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ABSTRACT

Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative
positional information in large language models (LLMs). However, when extended to
vision-language models (VLMs), RoPE and its variants enforce relative positional de-
pendencies separately within text and image tokens, introducing unintended cross-modal
positional biases. For example, image tokens depicting semantically consistent content
are assigned distinct positional encodings solely due to spatial location variations. As
a result, such tokens exhibit entirely different relative positional relationships with their
corresponding text tokens, ultimately leading to misaligned cross-modal representations. To
address this, we propose Per-Token Distance, a simple yet effective metric for quantifying
the independence of positional encodings across modalities. Informed by this analysis,
we introduce Circle-RoPE, a novel encoding scheme designed to eliminate spurious cross-
modal biases. Our key idea is to project image token indices onto a ring that is orthogonal to
the linear axis of text token indices, thereby forming a cone-like structure in the positional
encoding space. In this configuration, each text token (point on the linear text axis) becomes
the apex of a cone and maintains an equal distance to all image tokens (points on the circular
image ring), reducing artificial cross-modal biases while preserving intra-image spatial
information. To further enhance performance, we propose a staggered strategy that applies
different RoPE variants across layers. Extensive experiments demonstrate that our method
effectively preserves spatial information from images while reducing relative positional
bias, offering a more robust and flexible positional encoding framework for VLMs.

1 INTRODUCTION

In the rapidly evolving transformer landscape, Rotary Position Embedding (RoPE) [19] has emerged as the de
facto standard for encoding relative positional information in large language models (LLMs). When extending
models to handle both textual and visual inputs, as in Vision-Language Models (VLMs), a challenge emerges:
how to effectively encode positional information across disparate modalities. Text is inherently sequential,
while visual data is spatially structured, characterized by attributes such as location, orientation, viewpoint,
and scale—properties that are fundamentally different and largely uncorrelated with textual order.

Different approaches have been explored to tackle this issue. For instance, Figure 1(a) illustrates models
like LLaVA [13], Emu3 [21], InternLM-VL [4], and DeepSeek-VL2 [23], which flatten image tokens into a
1D sequence and concatenated them with text tokens, directly applying the standard 1D RoPE from LLMs
to multimodal encoding. Figure 1(b) depicts the strategy used in mPLUG-Owl3 [27], where all image
patches are simply assigned with the same positional index. Figure 1(c) depicts the positional encoding in
M-RoPE [20] (Qwen2-VL), which preserves the spatial layout of images while modeling textual sequentiality,
though it still concatenates image and text tokens in the same sequence as in Figure 1(a).
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(a) Hard embedding (b) Unordered embedding

(c) Spatial embedding (d) Our method

Figure 1: Text (yellow) and image (green) tokens are labeled with their position indices under different RoPE-based
encoding schemes. (a) hard embedding method, which encodes image tokens by their flattened sequence; (b) unordered
embedding method, assigning the same index to all image tokens within an image; (c) spatial embedding method, where
image tokens are indexed according to their 2D positions in the original image; (d) our method, which remaps image
token index onto a circle orthogonal to the text index direction, achieving a decoupled encoding.

All existing RoPE variants either flatten visual tokens into a 1D sequence or arrange them on a 2D grid before
concatenating with text tokens. Both approaches, however, introduce spurious cross-modal positional
biases—not from actual data relationships but from the hard-coded design of positional embeddings—which
can undermine multimodal understanding. Figure 2 illustrates this issue with a visual question answering
(VQA) example: “What type of religion is displayed high on the clock tower?” The phrase high on requires
spatial reasoning, and clock tower requires object recognition. Yet their relationships to the correct image re-
gions are distorted by index-based encoding. Two common biases emerge: (i) semantic misalignment—high
on should align with the top of the tower (index 1) but is instead placed near index 8; and (ii) inconsistent
multi-token distances—clock tower corresponds to multiple image tokens of the tower, but their relative
distances to the text vary, leading to inconsistency.

In this work, we directly address the problem of positional bias by proposing Circle Rotary Position Embed-
ding (Circle-RoPE), a flexible positional encoding scheme that preserves intrinsic spatial relationships while
maintaining consistent cross-modal alignment. At its core, our approach applies geometric transformations to
the original coordinate indices of visual tokens before computing RoPE rotation factors. This ensures a fully
decoupled encoding of text and image tokens, effectively mitigating cross-modal positional biases.

Specifically, we extend the M-RoPE mechanism, which represents image token indices by height–width
coordinates, with two key innovations. First, we propose Circular Image Token Index Projection (CIP,
Sec. 3.1) which projects 2D grid coordinates onto a circle in 3D space whose normal vector is aligned with
the text vector. This transformation ensures orthogonal separation: each text token index lies along the normal
vector and maintains equal Euclidean distance and consistent RoPE distances to all points on the circle,
forming a cone-like structure. Meanwhile, relative spatial relationships among image tokens are preserved, as
shown in Figure 1(d). This design effectively disentangles positional dependencies across modalities.

Second, we propose an Alternating Geometry Encoding (AGE, Sec. 3.2) strategy which cyclically switches
between M-RoPE and our proposed Circle-RoPE across layers, leveraging their complementary strengths for
more robust multimodal representations.

In summary, our contributions are twofold: (i) we identify and address cross-modal relative positional biases
in existing RoPE variants through the design of Circle-RoPE; (ii) we validate its effectiveness across multiple
LVMs and diverse multimodal tasks, achieving improved spatial consistency and visual reasoning.
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Figure 2: A VQA Example where image and text tokens are sequentially concatenated. The image token at index 8
exhibits the smallest RoPE distance to all text tokens, despite semantically closer image tokens being located elsewhere.
The text token at index 16 exhibits varying distances to the six image patches that correspond to the same semantic
content. These misalignments highlights how conventional RoPE methods introduce unintended relative positional biases.

2 PRELIMINARIES AND PROBLEM ANALYSIS

Recent work has extended RoPE from LLMs to multimodal settings, yet often overlooks a fundamental issue:
the inherent misalignment between text token indices and image token positions. For example, while Qwen-
VL’s M-RoPE [20, 2] introduces 3D encoding for video (width, height, time) and improves performance;
however, like other methods, it fails to decouple positional mappings across modalities. This failure forces
unnatural relative position relationships between semantically related text and image tokens during RoPE
encoding (as illustrated in Figure 2), introducing cross-modal bias in training and inference. Figure 1 shows
some common approaches for implementing multimodal position embeddings:

• Hard embedding (Figure 1(a)): The image tokens are flattened into a 1D sequence and concatenated directly
with the text tokens. While straightforward and intuitive, this method does not guarantee that each text
token interacts independently with image tokens, often introducing unwanted positional biases instead of
relying solely on high-level semantic understanding.

• Unordered embedding (Figure 1(b)): All image tokens are assigned the same index, thus the distance
between any text token and all image tokens in the same image is identical. However, this approach ignores
the relative positions containing spatial information among the image tokens themselves, leading to a loss
of fine-grained visual structure.

• Spatial embedding (Figure 1(c)): Tokens are assigned 2D indices based on their positions in the image,
providing more accurate spatial information among image tokens but still failing to guarantee independence
between text and image token positions.

Table 1: PTD values of different RoPE methods.
Embedding method Hard Unordered Spatial Ours

Relative position information ✔ ✗ ✔ ✔
PTD 2.22 0 0.64 0

Existing approaches predominantly focus on
encoding spatial information for images and
sequential information for text independently,
overlooking the potential interference caused
by intertwined positional embeddings. This
oversight can introduce unintended biases, dis-
torting cross-modal alignment. Ideally, to elim-
inate such biases, the "distance" in RoPE index between each text token and all image tokens should remain
consistent, ensuring positional independence across modalities.

Per-Token Distance (PTD) Metric. To quantify and compare how different RoPE-based methods affect the
relative position relationship between text and image tokens, we design a metric called Per-Token Distance
(PTD). PTD evaluates the independence between the text token index and the image token index after the
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application of positional encoding. Its formal definition is as follows: suppose the index list of image tokens
is I = {i1, i2, ..., iNimage} with size Nimage, and the index list of text tokens is T = {t1, t2, ..., tNtext} with size
Ntext. The PTD is calculated as:

PTD =
1

NimageNtext

∑
t∈T

∑
i∈I

∣∣d(t, i)− D̄t

∣∣ , D̄t =
1

Nimage

∑
i∈I

d(t, i) (1)

where d(x, y) denotes the Euclidean distance between x and y. A smaller PTD value indicates a lower
variance in the distances from each text token to the set of image tokens. This uniformity signals a higher
degree of disentanglement between the text and image token indices. We compute PTD for three typical
multimodal encoding methods, i.e., hard embeeding (Figure 1(a)), unordered embedding (Figure 1(b)), and
spatial embedding (Figure 1(c)). For convenience, we set Nimage = 9 and Ntext = 5. The PTD values are show
in the Table 1. A non-zero PTD value after applying existing RoPE methods directly indicates the presence of
cross-modal relative positional bias. This bias can hinder further performance improvements in VLMs.

Therefore, we propose to map all image token indices to positions equidistant from very text token index,
aiming to minimize the PTD metric (ideally achieving 0) and mitigate cross-modal positional bias.

3 METHOD

We propose a novel positional encoding method for VLMs, Circle Rotary Position Embedding (Circle-
RoPE). Its core idea is to transform image token indices (w, h) through a series of coordinate projections
before applying the rotary matrix [20], thereby removing undesired cross-modal relative positional biases
while preserving spatial relationships among iamge tokens. Circle-RoPE consists of two components: Circular
Image Token Index Projection (CIP, Sec. 3.1) and Alternating Geometry Encoding (AGE, Sec. 3.2), with the
details elaborated in the following sections.

3.1 CIRCULAR IMAGE TOKEN INDEX PROJECTION

We begin by designing Circular Image Token Index Projection (CIP) to fully decouple image token indices
from text token indices, i.e., achieve PTD = 0. The key idea of CIP is to project image token indices onto a
structured geometric space, ensuring uniform RoPE distances to any text token and eliminating unintended
positional biases. The CIP process consists of three key steps:

(i) Coordinate Centralization: Shift the geometric center of all image token indices to the origin, standard-
izing the coordinate reference.

(ii) Mixed-Angle Circular Mapping: Project the centralized image token indices onto a 2D circular trajectory.
The angular position of each index is determined by a combination of its spatial-origin angle and its
grid-index angle, with a defined radius for structural consistency.

(iii) Target Plane Rotation: Rotate the 2D circular structure from previous step onto a specific plane in 3D
space. The orientation of this plane is determined by the text token indices, ensuring orthogonality
between the image token index plane and the text token index direction.

In M-RoPE [20], image token indices are represented separately by width and height coordinates, text tokens
use 1D positional index equivalent to standard RoPE. As show in Figure 3(a), given the original M-RoPE
index, we obtain the image token index based on a regular grid, denoted as C = {(xij , yij)}i∈W,j∈H , where
W = {0, 1, . . . , w− 1} and H = {0, 1, . . . , h− 1}. Here, w and h correspond to the width and height of the
image after tokenization. For clarity, we let W correspond to the x-axis and H to the y-axis. The goal of CIP
is to transform the original image token index C = {(xij , yij)} into decoupled indices from the text tokens,
resulting in Cproj = {(xproj

ij , yproj
ij )}. These transformed indices are then directly used for RoPE computation.

4
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(c)(b)(a)

(d)

(e)
Figure 3: Transformation steps for Circular Image Token Index Projection (CIP): (i) coordinate centralization, (ii)
mixed-angle circular mapping, and (iii) target plane rotation as described in Sec 3.1. For clarity, the starting points of text
and image indices are aligned in above figure, preserving their relative positional distances without loss of generality. (a)
Initial M-RoPE [20] index in step (i); (b) 2D circular structure after steps (i) and (ii); (c) 3D circular structure after step
(iii); (d) Grid-index angle (GA) in step (ii); (e) Spatial-origin angle (SA) in step (ii).

3.1.1 COORDINATE CENTRALIZATION

To facilitate subsequent transformations, we first center the image token index coordinates. Specifically, the
geometric center Pcenter ∈ R2 of the image token indices is calculated as follows:

Pcenter =
1

2

(
max

i
(Ci) + min

i
(Ci)

)
(2)

We then subtract this center point from all original coordinates to obtain the centered coordinates:
C ′ = C − Pcenter (3)

This ensures that the geometric center of C ′ = {(x′
ij , y

′
ij)} is located at the origin (0, 0), providing a natural

reference frame for subsequent projection and rotation.

3.1.2 MIXED-ANGLE CIRCULAR MAPPING

To construct a cone-like structure that effectively decouples the text token indices from the image token
indices, we first transform the centered image token coordinates C ′ into polar coordinates and project them
onto a 2D circle. During this transformation, the angular position of each point on the circle is determined by
a combination of its spatial-origin angle (SA) and grid-index angle (GA), while the radius R remains flexible.
The resulting 2D circular structure is illustrated in Figure 3(b). We detail the calculation of these two angles
and the radius in the following.

Angle Calculation: We combine two complementary angles to balance spatial structure with index informa-
tion, determining the transformed angle for each image token index:

(1) Spatial-Origin Angle θSA
ij (SA): we first compute the polar angle of each centered point (x′

ij , y
′
ij):

θatan2
ij = atan2(y′ij , x

′
ij) (4)

where function atan2(y, x) returns the angle between the point (x, y) and the positive x-axis, in (−π, π].
Then, we normalize these angles to the range [0, 2π):

θmin = min
i,j

(θatan2
ij ), θmax = max

i,j
(θatan2

ij ), ∆θ = θmax − θmin (5)

thus, as illustrated in Figure 3(e), the SA is given by:

θSA
ij =

{
θatan2
ij −θmin

∆θ × 2π if ∆θ > 0

0 if ∆θ ≤ 0
(6)

5
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(2) Grid-Index Angle θGA
ij (GA): We flatten the H ×W grid into a 1D sequence with N = H ×W points,

assigning each point a uniformly spaced angle based on its flattened index k ∈ {0, ..., N − 1}:

θGA
k =

k

N
× 2π (7)

mapping the index k back to the grid position (i, j) yields θGA
ij , ensuring the angles are equally spaced

around the circle, as shown in Figure 3(d).

(3) Angle Mixing: The final mixed angle θmix
ij is computed by a weighted average of the two strategies:

θmix
ij = α · θSA

ij + (1− α) · θGA
ij (8)

the coefficient α ∈ [0, 1] controls the balance between preserving spatial information and enhancing
the uniqueness of each position. While the SA retains more spatial structure, the GA leads to a clearer
separation between positions, making it easier for the model to distinguish between them.

Radius Calculation: The choice of radius R affects the scale of the transformed coordinates and influence
the effective frequency range used by RoPE [19]. We provide two strategies here:

(1) Fixed: Use a predefined constant value Rfix.

(2) Automatic (auto-k): Scale R based on a measure of the spread of the centered coordinates C ′, such as
the maximum L2 norm:

Rauto = k ×max
i,j

∥(x′
ij , y

′
ij)∥2 (9)

where k is a predefined scaling factor (e.g., k = 1 or k = 2).

Mapping to the Circle: Based on the computed angle θmixij and radius R, the new coordinates of each image
token index on the XY -plane are given by xcirc

ij = R cos(θmix
ij ) and ycirc

ij = R sin(θmix
ij ), which collectively

form a circle Ccirc = {(xcirc
ij , ycirc

ij )}, as illustrated in Figure 3(b).

3.1.3 TARGET PLANE ROTATION

After above transformation, visual token index points are mapped to Ccirc on the XY -plane. To decouple
them from the text token index (i.e., achieve PTD=0), we further rotate the circle in 3D space so that its plane
is perpendicular to vector Vtext defined by the text token index, i.e., Vtext serves as the normal vector of the
circle. For computational convenience, we extend Ccirc to 3D space by initializing the third (z) coordinate to
zero for all points. The specific conversion process is as follows:

(1) Define the target plane normal: normalize the Vtext to obtain a unit normal vector n:

n =
Vtext

∥Vtext∥2
= (nx, ny, nz) (10)

(2) Construct an orthonormal basis for the target plane: then define two orthonormal vectors {u,v} lying in
the target plane and orthogonal to n:

u′ = (−ny, nx, 0) u =
u′

∥u′∥2
, v = n× u (11)

where u is a unit vector lying in the target plane and orthogonal to n, while v is also orthogonal to both
n and u, ensuring that u,v,n forms a right-handed orthonormal basis.

6
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(3) Coordinate transformation: for each point P circ
ij = (xcirc

ij , ycirc
ij , 0) on Ccirc, compute its new coordinate on

the target plane as a linear combination:

P proj
ij = xcirc

ij u+ ycirc
ij v (12)

Applying this transformation to all points yields the final projected set Cproj = {(xproj
ij , yproj

ij , zproj
ij )}, as

illustrated in in Figure 3(c). These points lie on a circle in 3D space, with its normal vector aligned to
Vtext, ensuring PTD=0 and preserving spatial information relative to the image.

3.2 ALTERNATING GEOMETRY ENCODING (AGE)

In Transformer-based LVLMs, different layers tend to capture distinct geometric patterns, where lower layers
focus on local details and higher layers emphasize global structure. Therefore, we propose Alternating
Geometry Encoding (AGE), which cyclically switches between the M-RoPE [20] index and the Circle-RoPE
index across different Transformer layers, allowing the model to capitalize on the complementary strengths of
multiple geometric representations.

4 EXPERIMENT

In this section, we first introduce our model configuration and parameter details. We then compare our
proposed method with mainstream models. Finally, we conduct ablation studies to validate the effectiveness
of our approach and analyze the contributions of different components.

4.1 TRAINING SETTING

To evaluate the effectiveness of our method, we employ Qwen2.5-VL [2] and LLaVA [13] as baseline models
for our experiments. The only modification introduced is in the implementation of the positional encoding
method; all other configurations are retained from the baseline model. During training, we exclusively update
the parameters of the LLM component while keeping the parameters of the Vision-Language projection layers
and the Vision Encoder frozen. All experiments are conducted under a unified training setup. The complete
set of hyperparameter configurations are provided in appendix’s Table 7. For training, we randomly sample
one-tenth of the MAmmoTH-VL Instruct dataset (12M) [8] and exclude all video data, resulting in a subset
named MAmmoTH-VL-Sub (1M). Our experiments demonstrate that even with this reduced data size, our
method achieves significant performance improvements compared to the baseline.

4.2 COMPARISON WITH OTHER MODELS

This section evaluates the performance of Circle-RoPE on a diverse range of datasets, benchmarking it against
state-of-the-art models such as SAIL-VL [5], InternVL2.5 [4], Ovis2 [16], Phi-3.5-vision [1], and various
scales of MiniCPM-V-2 [26] and Qwen2.5-VL [2].

To ensure a comprehensive and fair comparison of the open-source models listed in Table 2, we employed
VLMEvalKit [6] to evaluate all models under a unified protocol. As we utilized a third-party open-source
toolkit, and the version of GPT used for evaluation differs from those reported in the original papers of some
models, the results presented in the table may not be entirely consistent with the official results.

4.3 EXPERIMENT ON CIRCULAR MAPPING

We conducted ablation studies on the parameters used in Circular Image Token Index Projection (CIP). To
validate the effectiveness of angle mixing and to select the optimal radius, we designed a series of ablation

7
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Table 2: Performance of VLM Instruct models and our method (improvement over Qwen2.5-VL shown in parentheses).

Dataset SAIL-VL [5] InternVL2.5 [4] Ovis2 [16] MiniCPM [26]
V-2

MiniCPM [26]
V-2.6

Phi-3.5 [1]
vision Qwen2.5-VL [2] Ours

2B 4B 2B 2.8B 8B 4.2B 3B 3B

MMMUval [29] 41.44 51.56 43.78 37.00 43.44 44.44 50.22 52.11 (+1.89)
MMMU-Prooverall [30] 14.51 26.65 21.21 14.77 20.26 16.42 27.92 28.44 (+0.52)
MathVistamini [15] 60.70 60.60 64.50 40.80 60.20 43.70 62.40 63.40 (+1.00)
MMStar [3] 56.47 58.53 58.67 41.00 57.53 47.40 54.13 58.20 (+4.07)
AI2D [9] 77.72 81.38 82.77 64.77 81.28 77.59 78.14 81.80 (+3.66)
RealWorldQA [25] 63.01 64.97 67.06 55.03 65.62 53.99 65.75 66.54 (+0.79)
InfoVQA [17] 62.86 72.27 71.65 40.20 64.86 35.18 77.25 77.42 (+0.17)

Avg Score 53.82 59.42 58.52 41.94 56.17 45.53 59.40 61.13 (+1.73)

experiments. Specifically, we varied the angle mixing parameter α and explored different strategies for
calculating the radius. As shown in Table 3, the model achieves the most balanced performance when α = 0.5
and the radius is set to 10.

Additionally, we provide results for the baseline model after supervised fine-tuning (SFT) on the MAmmoTH-
VL-Sub (1M) dataset. This allows for a direct comparison of how different parameter configurations affect
model performance under the same conditions.

4.4 EXPERIMENT ON ALTERNATING GEOMETRY ENCODING

Table 3: Performance comparison across different CIP configurations.
α Radius MMMUval [29] MMMU-Prooverall [30] MMStar [3] MathVistamini [15] Avg Score

baseline 50.22 27.92 54.13 62.40 48.67

α = 0 auto 52.38 28.12 57.50 61.70 49.93
α = 0 5 51.32 29.01 58.32 62.40 50.26
α = 0 10 51.49 29.13 58.57 62.70 50.47

α = 0.3 10 52.05 28.50 58.22 63.30 50.52
α = 0.5 10 52.11 28.44 58.20 63.40 50.54
α = 0.7 10 52.03 28.39 58.13 62.90 50.36
α = 1 10 52.16 28.35 57.70 63.40 50.40
α = 0.5 auto 50.04 26.64 57.30 62.20 49.05

To thoroughly assess the im-
pact of utilizing different ge-
ometry encoding strategies
across various model lay-
ers, we systematically de-
signed and evaluated four
distinct encoding configu-
rations. Specifically, the
strategies we explored in-
clude: (1) applying Circle-
RoPE consistently in all lay-
ers, thereby maintaining a
uniform encoding approach
throughout the network; (2) adopting Circle-RoPE only in the upper layers, from layer 19 to 36; and (3)
employing Circle-RoPE exclusively in the lower layers, specifically layers 1 through 18, to evaluate the
impact of introducing relative position bias at different depths of the model.

We also include (4) implementing an Alternating Geometry Encoding strategy, in which Circle-RoPE
and M-RoPE are alternated at every successive layer to maximize the complementary strengths of both
encoding methods. As illustrated in Table 4, the experimental results clearly demonstrate that the alternating
strategy achieves the most robust performance among all tested configurations. This finding confirms that
alternating between the two encoding methods enables the model to leverage the strengths of both approaches
simultaneously. This finding suggests that leveraging the unique advantages of both encoding methods at
different stages of the model can lead to enhanced overall effectiveness and more expressive geometric
representations.

8
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Table 4: Performance comparison across different AGE configurations.
Strategy MMMU (val) MMMU_Pro MMStar MathVista_MINI AI2D_TEST ChartQA_TEST InfoVQA Avg score
strategy 1 51.32 28.41 55.93 65.20 80.39 84.15 76.92 63.19
strategy 2 52.66 28.51 59.87 65.20 79.81 81.96 76.87 63.55
strategy 3 53.48 28.62 59.30 64.50 79.30 82.61 77.35 63.59
strategy 4 52.11 28.44 58.20 63.40 81.80 84.12 77.42 63.64

4.5 GENERALIZABILITY VERIFICATION ON DIFFERENT ARCHITECTURES

To validate the generalizability of our proposed Circle-RoPE, we conducted a rigorous ablation study on
LLaVA [13] with a distinct architecture from the one primarily used in our work. We selected Llava-onevision-
qwen2-0.5b as the base model, and performed experiments on the MAmmoTH-VL-Sub dataset. This setup
provides a robust testbed for evaluating the adaptability and effectiveness of our method.

We compared four variants of the model to isolate the impact of our contributions: Llava [1D-RoPE] (base):
The original Llava-onevision-qwen2-0.5b model, serving as a foundational reference. Llava [M-RoPE]:
we replaced Llava’s 1D-RoPE with M-RoPE from Qwen2.5-VL. Llava [Circle-RoPE]: Our proposed
Circle-RoPE was integrated into the Llava architecture, replacing its original 1D-RoPE.

The experimental results are summarized in Table 5. Our proposed Circle_RoPE consistently outperforms all
other variants across every metric.

Table 5: Ablation study on the Llava-0.5B model to verify the generalizability of Circle-RoPE. Our method achieves the
best performance across all benchmarks, demonstrating its effectiveness on a different model architecture.

Model MMMU-val MMMU_Pro-avg MMStar MathVistamini Avg Score
Llava [1D-RoPE] 32.22 12.92 37.07 35.70 29.48
Llava [M-RoPE] 32.59 12.81 37.18 35.40 29.50
Llava [Circle-RoPE] 32.77 13.21 37.22 36.10 29.83

As shown in Table 5, Circle-RoPR demonstrates strong performance, surpassing both the baseline model
LLaVA and the version adapted with M-RoPE. This demonstrates that the benefits of Circle-RoPE are not
confined to the Qwen-VL architecture but are generalizable to other LVLMs. For the experiments on the
Llava model, we directly applied the optimal hyperparameters (α and R) discovered on Qwen2.5-VL without
any architecture-specific tuning. The consistent performance gains prove that Circle-RoPE is a versatile and
stable module that can be readily integrated into different models.

5 CONCLUSION

In this paper, we address the challenges of directly applying RoPE to multimodal VLM settings. Existing
methods primarily focus on extending RoPE to the vision modality while neglecting the critical interplay
between the positional indices of vision and text tokens. To evaluate this overlooked aspect, we first introduce
the per-token distance metric to quantify the misalignment. Building on these insights, we propose Circle-
RoPE, a novel framework consisting of three transformation steps. Our key idea is to preserve the relative
positional information within the vision modality while simultaneously mitigating erroneous relative position
biases between text and image tokens. This decoupled positional encoding enhances cross-modal alignment,
paving the way for more robust multimodal understanding.
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APPENDIX

This appendix includes further analysis and discussion, related work, the hyperparameters adopted in our
experiments, and pseudocode implementations.

A FURTHER ANALYSIS AND DISCUSSION

A.1 THE ADAPTATION COST OF INTRODUCING CIRCLE-ROPE

We instantiate Circle-RoPE on the architecturally closest backbone, Qwen2.5-VL, and monitor step-wise
training dynamics under SFT. We observed that even minor architectural modifications—such as altering the
positional encoding—require substantial retraining with large-scale data for the model to adapt to the new
positional distribution. We refer to this phenomenon as the adaptation cost.

Table 6: Step-wise training dynamics illustrating the adaptation cost when introducing Circle-RoPE on
Qwen2.5-VL under SFT. At 3k steps, Circle-RoPE lags slightly behind; after ∼8.5k steps it surpasses the
baseline on both benchmarks. Best per column is in bold.

Model Step Loss ↓ MMStar ↑ MathVision ↑
Qwen2.5-VL (SFT) 3000 0.7997 57.94 20.16
Circle-RoPE (SFT) 3000 0.8077 57.53 20.13
Qwen2.5-VL (SFT) 8463 0.7666 58.07 20.56
Circle-RoPE (SFT) 8463 0.7725 58.20 20.95

Even on the most similar backbone, Circle-RoPE exhibits a measurable adaptation cost: at early training
(3k steps) its performance is slightly below the SFT baseline (Table 6). With continued optimization (∼8.5k
steps), the advantages emerge and eventually surpass the baseline on both MMStar ( +0.13) and MathVision
( +0.39). This indicates that even minor positional-encoding changes require non-trivial optimization to
re-stabilize the representation geometry. Under limited compute and a relatively small SFT set, these gains are
conservative rather than inflated. Choosing Qwen2.5-VL was thus the most pragmatic and reliable validation
setting given our constraints; adopting a more dissimilar backbone would likely incur a larger adaptation cost
that is computationally prohibitive. The fact that Circle-RoPE achieves improvements despite the initial dip
and limited data provides evidence of robustness and headroom; we expect further gains with larger-scale
pre-training or extended SFT schedules.

A.2 EFFECTIVENESS OF ALTERNATING GEOMETRY ENCODING (AGE)

We introduce Alternating Geometry Encoding (AGE) into our method primarily for the following reasons:

(1) Complementary strengths and preservation of spatial information. While Circle-RoPE achieves
image–text decoupling, it inevitably alters the strong grid-based spatial prior of image patches provided
by the original RoPE. By alternating the two encoding methods, the model benefits from both: it reduces
cross-modal positional bias (from Circle-RoPE) and fully utilizes the fine-grained internal spatial structure of
the image (from RoPE), achieving a “1+1>2” effect.

(2) Compatibility with pre-trained knowledge and smooth transition. Our models are fine-tuned from
Qwen2.5-VL, whose weights are deeply adapted to the original RoPE. Compared with applying a completely
new encoding scheme to one contiguous part of the network, an alternating strategy minimizes the “shock” to
the existing weight distribution. This enables smoother and more data-efficient convergence under limited
SFT data, better integrating the pre-trained knowledge with the new capabilities introduced by Circle-RoPE.
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In summary, AGE serves as an optional but effective mechanism that (i) fuses complementary geometric
biases to preserve spatial reasoning while reducing cross-modal positional bias, and (ii) eases optimization
by providing a gentler transition from RoPE-adapted weights to Circle-RoPE-enhanced representations.
Empirically, our ablations reflect these stability and performance benefits.

A.3 ENCODING TEMPORAL ORDER IN MULTI-IMAGE SEQUENCES

When the input contains multiple images, we explicitly encode their sequential order by translating each
image’s circular-encoding center along a fixed global axis. Concretely, let ci denote the center of the circular
positional encoding for the i-th image in the sequence (indexed from i=1). We define a constant direction
vector g = [1, 1, 1]⊤ and a stride ∆=1 (default), and set

cfinal
i = ci + (i− 1)∆ g.

This translation assigns each image a unique location in the 3D positional space while keeping the within-
image geometric structure determined by Circle-RoPE intact.

For example, when we have a sequence with three images image1, image2, image3 whose original centers
are at 0, the final centers become

cfinal
1 = 0 + [0, 0, 0], cfinal

2 = 0 + [1, 1, 1], cfinal
3 = 0 + [2, 2, 2].

B RELATED WORK

VLMs unify visual and textual representations within a single transformer, yet effectively integrating modality-
specific positional encodings remains a fundamental challenge. A common strategy is to apply RoPE [19]
uniformly across the combined token sequence. However, its naive application to concatenated image and
text tokens introduces cross-modal positional bias: the attention becomes sensitive to arbitrary positional
offsets between the two modalities. This bias distorts cross-modal alignment, particularly since visual tokens
often reside in distant segments of the sequence from relevant text, resulting in impaired information fusion.

Recent advances in multimodal LLMs and pixel-level understanding highlight the significance of unified
architectures and position encoding strategies [7, 31, 10, 28, 11, 22]. Many VLMs, e.g., Emu3 [21], InternLM-
VL [4], Baichuan-Omni [12], Eve [18], DeepSeek-VL2 [24], and LLaVA series [13, 14], adopt a simple
strategy of flattening all tokens in a 1D sequence and using shared position encoding such as RoPE for both
text and image tokens.

A distinct research direction assigns a shared positional index to all visual tokens. For example, mPLUG-Owl3
[27] assigns all patches of an image the same position index (via a placeholder token) when applying RoPE.
This interleaved scheme preserves the image’s insertion position in the text context and reduces index disparity
among image patches, alleviating some bias due to modality mixing.

A third strategy is to introduce spatial positional embeddings tailored to the 2D structure of images. Qwen2-
VL [20] exemplifies this by decomposing RoPE into separate dimensions (height, width, and temporal indices)
for images, i.e., Multimodal RoPE (M-RoPE). This approach encodes image patches with 2D coordinates
instead of large 1D indices, thereby better aligning visual tokens with textual positions.

Each method partially mitigates cross-modal positional issues, yet none completely eliminates bias: shared-
index approaches discard intra-image spatial structure, while both flattened 1D sequences and spatial embed-
dings may retain subtle cross-modal misalignment.
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C HYPERPARAMETERS

Table 7: Training Hyperparameter Configuration for our method.
Hyperparameter Value

Base Model Qwen2.5-VL-3B
Image Resolution 512×512
Global Batch Size 128
Learning Rate 1e-6
Optimizer AdamW
LR Schedule Cosine Decay
Number of Epochs 1
Warmup Ratio 0.1
Max Sequence Length 4096

D PSEUDOCODE IMPLEMENTATION OF CIRCLE-ROPE

1 import torch
2

3 def circular_image_token_projection(C: torch.Tensor, alpha: float, R: float, V_text: torch.
Tensor):

4 """
5 Circular Image Token Projection in PyTorch style.
6

7 Args:
8 C (torch.Tensor): Original image token grid coordinates (N, 2).
9 alpha (float): Angle mixing weight.

10 R (float): Circle radius.
11 V_text (torch.Tensor): Text vector direction, shape (3,).
12

13 Returns:
14 torch.Tensor: Projected coordinates (N, 3).
15 """
16

17 # =========================================================
18 # Step 1: Coordinate Centralization
19 # =========================================================
20 P_center = 0.5 * (C.max(dim=0).values + C.min(dim=0).values) # (2,)
21 C_prime = C - P_center # (N, 2)
22

23 # =========================================================
24 # Step 2: Mixed-Angle Circular Mapping
25 # =========================================================
26

27 # 2a. Calculate Spatial-Origin Angle (SA)
28 raw_angles = torch.atan2(C_prime[:, 1], C_prime[:, 0]) # (N,)
29 min_angle = raw_angles.min()
30 max_angle = raw_angles.max()
31 delta_theta = max_angle - min_angle
32

33 if delta_theta > 0:
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34 theta_SA = (raw_angles - min_angle) / delta_theta * 2 * torch.pi
35 else:
36 theta_SA = torch.zeros_like(raw_angles)
37

38 # 2b. Calculate Grid-Index Angle (GA)
39 N = C.shape[0]
40 k = torch.arange(N, device=C.device) # (N,)
41 theta_GA = (k.float() / N) * 2 * torch.pi
42

43 # 2c. Mix Angles
44 theta_mix = alpha * theta_SA + (1 - alpha) * theta_GA
45

46 # 2d. Map to 2D circle and expand to 3D
47 x_circ = R * torch.cos(theta_mix)
48 y_circ = R * torch.sin(theta_mix)
49 C_circ = torch.stack([x_circ, y_circ, torch.zeros_like(x_circ)], dim=-1) # (N, 3)
50

51 # =========================================================
52 # Step 3: Target Plane Rotation
53 # =========================================================
54

55 # 3a. Construct orthonormal basis from text vector
56 n = V_text / V_text.norm() # (3,)
57 u_prime = torch.tensor([-n[1], n[0], 0.0], device=C.device)
58 if u_prime.norm() < 1e-6:
59 u_prime = torch.tensor([1.0, 0.0, 0.0], device=C.device)
60 u = u_prime / u_prime.norm()
61 v = torch.cross(n, u)
62

63 # 3b. Project points from 2D circle to 3D target plane
64 # This is a linear combination of basis vectors u and v.
65 C_proj = C_circ[:, 0].unsqueeze(-1) * u + C_circ[:, 1].unsqueeze(-1) * v # (N, 3)
66

67 return C_proj

E VISUALIZATION OF ATTENTION MAP

To further evaluate the impact of our proposed method, we provide the visualization of attention distributions.
The proposed methodology enables the visualization of cross-modal attention for Circle-RoPE and Qwen2.5-
VL-3B-Instruct [2], with evaluations performed on the MMMUtest benchmark [29]. Concretely, we first
isolate and extract the attention matrix from the final decoder layer. The average attention from all text tokens
to their corresponding image regions is then computed, projected back to the image domain, and reconstructed
into a coarse-grained grid. This grid is subsequently transformed into a heatmap, followed by smoothing and
enlargement through bilinear interpolation. Finally, a power-law contrast enhancement is applied to highlight
salient points. The visualization results show that our method is able to concentrate more effectively on the
regions relevant to the given question while exhibiting fewer attentional allocations to irrelevant areas.
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Question:

Salvador Manufacturing builds and sells snowboards, skis and poles. The sales price and variable cost for each are shown: Their sales mix is reflected in

the ratio 7:3:2. What is the overall unit contribution margin for Salvador with their current product mix?

A.$3,540 

B.$1,190 

C.$1,905 

D.$1,635

Answer with the option's letter from the given choices directly.

Answer: D

Ours Qwen2.5-VL-3B-Instruct

Question:

Given that points A and B on the ground are 80m apart (as shown in the diagram below), the level instrument is set up at the midpoint of AB. The height

difference $h_{AB}=+0.228m$. When the level instrument is moved 3m away from point A, the reading on the leveling staff at point A is a' = 1.695m,

and the reading on the leveling staff at point B is b' = 1.446m. Find the value of i.

A.i"=55.2" 

B.i"=56.0" 

C.i"=56.1" 

D.i"=56.2"

Answer with the option's letter from the given choices directly.

Answer: D

Ours Qwen2.5-VL-3B-Instruct

17


	Introduction
	Preliminaries and Problem Analysis
	Method
	Circular Image Token Index Projection
	Coordinate Centralization
	Mixed-Angle Circular Mapping
	Target Plane Rotation

	Alternating Geometry Encoding (AGE)

	Experiment
	Training Setting
	Comparison with Other Models
	Experiment on Circular Mapping
	Experiment on Alternating Geometry Encoding
	Generalizability Verification on Different Architectures

	Conclusion
	Further Analysis and Discussion
	The Adaptation Cost of Introducing Circle-RoPE
	Effectiveness of Alternating Geometry Encoding (AGE)
	Encoding Temporal Order in Multi-Image Sequences

	Related Work
	Hyperparameters
	Pseudocode implementation of Circle-RoPE
	Visualization of Attention Map

