
An Online Adaptive Sampling Algorithm for Stochastic Difference-of-convex
Optimization with Time-varying Distributions

Yuhan Ye 1 Ying Cui 2 Jingyi Wang 3

Abstract
We propose an online adaptive sampling algo-
rithm for solving stochastic nonsmooth difference-
of-convex (DC) problems under time-varying dis-
tributions. At each iteration, the algorithm relies
solely on data generated from the current distribu-
tion and employs distinct adaptive sampling rates
for the convex and concave components of the DC
function, a novel design guided by our theoretical
analysis. We show that, under proper conditions
on the convergence of distributions, the algorithm
converges subsequentially to DC critical points
almost surely. Furthermore, the sample size re-
quirement of our proposed algorithm matches the
results achieved in the smooth case or when a
measurable subgradient selector is available, both
under static distributions. A key element of this
analysis is the derivation of a novel O(

√
p/n)

pointwise convergence rate (modulo logarithmic
factors) for the sample average approximation of
subdifferential mappings, where p is the dimen-
sion of the variable and n is the sample size – a
result of independent interest. Numerical experi-
ments show that the algorithm is efficient for ad-
dressing online stochastic nonsmooth problems.

1. Introduction
We consider the class of stochastic nonsmooth nonconvex
optimization problems in the form of

minimize
x∈C

f(x) ≜ Eξ∼Pξ [G(x, ξ)]︸ ︷︷ ︸
≜g(x)

−Eζ∼Pζ [H(x, ζ)]︸ ︷︷ ︸
≜h(x)

,
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where C ⊂ Rp is a convex set, ξ, ζ ⊂ Ω are random vectors
with probability measures Pξ, Pζ , respectively, and G,H :
(Rp,Ω) → R are Carathéodory functions, i.e., they are
continuous in x for all ξ, ζ ∈ Ω and Borel measurable in ξ
and ζ for all x ∈ C. In addition, we assume G and H are
convex in x (though not necessarily smooth), making f a
difference-of-convex (DC) function.

When functions g and h are fully accessible, problem
(1) can be solved via the classical DC algorithm (DCA).
At each iteration, a convex subproblem is solved by lin-
earizing h via the subgradient at the previous point, i.e.,
xt+1 = argmin

x∈C

[
g(x)− yTt (x− xt) +

µ

2
∥x− xt∥2

]
for

some yt ∈ ∂h(xt) and µ > 0. Due to the convexity of
h, it can be shown that the objective sequence {f(xt)} is
non-increasing, and the iterates asymptotically converge to
a so-called DC critical point of problem (1).

However, in many applications, functions g and h are not
fully known and can only be estimated from sampled data.
This challenge is compounded when the underlying data-
generating distribution is time-varying, as in the case of
fluctuating demand. The convergence analysis of stochas-
tic DCA is, therefore, significantly more complex than its
deterministic counterpart, as it must account for the sample
average approximation (SAA) error in both the convex com-
ponent and the linearized concave component. The latter, in
particular, is closely tied to the convergence rate of the SAA
error for subdifferential mappings when H is nonsmooth in
x, introducing additional difficulty in the analysis.

In this paper, we propose an online adaptive sampling al-
gorithm to solve problem (1). At each iteration, new data
from the current distribution is used to construct a stochastic
approximation of the linearized DC function, while previ-
ous samples are discarded. Unlike stochastic DCAs that
aggregate past samples to compute current solutions, our
method is more robust to distributional shifts occurring dur-
ing the data generations along the iterations. The algorithm
dynamically determines the sample sizes needed to estimate
g and ∂h, adapting to the optimization path throughout the
process. Specifically, when the current iterate is far from
critical points, less precise yet computationally inexpensive
function values and subgradient estimates suffice. However,
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as the iterates approach the critical points, higher accuracy
in function and subgradient estimation becomes crucial for
theoretical guarantees and effective practical performance.

We summarize the contribution of the paper as follows:

• We derive a novelO(
√
p/n) convergence rate (modulo

logarithmic factors) for the expected pointwise SAA
error of set-valued subdifferential mappings (Theorems
3.4 and 3.5), matching the convergence rate of single-
valued gradient mappings in the smooth case, where
p is the dimension of the variable and n is the sample
size. Our results complement existing work (Davis
and Drusvyatskiy, 2022; Ruan, 2024) on the uniform
convergence rate for the SAA error for subdifferen-
tial mappings. We adopt a new proof technique that
analyzes the one-sided deviation of subdifferential set-
valued functions through their support functions.

• We propose an online adaptive stochastic framework
for DC optimization under time-varying distributions.
Unlike existing algorithms in the literature (Le Thi
et al., 2024), which require a Borel measurable sub-
gradient selector that is challenging to implement in
practice, our algorithm allows the selection of any sub-
gradient from the sampled subdifferential set. Further-
more, our algorithm operates under weak assumptions
on the data generation process, allowing the underly-
ing distributions to vary over time without necessarily
matching the true distribution. We establish theoret-
ical guarantees under the novel assumption that the
cumulative Wasserstein-1 distance between successive
distributions over iterations is bounded.

• Assume that we draw Ng,t samples to estimate g and
Nh,t samples to estimate ∂h at time t. For any αg ∈
(0, 1/2) and αh ∈ (0, 1), we establish the almost sure
convergence of the iterative sequence to a critical point

under the condition that
∑
t≥0

(
1

N
αg
g,t

+ 1
N
αh
h,t

)
<∞.

We further propose adaptive sampling strategy to adjust
sample sizes at each step based on progress from the
most recent iteration. In practice, the adaptive strategy
enhances performance compared to its non-adaptive
counterpart by potentially reducing the number of sam-
ples required during the initial stage of the algorithm.

1.1. Related Literature

Non-asymptotic convergence analysis of SAAs. An im-
portant step in our analysis is the error estimation of SAAs
of g and ∂h. The non-asymptotic convergence analysis
of SAAs for expected functions has been well-studied in
the existing literature; see, for example, the monograph
Shapiro (2000). For the SAA convergence rate of subdiffer-
entials, Xu (2010) demonstrates non-asymptotic, dimension-

dependent high-probability bounds on the distance between
the empirical and population subdifferentials under the
Hausdorff metric. However, the population objective is
essentially required to be smooth. In Mei et al. (2018),
the authors discuss uniform convergence of gradients for
smooth objectives under the assumption that the gradient is
sub-Gaussian with respect to the population data. In Foster
et al. (2018), the authors provide dimension-independent
high-probability convergence rates of gradients for smooth
Lipschitz generalized linear models, utilizing a “chain rule”
for Rademacher complexity. These works do not directly
examine the convergence behavior of subdifferential sets.
More recently, Ruan (2024) achieves a tight O(

√
p/n) rate

(modulo logarithmic factors) for the uniform convergence of
weakly convex subdifferential mappings. This complements
the O( 4

√
p/n) uniform convergence rate of subdifferentials

in Davis and Drusvyatskiy (2022). However, their result is
based on the convex-smooth composite structure, as well as
subexponential assumptions for random vector and process,
see Assumption C in Ruan (2024).

Stochastic and Online DC Optimization. While de-
terministic DC algorithms have been extensively studied
in existing literature (Le Thi and Pham Dinh, 2018), their
stochastic counterparts have only recently gained attention
(Thi et al., 2017; Le Thi et al., 2020). The first work that
allowed both components in a DC problem to be nonsmooth
was presented in Le Thi et al. (2022), where an SDCA
scheme was proposed that stores all past information for
constructing future subproblems. This approach achieves
near-optimal sample size requirement by adding just one
sample per DCA subproblem. Le Thi et al. (2024) pio-
neered the study of DCA in an online setting, eliminating
the need to store historical information. Their approach re-
samples at each iteration and employs SAAs to approximate
the linearized DC function using new samples, resulting in
adaptive capabilities that offer a significant advantage over
those in Le Thi et al. (2022). However, this method relies on
the realization of a Borel measurable subgradient selector,
as specified in Assumption 1 of Le Thi et al. (2024).

Moreover, non-asymptotic convergence of stochastic DC
optimization has been studied in Nitanda and Suzuki (2017);
Xu et al. (2019), which propose stochastic proximal DC al-
gorithms by adding quadratic terms for DC subproblems.
Nevertheless, these analyses rely on smoothness or Hölder
continuity of the gradient, which are often too strong for
many nonsmooth functions. Recent work in nonsmooth
weakly convex optimization (Davis and Drusvyatskiy, 2018;
Sun and Sun, 2022; Moudafi, 2022; Yao et al., 2022) has
introduced Moreau envelope smoothing approximations for
both components, enabling a non-asymptotic convergence
analysis to nearly ϵ-critical points for deterministic prob-
lems—a relaxed convergence criterion. These works have
yet to establish complete non-asymptotic convergence for
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non-smooth DC problems since a gap remains between
nearly ϵ-critical points and true critical points.

Recent studies have explored online optimization under
distribution shifts, particularly within online convex op-
timization and stochastic approximation methods. Stan-
dard approaches typically assess performance through re-
gret bounds relative to a defined measure of distribution
shifts (e.g., Besbes et al. (2015); Fahrbach et al. (2023);
Sankararaman and Narayanaswamy (2023)). Our proposed
algorithm differs due to the nonsmooth nonconvex structure,
where regret-based analysis is inapplicable, as our results
rely on asymptotic convergence properties instead.

Adaptive Sampling in Stochastic Optimization. Adap-
tive sampling methods offer advantages over fixed-sample
approaches, such as leveraging parallelism and generating
iterates with reduced variance due to progressively increas-
ing sample sizes. Adaptive strategies often use gradient
approximation tests to regulate accuracy. Examples include
norm-based tests (Carter, 1991; Byrd et al., 2012), inner
product tests (Bollapragada et al., 2018), and other meth-
ods (Cartis and Scheinberg, 2018; Jin et al., 2021). For a
comprehensive overview of adaptive sampling techniques,
readers are referred to Curtis and Scheinberg (2020).

2. Preliminaries
We first summarize the notation used throughout the pa-
per. We write Rp as the p-dimensional Euclidean space
equipped with the inner product ⟨x, y⟩ = x⊤y and the in-
duced norm ∥x∥ ≜

√
x⊤x. The symbol B(x, δ) is used to

denote the closed ball of radius δ > 0 centered at a vec-
tor x ∈ Rp. Let A and C be two nonempty subsets of
Rp. The distance from a vector x ∈ Rp to A is defined
as dist(x,A) ≜ inf

y∈A
∥y − x∥. The one-sided deviation

of A from C is defined as D(A,C) ≜ sup
x∈A

dist(x,C).

The Hausdorff distance between A and C is defined as
H(A,C) := max{D(A,C),D(C,A)}.

We proceed by introducing fundamental concepts from nons-
mooth analysis. For detailed discussions, we refer the reader
to the monographs (Clarke, 1990; Rockafellar and Wets,
1998; Mordukhovich, 2006). Let r : O → R be a function
defined on an open set O ⊆ Rp. The classical one-sided
directional derivative of r at x̄ ∈ O along the direction

d ∈ Rp is defined as r′(x̄; d) ≜ lim
t↓0

r(x̄+ td)− r(x̄)

t
.

The function r is said to be directionally differentiable at
x̄ ∈ O if it is directionally differentiable along any direc-
tion d ∈ Rp. In contrast, the Clarke directional deriva-
tive of r at x̄ ∈ O along the direction d ∈ Rp is defined

as r◦(x̄; d) ≜ limsup
x→x̄, t↓0

r(x+ td)− r(x)

t
, which is finite

when r is Lipschitz continuous near x̄.

The Clarke subdifferential of r at x̄ is the set ∂Cr(x̄) ≜
{v ∈ Rp | r◦(x̄; d) ≥ v⊤d, ∀d ∈ Rp}. If r is strictly dif-
ferentiable at x̄, then ∂Cr(x̄) = {∇r(x̄)}. We say that
r is Clarke regular at x̄ ∈ O if r is directionally dif-
ferentiable at x̄ and r◦(x̄; d) = r′(x̄; d) for all d ∈ Rp.
This Clarke regularity at x̄ is equivalent to have r(x) ≥
r(x̄)+ v̄⊤(x− x̄)+o(∥x− x̄∥) for any v̄ ∈ ∂Cr(x̄), which
is natural satisfied when r is convex. Moreover, if a func-
tion fails to satisfy the Clarke regularity at x̄, there does
not exist an approximate linear lower bound of the original
function based on the Clarke subdifferentials with a small
o error locally. Since the concept of Clarke subdifferential
coincides with the usual subdifferential in convex analysis
for a convex function, we simply refer to Clarke subgradient
as subgradient in the remainder of the paper.

Let A : Rp⇒Rm be a set-valued mapping. Its
outer limit at x ∈ Rp is defined as lim sup

x→x̄
A(x) :=⋃

xν→x̄
lim sup
ν→∞

A(xν) =
{
u | ∃ xν → x̄, ∃ uν →

u with uν ∈ A(xν)
}
. We say A is outer semicontinuous

(osc) at x̄ ∈ Rp if lim sup
x→x̄

A(x) ⊆ A(x̄). Clarke subd-

ifferential is outer semicontinuous, which is necessary in
establishing subsequential convergence, by Proposition 6.6
in (Rockafellar and Wets, 1998). In addition, for a Lipschitz
r, ∂̄r(x̄) is locally bounded, see Theorem 9.13 in (Rockafel-
lar and Wets, 1998).

A point x∗ ∈ Rp is called a DC critical point if 0 ∈
∂g(x∗) − ∂h(x∗), or equivalently ∂g(x∗) ∩ ∂h(x∗) ̸= ∅.
In this paper, the terminology critical point refers to DC
criticality, as defined in the literature on DC programming.

Next, we review some basics of random set-valued map-
pings and their expectations. Let (Ω,F , P ) be a probability
space, and for fixed x, let A(x, ω) : Ω → 2R

p

be a gen-
eral set-valued mapping taking values in closed subsets
of Rp. The expectation E[A(x, ω)] is defined as the set of
E[A(x, ω)] over all integrable selections, where integrability
follows Aumann’s sense (Aumann, 1965). It is well defined
if E[H(0,A(x, ω))] < ∞. Let r(x, ξ) : Rp × Ξ → R
be a random lower semicontinuous function, where ξ :
(Ω,F , P ) → Ξ is a random vector with support Ξ ⊂ Rm.
If r is κ(ξ)-Lipschitz in x, where E[κ(ξ)] <∞; and for any
x, r(x, ξ) is Clarke regular for a.e. ξ. Then, E[r(x, ξ)] is
Clarke regular, and ∂xE[r(x, ξ)] = E[∂xr(x, ξ)], by Theo-
rem 2.7.2 in (Clarke, 1990).

Throughout this paper, we assume that the sample space Ω
is equipped with a metric d(·, ·), making it a metric space.
Let P(Ω) denote the set of Radon probability measures
on Ω, where each measure P ∈ P(Ω) has a finite first
moment. That is, Eξ∼P [d(ξ, ξ0)] < ∞ for some ξ0 ∈ Ω.
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For µ, ν ∈ P(Ω), their Wasserstein-1 distance is defined as

W1(µ, ν) = sup
g∈Lip1(Ω)

{EX∼µ[g(X)]− EY∼ν [g(Y )]} ,

where Lip1(Ω) denotes the set of all Lipschitz functions
g : Ω → R with the Lipschitz constant 1.

3. The Convergence Rate for the SAA Error of
Subdifferential Mappings

In this section, we establish a novel pointwise convergence
rate of O(

√
p/n) for subdifferential mappings, where p is

the dimension of the variable and n is the sample size. This
addresses a major challenge in subgradient-based stochas-
tic nonsmooth problems: analyzing the sampling error of
stochastic subgradients regarding the sample size.

For a random function φ(·, ω) : Dφ(⊆ Rp) → R and inde-
pendent and identically distributed (i.i.d.) random variables
(ω1, . . . , ωn) ≜ ω̄n drawn from the same distribution of
ω, we could use 1

n

∑n
k=1 τ

(
x, ωk

)
as an SAA estimation

of the subgradient of Eω [φ(x, ω)], where τ
(
x, ωk

)
is a

subgradient selector that satisfies τ
(
x, ωk

)
∈ ∂xφ

(
x, ωk

)
.

In the smooth case, each τ
(
x, ωk

)
is an unbiased estimate

of the expected gradient at x, since Eω [∇xφ(x, ω)] =
∇Eω [φ(x, ω)]. This leads to a straightforward O

(
1
n

)
con-

vergence rate for the squared error in relation to the sample
size n, i.e.,

Eω̄n

∣∣∣∣∣ 1n
(

n∑
k=1

∇xφ(x, ω
k)

)
−∇Eω [φ(x, ω)]

∣∣∣∣∣
2

≤ σ2

n
,

(2)
where σ2 is the uniform variance of ∇xϕ(x, ω

k). However,
this result does not directly extend to nonsmooth set-valued
subdifferentials. Some studies impose an additional assump-
tion that for any x, τ(x, ·) is Borel measurable with respect
to ω, enabling a similar convergence rate to (2). In prac-
tice, however, implementing a Borel measurable subgradient
selector is challenging and often infeasible.

To address this challenge, we analyze the convergence rate
of the sample average subdifferential mapping ∂φ̄(x) :=
1
n

∑n
k=1 ∂xφ

(
x, ωk

)
to its expected counterpart ∂φ(x) =

Eω [∂xφ(x, ω)]. We define the SAA error for ∂φ(x, ·) :
Ω → 2R

p

as

∆n (φ, x, ω̄
n) ≜ H

(
1

n

n∑
i=1

∂xφ
(
x, ωi

)
,Eω∂xφ(x, ω)

)
.

In the following, we shall develop a novelO(
√
p/n) conver-

gence rate (modulo logarithmic factors) for ∆n (φ, x, ω̄
n).

Our results enable algorithms to select any subgradient from
the sampled subdifferential set at each iteration while achiev-
ing a sampling error bound comparable to the smooth case.

We begin by introducing a lemma regarding the conver-
gence rate of SAAs in expectation. This result is de-
rived from the Rademacher average of the random func-
tion ψ(x, ω), as discussed in Corollary 3.2 of (Ermoliev
and Norkin, 2013) and further explored in Theorem 10.1.5
of (Cui and Pang, 2021). Let r be any positive scalar.
For a random function ψ(·, ω) : Dψ(⊆ [0, r]p) → R
and i.i.d. random variables (ω1, . . . , ωn) = ω̄n drawn
from the distribution of ω, we define the SAA error as
δn (ψ, ω̄

n) := supx∈Dψ

∣∣ 1
n

∑n
i=1 ψ

(
x, ωi

)
− Eωψ(x, ω)

∣∣.
We then have the following basic estimates, see, e.g., Theo-
rem 3.1 in (Ermoliev and Norkin, 2013).

Lemma 3.1. (Basic Estimates). If functions ψ(·, ω) are
bounded by constant M and Lipschitz continuous with con-
stant Lψ in the first variable x uniformly in ω, then for any
α ∈ (0, 1/2), s > 0, it holds that

Eω̄nδn (ψ, ω̄n) ≤ 2
√
p

(
Lψr +

M√
(1− 2α)e

)
/nα,

P
{√

n |δn (ψ, ω̄n)− Eω̄nδn (ψ, ω̄n)| ≥ s
}
≤ 2 exp

{
− s2

2M2

}
.

To analyze the asymptotic behavior of ∆n (φ, x, ω̄
n), we

need the following assumption.

Assumption 3.2. The function φ( ·, ω) is convex and Lips-
chitz continuous with Lipschitz constant Lφ, in terms of the
first variable x ∈ Dφ, uniformly in ω.

The support function of a set S is defined as σ(u, S) ≜
sups∈S u

T s. It is well known that σ(u, S) = σ(u, convS),
where conv denotes the convex hull of S. Moreover, for any
nonempty sets S and S′, it follows from (Christian, 2002)
that

σ (u, S + S′) = σ(u, S) + σ (u, S′) . (3)

Furthermore, the Hömander’s formula, according to Theo-
rem II-18 in (Castaing and Valadier, 1977), states that for
any two nonempty convex and compact subsets A and B of
Rp:

D(A,B) = max
∥u∥⩽1

(σ(u,A)− σ(u,B)). (4)

Using the above formula, we derive the following lemma
that converts our targeted quantity ∆n (φ, x, ω̄

n) into the
SAA error of support functions; see, e.g., (Xu, 2010). Its
proof, as well as proofs for Theorems 3.4 and 3.5, can be
found in the appendix.

Lemma 3.3. Under Assumption 3.2, for any x ∈ Dφ,

∆n (φ, x, ω̄
n) =

max
∥u∥⩽1

∣∣∣∣∣ 1n
n∑
i=1

σ
(
u, ∂xφ

(
x, ωi

))
− Eω [σ (u, ∂xφ(x, ω))]

∣∣∣∣∣ .
We now derive the SAA convergence in expectation.
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Theorem 3.4. Under Assumption 3.2, for any α ∈ (0, 1/2),

sup
x∈Dφ

Eω̄n [∆n (φ, x, ω̄
n)] ≤ c

nα
,

where c ≜ 2
√
p(2Lφ + Lφ/

√
(1− 2α)e).

Moreover, for any s > 0,

P {nα∆n (φ, x, ω̄
n) ≥ c+ s} ≤ exp

{
−s2/

(
2L2

φ

)}
.

Remark 1. The concentration-type probabilistic results
in Lemma 3.1 and Theorem 3.4 are due to McDiarmid’s
bounded difference inequality. They will play an important
role in the proof of Theorem 3.5.

Next, we strengthen the above theorem to bound the squared
SAA error, which is the key result of this section.
Theorem 3.5. Under Assumption 3.2, for any α ∈ (0, 1/2),
α′ ∈ (α, 1/2) , we have

sup
x∈Dφ

Eω̄n
[
∆n (φ, x, ω̄

n)
2
]
≤ c

n2α
,

where c ≜ ĉ

(
ĉ+ Lφ

√
α′√

2(α′−α)e

)
+ L2

φ with ĉ ≜
√
p(2Lφ + Lφ/

√
(1− 2α′)e).

When φ( ·, ω) is smooth, Theorem 3.5 simply becomes

sup
x∈Dφ

Eω̄n
[
∆n (φ, x, ω̄

n)
2
]
≤
L2
φ

n
,

that is, c = L2
φ and α = 1/2. This demonstrates that

our result almost matches the SAA convergence rate in the
smooth case. The tools we have developed here can play a
crucial role in non-asymptotic convergence analysis of other
(subgradient-based) stochastic nonsmooth problems. For
example, it enables a “variance reduction” technique similar
to that used in smooth optimization. (Bollapragada et al.,
2018; Byrd et al., 2012)

4. The Algorithm and Convergence
Before presenting our algorithm, we first list all the needed
assumptions for the stochastic functions G and H .
Assumption 4.1. (Assumptions for Functions)

1. The feasible region C is convex and closed, and there
exists a scalar f̌ such that f(x) > f̌ for all x ∈ C.

2. G( ·, ξ) is ρg-convex (ρg ≥ 0) and H( ·, ζ) is ρh-
convex (ρh ≥ 0) over C for almost every ξ, ζ ∈ Ω.

3. G( ·, ξ) is Lg-Lipschitz continuous and H( ·, ζ) is Lh-
Lipschitz continuous over C for almost every ξ, ζ ∈ Ω.

4. For all x ∈ C, G(x, · ) is Lξ-Lipschitz continuous and
H(x, · ) is Lζ-Lipschitz continuous over Ω.

4.1. The Algorithmic Framework

We assume that at time t, the data sets Sg,t ≜ {ξt,i}Ng,ti=1 and
Sh,t ≜ {ζt,i}Nh,ti=1 are generated from the distributions Pξ,t
and Pζ,t, respectively, where the latter distributions may not
be exactly the same as the true distributions Pξ and Pζ . Let
gt(x) ≜ Eξ∼Pξ,t [G(x, ξ)], ht(x) ≜ Eζ∼Pζ,t [H(x, ζ)], and
ft(x) ≜ gt(x)− ht(x). At time t and iterate xt, we use the
data from Sg,t to construct a stochastic estimate ḡt(·) of the
function g(·), and the data from Sh,t to construct a stochastic
estimate h̄t(xt) of h(xt), as well as a stochastic estimate
ȳt of the subgradient ∂h(xt). The overall estimation model
M̄t(·) is given by:

M̄t(d) ≜ ḡt(xt + d)− h̄t(xt)− ȳTt d+
1

2
µt∥d∥2, (5)

where µt > 0 is the proximal parameter. The convex sub-
problem to be solved at iteration t is

minimize
d

M̄t(d)

subject to xt + d ∈ C.
(6)

The first-order optimality condition of subproblem (6) at the
unique optimal solution d̄t is

z̄t+1 − ȳt + µtd̄t + v̄t = 0, (7)

where z̄t+1 ∈ ∂ḡt(xt + d̄t) and v̄t ∈ ∂iC(xt + d̄t) with
iC being the indicator function of C. Our proposed online
stochastic proximal DC algorithm (ospDCA) framework is
presented in Algorithm 1, while the exact rule to update the
parameters µt, Ng,t, Nh,t will be discussed later.

Algorithm 1 The ospDCA framework

1: Initialize x0, µ0, Ng,0, Nh,0.
2: for t = 0, 1, 2, · · · do
3: Generate i.i.d. samples Sg,t = {ξt,i}Ng,ti=1 and Sh,t =

{ζt,i}Nh,ti=1 from Pξ,t and Pζ,t, which are independent
of the past samples.

4: Construct the approximation model M̄t(d) in (5)
by setting ḡt(x) = 1

Ng,t

∑Ng,t
i=1 G

(
x, ξt,i

)
, h̄t(x) =

1
Nh,t

∑Nh,t
i=1 H

(
x, ζt,i

)
, and select ȳt ∈ ∂h̄t (xt) =

1
Nh,t

∑Nh,t
i=1 ∂xH

(
xt, ζ

t,i
)
.

5: Solve the convex subproblem (6) to obtain d̄t.
6: Set xt+1 = xt + d̄t.
7: Update µt+1, Ng,t+1, Nh,t+1.
8: end for

Under Assumption 4.1, it is trivial to verify that ḡt(x) and
g(x) are Lg-Lipschitz, ρg-convex; and h̄t(x) and h(x) are
Lh-Lipschitz, ρh-convex.

Let Ft ≜ σ (Sg,1, Sh,1, Sg,2, Sh,2, . . . , Sg,t−1, Sh,t−1) be
a filtration, i.e., an increasing sequence of σ-fields generated
by the samples used in the past t− 1 iterations.
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Remark 2. If there exists an isomorphic mapping ϕ from
(Ω,F1, Pξ,t) to (Ω,F2, Pζ,t), Step 3 of Algorithm 1 can be
simplified when Ng,t ≥ Nh,t, as follows:

1. Generate i.i.d. samples Sg,t = {ξt,i}Ng,ti=1 from the distri-
bution of ξ, which are independent of previous samples.

2. For i = 1, 2, . . . , Nh,t, set ζt,i = ϕ(ξt,i) and let Sh,t =
{ζt,i}Nh,ti=1 .

A similar procedure applies when Ng,t < Nh,t.

4.2. Convergence Analysis

In this section, we present the convergence result of Al-
gorithm 1 based on Assumptions 4.1. A brief outline of
the convergence analysis is provided in the main text, with
detailed proofs available in the appendix.

We first analyze the inexact sufficient descent property at
the t-th iteration and derive the following inequality. The
result and its proof is similar to the deterministic case, see,
e.g., Theorem 3 in (Tao and An, 1997) and Theorem 3.7 in
(Tao and An, 1998).

Lemma 4.2. (The Sufficient Descent Property) For any
yt ∈ ∂ht(xt), the step xt+1 from Algorithm 1 satisfies

ft(xt)−ft(xt+1) ≥ (yt − ȳt)
T d̄t +

(
µt +

ρg + ρh
2

)
∥d̄t∥2

+ gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1).

To further the analysis, the SAA error bound derived in
Section 3 comes into play. By Lemma 3.1, we could derive
the SAA error estimation for gt(xt)− gt(xt+1) as follows.

Corollary 4.3. For any αg ∈ (0, 1/2), we have

E
[
|ḡt(xt+1)− ḡt(xt)− gt(xt+1) + gt(xt)|

∣∣∣Ft] ≤ Cg

µtN
αg
g,t

,

where Cg = 4
√
pLg(Lg + Lh)

(
2 +

Lg√
(1−2αg)e

)
.

Remark 3. Note that we relax the assumption that G(x, ξ)
is globally uniformly bounded, as posed in Le Thi et al.
(2024). Instead, we use the proximal term µt to ensure
that d̄t does not become too large. This guarantees that
G(xt, ξ) − G(xt+1, ξ) remains uniformly bounded with
respect to µt, which facilitates our SAA error analysis of
gt(xt)−gt(xt+1) (see the proof of Corollary 4.3 for details).

The SAA error estimation for ∂ht(xt) is a direct corollary
of Theorem 3.5:

Corollary 4.4. For any αh ∈ (0, 1), α′
h ∈ (αh, 1), we have

sup
x∈C

E
[
D2
(
∂h̄t(xt), ∂ht(xt)

)
|Ft
]
≤ Ch
nαh

,

where Ch = Ĉh

(
Ĉh + Lh

√
α′
h√

2(α′
h−αh)e

)
+L2

h with Ĉh =

√
p(2Lh + Lh/

√
(1− α′

h)e).

Remark 4. With regard to the estimation error from sam-
pling, Liu et al. (2022) assumes that the variance of the
stochastic objectives is bounded. Similarly, Berahas et al.
(2021) needs an unbiased gradient estimation with bounded
variance in the study of stochastic sequential quadratic pro-
gramming. Sequential quadratic programming is extended
to the nonsmooth DC problems with smooth convex compo-
nent in the deterministic Wang and Petra (2023) and stochas-
tic settings Wang et al. (2023), where again a bounded vari-
ance of subgradient estimation is required. In Shashaani
et al. (2018), the Monte Carlo estimate of the objective is
also assumed to be unbiased, and its variance is uniformly
bounded. The tools developed in Section 3 provide a tight
SAA bound for ∂h, allowing us to derive a result analogous
to the one in smooth optimization discussed above.

In the following lemma, we present the sufficient descent
property in expectation.

Lemma 4.5. At the t-th iteration, the following stands for
any c > 0:

E [ft(xt)− ft+1(xt+1) | Ft]

≥
(
µt +

ρg + ρh
2

− c

)
E
[∥∥d̄t∥∥2 | Ft

]
− Cg

µtN
αg
g,t

− Ch
4cNαh

h,t

− LξW1(Pξ,t+1, Pξ,t)− LζW1(Pζ,t+1, Pζ,t),

(8)
where αg ∈ (0, 1/2) and αh ∈ (0, 1) with corresponding
constants Cg and Ch defined in Corollaries 4.3 and 4.4.

The following analysis is conducted under the key assump-
tions stated below.

Assumption 4.6. (Assumptions for Distributions) The se-
quences Pξ,t and Pζ,t converge to Pξ and Pζ in Wasserstein-
1 distance, that is,

lim
t→∞

W1(Pξ,t, Pξ) = 0 and lim
t→∞

W1(Pζ,t, Pζ) = 0,

Furthermore, the cumulative Wasserstein-1 distance be-
tween successive distributions, which measures the com-
plexity of distribution shift on the data stream, is bounded:

+∞∑
t=1

W1(Pξ,t, Pξ,t−1) <∞, and
+∞∑
t=1

W1(Pζ,t, Pζ,t−1) <∞.

Remark 5. Since the Wasserstein-1 distance of some com-
mon distributions is easy to calculate or control, it is not
hard to construct examples of time-varying exponential or
uniform distributions that satisfy this assumption. A simple
example is the regression problem with finite number of out-
liers or finite times of distribution shifts (due to the change

6



An Online Adaptive Algorithm for Stochastic DC Optimization with Time-varying Distributions

of environment). An example of online sparse robust re-
gression will be provided in Section 6, where time-varying
multivariate normal distributions satisfying the above as-
sumption are considered.

Assumption 4.7. (Assumptions for Parameters)

(a) There exist 0 < µ̌ < µ̂ such that µ̌ ≤ µt ≤ µ̂, ∀t ≥ 0.

(b) There exist αg ∈ (0, 1/2), αh ∈ (0, 1) such that

∑
t≥0

(
1

N
αg
g,t

+
1

Nαh
h,t

)
<∞. (9)

Now, we are ready to present the squared summable property
of the iteration step {d̄t}, and its almost sure convergence
to zero. These results are important for the later analysis.

Theorem 4.8. Under Assumptions 4.6 and 4.7, we have

lim
t→∞

E

∑
t≥0

∥∥d̄t∥∥2 |F0

 <∞, hence E
[∥∥d̄t∥∥ |F0

]
→ 0.

Furthermore, limt→∞∥d̄t∥ = 0 with probability 1.

To proceed, we first provide a technical Lemma, which
concerns the law of large numbers (LLN) for SAA sequence.

Lemma 4.9. Under Assumptions 4.6 and 4.7, for any fixed
R > 0, x̂ ∈ C, x ∈ B(x̄, R), the following limits hold as
t→ ∞ with probability 1:

ḡt(x)− ḡt(x̂)− (gt(x)− gt(x̂)) → 0,

h̄t(x)− h̄t(x̂)− (ht(x)− ht(x̂)) → 0.

We are ready to present our main convergence result, which
is the best that can be achieved under stochastic nonconvex
and nonsmooth conditions.

Theorem 4.10. Under Assumptions 4.6 and 4.7, every ac-
cumulation point of the sequence {xt} produced by Algo-
rithm 1 is a DC critical point of f with probability 1.

The above theorem only provides the asymptotic conver-
gence of the algorithm, not the non-asymptotic complexity.
The known complexity of the deterministic dc algorithm
in (Le Thi et al., 2020) requires a smoothness assumption
on either g or h. We left it as a future work to derive the
iteration complexity of our proposed algorithm.

The sample size requirement of our algorithm is presented
in (9). Notably, the bounds on exponents αg and αh are
different. To provide some intuition, this difference arises
from the DC structure and the improved convergence rate of
the SAA error for the subdifferential mapping. Specifically,
linearizing the function h couples the SAA error of ∂h with

the stepsize d̄t, as demonstrated in Lemma 4.2. By applying
the Cauchy-Schwarz inequality, we elevate the SAA error
of ∂h from first-order to second-order in expectation (see
Lemma 4.5), for which Theorem 3.5 establishes the tight
convergence rate.

According to Assumption 4.7 (a), the proximal terms µt
for each DC subproblem can be pre-selected arbitrarily,
as long as they are upper and lower bounded by positive
constants. Regarding the sample size requirement given in
Assumption 4.7 (b), this is inherent to our approach and
difficult to avoid, as it ensures the necessary accuracy of
the algorithm at each step. The choice of sample sizes and
step sizes remains an active research topic in stochastic
optimization. Even for stochastic gradient descent applied
to smooth optimization problems, a non-diminishing step
size selection requires sublinearly increasing sampling sizes
to guarantee convergence.

5. An Adaptive Sampling Algorithm
In this section, we introduce an adaptive sampling strategy
for updating µt, Ng,t, Nh,t in Algorithm 1. As discussed in
the convergence analysis, the key requirement is to ensure
that Assumption 4.7 holds. Since Assumption 4.7 (a) is rela-
tively easy to satisfy, we mainly focus on developing strate-
gies to satisfy Assumption 4.7 (b). Given pre-determined
constants cl, cµ > 0, a common approach is to increase the
sample sizes sublinearly based on the following condition:

Condition 5.1. Suppose that N̂g,t and N̂h,t are pre-defined

such that
∑
t≥0

(
N̂−αh
h,t + N̂

−αg
g,t

)
< ∞, we say that the

Summable Condition holds at the t-th iteration if the pa-
rameters ct, µt, Ng,t, Nh,t are chosen to satisfy:

Ng,t ≥ N̂g,t, Nh,t ≥ N̂h,t and cl ≤ ct ≤ µt+
ρg + ρh

2
−cµ.
(10)

However, these pre-determined sample sizes do not adapt to
the algorithm’s progress at each iteration. In the following,
we introduce a practical condition that determines Ng,t and
Nh,t based on the optimization path. Intuitively, a larger
stepsize in the early iterations suggests that the current point
is far from critical points when less precise but computa-
tionally cheaper estimates are sufficient. In contrast, as the
algorithm nears the critical points, the stepsize decreases, re-
quiring more accurate estimations to ensure both theoretical
guarantees and practical performance. Building on this intu-
ition, we propose a practical Stepsize Norm Condition for
adaptive sampling, where the sample size at each iteration
is determined by the current stepsize.

Condition 5.2. We say that Stepsize Norm Condition
stands at the t-th iteration if parameters ct, µt, Ng,t, Nh,t
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are selected to satisfy:

(µt−1 − cµ − ct−1) ∥d̄t−1∥2 ≥ Cg
µtN

αg
g,t

+ Ch
4ctN

αh
h,t

,

ct ≤ µt +
ρg+ρh

2 − cµ.
(11)

Remark 6. Here, ct acts as an intermediate variable for
parameter updates, linking others to ensure convergence.
These variables serve only to determine µt, Ng,t, and Nh,t.

As presented in the following theorem, Assumption 4.7
(b) stands when either condition is satisfied. This plays
a critical role in designing a practical adaptive ospDCA
with convergence guarantee. Compared to the gradient ac-
curacy condition and other variance-based tests in (Byrd
et al., 2012; Bollapragada et al., 2018), our adaptive sam-
pling scheme is not only practically implementable but also
backed by rigorous theoretical guarantees.

Theorem 5.3. If either Summable Condition (10) or Step-
size Norm Condition (11) is satisfied for sufficiently large
t, and Assumptions 4.7 (a) and 4.6 stand, then Assumption
4.7 (b) stands.

To eliminate the intermediate variable ct and adapt the al-
gorithm for any predetermined sequence {µt} satisfying
0 < µ̌ ≤ µt ≤ µ̂, we propose a simplified algorithm by fix-
ing ct =

ρg+ρh
2 + µ̌

4 = cl and setting cµ = µ̌
4 , as detailed in

Algorithm 2. The complete version of the adaptive sampling
ospDCA can be found in the appendix; see Algorithm 3.

Remark 7. Consider the subproblem when updating the
sample size Ng,t and Nh,t. In order to minimize the
total number of samples, one could derive that Nh,t =√

2Chµt+1

Cg(2ρg+2ρh+µ̌)
N

3/4
g,t . Hence the optimal order of Nh,t

is O(N
3/4
g,t ). Furthermore, if the updating rule of Ng,t and

Nh,t is based on this result, then sample size upper bound
sequence N̂h,t is no longer required.

6. An Application: Online Sparse Robust
Regression

We consider the online linear regression problem with a ro-
bust loss and sparsity-promoting DC regularization. Given
streaming data {(xi, yi)}∞i=1 drawn from unknown and vary-
ing distributions Dt, the optimization problem is formulated
as minimizing the expected objective:

min
β∈Rp

E(x,y)∼Dt [|y − ⟨β, x⟩|] + λ

p∑
j=1

min(1, α|βj |).

The regularization term
∑p
j=1 min(1, α|βj |) is a capped-

ℓ1 penalty, which approximates the sparsity-inducing ℓ0-
norm. To facilitate optimization, we use the following DC

Algorithm 2 Adaptive ospDCA

Require: Initial point x0, error estimation parameter αg ∈
(0, 1/2), αh ∈ (0, 1) with corresponding Cg, Ch de-
fined in Corollaries 4.3 and 4.4, sample size upper
bound sequence {N̂g,t} and {N̂h,t} which satisfy∑
t≥0

(
N̂−αh
h,t + N̂

−αg
g,t

)
< ∞, predetermined prox-

imal parameters {µt} with upper bound µ̂ and lower
bound µ̌.

1: for t = 0, 1, 2, · · · do
2: Generate i.i.d. samples {ξt,i}Ng,ti=1 and {ζt,i}Nh,ti=1

from the distribution of ξ and ζ, which are indepen-
dent of the past samples.

3: Set ḡt(x) = 1
Ng,t

∑Ng,t
i=1 G

(
x, ξt,i

)
, h̄t(x) =

1
Nh,t

∑Nh,t
i=1 H

(
x, ζt,i

)
, and select ȳt ∈ ∂h̄t (xt).

4: Solve the convex subproblem to obtain d̄t:

minimize
d

ḡt(xt + d)− h̄t(xt)− ȳTt d+
1

2
µt∥d∥2

subject to xt + d ∈ C.

5: Set xt+1 = xt + d̄t.
6: Update Ng,t+1 and Nh,t+1 such that one of the fol-

lowings stands:
1.

(
µt − µ̌

2

)
∥d̄t∥2 ≥ Cg

µt+1N
αg
g,t+1

+ Ch
(2ρg+2ρh+µ̌)N

αh
h,t+1

,

2. Ng,t+1 ≥ N̂g,t+1, and Nh,t ≥ N̂h,t+1.
7: end for

decomposition: min(1, α|βj |) = 1+α|βj |−max(1, α|βj |).
Thus, the final problem formulation in expectation form is:

min
β∈Rp

E(x,y)∼Dt [G(β, x, y)]− h(β),

where G(β, x, y) = |y − ⟨β, x⟩| + λ
∑p
j=1 (1 + α|βj |) ,

h(β) =
∑p
j=1 max(1, α|βj |). This expectation-based for-

mulation enables efficient online optimization, making it
well-suited for large-scale and streaming data scenarios.

Baselines. We implemented four baselines to compare with
our proposed adaptive ospDCA. The first one is ospDCA
with a pre-determined, sublinearly growing sample size of
t2.1 per iteration, without adaptivity. The second baseline
is S(p)DCA, introduced in Le Thi et al. (2024), where we
added an additional proximal term. This algorithm draws
one new sample per iteration and uses aggregated samples
to construct sample averages. The third and fourth baselines
are ospDCA with a fixed sample size per iteration, using
100 and 1000 new samples for SAA, respectively.

Datasets and Setup. For the problem, we set α = 1, λ =
0.01, and generate synthetic datasets. Specifically, at each
time step t, the feature vector xt is sampled uniformly from
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(a) p = 50, βopt = [10,−15, 0, 0, · · · , 0].

(b) p = 200, βopt = [10,−15, 0, 0, · · · , 0].

Figure 1. Algorithm behavior for online sparse robust regression.

Sample size for experiment (a). Sample size for experiment (b).

Figure 2. Sample size per iteration.

[−1, 1]p. The corresponding label is given by

yt = x⊤t (βopt + δt) + ε,

where βopt is a known sparse optimal solution with nonzero
entries at specific locations, ε ∼ N(0, 1) represents additive
noise, and δt denotes a time-dependent distribution shift.
It follows that W1(Dt,Dt+1) ≤ ∥δt − δt+1∥1 . In order to
ensure that the cumulative Wasserstein-1 distance for Dt
remains bounded, we set δt = (−1)t100t−21p, where 1p
represents a p-dimensional column vector where all entries
are equal to 1. We initialize β at zero, set the proximal
coefficient µt = 1, αg = 0.45 ∈ (0, 1/2), and run the
experiment until a predefined runtime limit is reached. It
is straightforward to verify that G(·, x, y) is 1-Lipschitz for
every x, y, and h(·) is λα-Lipschitz. Furthermore, if we
impose a bounded constraint on β, then G(β, ·, ·) is also

uniformly Lipschitz in (x, y) for every β.

Results. We evaluate the performance by tracking the dis-
tance between the current iterate βt and the optimal solution
βopt. We plot the evolution of convergence error and com-
putational time in Figures 1 and 3. Across all experiments,
the performance of adaptive ospDCA consistently surpasses
the baseline methods. This demonstrates that our proposed
algorithm significantly improves convergence efficiency.

During early iterations, the sample size of adaptive ospDCA
is relatively small, leading to reduced precision but higher
computational efficiency. As the iteration points approach
the optimal solution, the sample size increases to enhance
estimation accuracy. This transition leads to faster progress
in later iterations, ultimately surpassing other algorithms.
Compared to its non-adaptive counterpart, adaptive ospDCA
invests more time and samples in the later iterations (which
are closer to the optimal and thus more important), as il-
lustrated in Figures 2 and 4. The adaptivity makes it more
efficient overall and more robust to distribution shifts. Addi-
tional experimental results are provided in the appendix.

7. Conclusion
In this work, we propose an efficient online adaptive sam-
pling algorithm for stochastic nonsmooth difference-of-
convex (DC) optimization problems with time-varying data
distributions. The algorithm relies only on samples drawn
from the distribution at the current iterate and adopts distinct
adaptive sampling rates for the convex and concave compo-
nents of the DC objective. We further prove that, under mild
convergence conditions on the non-stationary distributions,
the generated sequence almost surely has a subsequence that
converges to a DC critical point. One of the core contribu-
tion of this paper lies in generalizing previous results in the
field of stochastic online DC optimization to a broader class
of nonsmooth DC problems with time-varying distributions,
while maintaining a sampling size requirement comparable
to the smooth case. Numerical experiments demonstrate
that our algorithm performs well on online sparse robust
regression tasks.
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A. Convergence Rate for the SAA Error of Subdifferential Mappings
A.1. Proof of Lemma 3.3

Proof. By direction computation, we have

D

(
1

n

n∑
i=1

∂xφ
(
x, ωt

)
,Eω [∂xφ(x, ω)]

)

= D

(
conv

{
1

n

n∑
i=1

∂xφ
(
x, ωi

)}
, convEω [∂xφ(x, ω)]

)

= sup
∥u∥⩽1

[
σ

(
u,

1

n

n∑
i=1

∂xφ
(
x, ωi

))
− σ (u,Eω [∂xφ(x, ω)])

]

= sup
∥u∥⩽1

[
1

n

n∑
i=1

σ
(
u, ∂xφ

(
x, ωi

))
− σ (u,Eω [∂xφ(x, ω)])

]

= sup
∥u∥⩽1

[
1

n

n∑
i=1

σ
(
u, ∂xφ

(
x, ωi

))
− Eω [σ (u, ∂xφ(x, ω))]

]
.

By the convexity of φ (x, ω), ∂xφ (x, ωt) is convex and compact, hence 1
n

∑n
i=1 ∂xφ

(
x, ωi

)
and Eω [∂xφ(x, ω)] are convex.

The first equality stands. The second equality is due to (4). The third equality is due to (3). The last equality is due to the
interchangeability of Eω and σ; see Proposition 3.4 in (Papageorgiou, 1985) for details.

Following the same derivation, we also have

D

(
Eω [∂xφ(x, ω)] ,

1

n

n∑
i=1

∂xφ
(
x, ωi

))
= sup

∥u∥⩽1

[
Eω [σ (u, ∂xφ(x, ω))]−

1

n

n∑
i=1

σ
(
u, ∂xφ

(
x, ωi

))]
.

We thus conclude the proof using the definition of the Hausdorff distance H.

A.2. Proof of Theorem 3.4

Proof. For any x ∈ Dφ, by Lemma 3.3,

Eω̄n [∆n (φ, x, ω̄
n)] = Eω̄n sup

∥u∥⩽1

∣∣∣∣∣ 1n
n∑
i=1

ψ(u, ωi)− Eω [ψ(u, ω)]

∣∣∣∣∣ ,
where ψ(u, ω) = σ (u, ∂xφ (x, ω)). To satisfy the condition in Lemma 3.1, we first verify that ψ(·, ω) are uniformly
bounded by constant Lφ and Lipschitz continuous with constant Lφ in the first variable u ∈ B(0, 1) ⊆ [−1, 1]p uniformly
in ω.

The first property is trivial since sups∈∂xφ(x,ω)∥s∥ ≤ Lφ. Now, we prove the second property. For any u, v ∈ B(0, 1),
suppose that σ (u, ∂xφ (x, ω)) = uT s where s ∈ ∂xφ (x, ω). Then we have

σ (v, ∂xφ (x, ω)) ≥ vT s ≥ uT s− ∥u− v∥∥s∥ ≥ σ (u, ∂xφ (x, ω))− Lφ∥u− v∥.

Similarly, σ (u, ∂xφ (x, ω)) ≥ σ (v, ∂xφ (x, ω))− Lφ∥u− v∥, hence ψ(u, ω) is Lφ-Lipschitz continuous in B(0, 1).

We thus finish the proof after using Lemma 3.1.

A.3. Proof of Theorem 3.5

Proof. For any x ∈ Dφ, let δ = ∆n (φ, x, ω̄
n), which is bounded byLφ. By Lemma 3.4, Eω̄n [δ] ≤ ĉ

nα and P
{
δ ≥ ĉ+s

nα

}
≤

exp
{
−s2/

(
2L2

φ

)}
stands for any s > 0, α′ ∈ (α, 1/2).
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Hence for any s > 0, we have

Eω̄n [δ2] = Eω̄n
[
δ21(δ <

ĉ+ s

nα′ )

]
+ Eω̄n

[
δ21(δ ≥ ĉ+ s

nα′ )

]
≤ Eω̄n [δ]

ĉ+ s

nα′ + L2
φP

{
δ ≥ ĉ+ s

nα′

}
≤ ĉ(ĉ+ s)

n2α′ + L2
φ exp

{
−s2/

(
2L2

φ

)}
,

where the first inequality is due to δ ≤ Lφ, and the last inequality is due to Lemma 3.4.

Take s =
√
2Lφ

√
α′ lnn, we could obtain that

Eω̄n [δ2] ≤
ĉ
(
ĉ+

√
2Lφ

√
α′ lnn

)
+ L2

φ

n2α′ .

Since
√
lnn ≤ n2α′−2α

2
√

(α′−α)e
, we have for any α′ ∈ (α, 1/2),

Eω̄n [δ2] ≤
ĉ

(
ĉ+

√
2Lφ

√
α′

2
√

(α′−α)e

)
+ L2

φ

n2α
,

where ĉ =
√
p(2Lφ + Lφ/

√
(1− 2α′)e).

B. Convergence Analysis
B.1. Proof of Lemma 4.2

Proof. From the convexity of ḡt(·) and ht(·), we have

ḡt(xt)− ḡt(xt + d̄t) + z̄Tt+1d̄t ≥
1

2
ρg∥d̄t∥2,

ht(xt + d̄t)− ht(xt)− yTt d̄t ≥
1

2
ρh∥d̄t∥2,

(12)

for z̄t+1 ∈ ∂̄ḡt(xt + d̄t), xt + d̄t ∈ C. Therefore,

ft(xt)− ft(xt+1) = gt(xt)− ht(xt)− gt(xt+1) + ht(xt+1)

=ḡt(xt)− ḡt(xt+1)− ht(xt) + ht(xt+1) + [gt(xt)− ḡt(xt)]− [gt(xt+1)− ḡt(xt+1)]

≥− z̄Tt+1d̄t + yTt d̄t +
1

2
(ρg + ρh)∥d̄t∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1).

(13)

Taking the dot product with −d̄t of the first line of (7), we have

−z̄Tt+1d̄t + ȳTt d̄t =µt∥d̄t∥2 + v̄td̄t

≥µt∥d̄t∥2 + [iC(xt)− iC(xt + d̄t)− v̄Tt (−d̄t)]
≥µt∥d̄t∥2,

(14)

where the first inequality uses the second line of (7) and the second inequality comes from the convexity of C and iC(·).
Applying (14) to (13) leads to

ft(xt)− ft(xt+1) ≥ (yt − ȳt)
T d̄t +

(
µt +

ρg + ρh
2

)
∥d̄t∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1). (15)
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B.2. Proof of Corollary 4.3

Proof. First we prove that ∥d̄t∥ ≤ 2(Lg+Lh)
µt

. Since d̄t is the solution of subproblem (6), we have

ḡt(xt + d̄t)− h̄t(xt)− ȳTt d̄t +
1

2
µt∥d̄t∥2 = M̄t(d̄t) ≤ M̄t(0) = ḡt(xt)− h̄t(xt).

Hence we have 1
2µt∥d̄t∥

2 ≤ ḡt(xt)− ḡt(xt + d̄t) + ȳTt d̄t ≤ ∥d̄t∥(Lg + Lh), which implies ∥d̄t∥ ≤ 2(Lg+Lh)
µt

.

Let rt =
2(Lg+Lh)

µt
and ψ(x, ξ) = G(x, ξ)−G(xt, ξ), which is Lg-Lipschitz. By Lemma 3.1,

ESg,t

[
sup

δx∈[−rt,rt]d

∣∣∣∣∣ 1n
n∑
i=1

ψ
(
xt + δx, ξ

t,i
)
− Eξ∼Pξ,tψ(xt + δx, ξ)

∣∣∣∣∣ | Ft
]
≤ Cg
Nα
g,t

,

where Cg = 2
√
p(2Lgrt + Lgrt/

√
(1− 2α)e). Noticed that

|ḡt(xt+1)− ḡt(xt)− gt(xt+1) + gt(xt)| ≤ sup
δx∈[−rt,rt]d

∣∣∣∣∣ 1n
n∑
i=1

ψ
(
xt + δx, ξ

t,i
)
− Eξ∼Pξ,tψ(xt + δx, ξ)

∣∣∣∣∣ ,
Hence, we finish the proof by substituting rt for its definition.

B.3. Proof of Lemma 4.5

Proof. By Lemma 4.2, for any yt ∈ ∂ht(xt), c > 0,

ft (xt)− ft (xt+1) ≥ (yt − ȳt)
T
d̄t + µt +

ρg + ρh
2

∥∥d̄t∥∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1)

≥ (µt +
ρg + ρh

2
− c)

∥∥d̄t∥∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1)−
1

4c
∥yt − ȳt∥2 .

Take yt such that dist(ȳt, ∂ht(xt)) = ∥yt − ȳt∥, we have

ft (xt)− ft (xt+1) ≥ (µt +
ρg + ρh

2
− c)

∥∥d̄t∥∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1)−
1

4c
dist(ȳt, ∂ht(xt))

2

≥ (µt +
ρg + ρh

2
− c)

∥∥d̄t∥∥2 + gt(xt)− ḡt(xt)− gt(xt+1) + ḡt(xt+1)−
1

4c
D2
(
∂h̄t(xt), ∂ht(xt)

)
.

(16)
By Assumptions 4.1, and the definition of Wasserstein-1 distance, we have

gt(xt+1)− gt+1(xt+1) = Eξ∼Pξ,t [G(xt+1, ξ)]− Eξ∼Pξ,t+1
[G(xt+1, ξ)] ≥ −LξW1(Pξ,t+1, Pξ,t),

ht(xt+1)− ht+1(xt+1) = Eξ∼Pζ,t [H(xt+1, ξ)]− Eξ∼Pζ,t+1
[H(xt+1, ξ)] ≤ LζW1(Pζ,t+1, Pζ,t).

Hence, we have
ft (xt+1)− ft+1 (xt+1) ≥ −LξW1(Pξ,t+1, Pξ,t)− LζW1(Pζ,t+1, Pζ,t). (17)

Taking expectation for both sides of (16), (17) under Ft, we finish the proof after Corollaries 4.3 and 4.4.

B.4. Proof of Theorem 4.8

Proof. Fix c = µ̌
2 . Taking the expectation with respect to F0 and summing over all t in Lemma 4.5, we derive

E

[
n−1∑
t=0

(
µt +

ρg + ρh
2

− µ̌

2

)
∥d̄t∥2|F0

]
≤E [f0 (x0)− fn (xn) |F0] +

n−1∑
t=0

(
Cg

µtN
αg
g,t

+
Ch

2µ̌Nαh
h,t

)

+

n−1∑
t=0

(LξW1 (Pξ,t+1, Pξ,t) + LζW1 (Pζ,t+1, Pζ,t)) .

(18)
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Fix any ϵ > 0, there exists N > 0 such that for any n ≥ N , W1(Pξ,n, Pξ),W1(Pζ,n, Pζ) ≤ ϵ. Similar to (17), we have
|fn(xn)− f(xn)| ≤W1(Pξ,n, Pξ)Lξ +W1(Pζ,n, Pζ)Lζ . Since f(x) ≥ f̌ , we have fn(xn) ≥ ϵ(Lξ + Lζ) + f̌ , which is
lower bounded uniformly over n ≥ N .

Combining Assumptions 4.6 and 4.7, the right hand side of (18) is upper bounded and the left hand side of (18) is greater
than µ̌

2E
[∑n−1

t=0 ∥d̄t∥2|F0

]
, the first part of the theorem is proved by letting n→ ∞.

We proceed by contradiction for the second part of the theorem. Suppose there exists ϵ > 0 and a > 0 such that

P
(
lim sup
t→∞

∥d̄t∥ ≥ ϵ | F0

)
≥ a. (19)

By Chebyshev’s inequality, we have P
(
∥d̄t∥ ≥ ϵ | F0

)
≤ E[∥d̄t∥2|F0]

ϵ2 . Since E
[
∥d̄t∥2|F0

]
is finitely summable, there exists

T > 0 such that
∑∞
t=T P

(
∥d̄t∥ ≥ ϵ | F0

)
≤
∑∞
t=T

E[∥d̄t∥2|F0]
ϵ2 < a. Therefore,

P
(
lim sup
t→∞

∥d̄t∥ ≥ ϵ | F0

)
= P

(
lim sup
t→∞:t≥T

∥d̄t∥ ≥ ϵ | F0

)
≤

∞∑
t=T

P
(
∥d̄t∥ ≥ ϵ | F0

)
< a. (20)

This is a contradiction against (19). Hence, we could obtain that limt→∞∥d̄t∥ = 0 with probability 1.

B.5. Proof of Lemma 4.9

Proof. We prove this by contradiction. Let Φ(x, ξ) = G(x, ξ)−G(x̂, ξ), ϕt(x) = gt(x)−gt(x̂), and ϕ̄t(x) = ḡt(x)− ḡt(x̂).
Suppose there exist constants ϵ > 0 and a > 0 such that P

(
lim supt→∞

∣∣ϕt(x)− ϕ̄t(x)
∣∣ ≥ ϵ | F0

)
≥ a.

By Chebyshev’s inequality, we have P
(∣∣ϕt(x)− ϕ̄t(x)

∣∣ ≥ ϵ | F0

)
≤

E
[
|ϕt(x)−ϕ̄t(x)|2|F0

]
ϵ2 . Note that Eξ∼Pξ,t [Φ(x, ξ)] =

ϕt(x), and since Φ(x, ξ) ≤ LgR, its variance is bounded by L2
gR

2. Thus, we have E
[∣∣ϕt(x)− ϕ̄t(x)

∣∣2 | Ft
]
≤ L2

gR
2

Ng,t
, and

taking expectation with respect to F0, we get E
[∣∣ϕt(x)− ϕ̄t(x)

∣∣2 | F0

]
≤ L2

gR
2

Ng,t
.

Summing over t, we obtain
∞∑
t=0

E
[∣∣ϕt(x)− ϕ̄t(x)

∣∣2 | F0

]
≤

∞∑
t=0

L2
gR

2

Ng,t
< +∞,

since
∑∞
t=0N

−αg
g,t < +∞ holds for αg < 1

2 . Therefore, there exists T > 0 such that

P
(
lim sup
t→∞

∣∣ϕt(x)− ϕ̄t(x)
∣∣ ≥ ϵ | F0

)
= P

(
lim sup
t→∞,t≥T

∣∣ϕt(x)− ϕ̄t(x)
∣∣ ≥ ϵ | F0

)
≤

∞∑
t=T

P
(∣∣ϕt(x)− ϕ̄t(x)

∣∣ ≥ ϵ | F0

)
< a.

This contradicts our assumption, and thus we conclude that limt→∞
∣∣ϕt(x)− ϕ̄t(x)

∣∣ = 0 with probability 1. The proof for

the second part is similar, since the condition
∑∞
t=0

L2
hR

2

Nh,t
<∞ also holds.

B.6. Proof of Theorem 4.10

Proof. Let x be an accumulation point of {xt}. From the optimality condition (7), there exist z̄t+1 ∈ ∂ḡt(xt+1) and
v̄t ∈ ∂iC(xt+1) for each t, such that

z̄t+1 − ȳt + µtd̄t + v̄t = 0. (21)

We can assume limt→∞ xnt = x where x ∈ C. Further, ȳt and z̄t are bounded due to the Lipschitz continuity of G(x, ξ)
and H(x, ζ). Thus, v̄t is also bounded, and there exist accumulation points for {yt} and {zt}. Without loss of generality,
with the same subsequence, we assume ȳnt → ȳ and z̄nt+1 → z̄. Therefore ȳnt → ȳ and z̄nt+1 → z̄. By (21), we have

0 = z̄nt+1 − ȳnt + µnt d̄nt + v̄nt . (22)

By Theorem 4.8 and Assumption 4.7, limt→∞ µtd̄t = 0 with probability 1. Thus, limt→∞ v̄nt = ȳ − z̄ with probability 1.
Given that v̄nt ∈ ∂iC(xnt+1), the outer semicontinuity of ∂iC(·) leads to limt→∞ v̄nt ∈ ∂iC(x).
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Finally, we prove that ȳ ∈ ∂h̄(x̄) and z̄ ∈ ∂ḡ(x̄). As ȳnt ∈ ∂h̄t(xnt), we have

ȳTnt(x− xnt) ≤ h̄t(x)− h̄t(xnt), for all x ∈ B(x̄, R). (23)

Notice that ∣∣h̄t(xnt)− h(x̄)
∣∣ ≤ ∣∣h̄t(x̄)− h(x̄)

∣∣+ Lh ∥xnt − x̄∥ ,

and for all x ∈ B(x̄, R), ∣∣h̄t(x)− h(x)
∣∣ ≤ ∣∣ht(x)− h̄t(x)

∣∣+ LζW1(Pζ,t, Pζ).

Hence for all x ∈ B(x̄, R), we have∣∣h̄t(x)− h̄t(xnt)− (h(x)− h(x̄))
∣∣ ≤Lh ∥xnt − x̄∥+ LζW1(Pζ,t, Pζ).

Combine with Lemma 4.9 and the fact that xnt → x̄ and W1(Pζ,t, Pζ) → 0, we conclude that h̄t(x) − h̄t(xnt) →
h(x)−h(x̄) for all x ∈ B(x̄, R) with probability 1. Hence, by letting t→ ∞ in (23), one obtains ȳT (x− x̄) ≤ h(x)−h(x̄)
for all x ∈ B(x̄, R). This inequality yields ȳ ∈ ∂h (x̄). The proof of z̄ ∈ ∂ḡ(x̄) is analogous. Therefore, we prove that x̄ is
a DC critical point of f with probability 1.

C. An Adaptive Sampling Algorithm
C.1. Proof of Theorem 5.3

Proof. Let T1 be the set of t when Summable Condition is satisfied; T2 be the set of t when Stepsize Norm Condition is
satisfied. Supposed that when t ≥ T , t ∈ T1 ∪ T2. If t ∈ T2, we derive from Lemma 4.5 (the proof of Lemma 4.5 does not
rely on Assumption 4.7.(b)) that

E [ft (xt)− ft+1 (xt+1) |Ft] ≥ (µt +
ρg + ρh

2
− ct)E

[∥∥d̄t∥∥2 |Ft]
−
(
(µt−1 +

ρg + ρh
2

)− cµ − ct

)
∥d̄t−1∥2 − LξW1(Pξ,t+1, Pξ,t)− LζW1(Pζ,t+1, Pζ,t).

Taking expectation under F0 from both side, we have

E [ft (xt)− ft+1 (xt+1) |F0] ≥ (µt +
ρg + ρh

2
− ct)E

[∥∥d̄t∥∥2 |F0

]
−
(
(µt−1 +

ρg + ρh
2

)− cµ − ct

)
E
[
∥d̄t−1∥2|F0

]
− LξW1(Pξ,t+1, Pξ,t)− LζW1(Pζ,t+1, Pζ,t).

If t ∈ T1 ∪ {0, 1, · · · , T − 1}, take expectation under F0, we have

E [ft (xt)− ft+1 (xt+1) |F0] ≥ ((µt +
ρg + ρh

2
)− ct)E

[∥∥d̄t∥∥2 |F0

]
− Cg

µtN
αg
g,t

− Ch
4ctN

αh
h,t

− LξW1(Pξ,t+1, Pξ,t)− LζW1(Pζ,t+1, Pζ,t).

Taking sum for each t, we have

E

[
n−1∑
t=0

(
µt +

ρg + ρh
2

− ct

)
∥d̄t∥2|F0

]
≤ E [f0 (x0)− fn (xn) |F0] +

T−1∑
t=0

(
Cg

µtN
αg
g,t

+
Ch

4ctN
αh
h,t

)

+

n−1∑
t=T,t∈T1

(
Cg

µtN
αg
g,t

+
Ch

4ctN
αh
h,t

)
+ E

 n−1∑
t=T,t∈T2

(
(µt−1 +

ρg + ρh
2

)− ct−1 − cµ

)
∥d̄t−1∥2|F0


+

n−1∑
t=0

(LξW1(Pξ,t+1, Pξ,t) + LζW1(Pζ,t+1, Pζ,t)) .

(24)
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Hence, we could obtain that

E

[
n−1∑
t=T−1

cµ∥d̄t∥2|F0

]
≤ E [f0 (x0)− fn (xn) |F0]

+

T−1∑
t=0

(
Cg

µtN
αg
g,t

+
Ch

4ctN
αh
h,t

)
+

n−1∑
t=T,t∈T1

(
Cg

µtN
αg
g,t

+
Ch

4clN
αh
h,t

)
+

n−1∑
t=0

(LξW1(Pξ,t+1, Pξ,t) + LζW1(Pζ,t+1, Pζ,t)) .

(25)

As we derived in Theorem 4.8, fn is lower bounded when n is sufficiently large. Therefore, E [f0 (x0)− fn (xn) |F0] is
bounded above. By the definition of Summable Condition and Assumption 4.7, we have

n−1∑
t=T,t∈T1

(
Cg

µtN
αg
g,t

+
Ch

4clN
αh
h,t

)
≤

n−1∑
t=T,t∈T1

(
Cg

µ̌N̂
αg
g,t

+
Ch

4clN̂
αh
h,t

)
.

Moreover, as we derived in Corollary 4.3, ∥d̄t∥ ≤ 2(Lg+Lh)
µt

≤ 2(Lg+Lh)
µ̌ , which is bounded. It follows that

E
[∑T−2

t=0 ∥d̄t∥2|F0

]
<∞. Take n→ ∞, since the right-hand side of (25) is bounded, we have

lim
t→∞

E

∑
t≥0

∥∥d̄t∥∥2 |F0

 <∞. (26)

Supposed that when t ≥ T , t ∈ T1 ∪ T2. If t ∈ T1, we have

Ng,t ≥ N̂g,t, and Nh,t ≥ N̂h,t, where
∑
t≥0

(
N̂−αh
h,t + N̂

−αg
g,t

)
<∞. (27)

If t ∈ T2, we have

Cg

µ̂N
αg
g,t

+
Ch

4(µ̂+
ρg+ρh

2 − cµ)N
αh
h,t

≤ Cg

µtN
αg
g,t

+
Ch

4(µt +
ρg+ρh

2 − cµ)N
αh
h,t

≤ Cg

µtN
αg
g,t

+
Ch

4ctN
αh
h,t

≤
(
µt−1 +

ρg + ρh
2

− cµ − ct−1

)
∥d̄t−1∥2

≤
(
µ̂+

ρg + ρh
2

− cµ − ct−1

)
∥d̄t−1∥2,

(28)

where the first and last inequality is due to Assumption 4.7. The second and third inequality is due to the definition of
Stepsize Norm Condition (11). (28) implies that

Cg

µ̂N
αg
g,t

+
Ch

4(µ̂+
ρg+ρh

2 )Nαh
h,t

≤
(
µ̂+

ρg + ρh
2

)
∥d̄t−1∥2. (29)

By (27), (29) and (26), it follows that

∑
t≥0

(
Cg

µ̂N
αg
g,t

+
Ch

4(µ̂+
ρg+ρh

2 )Nαh
h,t

)
≤
T−1∑
t=0

(
Cg

µ̂N
αg
g,t

+
Ch

4(µ̂+
ρg+ρh

2 )Nαh
h,t

)

+
∑

t≥T,t∈T1

(
Cg

µ̂N̂
αg
g,t

+
Ch

4(µ̂+
ρg+ρh

2 )N̂αh
h,t

)
+

∑
t≥T,t∈T2

(
µ̂+

ρg + ρh
2

)
∥d̄t−1∥2 <∞.

Hence, we derive from the above that 4.7 (b) holds.
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C.2. Adaptive ospDCA: A Full Version

Algorithm 3 Adaptive ospDCA

Require: Initial point x0, initial parameter µ0, c0, Ng,0 and Nh,0, error estimation parameter αg ∈ (0, 1/2), αh ∈ (0, 1)
with corresponding Cg, Ch defined in Corollaries 4.3 and 4.4, stepsize norm condition parameter cµ, cl > 0, sample

size upper bound sequence {N̂g,t} and {N̂h,t} which satisfy
∑
t≥0

(
N̂−αh
h,t + N̂

−αg
g,t

)
<∞, stepsize upper bound µ̂

and lower bound µ̌ that satisfy µ̂ > µ̌.
1: for t = 0, 1, 2, · · · do
2: Generate iid samples {ξt,i}Ng,ti=1 and {ζt,i}Nh,ti=1 from the distribution of ξ and ζ, which are independent of the past.
3: Set ḡt(x) = 1

Ng,t

∑Ng,t
i=1 G

(
x, ξt,i

)
, h̄t(x) = 1

Nh,t

∑Nh,t
i=1 H

(
x, ζt,i

)
, and select ȳt ∈ ∂h̄t (xt).

4: Solve the convex subproblem to obtain d̄t:

minimize
d

ḡt(xt + d)− h̄t(xt)− ȳTt d+
1

2
µt∥d∥2

subject to xt + d ∈ C.

5: Take the step xt+1 = xt + d̄t.
6: Update µ̌ ≤ µt+1 ≤ µ̂, ct+1, Ng,t+1 and Nh,t+1 such that one of the followings stands:

1.
(
µt +

ρg+ρh
2 − cµ − ct

)
∥d̄t∥2 ≥ Cg

µt+1N
αg
g,t+1

+ Ch
4ctN

αh
h,t+1

, and ct+1 ≤ µt+1 +
ρg+ρh

2 − cµ,

2. Ng,t+1 ≥ N̂g,t+1, Nh,t ≥ N̂h,t+1, and cl ≤ ct+1 ≤ µt+1 +
ρg+ρh

2 − cµ.
7: end for
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D. More Experimental Results

(c) p = 100, βopt = [5,−5, 0, 0, · · · , 0].

(d) p = 200, βopt = [5,−5, 0, 0, · · · , 0].

(e) p = 50, βopt = [5,−5, 0, 0, · · · , 0], δt = (−1)t5000t−21p.

Figure 3. Algorithm behavior for online sparse robust regression.
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Sample size for experiment (c). Sample size for experiment (d). Sample size for experiment (e).

Figure 4. Sample size per iteration.

20


