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ABSTRACT

A prototypical network treats all samples equally and does not consider the noisy
samples, which leads to a biased class representation. In this paper, we propose
a novel fusion prototype with an adaptive induction network (FP AINet) for few-
shot learning that can learn representative prototypes from a few support sam-
ples. Specifically, to address the problem of noisy samples, an adaptive induction
network is developed, which can learn different class representations for queries
and assign adaptive scores for support samples according to their relative signif-
icance. Moreover, FP AINet can generate a more accurate prototype than com-
parison methods by considering the query-related samples. With an increasing
number of samples, the prototypical network is more expressive since the adap-
tive induction network ignores the relative local features. As a result, a Gaussian
fusion algorithm is designed to learn more representative prototypes. Extensive
experiments are conducted on three datasets: miniImageNet, tieredImageNet, and
CIFAR FS. The experimental results compared with the state-of-the-art few-shot
learning methods demonstrate the superiority of FP AINet.

1 INTRODUCTION

Few-shot learning aims to learn classifiers for novel classes with limited data. Prototypical network
(PN) (Snell et al. (2017)) averages the support features as the prototype. While most of the previous
research has achieved promising results, those methods generally assume that the samples used for
training were carefully selected to represent their class. The expected prototype should have the
smallest distance from all other samples in its class (Liu et al. (2020)), and each sample significantly
contributes to the final performance when training from a few labeled samples. Unfortunately, the
existing dataset frequently contains mislabeled samples because of weakly automated supervised
annotation, ambiguity, or human error (Liang et al. (2022)). In addition, since some images have
multiple objects and unrelated background information, the accuracy can be affected by a single
noisy example. As illustrated in Figure 1 (a), the PN is easily affected by noisy samples. Meta-
learning approaches have become the dominant paradigm for few-shot learning (Chen et al. (2020);
Tian et al. (2020); Yao et al. (2021)).

Meta-learning approaches can be roughly summarized into two categories: optimization-based
methods (Antoniou et al. (2019); Kao et al. (2022)) and metric-based methods (Vinyals et al. (2016);
Sung et al. (2018)). Optimization-based methods readily learn the model’s parameters to adapt to
each task using gradient descent. However, these methods need to be fine-tuned for the target tasks.
Metric-based methods are more efficient and applicable than optimization-based methods. Metric-
based methods learn a good metric to calculate the similarity between query and the support samples
using a pre-defined distance function, such as cosine similarity (Vinyals et al. (2016)), euclidean
distance (Snell et al. (2017); Koch et al. (2015)), earth mover’s distance (Zhang et al. (2020)), or
a distance parameterized by a neural network (Sung et al. (2018); Zhang et al. (2018)), which has
achieved remarkable success due to its fewer parameters.

To obtain more representative prototypes, many methods correct the prototype by using similar sam-
ples (Yang et al. (2021); Liu et al. (2020)) or additional knowledge (Zhang et al. (2021)), but since
it is easy to introduce sample noise or class differences, a novel method of fusion prototype with
an adaptive induction network (FP AINet) is proposed to solve the issue. The induction network
(Geng et al. (2019)) designs a non-linear mapping from sample vector to class vector to diminish the
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(a) Prototype with noisy samples. (b) Test accuracy on miniImageNet.

Figure 1: Different prototype models. (a) shows the sample is misclassified by the PN. Different
colors represent different classes. The orange circle denotes the sample to be classified. (b) illus-
trates the test accuracy of different prototypes on the 5-way k-shot.

prototype bias. But since the model has not seen query samples before extracting support features,
some inappropriate features may be extracted, resulting in a significant deviation in prototype esti-
mation. An adaptive induction network (AINet) is proposed to extract more reliable prototypes for
each class. The AINet does not take into account the local relative importance of different regions
in a sample, while the prototype generated by the PN becomes more discriminative and expressive
as the number of support samples increases, as shown in Figure 1 (b). To solve the problem that the
calculation of a single prototype is not comprehensive, we assume the estimated prototype follow a
multivariate Gaussian distribution (Zhang et al. (2021)). Specifically, the features in the target task
are transformed using the Yeo-Johnson transformation, and then two kinds of prototypes are com-
bined, which are generated by AINet and PN, respectively. Finally, the performance of FP AINet
is evaluated on the miniImageNet, tieredImageNet, and CIFAR FS. Besides, the ablation experi-
ments validate the effectiveness of the FP AINet. Experimental results show that the FP AINet can
generate a more representative prototype and improve the accuracy of few-shot learning.

The main contributions are summarized as follows:
(1) A novel method of AINet is proposed to assign scores to support samples based on their rel-
evance automatically. (2) A modified Gaussian-based fusion algorithm is employed to aggregates
prototypes from PN and AINet by exploring the unlabeled samples. (3) Extensive experiments on
three datasets demonstrate the effectiveness of the FP AINet.

2 RELATED WORK

Unlike conventional machine learning, which provides abundant training examples, few-shot learn-
ing requires a classifier that can quickly adapt to novel classes with limited examples. Many efforts
have been made to address the issue of data efficiency.

Metric-based methods. To boost the performance of PN, task dependent adaptive metric (TADAM)
(Oreshkin et al. (2018)) proposes metric scaling and task conditioning. It is difficult to represent the
distribution of a class with limited samples, so many methods have been proposed to correct bias
in prototype estimations (Hou & Sato (2021); Yang et al. (2021)). BD-CSPN (Liu et al. (2020))
modifies prototypes by diminishing intra-class and cross-class bias. A pseudo-label is used to re-
duce intra-class bias, but it is easy to introduce noise. Rather than relying on a pre-defined metric
to calculate similarity (Vinyals et al. (2016)), relation network (Sung et al. (2018)) and a deep com-
parison network (Zhang et al. (2018)) train deep neural networks to compare each query-support
image pair. While previous methods adopted the conceptual representation of the first moment
(Snell et al. (2017)), CovaMNet (Li et al. (2019)) adopts the second moment rather than the first
moment for feature description. Unlike the above methods, multi-level metric learning (Chen et al.
(2022)) measures the similarity at three different feature levels. According to the above analysis,
most existing methods ignore the noisy samples, resulting in biased class representations. To solve
this issue, this paper proposes a more accurate prototype estimate method to improve the few-shot
image classification performance.
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Transductive few-shot learning. In general, inductive few-shot is employed when data acquisition
is expensive, and transductive few-shot is applied when data labeling is expensive (Bendou et al.
(2022)). Some studies have tackled the problem by utilizing the additional knowledge from the
query dataset or extra unlabeled examples in a transductive setting (Wang et al. (2020); Nichol et al.
(2018)). However, they share knowledge between query datasets via batch normalization rather
than explicitly modeling the transductive setting as in (Flennerhag et al. (2020)). Task-adaptive fea-
ture sub-space learning (TAFSSL) (Lichtenstein et al. (2020)) looks for the discriminative feature
sub-spaces for few-shot classification tasks. In contrast to unidirectional label propagation, mu-
tual centralized learning (MCL) considers query and support dataset features as bipartite data and
avoids self-reinforcements (Liu et al. (2022)). Inspired by transductive few-shot learning, unlabeled
samples are employed to estimate the prototype and enrich the feature representation.

3 METHOD

3.1 PROBLEM DEFINITION

A few-shot classification setting includes two datasets: the base class dataset Dbase with abun-
dant labeled images and the novel class dataset Dnovel with few labeled data. Suppose Dbase ={
xbase
t , ybaset

}Nbase

t=1
, xbase

t represents the image sampled from the base class Cbase, ybaset ∈ Cbase

is the label of xbase
t , there is no intersection between the base class and novel class, that is

Cbase ∩Cnovel = ∅, Cbase ∪Cnovel = C. In each iteration process, one of the episodes means that
N classes are selected at random, and each class contains K labeled samples as a support dataset
S = {(xs, ys)}N×K

s=1 with a few labeled samples. The query set Q = {(xq, yq)}N×K′

q=N×K+1 contains
examples of the same N classes in S, K ′ is the quantity of each class in Q. The model needs to
predict a class label for a query sample given N support classes, each containing K support samples.

3.2 OVERALL ARCHITECTURE

The FP AINet consists of three stages, including the pre-training stage, the meta-training stage, and
the meta-testing stage. An overview of the FP AINet is provided in Figure 2.

Figure 2: An overview of FP AINet.

Pre-training stage. During the pre-training stage, an embedding model is trained on the base class
dataset Dbase, the last Softmax layer is removed, and the classifier is transformed into a feature
extractor fθf () with parameters θf , allowing the model to learn task-agnostic knowledge from base
classes and then apply this knowledge to novel classes to produce more reliable prototypes. Then,
the feature extractor fθf () is frozen.

Meta-training stage. An N-way K-shot classification task is constructed through episode few-shot
learning using the base class dataset Dbase. In each episode, class C is sampled from Dbase, K
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samples of each class are used as support set S, K ′ are selected as query dataset Q from the remain-
ing samples in class C. Then the fθf () can be fine-tuned on query dataset. During each episode,
estimating the mean-based prototype p̂i by averaging the labeled support features. Furthermore,
AINet is proposed to learn the class prototype p′i, which is derived from the features fθf (x) of the
support and query samples. To obtain more mutual information, the fusion prototype pi is calculated
using the Gaussian-based fusion method. Finally, the cosine similarity of features fθf (x) and pi is
calculated to determine the probability that each sample x ∈ Q belongs to class i.

Meta-testing stage. The same as the meta-training, and classification task is performed on Dnovel.

3.2.1 ADAPTIVE INDUCTION NETWORK

The induction module (IM) (Geng et al. (2019)) learns the class-level relationship by considering
features and classes to be local-global relationships, but because of the diversity and incompleteness
of the support sample, every support sample contributes differently to the class representation when
it faces different target query samples. In order to learn a more representative class vector and reduce
sample noise, we propose an AINet that pays more attention to effective instances for current query
samples. The details of the AINet are shown in Algorithm 1. Using the multi-head self-attention
mechanism, the support vector zsij and query vector zq are concatenated to calculate the relationship
score; each support vector has its weight attached to the current query vector. Then, we apply
dynamic routing to obtain a class vector. The process adjusts the connection’s strength dynamically
and makes sure that the sum of the coupling coefficients di between class i and all of its support
samples is 1. The difference is that when adjusting the logits of coupling coefficients in the last
step of every iteration, we consider not only the consistency of class candidate vectors and sample
prediction vectors but also the relationship between query and support vectors.

Algorithm 1 Adaptive Induction Network
Require: sample vector zsij in support dataset S and a vector zq in query dataset Q, initialize the

logits of coupling coefficients: bij = 0
Ensure: Class vector p′i

for all samples j = 1, ...,K in class i:
zij = Concat(zsij , z

q), zij is equivalent to concatenate the vector zsij and zq

sij = softmax(
zijz

T
ij√
d

)zij , where d is the dimension of zij
ẑsij = squash(Wsz

s
ij + bs), where Ws is transformation weights, bs denotes bias

for r iterations do
di = softmax(bi)
p′i =

∑
j dij · ẑsij , where ẑsij is the prediction vector, p′i is the class candidate vector

p′i = squash(p′i) =
∥p′

i∥
2

1+∥p′
i∥2

p′
i

∥p′
i∥

, where squash is a non-linear squashing function
for all sample j = 1, ...,K in class i:
bij = bij + sij · tanh(ẑsij · p′i)

end for
return p′i

3.2.2 PROTOTYPE FUSION

When the number of training samples is limited, p′i is more accurate because the model needs to
focus on more representative features, and p̂i is more representative as the number of samples in-
creases because the model only considers global features and ignores local features. This means that
p̂i and p′i can learn mutual affiliations with each other(Zhang et al. (2021)). In order to address the
aforementioned issues, a prototype fusion algorithm is proposed to reduce the prototype bias. We
assume that the estimated prototype has a Gaussian distribution, and the distributions are indepen-
dent of each other because samples in the pre-trained space are continuous and clustered. Algorithm
2 describes the Gaussian-based prototype fusion.

To follow a multivariate normal distribution(Yang et al. (2021)), the input features are preprocessed
using the Yeo-Johnson transformation(Weisberg (2001)). The Yeo-Johnson transformation can re-
duce the heteroskedasticity of random variables and increase their normality, resulting in a probabil-
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ity density function with a similarity to the normal distribution. At the same time, the Yeo-Johnson
transformation can be applied to samples with zero and negative features, making it suitable for
statistical analysis of random variables based on the normal assumption, as follows in Equation 1.

fθf (x) =


[(fθf (x)+1)λ−1]

λ , λ ̸= 0, fθf (x) ≥ 0
log(fθf (x)) + 1), λ = 0, fθf (x) ≥ 0

− [(−fθf (x)+1)2−λ−1]
2−λ , λ ̸= 2, fθf (x) < 0

− log(−fθf (x) + 1), λ = 2, fθf (x) < 0

(1)

where fθf (x) is the feature to be transformed and the λ is employed to correct the distribution. Then,
the mean-based prototype of p̂i should be estimated by averaging the features of the support labeled
samples, it can be calculated by Equation 2.

p̂i =
1

|Si|
∑
x∈Si

fθf (x) (2)

where Si represents the support dataset extracted for the class i, and fθf (x) is the feature of support
dataset. We assume the p̂i follows a Gaussian distribution with a mean µ̂i and diagonal covariance
diag(σ̂2

i ), and p′i is a sample from N(µ′
i, diag(σ′2

i )). To improve the class representation of the
model, learn a Gaussian distribution with mean µ̂i + µ′

i and diagonal covariance diag(σ̂2
i + σ′2

i ),
then the mean is used to calculate the fusion prototype pi, as shown in Equation 3.

θ̂ ∼ N(µ̂i, diag(σ̂2
i ), θ

′ ∼ N(µ′
i, diag(σ′2

i )), θ ∼ N(µ̂i + µ′
i, diag(σ̂2

i + σ′2
i ) (3)

Transductive few-shot learning method is used to calculate the µ̂i and µ′
i(Liu et al. (2020)) by lever-

aging the unlabeled samples. When the class prototype is p̂i or p′i, the Equations 4 and 5 can be used
to calculate the probability of x ∈ S ∪Q, where S is the support dataset with a few labeled samples
and Q is the query dataset with unlabeled samples.

P̂ (y = i | x) = ed(fθf (x)), p̂i)∑
c e

d(fθf (x), pc)
(4)

P ′(y = i | x) = ed(fθf (x), p′
i)∑

c e
d(fθf (x)), pc)

(5)

where d() is the cosine similarity. Then, µ̂i and µ′
i can be calculated by regarding P̂ (y = i | x) and

P ′(y = i | x) as the weights, as shown in Equation 6 and 7.

µ̂i =
1∑

x∈S∪Q P (i | x)
∑

x∈S∪Q

P̂ (i | x)fθf (x) (6)

µ′
i =

1∑
x∈S∪Q P (i | x)

∑
x∈S∪Q

P ′(i | x)fθf (x) (7)

Finally, the fusion prototype of pi can be obtained by µ̂i and µi, as shown in Equation 8.

pi = µi = µ̂i + µ′
i (8)

4 EXPERIMENTAL SETUP

4.1 DATASETS AND SETTINGS

The method of FP AINet is evaluated on the miniImageNet, tieredImageNet and CIFAR FS.
miniImageNet (Ravi & Larochelle (2017)) contains 100 classes with 600 samples per class. The
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Algorithm 2 Prototype Fusion

Require: Support samples S = {(xs, ys)}N×K
s=1 , query samples Q = {(xq, yq)}N×K′

q=N×K+1

Ensure: Fusion prototype pi
for each episode iteration do

Create the episodic tasks using S and Q, fine-tuned the feature extractor fθf ()
Estimate the mean-based prototype p̂i with Equation 2
Calculate the class vector p′i with Algorithm 1
Use p̂i and p′i to calculate the probability of x ∈ S ∪Q with Equation 4 and 5, respectively
Calculate µ̂i and µ′

i by P̂ (y = i | x) and P ′(y = i | x) with Equation 6 and 7, respectively
Estimate the fusion prototype pi by µ̂i and µ′

i
end for
return pi

dataset is divided into 64, 16, and 20 classes for training, validation, and testing. tieredImageNet
(Ren et al. (2018)) consists of a total of 608 classes, which are divided into 34 higher-level classes.
The training dataset contains 20 higher-level classes, 351 fine-grained classes; 6 higher-level classes,
97 fine-grained classes as validation sets; 8 higher-level classes, and 160 fine-grained classes as the
test datasets. The image size of miniImageNet and tieredImageNet is 84 × 84 × 3 . CIFAR FS
(Bertinetto et al. (2019)) contains 100 classes and 600 images in each class, including 64 classes of
training datasets, 16 classes of validation datasets, and 20 classes of test datasets. The image size is
unified to 32× 32× 3.

The classical 5-way 1/5-shot episodic in few-shot task settings are adopted. The query dataset
contains 6 images per class during the meta-training stage, 15 test samples during the meta-testing
stage, and 10,000 tasks are randomly constructed. Then test the task and calculate the average
classification accuracy of top-1 and the 95% confidence interval as the final result.

4.2 IMPLEMENTATION DETAILS

The experiment is conducted on the feature extractor of ResNet-12 with 640-dimensional for the
tieredImageNet. Each residual block contains three 3 × 3 convolutional layers and a shortcut con-
nection. The WRN-28-10 with a layer number of 28 and a width of 10 is used for tieredImageNet
and the extracted features are 512-dimensional. Average pooling is applied at the last block of each
architecture to get feature vectors (Mangla et al. (2020)). In the pre-training stage, the base class
dataset is trained on 100 epochs with a batch size of 128. SGD with a momentum of 0.9 and weight
decay of 0.0005 is adopted as the optimizer to train the feature extractor of ResNet-12, while the
Adam optimizer is used for WRN-28-10. In the meta-training stage, data augmentation techniques
are used, including random cropping, color jittering, and horizontal flipping. The model is meta-
trained for 60 epochs, with each epoch containing 1000 episodes and an initial learning rate of 0.1.
When the epochs are set to 20, 40, and 50, the learning rate changes to 0.006, 0.0012, and 0.00024,
respectively. λ is set to 0.5 in the Yeo-Johnson transform, and 3 iterations were used for the AINet.

4.3 EXPERIMENTAL RESULTS

4.3.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Tables 1 and 2 show the 5-way 1/5-shot classification results of the FP AINet and state-of-the-
art few-shot learning methods on the miniImageNet and tieredImageNet, respectively. Table 1
shows that the FP AINet achieves better performance on miniImageNet compared with compar-
ison methods. In the 5-way 1/5-shot settings, the accuracy of the FP AINet reaches 72.13% and
84.29%, respectively. Compared to the suboptimal methods Curvature Generation(Gao et al. (2021))
and UniSiam (Lu et al. (2022)), it increased by about 0.34% and 0.89%, respectively. On the
tieredImageNet, the accuracy of FP AINet on 1-shot is higher than 0.49% of the second-best models
of BD-CSPN (Liu et al. (2020)), and higher than 0.29% EPNet(Rodrı́guez et al. (2020)) on a 5-shot
setting. The FP AINet has such an improvement attributed to considering the more important sam-
ples. Moreover, the Gaussian-based fusion algorithm alleviates the prototype error and facilitates
learning the optimal prototype by exploring the unlabeled samples.
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Table 1: 5-way 1/5-shot accuracy (%) on miniImageNet with 95% confidence intervals.The best
two results are highlighted and underlined.

miniImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot

Matching Network (Vinyals et al. (2016)) 64-64-64-64 Inductive 43.56 ± 0.84 55.31 ± 0.73
Relation Network (Sung et al. (2018)) 64-96-128-256 Inductive 50.44 ± 0.82 65.32 ± 0.70

R2D2 (Bertinetto et al. (2019)) 96-192-384-512 Inductive 51.20 ± 0.60 68.80 ± 0.10
Baseline++ (Chen et al. (2019)) ResNet-18 Inductive 51.87 ± 0.77 75.68 ± 0.63

TADAM (Oreshkin et al. (2018)) ResNet-12 Transductive 58.50 ± 0.30 76.70 ± 0.30
PN (Snell et al. (2017)) ResNet-12 Inductive 60.37 ± 0.83 78.02 ± 0.57

B+@EST+L2-N (Hou & Sato (2021)) ResNet-18 Inductive 62.44 77.13
MetaOptNet (Lee et al. (2019)) ResNet-12 Inductive 62.64 ± 0.61 78.63 ± 0.46

MetaBaseline (Chen et al. (2021b)) ResNet12 Inductive 63.17 ± 0.23 79.26 ± 0.17
S2M2 (Mangla et al. (2020)) ResNet-18 Inductive 64.06 ± 0.18 80.58 ± 0.12
UniSiam (Lu et al. (2022)) ResNet-34 Inductive 65.55 ± 0.36 83.40 ± 0.24

DeepEMD (Zhang et al. (2020)) ResNet-12 Inductive 65.91 ± 0.82 82.41 ± 0.56
ICI (Wang et al. (2020)) ResNet-12 Transductive 66.8 79.26
DC (Yang et al. (2021)) WRN-28-10 Inductive 68.57 ± 0.55 82.88 ± 0.42

BD-CSPN (Liu et al. (2020)) WRN-28-10 Transductive 70.31 ± 0.93 81.89 ± 0.60
AIM (Lee et al. (2021)) WRN-28-10 Transductive 71.22 ± 0.57 82.25 ± 0.34

Curvature Generation(Gao et al. (2021)) ResNet-12 Transductive 71.79 ± 0.23 83.00 ± 0.17
FP AINet (OURS) WRN-28-10 Transductive 72.13 ± 0.73 84.29 ± 0.44

Table 3 shows the comparison results of the FP AINet with the main few-shot learning methods on
the CIFAR-FS. In the 5-way 1-shot setting, the accuracy of the FP AINet reaches 81.92%, 0.32%
higher than the suboptimal method of SSR (Shen et al. (2021)), which proves that FP AINet can
handle extremely few-shot classification tasks better. In the 5-way 5-shot setting, the accuracy of
FP AINet is 89.38%, which is 0.38% higher than the suboptimal method EASY (Bendou et al.
(2022)). The FP AINet has the highest accuracy with the same backbone, and accurate prototypes
are more effective than fully extracted features. Furthermore, accuracy on the 5-shot setting is
significantly higher than on the 1-shot setting. The main reason is that fewer annotated samples
result in inaccurate prototype estimation, whereas a 5-shot can yield a more representative prototype
estimation. It is verified that the FP AINet can better handle the few-shot learning task with a
limited amount of data. The prototype features of the novel class are expressed more abundantly
and accurately by fusing the prototypes.

Table 2: 5-way 1-shot/5-shot accuracy (%) on tieredImageNet with 95% confidence intervals.

tieredImageNet
Method Backbone Setting 5-way 1-shot 5-way 5-shot

Relation Network (Sung et al. (2018)) 64-96-128-256 Inductive 54.48 ± 0.93 71.32 ± 0.78
B+@EST+L2-N (Hou & Sato (2021)) ResNet-18 Inductive 60.87 81.80

PN (Snell et al. (2017)) ResNet-12 Inductive 65.65 ± 0.92 83.85 ± 0.36
MetaOptNet (Lee et al. (2019)) ResNet-12 Inductive 65.99 ± 0.72 81.56 ± 0.53

MetaBaseline (Chen et al. (2021b)) ResNet-12 Inductive 68.62 ± 0.27 83.74 ± 0.18
DeepEMD (Zhang et al. (2020)) ResNet-12 Inductive 71.16 ± 0.87 86.03 ± 0.58

Meta DeepBDC (Xie et al. (2022)) ResNet-12 Inductive 72.34 ± 0.49 87.31 ± 0.32
SIB (Hu et al. (2020)) WRN-28-10 Transductive 72.9 82.8

ECKPN (Chen et al. (2021a)) ResNet-12 Transductive 73.59 ± 0.45 88.13 ± 0.28
Curvature Generation(Gao et al. (2021)) ResNet-12 Transductive 77.19 ± 0.24 86.18 ± 0.15

ICI v2 (Wang et al. (2021)) ResNet-12 Transductive 77.48 ± 0.62 86.84 ± 0.36
EPNet (Rodrı́guez et al. (2020)) WRN-28-10 Transductive 78.50 ± 0.91 88.36 ± 0.57

BD-CSPN (Liu et al. (2020)) WRN-28-10 Transductive 78.74 ± 0.95 86.92 ± 0.63
FP AINet (OURS) WRN-28-10 Transductive 79.23 ± 0.70 88.65 ± 0.49
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Table 3: 5-way 1-shot/5-shot accuracy (%) on CIFAR FS with 95% confidence intervals.

CIFAR FS
Method Backbone Setting 5-way 1-shot 5-way 5-shot

Relation Network (Sung et al. (2018)) 64-96-128-256 Inductive 55.00 ± 1.00 69.30 ± 0.80
MAML (Finn et al. (2017)) 32-32-32-32 Inductive 58.90 ± 1.90 71.50 ± 1.00

B+@EST+L2-N (Hou & Sato (2021)) ResNet-18 Inductive 63.00 77.99
BD-CSPN (Liu et al. (2020)) WRN-28-10 Transductive 72.13 ± 1.01 82.28 ± 0.69

PN (Snell et al. (2017)) ResNet-12 Inductive 72.20 ± 0.70 83.50 ± 0.50
MetaOptNet (Lee et al. (2019)) ResNet-12 Inductive 72.80 ± 0.70 85.00 ± 0.50
S2M2 (Mangla et al. (2020)) ResNet-18 Inductive 74.81 ± 0.19 87.47 ± 0.13
EASY (Bendou et al. (2022)) 3xResNet-12 Transductive 76.20 ± 0.20 89.00 ± 0.14

Fine-tuning (Dhillon et al. (2020)) WRN-28-10 Transductive 76.58 ± 0.68 85.79 ± 0.50
ICI v2 (Wang et al. (2021)) ResNet-12 Transductive 79.19 ± 0.63 86.66 ± 0.36

SIB (Hu et al. (2020)) WRN-28-10 Transductive 80.00 ± 0.60 85.30 ± 0.40
SSR (Shen et al. (2021)) WRN-28-10 Transductive 81.60 ± 0.60 86.00 ± 0.40

FP AINet (OURS) WRN-28-10 Transductive 81.92 ± 0.69 89.38 ± 0.44

4.3.2 ABLATION STUDY

Table 4 summarizes the results of FP AINet and shows that each component is important in few-shot
image classification, giving improvements over the state-of-the-art on the miniImageNet. Among
them, (i) represents classification using only PN, (ii) is classification result of induction module, (iii)
denotes classification using only AINet, and (iv) represents the Gaussian-based fusion algorithm.
Obviously, in the 5-way 1-shot setting, if neither module is used, the accuracy drops by more than
10%. The prototype fusion algorithm of FP AINet achieves better performance than AINet.

Adaptive Induction Network. It can be seen from (iii) in Table 4 that in the 5-way 1-shot, the
classification result of AINet is better than the PN, and the main reason is that the module calculates
the prototype by using query samples and selection. At the same time, the induction prototype
method obtains class-level information and automatically adjusts the coupling coefficient according
to the input, which is suitable for few-shot learning and can achieve good results in the presence of
noise. In 5-way 5-shot, with the increase of samples, the mean-based prototype obtains better class
representation. The results demonstrate that paying more attention to effective support samples is
an important factor in the few-shot classification problem.

Prototype fusion. The accuracy of the AINet is improved by about 9% and 6%, respectively, in the
5-way 1/5-shot settings, as shown by the model of (iv) in Table 4. The results indicate that fusion
prototypes can improve model performance and alleviate bias in prototype estimates. The primary
argument is that prototype fusion utilizes more samples, which can more effectively address the
issues of sample noise and incompleteness in few-shot learning. The results show the necessity and
effectiveness of learning an optimal class prototype.

Table 4: Ablation studies of 5-way 1/5-shot on miniImageNet.

IM AINet PN Fusion 5-way 1-shot 5-way 5-shot
(i) ✓ 61.47 ± 0.66 79.33 ± 0.48
(ii) ✓ 63.85 ± 0.68 78.23 ± 0.48
(iii) ✓ 63.88 ± 0.66 78.49 ± 0.49
(iv) ✓ ✓ ✓ 72.13 ± 0.73 84.29 ± 0.44

The prototypes generated by the FP AINet are visualized using t-distributed stochastic neighbor em-
bedding (t-SNE). A 5-way 1-shot task of miniImagenet is shown in Figure 3, where circles represent
query samples and different colors denote different classes, stars represent PN features, pentagons
are AINet features, and squares represent FP AINet. The prototypes generated by FP AINet are
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much closer to the class center, which can effectively learn the representation of a prototype and
improve the capacity of the support dataset.

Figure 3: t-SNE visualization of different prototype.

4.3.3 DIFFERENT PROTOTYPE METHODS

Figure 4 shows the results of different prototype methods on the 5-way k-shot task. On the
miniImageNet, the prototype based on AINet is more accurate in 1/2-shot tasks. The PN achieves
better performance on the 3/4/5-shot tasks; on the CIFAR FS, the AINet outperforms the PN on
the 1/2/3-shot classification tasks, while the PN is better at classification on the 4/5-shot tasks. The
main reason is that mean-based prototypes may be far from the expected class center when given
very few labeled samples. But the mean-based prototype obtains more training samples and achieves
better classification performance as the number of shots increases. The advantages of the two proto-
types are fused to create a more representative prototype through Gaussian-based prototype fusion.
Meanwhile, when the shot of the support dataset setting on the 5-way k-shot task is increased to 5,
the accuracy of the three prototype models on miniImageNet and CIFAR FS improves.

(a) miniImageNet (b) CIFAR FS

Figure 4: The accuracy of different prototype methods on different datasets.

5 CONCLUSION

To address the problem of noisy samples in few-shot learning, we propose a new method based
on Gaussian fusion with an adaptive induction network. Firstly, it is significant to exploit differ-
ent samples for obtaining the class representation, and the AINet can evaluate the significance of
different samples adaptively. Secondly, a single prototype method is not comprehensive enough,
and a Gaussian-based fusion algorithm is employed to obtain more accurate prototypes. Experi-
ments show that the FP AINet achieves consistent improvements on three datasets, which verifies
the effectiveness of the FP AINet in few-shot image classification.
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A EFFECT OF YEO-JOHNSON TRANSFORMATION

Figure 5 shows the 5-way 1-shot accuracy when choosing different λ for the Yeo-Johnson transform
in Equation 1. It can be found λ equals 0.5 is the optimum choice, and different values have a signif-
icant impact on the classification accuracy. With the Yeo-Johnson transformation, the distribution of
features becomes more aligned with the calibrated Gaussian distribution, which favors the classifier
that is trained on features from the calibrated distribution.

Figure 5: Accuracy of different values of λ on miniImageNet.

The query features before and after the Yeo-Johnson transformation are shown in Figure 6. Different
colors represent categories. It is observed that the distribution before transformation is more skewed.
The distribution after Yeo-Johnson transformation can very well satisfy the Gaussian assumption. It
provides a powerful means of reducing skewness.

(a) Before transformation (b) After transformation

Figure 6: Feature transformation.

B COMPARISON OF COMPUTATION COST

Table 5 shows a detailed analysis of different modules in our method and classification results on
miniImageNet. Compared with the baseline of PN, FLOPs increased by 16M. The main reason is
that the attention mechanism introduces some attention parameters. The operation of fusion almost
without additional calculations. The parameter of ours has increased by 410.9 K.

C COMPARISON OF DIFFERENT BACKBONES

In order to explore the influence of feature embedding vectors, the depth of the backbone network is
changed and the same settings were used for the three models. It can be seen from Table 6 that the
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Table 5: Comparison of the FLOPs, Params, and Accuracy on miniImageNet.

5-way 1-shot FLOPs Params Accuracy
Backbone (WRN-28-10) 36.19 G 36.47 M -

PN + 0 + 0 61.47 ± 0.66
AINet + 16.0 M + 410.9 K 63.88 ± 0.66

FP AINet(OURS) + 16.0 M + 410.9 K 72.13 ± 0.73

miniImageNet has achieved the best results on the WRN-28-10 backbone network. The classification
results are constantly improving as the number of network layers increases. In few-shot learning,
the feature embedding vector is the key factor affecting the classification results. A better backbone
network can bring better test performance in few-shot learning.

Table 6: Accuracy (%) on miniImageNet with 95% confidence intervals of different backbone.

miniImageNet
Backbone 5-way 1-shot 5-way 5-shot
ResNet-10 60.61 ± 0.76 74.80 ± 0.53
ResNet-12 66.63 ± 0.76 79.64 ± 0.51

WRN-28-10 72.13 ± 0.73 84.29 ± 0.44
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