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Abstract

Larger models often outperform smaller ones001
but come with high computational costs. Cas-002
cading offers a potential solution. By default,003
it uses smaller models and defers only some in-004
stances to larger, more powerful models. How-005
ever, designing effective deferral rules remains006
a challenge. In this paper, we propose a simple007
yet effective approach for machine translation,008
using existing quality estimation (QE) metrics009
as deferral rules. We show that QE-based de-010
ferral allows a cascaded system to match the011
performance of a larger model while invoking012
it for a small fraction (30% to 50%) of the ex-013
amples, significantly reducing computational014
costs. We validate this approach through both015
automatic and human evaluation.016

1 Introduction017

Larger models consistently outperform smaller018

ones in NLP tasks, but the trade-off is the increased019

computational cost. This raises the question:020

How can we maintain high performance021

while reducing computational load?022

A promising solution is model cascading, where023

smaller models handle examples by default, and024

only a subset of hard instances is deferred to a025

larger model. However, this approach requires a ro-026

bust deferral system that reliably determines when027

to defer. Common approaches often involve de-028

signing and training specialized deferral models,029

which determine when a large model is needed—030

e.g., based on reliability or uncertainty estimates031

(Chen et al., 2023; Gupta et al., 2024). But do we032

really need to train new models for every task, or033

can existing resources speed up this process?034

For machine translation (MT), extensive re-035

search on reference-free automatic evaluation of-036

fers an appealing alternative (Zerva et al., 2022,037

2024; Blain et al., 2023). In this paper, we leverage038

recent quality estimation (QE) metrics to create039

Figure 1: Cascaded translation system with QE-based
deferral. A small model translates a batch of source
sentences, and a relatively lightweight QE model scores
the hypotheses. Sources with the lowest-scoring trans-
lations are deferred to a larger model. The extent of
deferral is determined by a predefined compute budget.

straightforward and relatively lightweight deferral 040

rules. This approach draws inspiration from pro- 041

fessional translation workflows, where QE metrics 042

help identify translations that should be deferred 043

to expert post-editing (Castilho and O’Brien, 2017; 044

Béchara et al., 2021). Our main contributions are: 045

• We introduce a cascaded translation system 046

that uses pretrained QE metrics to determine 047

whether to defer examples from a smaller 048

model to a larger one, balancing efficiency 049

and quality (§3). See Fig. 1 for an illustration. 050

• We confirm that the benefits of QE-based 051

model cascading hold across different com- 052

binations of translation and QE models (§4). 053

• We perform human evaluation, further val- 054

idating our approach on two language pairs 055

(en-es and en-ja) in the WMT24 test set (§5). 056

• We release our code, all generated translations, 057

and human quality assessments (when appli- 058

cable) to encourage further research.1 059

1These resources will be made available upon acceptance.
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2 Adaptive Inference in NLP060

Adaptive inference techniques are increasingly be-061

ing adopted in natural language processing tasks062

(Mamou et al., 2022; Varshney and Baral, 2022;063

Chen et al., 2023; Ong et al., 2024). These methods064

typically use models of different sizes and predic-065

tive power (often two, though most frameworks can066

easily accommodate more), with the primary goal067

of reducing the computational load by using the068

larger, more computationally expensive model only069

when necessary (e.g., for more difficult examples070

or when a model is highly uncertain about its pre-071

diction). Current strategies include routing, where072

a decision rule determines which model to use, en-073

suring only one model is used to handle each input,074

and cascading, which starts with a smaller model075

and may invoke a larger one afterward based on076

the small model’s output and a deferral rule. In this077

paper, we focus on the second approach.078

The computational efficiency of model cascad-079

ing comes at the cost of designing a robust de-080

ferral system that can reliably identify when to081

defer to the larger model. This is often handled082

using simple decision rules, such as nonparametric083

methods or other approaches based on uncertainty084

measures (Ramírez et al., 2024; Gupta et al., 2024).085

A recent alternative involves training external mod-086

els specifically to predict when deferral is needed –087

for a given example, these models can be trained,088

e.g., to assess if a given candidate is correct (Chen089

et al., 2023).2 Here, we propose a simple and ef-090

fective deferral rule for MT that is conceptually091

similar to this approach while offering a particu-092

larly straightforward solution for this task.093

3 Quality-Aware Deferral for MT094

Although human evaluations and reference-based095

metrics remain the standard for evaluating machine096

translations, reference-free/quality estimation (QE)097

metrics have shown strong correlations with human098

judgments (Zerva et al., 2024), holding promise in099

distinguishing between the quality of translations100

for the same source (Agrawal et al., 2024). Since101

QE models are typically much smaller than current102

translation models (Kocmi et al., 2024a), we pro-103

pose to leverage them for an efficient deferral rule.104

Rather than training new bespoke decision models105

2Likewise, routing typically involves training external
models to (i) predict the performance of the small model
(Šakota et al., 2024), or (ii) determine if the small model is
likely to outperform the large one (Ding et al., 2024).

(§2), existing QE models can evaluate translations 106

from a lightweight model and determine when to 107

accept them or defer to a larger one. 108

How to choose which examples to defer? Set- 109

ting a fixed threshold on QE scores is challenging— 110

too high a threshold wastes computational re- 111

sources, while too low a threshold risks compro- 112

mising quality. Throughout this paper, we use a 113

budget-constrained computation approach: we 114

first translate all examples in a batch with the 115

smaller model, then rank them based on QE scores, 116

deferring only the lowest-scoring subset accord- 117

ing to a predefined compute budget (the fraction 118

of examples deferred to the larger model). This 119

assumes parallel processing of entire batches rather 120

than processing individual instances sequentially. 121

We leave alternatives such as dynamic thresholding 122

(Ramírez et al., 2024) for future work. See Fig. 1 123

for an illustration with 50% of deferral. 124

Computational efficiency. The standard approx- 125

imation for the number of floating point operations 126

(FLOPs) required for inference with a transformer 127

model is 2ND, where N represents the number 128

of model parameters and D is the number of to- 129

kens generated at inference time (Sardana et al., 130

2024; Snell et al., 2024). For a cascaded approach 131

with superscripts S and L denoting the smaller and 132

larger models, respectively, this becomes: 133

2BDS(NS +NQE) + 2ηBDLNL, (1) 134

where B is the batch size and η is the proportion 135

of instances the larger model processes. Assuming 136

DS ≈ DL, this approach achieves computational 137

parity with the larger model (i.e., 2BDNL) when: 138

η⋆ = 1−
NS +NQE

NL
. (2) 139

This expression provides a simple rule of thumb: to 140

maintain computational efficiency, the larger model 141

should handle at most η⋆ of the examples. For 142

instance, if it is 10× larger than the smaller model 143

and the QE model is negligible (NQE ≪ NS), 144

then η⋆ ≈ 0.9. This means the cascading is more 145

efficient than always using the larger model as long 146

as fewer than 90% of the examples are deferred. 147

4 Experiments and Analysis 148

We consider Tower-v2 models (Rei et al., 2024) 149

of different size and predictive power: Tower-v2 150

70B, an improved iteration of Tower (Alves et al., 151
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2024), obtained by continued pretraining Llama-3152

(AI@Meta, 2024) on a multilingual dataset with153

25 billions of tokens, followed by supervised fine-154

tuning for translation-related tasks;3 and Tower-v2155

7B, a more lightweight version using Mistral (Jiang156

et al., 2023). Check App. A for more details.157

Deferral. We use two versions of COMETKIWI:158

wmt22-cometkiwi-da (Rei et al., 2022), which159

with only 0.5B parameters achieves a strong corre-160

lation with human judgments (Zerva et al., 2022);161

and wmt23-cometkiwi-da-xxl (Rei et al., 2023),162

a scaled version with 10.5B parameters. As base-163

lines, we consider random selection; deferral rules164

based on source length computed using Tower-165

v2’s tokenizer, i.e., deferring either the shortest166

(length) or the longest (-length) sources;4 and a167

confidence measure based on the smaller model’s168

normalized log-probability (logprobs), i.e., de-169

ferring texts with the lowest likelihoods. We also170

compare our approach with quality-aware decoding171

(Fernandes et al., 2022) in App. B.172

Evaluation. We use the WMT24 test sets (Kocmi173

et al., 2024a), which span multiple domains (news,174

social, speech, and literary) and 11 language pairs175

(en-cs, en-de, en-es, en-hi, en-is, en-ja, en-ru, en-176

uk, en-zh, cs-uk, and ja-zh). For each language pair,177

we treat the full test set as a single batch for com-178

puting QE thresholds (§3).5 We evaluate systems179

with METRICX (Juraska et al., 2023) to reduce the180

risk of “reward hacking” (Fernandes et al., 2022)181

and better reflect real quality improvements. Since182

biases may still exist when using a different evalu-183

ation metric than the reward model (Kovacs et al.,184

2024), we also conduct human evaluation (§5).185

4.1 Larger is not necessarily better186

Although Tower-v2 70B outperforms Tower-v2 7B187

across all language pairs (Table 1 shows aggregated188

results), a closer look at its win rates shows it only189

outperforms the smaller model in 43% of individ-190

ual examples. This confirms that larger models do191

not consistently do better on every example, open-192

ing the possibility of using smaller models for a193

subset of examples without compromising overall194

performance, thus improving efficiency.195

3Combined with quality-aware decoding (Fernandes et al.,
2022), this is the winning submission of the WMT24 general
translation shared task (Kocmi et al., 2024a).

4Source length is often used to assess translation difficulty
(Kocmi and Bojar, 2017; Wan et al., 2022; Wang et al., 2023).

5Results are then averaged across language pairs for better
visualization unless otherwise stated.

M ↑ C ↑ Win rate

Tower-v2 7B -3.01 83.94 43% 32%

Tower-v2 70B -2.79 84.71 NA

Table 1: Translation quality measured with METRICX
(M) and COMET (C) on the WMT24 test set. Win rates
against Tower-v2 70B, according to M. The bars repre-
sent the proportions of losses, ties, and wins. Following
Kocmi et al. (2024b), translations with differences in M
below 0.122 are considered ties (90% human accuracy).
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Figure 2: Translation quality of cascading combining
Tower-v2 7B and Tower-v2 70B according to METRICX,
as the inference computation budget varies. Horizontal
lines show the performance of each model alone.

4.2 QE is an effective deferral rule 196

Fig. 2 shows the performance of a cascaded system 197

combining Tower-v2 7B and Tower-v2 70B accord- 198

ing to METRICX under varying inference budgets 199

(results are averaged across language pairs). Each 200

curve represents a different deferral rule. As ex- 201

pected, the random baseline fails to identify exam- 202

ples that benefit from larger models, resulting in 203

suboptimal performance. Source length-based de- 204

cision rules or using the small model’s logprobs 205

perform slightly better or worse than random, sug- 206

gesting that simple heuristics are inefficient for 207

deferral. In contrast, QE-based deferral (our pro- 208

posal) achieves the best overall performance, en- 209

abling the cascaded system to match the perfor- 210

mance of the large model while invoking it for 211

only 50% to 60% of the examples. From Eq. (2), 212
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Figure 3: Translation quality of cascaded systems with
deferral based on wmt22-cometkiwi-da. Large model:
Tower-v2 70B. Small models: Tower-v2 7B (L), Tower-
v2 7B (top); EuroLLM 1.7B, EuroLLM 9B (bottom).

computational parity is reached at η⋆ = 89%213

when using wmt22-cometkiwi-da (NQ = 0.5B)214

and η⋆ = 75% with wmt23-cometkiwi-da-xxl215

(NQ = 10.5B). Matching Tower 70B’s perfor-216

mance at such a small η shows that our approach217

effectively balances efficiency and quality.218

4.3 Cascading works across different setups219

We have shown that QE-based cascading works220

well across QE models of different sizes (Fig. 2).221

Here, we study whether it still provides gains when222

the smaller model is weaker. We train another223

version of Tower 7B using Llama-3 instead of Mis-224

tral, referred to as Tower 7B (L), and use two225

versions of EuroLLM (Martins et al., 2024) with226

1.7B (η⋆ = 0.97) and 9B parameters (η⋆ = 0.86).227

Fig. 3 shows that while these models underperform228

Tower-v2 7B, cascading with Tower 70B remains229

competitive. This indicates that QE-based cascad-230

ing is robust across different generation models,231

even when both belong to the same family (top) or232

when the small model is much smaller (bottom).233

5 Human Evaluation234

Since using QE metrics during inference can bias235

automatic evaluations, we conduct a human study236

to validate our approach. We randomly sample237

500 source instances and ask human annotators to238

rate translations from Tower-v2 7B and Tower-v2239

70B on a continuous scale from 1 (no overlap in240

meaning) to 100 (perfect translation). This is done241

for en-es and en-ja. Further details are in App. C.242

Fig. 4 shows the performance of cascaded sys-243

tems using QE-based deferral. We use a paired-244
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Figure 4: Translation quality of a cascaded system com-
bining Tower-v2 7B and Tower-v2 70B according to
human scores (in a scale from 0 to 100), as the infer-
ence computation budget varies. Systems in the shaded
area are not significantly different from Tower-v2 70B
according to the paired-permutation test with p = 0.01.

permutation test (Good, 2000; Zmigrod et al., 2022) 245

to compare the performance of Tower-v2 70B with 246

our systems under varying budgets. The shaded re- 247

gion shows that our approach achieves performance 248

comparable to Tower-v2 70B while invoking it for 249

only 30% to 50% of the examples,6 confirming that 250

it substantially reduces computational costs with- 251

out compromising translation quality. App. C.1 252

provides further evidence using other QE models. 253

6 Conclusions and Future Work 254

We propose a simple yet effective approach to 255

model cascading for MT using QE metrics for de- 256

ferral. Our method matches the quality of larger 257

models while requiring them to handle only a sub- 258

set of examples, significantly reducing computa- 259

tional costs. This is shown through automatic and 260

human evaluations. The effectiveness of our frame- 261

work depends on the quality of existing QE models, 262

and improving them can further strengthen our ap- 263

proach (App. C.2). 264

6Systems within the shaded region are also significantly
better than Tower-v2 7B according to the same statistical test.
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7 Limitations265

We highlight three main limitations of our work.266

First, we focus on a two-stage cascade, where ex-267

amples are handled by a small model or deferred to268

a larger one. Extending this to a multistage setup269

with more than two models could further improve270

efficiency but also add complexity. Second, our271

study is limited to machine translation. QE-based272

deferral works particularly well in MT due to the273

availability of high-quality human-labeled data for274

training QE models. Extending this approach to275

other tasks where such data is scarce is not straight-276

forward. Finally, our method assumes the smaller277

model is reasonably competitive with the larger278

one, which is a fair assumption for MT, as shown279

in our experiments. If the gap in win rates is too280

large, cascading offers little benefit, as most exam-281

ples would require deferral.282
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A Experimental Details562

Through the paper, we experiment with the follow-563

ing generation models:564

• Tower-v2 70B (Rei et al., 2024): An im-565

proved iteration of Tower (Alves et al., 2024),566

obtained by continued pertaining Llama-3567

(AI@Meta, 2024) on a multilingual dataset568

with billions of tokens, followed by super-569

vised finentuning for translation-related tasks.570

It has 70B parameters. Compared to the first571

iteration of Tower, this model is better at para-572

graph and document-level translation and sup-573

ports more language (15, instead of 10), in-574

cluding all the languages in the WMT24 test575

sets. Combined with quality-aware decoding576

(Fernandes et al., 2022), this is the winning577

submission of the WMT24 general translation578

shared task (Kocmi et al., 2024a).579

• Tower-v2 7B (Rei et al., 2024): A smaller580

version of Tower-v2 70B based on Mistral581

(Jiang et al., 2023).582

• Tower-v2 7B (Llama-3): We follow the583

recipe described above to train a smaller ver-584

sion of Tower-v2 70B based on LLama-3.585

This model slightly underperforms its Mistral586

counterpart.587

• EuroLLM Instruct (9B and 1.7B) (Martins588

et al., 2024): EuroLLM models are open-589

weight multilingual models trained on 4 tril-590

lion tokens covering all European Union and591

many other relevant languages across several592

data sources: web data, parallel data (en-xx593

and xx-en), and high-quality datasets. The594

instruction-tuned models are obtained after595

finetuning the base models on the EuroBlocks596

dataset, which includes general instruction-597

following and machine translation tasks.598

We generate all translations with greedy decod-599

ing using vLLM (Kwon et al., 2023) for faster infer-600

ence. Table 2 shows the performance of these mod-601

els on the WMT24 test sets (Kocmi et al., 2024a),7602

according to METRICX and COMET (results are603

averaged across all language pairs), along with604

their win rates against Tower-v2 70B.8 Our use605

7Publicly available for research purposes at https://
www2.statmt.org/wmt24/translation-task.html.

8Following Kocmi et al. (2024b), translations with differ-
ences in METRICX below 0.122 are considered ties when
comparing two systems (90% human accuracy). We use the
same threshold for detecting ties at the segment level.

M ↑ C ↑ Win rate

Tower-v2 7B -3.01 83.94 43% 32%
Tower-v2 7B (L) -3.07 83.73 45% 32%
EuroLLM 9B -4.01 80.56 52% 28%
EuroLLM 1.7B -4.60 77.42 66% 20%

Tower-v2 70B -2.79 84.71 NA

Table 2: Translation quality measured with METRICX
(M) and COMET (C) on the WMT24 test set. Win rates
against Tower-v2 70B, according to M. The bars repre-
sent the proportions of losses, ties, and wins.

of datasets and models aligns with their intended 606

purposes as defined by the licenses. 607

B Quality-Aware Decoding 608

There is a large body of work on reranking for 609

language generation, where we start by generat- 610

ing multiple hypotheses with a language model, 611

and then use a reranker to select the best one 612

(Farinhas et al., 2024). For machine translation, 613

an example is quality-aware decoding (Fernan- 614

des et al., 2022; Freitag et al., 2022). The sim- 615

plest/cheapest approach is QE reranking, where 616

we first generate multiple translation hypotheses 617

and then rerank them using a quality estimation 618

model. This strategy is often used to reduce the 619

propensity of language models to hallucinate or 620

generate critical errors (Guerreiro et al., 2023; Far- 621

inhas et al., 2023). While our approach is con- 622

ceptually different—designed with efficiency in 623

mind, whereas QE reranking is often computation- 624

ally expensive—it is nonetheless valuable to com- 625

pare its performance against QE reranking based 626

on hypotheses generated by the small model. 627

Computational efficiency. Following the discus- 628

sion in §3, the number of FLOPS required for infer- 629

ence with a large model on a batch of B examples 630

is given by: 631

2BDNL, (3) 632

where NL represents the number of model parame- 633

ters and D is the number of generated tokens. In 634

this section, we assume that our goal is to reduce 635

the computational cost by (1 − X)%, meaning 636

that we operate under a computational budget of: 637

X · 2BDNL. (4) 638

The number of FLOPs required to run inference 639

with our cascaded approach is given by: 640

2BD(NS +NQE + ηNL), (5) 641
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Figure 5: Translation quality of a cascaded system com-
bining Tower-v2 7B and Tower-v2 70B (in green) v.s.
QE reranking with hypotheses generated by Tower-v2
7B (in orange), measured with METRICX, as X varies.
Horizontal lines show the performance of the smaller
and larger models alone.

which leads to the following expression for X:642

X = η +
NS +NQE

NL
. (6)643

For QE reranking, the computational cost is:644

2BDK(NS +NQE), (7)645

where K is the number of generated hypotheses.646

This yields:647

X = K ·
(
NS +NQE

NL

)
. (8)648

These expressions allow us to obtain the values649

of η for which our cascaded approach incurs the650

same computational cost as QE reranking with K651

hypotheses:652

η = (K − 1) ·
(
NS +NQE

NL

)
. (9)653

Experiments and discussion. We generate up to654

9 hypotheses with Tower-v2 7B using ϵ-sampling655

with ϵ = 0.02 (Freitag et al., 2023).9 Fig. 5 il-656

9For our setup, according to Eq. (8), the num-
ber of FLOPs required for QE reranking with more
than 9 hypotheses already exceeds the budget of
2BDNL if we use wmt22-cometkiwi-da. When us-
ing wmt23-cometkiwi-da-xxl, computational parity is
achieved with K = 4.

lustrates the trade-off between computational effi- 657

ciency and translation quality (measured with MET- 658

RICX) for a cascaded approach with QE-based de- 659

ferral versus QE reranking. As expected, quality 660

improves as the computational budget increases for 661

both methods. While QE reranking is an effective 662

way to improve translation quality when generat- 663

ing multiple hypotheses is feasible, our cascaded 664

approach achieves better quality at lower compu- 665

tation costs, making it a more efficient alternative 666

when computational efficiency is a priority. 667

C Human Evaluation 668

In order to perform human evaluation, we recruited 669

professional translators who were native speakers 670

of the target language on the freelancing site Up- 671

work.10 We followed a DA+SQM (direct assess- 672

ment + scalar quality metric) source contrastive 673

evaluation (Kocmi et al., 2022) using Appraise (Fe- 674

dermann, 2018). We sampled 500 source instances 675

from the WMT24 test set for en-ja and en-es and 676

asked one translator per language pair to read two 677

alternative translations for each source and evalu- 678

ate them on a continuous scale from 0 to 100. The 679

scale featured seven labeled tick marks (from 0 to 680

6) indicating different quality labels combining ac- 681

curacy and grammatical correctness. Translators 682

could further adjust their scores to reflect prefer- 683

ences or assign the same score to translations of 684

similar quality. They were paid a market rate of 685

around 20 USD per hour, and completing the task 686

took approximately 12 to 14 hours for each lan- 687

guage pair. 688

C.1 Deferral based on other QE metrics 689

We have seen that QE-based cascading works well 690

with COMETKIWI models of different sizes (Fig. 4). 691

Here, we show that this is also the case when using 692

two reference-free versions of METRICX (Juraska 693

et al., 2024): metricx-24-hybrid-large-v2p6 694

and metricx-24-hybrid-xl-v2p6 (Fig. 6, or- 695

ange curves). 696

C.2 Oracle selection 697

The effectiveness of our framework depends on the 698

quality of existing QE models, and improving them 699

can further strengthen our approach. To access the 700

performance ceiling of cascading, we report results 701

with oracle deferral, i.e., a deferral strategy that 702

maximizes translation quality according to humans 703

10https://upwork.com
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(Fig. 6, black curves).11 The high oracle values704

indicate significant potential for improvement, sug-705

gesting that having better QE models could directly706

boost the effectiveness of our cascaded approach.707

C.3 Annotation guidelines708

We share below the annotation guidelines shared709

with the freelancers.710

Task overview. This task involves evaluating two711

alternative translations of a source text and assign-712

ing a rating to each translation based on its overall713

quality and adherence to the source content. You714

should consider accuracy, fluency, and overall qual-715

ity when assessing the different translations.716

Annotation scale. Each translation should be717

evaluated on a continuous scale from 0 to 6 with718

the quality levels described below:719

• 6 (perfect meaning and grammar): The720

meaning of the translation is completely con-721

sistent with the source and the surrounding722

context, if applicable. The grammar is also723

correct.724

• 4 (most meaning preserved and few gram-725

mar mistakes): The translation retains most726

of the meaning of the source. It may have727

some grammar mistakes or minor contextual728

inconsistencies.729

• 2 (some meaning preserved): The translation730

preserves some of the meaning of the source731

but misses significant parts. The narrative732

is hard to follow due to fundamental errors.733

Grammar may be poor.734

• 0 (nonsense/no meaning preserved): Nearly735

all information is lost between the translation736

and source. Grammar is irrelevant.737

Annotation interface. Figs. 7 and 8 show the an-738

notation interface. If two candidates were the same739

or of the same quality, the annotators were asked740

to use “match sliders” to give them the exact same741

score. And, they could also use the absolute scale742

range to show preference between the translations.743

11Oracle performance goes down after reaching a plateau
due to our budget-constrained approach, which enforces de-
ferral for a fixed percentage of examples.
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Figure 6: Translation quality of a cascaded system com-
bining Tower-v2 7B and Tower-v2 70B according to
human scores (in a scale from 0 to 100), as the inference
computation budget varies. Deferral is based on differ-
ent QE models (green and orange curves). The black
curve shows the oracle selection.
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0/50 blocks, 10 items left in block wmt24engspatest #1:Segment #546 English → Spanish (español)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Reset  Show/Hide diff. Match sliders  Submit

   This is the GitHub version #wmt24dev  of the Appraise evaluation system.    Some rights reserved.    Developed and maintained by Christian Federmann and the Appraise Dev team.

Today, I completed my first Cross Country Flight (Flight over 50 Nautical Miles).

— Source text

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?
If the two candidates are the same or of the same quality, use the "Match Sliders" button to give them the same score.
(Please see the detailed guidelines below)

Hoy completé mi primer vuelo de larga distancia (vuelo de más de 50 millas náuticas).

0: Nonsense/ No meaning
preserved

2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

Hoy completé mi primer vuelo de cross country (vuelo de más de 50 millas náuticas).

0: Nonsense/ No meaning
preserved

2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

Assess the translation quality on a continuous scale using the quality levels described as follows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source. Grammar is irrelevant.
2: Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts. The narrative is hard to follow due to fundamental errors.
Grammar may be poor.
4: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning of the source. It may have some grammar mistakes or minor contextual
inconsistencies.
6: Perfect meaning and grammar: The meaning of the translation is completely consistent with the source and the surrounding context (if applicable). The grammar is also correct.

The numeric labels on the slider are there to help you to adjust the score more precisely, but the slider can be stopped at any position along the track. Try
to use the full range of the scale when scoring segments and not limit yourself only to the values around the numeric labels.

  

Appraise Dashboard engspa0701

Figure 7: Annotation interface for en-es.
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0/50 blocks, 10 items left in block wmt24engjpntest #2:Segment #546 English → Japanese (日本語)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Reset  Show/Hide diff. Match sliders  Submit

   This is the GitHub version #wmt24dev  of the Appraise evaluation system.    Some rights reserved.    Developed and maintained by Christian Federmann and the Appraise Dev team.

Today, I completed my first Cross Country Flight (Flight over 50 Nautical Miles).

— Source text

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?
If the two candidates are the same or of the same quality, use the "Match Sliders" button to give them the same score.
(Please see the detailed guidelines below)

今日 は、初 めてのクロスカントリーフライト（50海里以上の飛行）を完了しました。

0: Nonsense/ No meaning
preserved

2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

今日、初のクロスカントリーフライト（50海里以上の飛行）を完了しました。

0: Nonsense/ No meaning
preserved

2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

Assess the translation quality on a continuous scale using the quality levels described as follows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source. Grammar is irrelevant.
2: Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts. The narrative is hard to follow due to fundamental errors.
Grammar may be poor.
4: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning of the source. It may have some grammar mistakes or minor contextual
inconsistencies.
6: Perfect meaning and grammar: The meaning of the translation is completely consistent with the source and the surrounding context (if applicable). The grammar is also correct.

The numeric labels on the slider are there to help you to adjust the score more precisely, but the slider can be stopped at any position along the track. Try
to use the full range of the scale when scoring segments and not limit yourself only to the values around the numeric labels.

  

Appraise Dashboard engjpn0801

Figure 8: Annotation interface for en-ja.
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