thalamocortical interactions. While mapping our router onto a specific brain region might feel
natural, it should be added that mechanisms like predictive coding can implement routing and filtering
operation between regions without the need of an explicit router region [73].

In the context of machine learning, our work builds on the recent widespread adoption of the
Mixture-of-Experts architecture for building parameter-efficient large language models [15, 74].
Recent innovations specifically aim at allowing MoE models to process queries dynamically to reduce
processing costs [17]. Our small-scale simulations show how it may be possible to use heterogeneous
experts alongside a processing-cost loss function that allows the model to dynamically allocate
resources to processing tokens. Finally, load balancing in MoEs prevents over-reliance on a single
expert by encouraging distributed processing [15]. Our complexity loss serves as a task-driven form
of load balancing.

6.1 Limitations and Extensions

There are several ways to expand our investigations. On the neuroscience side, our architecture
introduces a new way of modeling multi-region interactions of the brain, but some key architectural
characteristics are not yet taken into account. Most importantly, the primate brain has large loop
structures which would allow signals to return to a region [27]. Our architecture only allows a forward
progression of signal and does not allow signals to be routed back to earlier layers. At the same time,
while our analyses demonstrated a link between experts and cortical and subcortical regions, we have
not linked the router component of our HMoE layers to a specific component of the brain. Potential
options are discussed earlier in Section 6, we do not make any explicit comparison to brain data yet.
On the ML side, our training setup currently focuses on solving relatively simple tasks with a small
model. To see whether our complexity-aware routing and load-balancing measures scale to larger
networks, we would need to train larger models on more difficult tasks. Lastly, on the identification
of pathways, we currently rely on three independent tests to see whether a model contains pathways.
Future investigations would ideally identify one specific metric to quantify the degree to which a
Mixture-of-Experts architecture has formed pathways.

7 Conclusion

In this paper, we introduced a modified Heterogeneous Mixture-of-Experts architecture that results in
the formation of recognizable processing pathways. Analysis of these pathways during learning and
problem solving revealed a similarity between these pathways and those observed in the brain. Our
new Mixture-of-Pathways architecture serves as a new theoretical tool for neuroscience and can guide
the search for future resource-efficient architectures in machine learning.

10



Acknowledgments and Disclosure of Funding

We thank our reviewers, the Neural & Machine Learning Group at the University of Oxford, and
the AI HW SW CoDesign Workstream at the Open Compute Project (OCP) for helpful feedback.
This research is supported by the EPSRC (EP/X029336/1) and an ERC-UKRA Frontier Research
Guarantee Starting Grant (EP/Y027841/1) awarded to R.P.C. J.C.’s work was supported by a Rhodes
Scholarship. J.A.’s work was partially supported by a Career Development Research Fellowship from
St John’s College, Oxford. We additionally thank Modal for compute credits.

References
[1] Zizhen Yao, Cindy TJ van Velthoven, Michael Kunst, Meng Zhang, Delissa McMillen,

Changkyu Lee, Won Jung, Jeff Goldy, Aliya Abdelhak, Matthew Aitken, et al. A high-
resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature,
624(7991):317–332, 2023.

[2] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell, Essa
Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson, et al. A
multi-modal parcellation of human cerebral cortex. Nature, 536(7615):171–178, 2016.

[3] Stewart Shipp. Structure and function of the cerebral cortex. Current Biology, 17(12):R443–
R449, 2007.

[4] Valentina Mione, Jascha Achterberg, Makoto Kusunoki, Mark J Buckley, and John Duncan.
Neural dynamics of an extended frontal lobe network in goal-subgoal problem solving. bioRxiv,
pages 2025–05, 2025.

[5] Maxwell A Bertolero, BT Thomas Yeo, and Mark D’Esposito. The modular and integrative
functional architecture of the human brain. Proceedings of the National Academy of Sciences,
112(49):E6798–E6807, 2015.

[6] Kalanit Grill-Spector and Rafael Malach. The human visual cortex. Annual Review of Neuro-
science, 27:649–677, 2004.

[7] Edward HF de Haan and Alan Cowey. On the usefulness of ‘what’and ‘where’pathways in
vision. Trends in cognitive sciences, 15(10):460–466, 2011.

[8] Stephen R Arnott, Malcolm A Binns, Cheryl L Grady, and Claude Alain. Assessing the auditory
dual-pathway model in humans. Neuroimage, 22(1):401–408, 2004.

[9] John Duncan. Construction and use of mental models: Organizing principles for the science of
brain and mind. Neuropsychologia, 207:109062, 2025.

[10] Amit Etkin, Tobias Egner, and Raffael Kalisch. Emotional processing in anterior cingulate and
medial prefrontal cortex. Trends in Cognitive Sciences, 15(2):85–93, 2011.

[11] Michal Bernstein and Galit Yovel. Two neural pathways of face processing: A critical evaluation
of current models. Neuroscience & Biobehavioral Reviews, 55:536–546, 2015.

[12] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-
Jing Wang. Task representations in neural networks trained to perform many cognitive tasks.
Nature neuroscience, 22(2):297–306, 2019.

[13] Jascha Achterberg, Danyal Akarca, D. J. Strouse, John Duncan, and Duncan E. Astle. Spatially
embedded recurrent neural networks reveal widespread links between structural and functional
neuroscience findings. Nature Machine Intelligence, 5(12):1369–1381, 2023. Publisher: Nature
Publishing Group.

[14] Olaf Sporns and Richard F Betzel. Modular brain networks. Annual review of psychology,
67(1):613–640, 2016.

[15] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

11



[16] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of Experts, 2024. arXiv:2401.04088 [cs].

[17] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys,
and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based
language models. arXiv preprint arXiv:2404.02258, 2024.

[18] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022.

[19] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand, Daniel Hurt,
Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al. Pathways: Asynchronous
distributed dataflow for ml. Proceedings of Machine Learning and Systems, 4:430–449, 2022.

[20] Nikolas Gritsch, Qizhen Zhang, Acyr Locatelli, Sara Hooker, and Ahmet Üstün. Nexus:
Specialization meets adaptability for efficiently training mixture of experts. arXiv preprint
arXiv:2408.15901, 2024.

[21] Matthew Lyle Olson, Neale Ratzlaff, Musashi Hinck, Man Luo, Sungduk Yu, Chendi Xue, and
Vasudev Lal. Semantic specialization in moe appears with scale: A study of deepseek r1 expert
specialization. arXiv preprint arXiv:2502.10928, 2025.

[22] An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao,
JN Han, Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language
modeling. arXiv preprint arXiv:2408.10681, 2024.

[23] Ganesh Jawahar, Subhabrata Mukherjee, Xiaodong Liu, Young Jin Kim, Muhammad Abdul-
Mageed, Laks VS Lakshmanan, Ahmed Hassan Awadallah, Sebastien Bubeck, and Jianfeng
Gao. Automoe: Heterogeneous mixture-of-experts with adaptive computation for efficient
neural machine translation. arXiv preprint arXiv:2210.07535, 2022.

[24] Mikail Khona, Sarthak Chandra, Joy J. Ma, and Ila Fiete. Winning the lottery with neural
connectivity constraints: faster learning across cognitive tasks with spatially constrained sparse
RNNs, 2023. arXiv:2207.03523 [q-bio].

[25] John Duncan. The multiple-demand (MD) system of the primate brain: mental programs for
intelligent behaviour. Trends in Cognitive Sciences, 14(4):172–179, 2010.

[26] Guangyu Robert Yang and Manuel Molano-Mazón. Towards the next generation of recurrent
network models for cognitive neuroscience. Current opinion in neurobiology, 70:182–192,
2021.

[27] Jascha Achterberg, Danyal Akarca, Moataz Assem, Moritz Heimbach, Duncan E Astle, and
John Duncan. Building artificial neural circuits for domain-general cognition: a primer on
brain-inspired systems-level architecture. arXiv preprint arXiv:2303.13651, 2023.

[28] Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neural
heterogeneity promotes robust learning. Nature communications, 12(1):5791, 2021.

[29] Gabriel Béna and Dan FM Goodman. Dynamics of specialization in neural modules under
resource constraints. Nature Communications, 16(1):187, 2025.

[30] Cornelia Sheeran, Andrew S Ham, Duncan E Astle, Jascha Achterberg, and Danyal Akarca.
Spatial embedding promotes a specific form of modularity with low entropy and heterogeneous
spectral dynamics. arXiv preprint arXiv:2409.17693, 2024.

[31] Jake Patrick Stroud, Michal Wojcik, Kristopher Torp Jensen, Makoto Kusunoki, Mikiko Kado-
hisa, Mark J Buckley, John Duncan, Mark G Stokes, and Máté Lengyel. Effects of noise and
metabolic cost on cortical task representations. eLife, 13:RP94961, 2025.

12



[32] Danyal Akarca, Simona Schiavi, Jascha Achterberg, Sila Genc, Derek K Jones, and Duncan E
Astle. A weighted generative model of the human connectome. bioRxiv, pages 2023–06, 2023.

[33] Samuel J Gershman, Eric J Horvitz, and Joshua B Tenenbaum. Computational rationality: A
converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245):273–
278, 2015.

[34] Abdullahi Ali, Nasir Ahmad, Elgar de Groot, Marcel Antonius Johannes van Gerven, and
Tim Christian Kietzmann. Predictive coding is a consequence of energy efficiency in recurrent
neural networks. Patterns, 3(12), 2022.

[35] Kevin GC Mizes, Jack Lindsey, G Sean Escola, and Bence P Ölveczky. The role of motor cortex
in motor sequence execution depends on demands for flexibility. Nature Neuroscience, pages
1–10, 2024.

[36] Yang Zhou, Matthew C Rosen, Sruthi K Swaminathan, Nicolas Y Masse, Ou Zhu, and David J
Freedman. Distributed functions of prefrontal and parietal cortices during sequential categorical
decisions. Elife, 10:e58782, 2021.

[37] Joseph Pemberton, Paul Chadderton, and Rui Ponte Costa. Cerebellar-driven cortical dynamics
can enable task acquisition, switching and consolidation. Nature Communications, 15(1):10913,
2024.

[38] Ching Fang and Kimberly L Stachenfeld. Predictive auxiliary objectives in deep rl mimic
learning in the brain. arXiv preprint arXiv:2310.06089, 2023.

[39] Ted Moskovitz, Kevin J Miller, Maneesh Sahani, and Matthew M Botvinick. Understanding
dual process cognition via the minimum description length principle. PLOS Computational
Biology, 20(10):e1012383, 2024.

[40] Samuel Liebana Garcia, Aeron Laffere, Chiara Toschi, Louisa Schilling, Jacek Podlaski,
Matthias Fritsche, Peter Zatka-Haas, Yulong Li, Rafal Bogacz, Andrew Saxe, et al. Stri-
atal dopamine reflects individual long-term learning trajectories. bioRxiv, pages 2023–12,
2023.

[41] David G Clark and Manuel Beiran. Structure of activity in multiregion recurrent neural networks.
Proceedings of the National Academy of Sciences, 122(10):e2404039122, 2025.

[42] Ulises Pereira-Obilinovic, Sean Froudist-Walsh, and Xiao-Jing Wang. Cognitive network
interactions through communication subspaces in large-scale models of the neocortex. bioRxiv,
2024.

[43] Leo Kozachkov, Michaela Ennis, and Jean-Jacques Slotine. Rnns of rnns: Recursive construction
of stable assemblies of recurrent neural networks. Advances in neural information processing
systems, 35:30512–30527, 2022.

[44] Dawn Finzi, Eshed Margalit, Kendrick Kay, Daniel LK Yamins, and Kalanit Grill-Spector. A
single computational objective drives specialization of streams in visual cortex. bioRxiv, pages
2023–12, 2023.

[45] Xin He, Shunkang Zhang, Yuxin Wang, Haiyan Yin, Zihao Zeng, Shaohuai Shi, Zhenheng Tang,
Xiaowen Chu, Ivor Tsang, and Ong Yew Soon. Expertflow: Optimized expert activation and
token allocation for efficient mixture-of-experts inference. arXiv preprint arXiv:2410.17954,
2024.

[46] Zheyu Yang, Taoyi Wang, Yihan Lin, Yuguo Chen, Hui Zeng, Jing Pei, Jiazheng Wang, Xue
Liu, Yichun Zhou, Jianqiang Zhang, et al. A vision chip with complementary pathways for
open-world sensing. Nature, 629(8014):1027–1033, 2024.

[47] Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and
Ashok Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems,
37:9974–10007, 2024.

13



[48] Manuel Molano-Mazon, Joao Barbosa, Jordi Pastor-Ciurana, Marta Fradera, Ru-Yuan Zhang,
Jeremy Forest, Jorge del Pozo Lerida, Li Ji-An, Christopher J Cueva, Jaime de la Rocha, et al.
Neurogym: An open resource for developing and sharing neuroscience tasks. OSF, 2022.

[49] Wouter Kool and Matthew Botvinick. Mental labour. Nature Human Behaviour, 2(12):899–908,
2018. Publisher: Nature Publishing Group.

[50] Ed Bullmore and Olaf Sporns. The economy of brain network organization. Nature reviews
neuroscience, 13(5):336–349, 2012.

[51] James B Aimone. A roadmap for reaching the potential of brain-derived computing. Advanced
Intelligent Systems, 3(1):2000191, 2021.

[52] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion
Parameter Models with Simple and Efficient Sparsity, 2022. arXiv:2101.03961 [cs].

[53] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing Mixture-of-
Experts Inference and Training to Power Next-Generation AI Scale, 2022. arXiv:2201.05596
[cs].

[54] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

[55] Gustavo Deco, Edmund T. Rolls, and Ranulfo Romo. Stochastic dynamics as a principle of
brain function. Progress in Neurobiology, 88(1):1–16, 2009.

[56] Hailiang Li, Jian Weng, Yijun Mao, Yonghua Wang, Yiju Zhan, Qingling Cai, and Wanrong
Gu. Adaptive dropout method based on biological principles. IEEE Transactions on Neural
Networks and Learning Systems, 32(9):4267–4276, 2021.

[57] John Duncan. Construction and use of mental models: Organizing principles for the science of
brain and mind. Neuropsychologia, 207:109062, 2025.

[58] Evelina Fedorenko, John Duncan, and Nancy Kanwisher. Broad domain generality in focal
regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences,
110(41):16616–16621, 2013.

[59] Daniel J Mitchell, Andrew H Bell, Mark J Buckley, Anna S Mitchell, Jerome Sallet, and John
Duncan. A putative multiple-demand system in the macaque brain. Journal of Neuroscience,
36(33):8574–8585, 2016.

[60] María Roca, Alice Parr, Russell Thompson, Alexandra Woolgar, Teresa Torralva, Nagui Antoun,
Facundo Manes, and John Duncan. Executive function and fluid intelligence after frontal lobe
lesions. Brain, 133(1):234–247, 2010.

[61] V. Goel and J. Grafman. Are the frontal lobes implicated in "planning" functions? Interpreting
data from the Tower of Hanoi. Neuropsychologia, 33(5):623–642, 1995.

[62] Y Kate Hong, Clay O Lacefield, Chris C Rodgers, and Randy M Bruno. Sensation, movement
and learning in the absence of barrel cortex. Nature, 561(7724):542–546, 2018.

[63] Andrew J Peters, Julie MJ Fabre, Nicholas A Steinmetz, Kenneth D Harris, and Matteo
Carandini. Striatal activity topographically reflects cortical activity. Nature, 591(7850):420–425,
2021.

[64] Steffen B. E. Wolff, Raymond Ko, and Bence P. Ölveczky. Distinct roles for motor cortical
and thalamic inputs to striatum during motor skill learning and execution. Science Advances,
8(8):eabk0231, 2022.

[65] Ray J Dolan and Peter Dayan. Goals and habits in the brain. Neuron, 80(2):312–325, 2013.

14



[66] Risa Kawai, Timothy Markman, Rajesh Poddar, Raymond Ko, Antoniu L Fantana, Ashesh K
Dhawale, Adam R Kampff, and Bence P Ölveczky. Motor cortex is required for learning but
not for executing a motor skill. Neuron, 86(3):800–812, 2015.

[67] Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, and Ila Fiete. Episodic and associative
memory from spatial scaffolds in the hippocampus. Nature, pages 1–13, 2025.

[68] S. M. Sherman and R. W. Guillery. The role of the thalamus in the flow of information to
the cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, 357(1428):1695–1708, 2002. Publisher: Royal Society.

[69] Gary Aston-Jones and Jonathan D Cohen. An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci.,
28(1):403–450, 2005.

[70] Susan J Sara and Sebastien Bouret. Orienting and reorienting: the locus coeruleus mediates
cognition through arousal. Neuron, 76(1):130–141, 2012.

[71] Andrew Westbrook and Todd S Braver. Cognitive effort: A neuroeconomic approach. Cognitive,
Affective, & Behavioral Neuroscience, 15(2):395–415, 2015.

[72] Alexander L Tesmer, Christine Dalla Pola, Dino Gilli, Nikola Grujic, Eva F Bracey, Tom-
maso Patriarchi, Daria Peleg-Raibstein, Rafael Polania, and Denis Burdakov. Neurometabolic
signaling and control of policy complexity. bioRxiv, pages 2025–02, 2025.

[73] Kaitlyn M Gabhart, Yihan Sophy Xiong, and André M Bastos. Predictive coding: a more
cognitive process than we thought? Trends in Cognitive Sciences, 2023.

[74] Llama Team. The Llama 4 herd: The beginning of a new era of natively multimodal AI
innovation, 2025.

[75] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[76] Stefano Recanatesi, Serena Bradde, Vijay Balasubramanian, Nicholas A. Steinmetz, and Eric
Shea-Brown. A scale-dependent measure of system dimensionality. Patterns, 3(8):100555,
2022.

[77] Ana C. Lorena, Luís P. F. Garcia, Jens Lehmann, Marcilio C. P. Souto, and Tin K. Ho. How
complex is your classification problem? a survey on measuring classification complexity, 2020.

[78] John Duncan, Alice Parr, Alexandra Woolgar, Russell Thompson, Peter Bright, Sally Cox,
Sonia Bishop, and Ian Nimmo-Smith. Goal neglect and spearman’s g: competing parts of a
complex task. J. Exp. Psychol. Gen., 137(1):131–148, February 2008.

15



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The abstract and introduction accurately represent the paper’s contributions
without overstatement. We claim that (1) heterogeneous experts do not automatically form
pathways without specific architectural priors, (2) normalized routing complexity loss and
expert dropout enable pathway formation, and (3) the resulting pathways mirror brain-
like processing pathways in multiple ways. Our experimental results directly support these
claims through quantitative evaluations of pathway stability, self-sufficiency, and task-related
functionality. The limitations of our approach are acknowledged in the Discussion section,
including the lack of recurrent connectivity and the current small scale of our model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper includes a dedicated “Limitations and Extensions” section that
explicitly discusses the limitations of our work across three key areas: (1) Neuroscience
limitations: We acknowledge that our architecture lacks important brain-like features such
as recurrent connectivity loops, which are present in the primate brain, and that we have
not explicitly linked the router networks to specific brain structures. (2) Machine learning
limitations: We discuss that our current implementation focuses on relatively small models
and simple tasks, raising questions about whether our approach would scale to larger
networks with more complex tasks. (3) Methodology limitations: We note that our current
approach for identifying pathways relies on two independent tests, rather than a single
unified metric. Throughout the paper, we are also transparent about the computational
requirements of our model and the number of training runs conducted. These limitations are
presented alongside potential future research directions to address these constraints.

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

16



• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include any theoretical proofs. It does make the theoretical
assumption that the Mixture-of-Experts architecture is a suitable backbone for testing
the development of pathways but this assumption is made very clear given our extensive
discussion of the Mixture-of-Experts architecture.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We rely on commonly used and well defined building blocks both on the side
of models and tasks that are openly available and clearly state the hyperparameters we rely
on. Our code is also available for review as part of the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

17



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide detailed description on how to access and run our code in the
appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our Methods section describes all details of the algorithm setup needed, and the
appendix provides additional implementation details, specifically with regard to the custom
loss functions that we use. Generally we rely on very established building blocks combined
in a novel way, and our instructions on how we combined them and which hyperparameters
we used are described in the main text.
Guidelines:

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide significance tests for all main claims in the paper. All significance
tests we use are two-sided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specifically describe the compute resources we use to run our experiments
in the methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

19

https://neurips.cc/public/EthicsGuidelines


Justification: Yes, our work fully conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We conduct very small-scale simulations aimed at studying a theoretical
phenomenon in MoE models and replicating features observed in the brain. The models
trained here are in no way powerful enough to be deployed for the contexts discussed in the
guidelines of this question.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use simple simulated trials of cognitive tasks as data which were
generated based on open-access packages and hence there is no risk of misuse. We do not
release any pretrained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

20



• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriatly cite the source of the dataset package. All our simulations
are implemented with PyTorch, as described in the extended implementation details in the
appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide anonymized simulation code for our paper which is released under
a CC BY 4.0 license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use any crowdsourcing or human subjects.

Guidelines:

21

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use any crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


A Appendix

A.1 Implementation Details and Code Access

While most details on the model implementation are described in Section 3, we provide some
additional details here. The GRUs in all of our layers, including routers, use the ReLU activation
function and are initialized from U(−

√
k,
√
k), where k is the GRU’s hidden size, as is standard in

PyTorch. All models are optimized with the Schedule-Free variant of the AdamW optimizer [47]
using a learning rate of 0.01, betas of (0.9, 0.999), and no weight decay. As briefly described in
Section 3, we use an additional embedding layer to transform the 82-dimensional one-hot encoding of
the task identity into a 16-dimensional embedding vector, which is concatenated with the task stimuli
before being provided to the model. We include these details in a complete version of our training
algorithm below in Algorithm 2, expanding on the abbreviated algorithm introduced in Algorithm 1.
We provide our implementation at https://github.com/jackcook/mixture-of-pathways.

Algorithm 2: Full Mixture-of-Pathways training protocol.
Data: Task dataset D, Experts E = {e1, e2, . . . , en}, Routers R = {r1, r2, . . . , rn}
Initialize routers and heterogeneous experts, sampling weights and biases from U(−

√
k,
√
k);

Process 82-dimensional one-hot task encoding with embedding layer;
Set h0 to task input, consisting of a 1-dimensional fixation input, two 16-dimensional stimuli,

and a 16-dimensional task embedding at each timestep;
for each training step do

Sample batch b from D;
for each layer l do

Compute routing weights wl,j = softmax(rl(hl−1)) ;
Apply expert dropout (Not in baseline architecture; see Section 4.2) ;
Compute expert activations wl,j for each expert in l ;
Combine outputs: hl =

∑
j wl,j · hl,j ;

end
Compute baseline model losses: Lfix and Lresponse,i ;
Compute Lrouting loss (Not in baseline architecture; see Section 4.1) ;
Compute Ltotal = Lfix + Lrouting +

∑
i Lresponse,i;

Update parameters using Schedule-Free AdamW optimizer [47];
end

A.2 Sample Task Visualizations and Descriptions

Section 3 briefly described the Mod-Cog task set [24]. Here, we provide a more detailed description
of the tasks, alongside visualizations of sample trials.

The Mod-Cog task set consists of 82 time-series-based cognitive tasks that extend the original
NeuroGym framework [48] through two primary modifications: integration tasks, which incorporate
interval estimation based on delay periods, and sequence generation tasks, which require time-varying
outputs with drifting directions. The original 20 cognitive tasks from NeuroGym serve as the
foundation, with new integration-based tasks and new sequence generation tasks forming a set of 82
tasks in total. These tasks span a wide range of cognitive demands, from simple stimulus-response
mappings to complex working memory and sequential decision-making challenges.

Tasks are presented as continuous time-series data, which we sample at 100-millisecond intervals.
Each input consists of a 1-dimensional fixation signal, two 16-dimensional stimulus channels, and an
82-dimensional one-hot task identifier that passes through a learned embedding layer, as described
in Appendix A.1. During the fixation period of each task, models must maintain an output of zero
while processing incoming stimuli. During the subsequent response period, models must return
task-specific output sequences. Task difficulty varies systematically according to several factors:
the complexity of decision rules (from simple detection to multi-step integration), the duration of
delay periods that tax working memory, the number of stimuli that must be simultaneously tracked,
and whether responses require static outputs or dynamic sequential patterns. Figure 7 illustrates six
representative tasks that demonstrate this range of complexity.

23

https://github.com/jackcook/mixture-of-pathways


Fixation

Stimulus 1

Stimulus 2

rtgo

0

10

A
ct

io
n

go

0

10

Fixation

Stimulus 1

Stimulus 2

dm1

0

10

A
ct

io
n

dlydm1

0

10

Fixation

Stimulus 1

Stimulus 2

dm2

Timestep

0

10

A
ct

io
n

goseql

Timestep

0

10

Figure 7: Model inputs and actions for the rtgo, go, dm1, dlydm1, dm2, and goseqr tasks. Ap-
pendix A.2 provides a detailed description of each task.

24



• RTGo task (rtgo): The model must immediately output the value presented in either input
channel.

• Go task (go): The model observes two input channels and must respond with the value
presented in either stimulus once the fixation period has ended.

• Decision Making task (dm1): The model observes brief stimulus presentations from both
channels and must respond with the value in stimulus 1 that had the highest average intensity
(values in stimulus 2 can be ignored). This requires integration and comparison of sensory
evidence.

• Delayed Decision Making task (dlydm1): Similar to dm1, but includes a delay period
between a decoy stimulus and the noisy stimulus, requiring working memory to maintain
stimulus information.

• Dual Decision Making task (dm2): Similar to dm1, but the model must return the highest
value from stimulus 2.

• Sequential Decision Making task (goseql): Based on the Go task but requiring a time-
varying output that drifts in a specific direction (leftward) over the response period, combin-
ing stimulus detection with sequential motor control.

A.3 Loss Variants Used Across Model Types

In Section 4, we introduce architectural changes to the model that encourage pathways to form
between layers. Here, we give an overview of the five different loss functions which are used to train
our different model variants.

The loss function that we use to train the baseline model only includes the fixation and task response
loss, as shown below in Equation 4. Equation 5 computes a mean-squared error for the fixation period
where the correct output value is always zero. This loss function is not task-specific since it can be
computed across all task inputs while the fixation input is active. Equation 6 computes a task-specific
cross-entropy loss between the 16 possible output values and the model’s 16 output logits at each
timestep. When used to train a model, one of these response losses will be computed for each task in
the set of tasks T .

LBaseline = Lfix +

T∑
i

Lresponse,i (4)

Lfix =
1

T

T∑
t

ŷ2t (5)

Lresponse,i = − 1

Ti

Ti∑
t

yt log(ŷt) (6)

Here, ŷt represents the model’s output logits at timestep t during fixation, T is the total number of
fixation timesteps, yt is the true target output, ŷt is the model’s predicted output at timestep t, and Ti

represents the total number of response timesteps for task i.

In Section 4.1, using this baseline loss function, we find that the baseline model by itself does not
converge on consistent pathways across model runs. This motivates us to create a new loss function,
LRC, which introduces a routing cost that penalizes the model for using more complex experts, as
shown in Equation 7.

LRC = Lfix +

T∑
i

(Lresponse,i + αLPCi) (7)

LPCi =
1

Ti

Ti∑
t

E∑
j

wi,j,ts
2
j (8)

25



In Equation 8, wi,j,t represents the routing weight assigned to expert j at timestep t for task i, sj is
the size of expert j, and E denotes the total number of experts in the model (in this manuscript, all
models have three layers of three experts each, so E = 9). α is a hyperparameter that balances the
trade-off between the model’s performance on each task and the complexity of the experts used to
solve that task. If α is too large, the model will reach a local minimum where it is unable to solve
any task, but it can reduce its expert usage to zero by using the skip connections in each layer and
performing no computation. On the other hand, if α is too small, the model will solve each task to a
very high degree of accuracy, but not reduce the complexity of the experts used to solve each task,
and fail to form brain-like pathways. We found that setting α = 10−5 balanced these priorities well,
and used this value for all of the experiments in this work. However, future work may investigate a
better method for selecting this hyperparameter.

While the routing consistency for the model with the loss in Equation 7 is improved as shown in
Figure 2, we do find that it does not converge on a fully consistent routing pattern. This motivates the
addition of a scaling factor based on task performance, which reduces the effect of the routing loss
when task performance is low. The resulting loss shown in Equation 9 is the final loss we use to train
our Mixture-of-Pathways model.

L = Lfix +
T∑
i

(Lresponse,i +
αLPCi

Lresponse,i + ϵ
) (9)

The normalization term Lresponse,i+ϵ uses the task-specific response loss Lresponse,i to scale the routing
penalty, where ϵ is a small constant added to prevent division by zero when the model achieves perfect
task performance.

A.4 Learned Pathway Complexity and Routing Consistency

A.4.1 Calculation Example

Here we provide a detailed example calculation of how the expert size penalty is calculated. This
penalty is used within the calculation of the routing consistency described in Section 4.1 and also as
part of the expert-usage loss from Equation 7.

In this equation, E is the set of all experts, sj is the size of each expert, and wi,j is the weight
assigned to expert j while solving task i. For example, imagine a model with three experts: a skip
connection, a simple expert with 16 neurons, and a complex expert with 32 neurons. To solve a task i,
imagine the model sets the weight of the skip connection to 31%, the simple expert to 43%, and the
complex expert to 26%. The model’s learned pathway complexity (LPC) for task i would be 376.3,
as follows:

LPCi = wi,0s
2
0 + wi,1s

2
1 + wi,2s

2
2 = (0.31)(0)2 + (0.43)(16)2 + (0.26)(32)2 = 376.3 (10)

For simplicity, this equation shows how to calculate the model’s LPC at a single timestep. To calculate
the LPC for an entire task, this value should be calculated at and averaged over all of the task’s
timesteps.

A.4.2 Routing Consistency Across Model Types

Using the calculated LPC values for each task, we determine the consistency of the routing decisions
made by different models when solving tasks. In Figure 8, we show a version of Figure 2 with
our final model, which includes expert dropout. After the addition of expert dropout, the mean
pairwise correlations of the models’ routing consistency is 0.51 (p < 0.0001). This is a reduction
when compared to our model trained only with our custom routing cost and task performance
scaling, however, as explained in Section 4.2, the model with the additional dropout does develop
self-sufficient pathways on top of the consistency criteria, so that the model including the dropout
overall better matches the pathway formation criteria. Our main investigation on what we call the
Mixture-of-Pathways model includes the expert dropout.

26



−0.2 0.0 0.2 0.4 0.6 0.8

Correlation of Routing Activity Between Runs

+ Expert Dropout

+ Task Performance
Scaling

+ Routing Cost

Baseline

Figure 8: Routing consistency as measured by correlation of routing activity across model runs. This
is a version of Figure 2 which also shows the model with expert dropout. Even with expert dropout
the routing consistency is significantly above the baseline model (p < 0.0001), even though it is
slightly reduced when compared to the model with routing cost and task performance scaling.

A.5 Effective Rank

To define the LPC, in Equation 1 we use s2j as a penalty for using expert j, where sj is the expert’s
hidden dimension, or zero in the case of a skip connection. Intuitively, this was motivated by the
O(s2j ) cost of storing each expert’s weight matrix in memory, however this only roughly captures
the learning capabilities of a GRU with sj neurons. For example, as demonstrated by the lottery
ticket hypothesis, it is possible that experts with large hidden dimensions may converge on low-rank
solutions more easily than experts with small hidden dimensions [75].

To ensure that we were appropriately penalizing experts relative to each other, we analyzed the
effective rank of each expert’s matrix, defined as the participation ratio of the squared sum of singular
values to the sum of squared singular values, (

∑
σi)

2∑
σ2
i

, over the course of training [76]. This metric
measures how evenly distributed the singular values are and thus how many dimensions the matrix
effectively uses. These are shown in Figure 9. For both models, we find that the effective rank of
large experts is roughly double that of small experts, both before and after training, so that large
experts always have a much larger effective rank than small experts (p < 0.0001). We additionally
find that all experts across both our model and the baseline model decrease slightly in effective rank
over training, but the differences between these models’ effective ranks tends to be small and never
becomes significant (p > 0.05). This supports the conclusion that the hidden dimension is at least a
good approximation of processing complexity, but we encourage future work to consider measuring
this with a scalar value.

27



10.4

10.6

10.8

11.0

11.2

E
ff

ec
ti

ve
R

a
n

k

Layer 1, Simple Expert

Baseline

Our Model

21.0

21.5

22.0

22.5

Layer 1, Complex Expert

Baseline

Our Model

10.6

10.8

11.0

11.2

E
ff

ec
ti

ve
R

an
k

Layer 2, Simple Expert

Baseline

Our Model

21.25

21.50

21.75

22.00

22.25

22.50
Layer 2, Complex Expert

Baseline

Our Model

0 5 10

Epoch

10.6

10.8

11.0

11.2

E
ff

ec
ti

ve
R

a
n

k

Layer 3, Simple Expert

Baseline

Our Model

0 5 10

Epoch

21.0

21.5

22.0

22.5

Layer 3, Complex Expert

Baseline

Our Model

Figure 9: Changes in the effective rank of each expert’s weight matrix over the course of training.
Results for each configuration are averaged across 20 runs.

A.6 Per-Task Accuracy Metrics

In Table 2 below, we report accuracy metrics on each task for three models: the baseline HMoE
model described in Section 3.1, our model, which includes the routing cost and task-performance
scaling described in Section 4.1 and the expert dropout described in Section 4.2, and our model
without expert dropout.

Table 2: Per-task accuracy metrics.

Task Baseline Our Model Without Dropout
Mean 91.1% 83.0% 90.1%
Median 93.3% 87.5% 91.1%

anti 100.0% 100.0% 99.9%
antiseql 100.0% 99.8% 99.8%
antiseqr 100.0% 100.0% 100.0%
ctxdlydm1 99.5% 99.6% 99.5%
ctxdlydm1intl 99.8% 100.0% 99.3%
ctxdlydm1intr 99.6% 98.4% 99.6%

28



Task (cont.) Baseline Our Model Without Dropout
ctxdlydm1seql 83.5% 79.9% 84.0%
ctxdlydm1seqr 83.2% 84.1% 82.3%
ctxdlydm2 75.5% 71.7% 76.3%
ctxdlydm2intl 78.2% 70.9% 79.3%
ctxdlydm2intr 81.2% 82.3% 84.2%
ctxdlydm2seql 95.4% 90.2% 94.3%
ctxdlydm2seqr 90.7% 92.7% 90.6%
ctxdm1 93.0% 90.0% 93.7%
ctxdm1seql 93.6% 88.6% 91.0%
ctxdm1seqr 82.2% 83.0% 76.4%
ctxdm2 98.7% 97.9% 99.3%
ctxdm2seql 99.5% 97.5% 98.5%
ctxdm2seqr 99.4% 92.1% 99.0%
dlyanti 99.7% 98.4% 99.5%
dlyantiintl 99.8% 39.1% 98.7%
dlyantiintr 99.6% 44.3% 94.1%
dlyantiseql 96.2% 38.4% 98.4%
dlyantiseqr 98.7% 37.6% 93.4%
dlydm1 91.8% 87.5% 88.6%
dlydm1intl 93.0% 88.5% 91.8%
dlydm1intr 91.7% 89.2% 88.7%
dlydm1seql 92.8% 86.0% 89.3%
dlydm1seqr 90.5% 90.6% 88.8%
dlydm2 90.2% 87.0% 90.5%
dlydm2intl 92.2% 84.1% 86.8%
dlydm2intr 92.1% 85.1% 88.1%
dlydm2seql 82.4% 78.0% 74.3%
dlydm2seqr 82.1% 78.9% 76.8%
dlygo 80.2% 59.9% 76.0%
dlygointl 78.5% 60.8% 79.6%
dlygointr 82.6% 61.5% 84.3%
dlygoseql 85.5% 60.4% 82.0%
dlygoseqr 74.3% 62.6% 76.8%
dm1 76.3% 61.7% 75.0%
dm1seql 78.8% 57.3% 78.4%
dm1seqr 81.0% 63.4% 76.6%
dm2 100.0% 98.0% 99.9%
dm2seql 99.7% 97.6% 99.2%
dm2seqr 100.0% 98.0% 99.9%
dmc 99.9% 95.5% 99.8%
dmcintl 99.8% 99.0% 99.4%
dmcintr 99.5% 98.0% 99.8%
dmcseql 81.9% 75.2% 81.1%
dmcseqr 81.5% 75.0% 81.7%
dms 75.2% 66.5% 77.2%
dmsintl 73.4% 64.8% 77.3%
dmsintr 79.7% 72.8% 86.0%
dmsseql 95.1% 87.6% 92.8%
dmsseqr 95.2% 88.6% 90.6%
dnmc 93.2% 87.3% 88.7%
dnmcintl 93.1% 86.2% 89.7%
dnmcintr 80.8% 79.0% 77.1%
dnmcseql 98.5% 93.0% 98.9%
dnmcseqr 99.7% 94.3% 98.3%
dnms 98.8% 91.3% 98.8%
dnmsintl 99.3% 93.6% 98.1%
dnmsintr 99.9% 99.4% 100.0%

29



Task (cont.) Baseline Our Model Without Dropout
dnmsseql 100.0% 97.4% 99.6%
dnmsseqr 100.0% 99.1% 99.4%
go 100.0% 94.9% 99.7%
goseql 99.9% 96.7% 99.4%
goseqr 100.0% 94.0% 99.7%
multidlydm 81.8% 74.5% 81.9%
multidlydmintl 78.1% 77.3% 80.0%
multidlydmintr 74.1% 66.7% 76.0%
multidlydmseql 73.1% 66.6% 71.8%
multidlydmseqr 79.7% 71.6% 79.4%
multidm 94.0% 90.0% 90.7%
multidmseql 94.3% 88.9% 93.1%
multidmseqr 93.3% 85.9% 92.6%
rtanti 92.6% 86.1% 91.2%
rtantiseql 82.2% 79.5% 81.6%
rtantiseqr 99.7% 95.2% 98.9%
rtgo 98.7% 94.9% 98.9%
rtgoseql 99.3% 91.9% 98.0%
rtgoseqr 98.1% 93.1% 99.0%

A.7 Task-Specific Expert Usage Patterns

In Figures 10 and 11, we show two samples of tasks completed by our model. At each timestep, we
plot the model’s decisions in orange, which overlap with the blue ground truth values, indicating that
in these trials, the model always returned the correct answer. We additionally plot the expert usage of
the model at each timestep. At each timestep, three bars are shown for each layer, with their color
indicating the usage of the skip connection, the simple expert, and the complex expert, in that order.
In the go trial shown in Figure 10, the model primarily uses the skip connections at each timestep
during the fixation period, in which it only needs to return zero. During the response period, the
model moves its computations toward a more complex pathway, primarily using the simple experts in
layers 1 and 2, and the skip connection in layer 3. In the more complicated dmcintr trial shown in
Figure 11, the model switches between pathways multiple times depending on its needs, which vary
between working memory and computation. This shows that our model has formed distinct pathway
and modes of processing information which it dynamically switches between. As a result, the model
opens up the possibility of analyzing the detailed dynamics of how pathways are combined over tasks
with time courses that include varying computational demands, to learn which principles underlie
such coordination processes.

30



Fixation

Stimulus 1

Stimulus 2

Task: go

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
ct

io
n

Ground truth

Action prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Timestep

Layer 1

Layer 2

Layer 3

0%

20%

40%

60%

80%

100%

E
x
p

er
t

U
sa

ge

Figure 10: In the go task we see that models rely on extremely simple pathways for their decision
making until activating model complex pathways during the response period.

31



Fixation

Stimulus 1

Stimulus 2

Task: dmcintr

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
c
ti

o
n

Ground truth

Action prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Timestep

Layer 1

Layer 2

Layer 3

0%

20%

40%

60%

80%

100%

E
x
p

e
rt

U
sa

g
e

Figure 11: During more complex tasks such as dmcintr we see that models us a a very dynamic and
rich set of pathways throughout the duration of a trial to return the correct response.

32



A.8 Unclustered Expert Usage Patterns Across Tasks

In Figures 13 and 14, we show the unclustered expert usages during three phases of each task. Each
task has a different number of timesteps, so in order to condense expert usage into a single figure, we
averaged expert usage over three phases which are shared by each task: a pre-stimulus phase, during
which the task identity is known but input data has not yet been presented, a stimulus phase, during
which the model is observing input data, and a response phase, during which the model needs to
output its responses. In these figures, tasks are sorted based on the same clusters shown in Figure 4
for visual clarity. Notably, the complex expert is rarely used in the first two phases, during which
the model outputs zero, but is commonly used during the response phase of complex tasks. When
analyzing the average usage of the most complex experts over the clusters shown in Figure 4, we
find that the cluster with the highest reliance of the most complex experts uses those with an average
routing weight of 0.11. In Figure 12 we show the distribution of complex expert usage by layers of
the model, over clusters derived in Figure 4, meaning each data points here is one of the 10 clusters.

0.00 0.02 0.04 0.06 0.08 0.10

Average Usage of Complex Expert

1

2

3

L
ay

er

Figure 12: Average usage of the most complex experts for each cluster derived in Figure 12, split by
layer index.

33



Skip Simple Complex

Prestimulus Phase

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

L1 L2 L3 L1 L2 L3 L1 L2 L3

multidlydmseql

dnmcseql

rtantiseql

rtgoseql

dnms

dm2seql

ctxdm1seql

dnmc

dlydm1seql

dlygointl

ctxdlydm1seql

dlyantiintl

anti

dnmsseql

rtgo

antiseql

dlygoseql

dlydm2

ctxdm2seqr

dlydm1

ctxdlydm1

ctxdm2

multidm

dm2

dm1

dlyantiseql

dm1seql

ctxdm2seql

dlyanti

dlydm2seql

ctxdm1

rtanti

multidlydmintr

ctxdlydm2intl

ctxdlydm2intr

ctxdlydm1intl

ctxdlydm1intr

dlygo

dlydm2intl

dlyantiintr

dlydm1intl

dlydm1intr

dlygointr

dms

ctxdlydm2

dlydm2intr

multidlydmintl

go

dnmsintr

dnmsintl

dmsseql

dmcintl

ctxdlydm2seql

multidmseql

goseql

multidlydmseqr

ctxdlydm2seqr

ctxdlydm1seqr

dmsintr

multidmseqr

dnmcintl

dnmcintr

rtgoseqr

antiseqr

dlygoseqr

dm2seqr

ctxdm1seqr

goseqr

dlydm1seqr

dlydm2seqr

dnmcseqr

dm1seqr

dnmsseqr

dmsintl

multidlydm

dmcintr

dmcseql

rtantiseqr

dlyantiseqr

dmcseqr

dmsseqr

dmc

Skip Simple Complex

Stimulus Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3

Skip Simple Complex

Response Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3
0%

20%

40%

60%

80%

100%

L
a
y
e
r-

w
is

e
E

x
p

e
rt

U
sa

g
e

Figure 13: Layer-wise expert usage averaged over three phases of each task: the pre-stimulus phase,
during which the task is known but no input data has been given to the model, the stimulus phase,
during which input data is being given to the model, and the response phase, during which the
model needs to calculate and return the correct response. In each phase, expert usages sum to 100%
within each layer, i.e. usages of the skip connection, simple expert, and complex expert of layer 1,
denoted by “L1”, add up to 100%. Tasks are grouped into 10 clusters, shown along the left, based on
similarities in their routing patterns. A contrasting version of this figure for a baseline model trained
without our cost-based loss and dropout is shown in Figure 14.

34



Skip Simple Complex

Prestimulus Phase

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

L1 L2 L3 L1 L2 L3 L1 L2 L3

ctxdlydm2seqr

dlydm2seqr

dm1seqr

multidmseqr

ctxdm1seqr

multidlydmseqr

ctxdlydm1seqr

dlydm1seqr

dm2seqr

rtantiseqr

rtgoseqr

ctxdm2seqr

dnmcseqr

dmsseqr

dnmsseqr

dmcseqr

ctxdlydm1

ctxdlydm2intl

dlydm2

ctxdlydm2intr

dlydm1

multidm

ctxdm2

ctxdm2seql

multidmseql

dlydm1seql

dlydm2seql

dmsintl

dlyantiintl

dlygointl

rtgoseql

multidlydmseql

dnmsseql

ctxdlydm1seql

antiseql

dlyantiseql

dm2seql

dnmcseql

ctxdlydm2seql

ctxdlydm2

dmsseql

dmsintr

dlygointr

dmcseql

dmc

dmcintr

multidlydm

dnms

dnmc

anti

dlydm2intl

ctxdlydm1intr

go

multidlydmintr

ctxdlydm1intl

rtgo

rtantiseql

dmcintl

dnmsintl

ctxdm1seql

multidlydmintl

dm1seql

dlydm1intr

dlydm1intl

dlydm2intr

rtanti

dms

dlyanti

dm1

dm2

ctxdm1

dlyantiintr

dlygo

antiseqr

goseql

dlyantiseqr

dlygoseqr

goseqr

dnmcintr

dnmsintr

dlygoseql

dnmcintl

Skip Simple Complex

Stimulus Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3

Skip Simple Complex

Response Phase

L1 L2 L3 L1 L2 L3 L1 L2 L3
0%

20%

40%

60%

80%

100%

L
a
y
e
r-

w
is

e
E

x
p

e
rt

U
sa

g
e

Figure 14: A separate version of Figure 13 for a model trained without our custom routing cost, loss
normalization, and expert dropout. The pathways that form are much less distinct, and are also much
less stable.

35



A.9 Task Difficulty

A.9.1 Number of Training Steps

To measure each task’s difficulty, we train five recurrent neural networks (GRUs), each with 64
neurons, and record how many training steps it takes each model to solve that task to 99% accuracy.
The task’s difficulty is then reported as the median number of steps from these five training runs.
Figure 15 shows these measurements for all 82 tasks in the Mod-Cog task suite [24].

A.9.2 Number of Rules

There are many ways to characterize the difficulty of learning problems [77], but no universal
complexity measure has been developed to date. We believe “training steps needed to learn the
task,” as discussed above in Appendix A.9.1, is a sensible measure because this can be measured
without any implicit biases, and takes into account task demands such as working memory and any
other factors which make inference challenging [77]. At the same time, it remains unclear whether
such a complexity measure would neatly map onto what humans or animals perceive to be “difficult
tasks,” which is often linked to the number of rules in a task [78]. However, this can be easily tested,
as Mod-Cog tasks are created based on combinations of different motifs and rules. For example,
Figure 7 shows that the “Delayed Decision Making” task (dlydm1) is an altered version of the
standard “Decision Making” task (dm1) with the added “Delay” rule (dly).

We find that our difficulty metric is in fact correlated with the number of rules in each task (r = 0.39;
p < 0.0001, shown in Figure 16), and that our model exhibits an even stronger correlation for the
brain-like finding in Figure 5 when this is used as the difficulty metric (r = 0.57, p < 0.0001)
compared to the baseline model (r = −0.09, p = 0.4288). At the same time, using “number of rules”
as the actual difficulty metric has two downsides: (a) it is a discrete and ordinal measurement from 1
to 4 with less statistical power, and (b) some rules are harder to learn than others (i.e. go vs. dm1).
This suggests to us that our current convergence-based complexity measure is, at least in this specific
task environment, a difficulty metric providing a better link to both the brain and GRU-based machine
learning models.

36



101 102 103

Task Difficulty (training steps to 99% accuracy)

multidlydmseqr
multidlydmseql

multidmseql
dm2seqr

ctxdm1seqr
multidmseqr

dm2seql
ctxdm2seql
ctxdm2seqr
ctxdm1seql

dm1seqr
dm1seql
dmcintr

dlydm1seql
dnmcintl

dlydm2seqr
dnmcintr

dmcintl
dlydm2seql

ctxdlydm2seqr
ctxdlydm1seql
ctxdlydm1seqr

dmsintl
ctxdlydm2seql

dmsintr
dlydm1seqr

dnmsintr
dnmsintl

goseql
dlygoseqr

dmsseqr
dlyantiseqr

multidm
goseqr

antiseqr
dlyantiseql

dlygointr
dlygoseql

dmsseql
antiseql

dlygointl
dmcseqr

multidlydm
dnmcseqr

dlyantiintr
dmcseql

multidlydmintl
dnmcseql

multidlydmintr
dnmsseql

dlyantiintl
dnmsseqr

dm1
dm2

ctxdm1
dlydm1intr
dlydm2intl

rtgoseql
dlydm2

dmc
dlydm2intr

ctxdlydm1intl
ctxdm2
dlydm1

ctxdlydm2
dlydm1intl

ctxdlydm1intr
ctxdlydm2intr

rtgoseqr
rtantiseqr
rtantiseql

ctxdlydm1
ctxdlydm2intl

dnmc
dnms
dms

go
dlygo

anti
dlyanti
rtanti

rtgo
T

a
sk

N
a
m

e

Figure 15: Five measurements of task difficulty made for each task in the Mod-Cog task suite [24].
Tasks are sorted by the median of the five measurements. Interestingly, the tasks form groups around
similar difficulty levels, which we indicate with the color of each dot.

37



1.0 1.5 2.0 2.5 3.0 3.5 4.0

Rule Count

101

102

103

T
ra

in
in

g
S

te
p

s
to

9
9
%

A
cc

u
ra

cy

Figure 16: The number of rules that form a Mod-Cog task is correlated with the number of steps it
takes a single RNN to learn the task (r = 0.39, p < 0.0001).

38


	Introduction
	Related Work
	Methods
	Model Architecture: Heterogeneous Mixture-of-Experts
	Evaluation with Cognitive Tasks

	What Causes Pathways to Form?
	Pathway Consistency
	Self-Sufficiency of Pathways
	Distinct Pathways Across and Within Tasks

	Do Artificial Pathways Behave Like the Brain's Pathways?
	Solving Tasks of Varying Difficulty
	Learning Tasks of Varying Difficulty
	Ablations

	Discussion
	Limitations and Extensions

	Conclusion
	Appendix
	Implementation Details and Code Access
	Sample Task Visualizations and Descriptions
	Loss Variants Used Across Model Types
	Learned Pathway Complexity and Routing Consistency
	Calculation Example
	Routing Consistency Across Model Types

	Effective Rank
	Per-Task Accuracy Metrics
	Task-Specific Expert Usage Patterns
	Unclustered Expert Usage Patterns Across Tasks
	Task Difficulty
	Number of Training Steps
	Number of Rules



