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Abstract

Training Graph Neural Networks (GNNs) on large graphs presents unique challenges
due to the large memory and compute requirements. Distributed GNN training,
where the graph is partitioned across multiple machines, is a common approach to
train GNNs on large graphs. However, as the graph cannot generally be decomposed
into small non-interacting components, data communication between the training
machines quickly limits training speeds. Compressing the communicated node
activations by a fixed amount improves the training speeds, but lowers the accuracy
of the trained GNN. In this paper, we introduce a variable compression scheme for
reducing the communication volume in distributed GNN training without compro-
mising the accuracy of the learned model. Based on our theoretical analysis, we
derive a variable compression method that converges to a solution that is equivalent
to the full communication case. Our empirical results show that our method attains
a comparable performance to the one obtained with full communication and that
for any communication budget, we outperform full communication and any fixed
compression ratio.

1 Introduction

Graph Neural Networks (GNNs) are a neural network architecture tailored for graph-structured
data (Zhou et al., 2020; Wu et al., 2020; Bronstein et al., 2017). GNNs are multi-layered networks,
where each layer is composed of a (graph) convolution and a point-wise non-linearity (Gama et al.,
2018). GNNs have shown state-of-the-art performance in robotics (Gama et al., 2020a; Tzes et al.,
2023), weather prediction (Lam et al., 2022), prediction of protein interactions (Jumper et al., 2021)
and physical system interactions (Fortunato et al., 2022), to name a few. The success of GNNs can
be attributed to some of their theoretical properties such as being permutation-invariant (Keriven
and Peyré, 2019; Satorras et al., 2021), stable to perturbations of the graph (Gama et al., 2020b),
transferable across graphs of different sizes (Ruiz et al., 2020), and their expressive power (Xu et al.,
2018; Bouritsas et al., 2022; Kanatsoulis and Ribeiro, 2022; Chen et al., 2019).

In a GNN, the data is propagated through the graph via graph convolutions. In large-scale graphs, the
data diffusion over the graph is costly in terms of compute and memory requirements. To overcome
this limitation, several solutions were proposed. Some works have focused on the transferability
properties of GNNs, i.e. training a GNN on a small graph, and deploying it on a large-scale
graph (Ruiz et al., 2020). Other works have focused on training on a sequence of growing graphs
(Cerviño et al., 2023). Though useful, these solutions either assume that an accuracy degradation is
admissible (i.e. transferability bounds), or that all the graph data is readily accessible within the
same training machine. These assumptions may not hold in practice, as we might need to recover
the full centralized performance without having the data in a centralized manner.
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Figure 1: Distributed full-graph forward and backward pass for a GNN layer on a graph with 9
nodes distributed across 3 machines (a). The graph topology and input node features are partitioned
among the 3 training machines. (b). The activity in machine 1 for the forward and backward passes.
During the forward pass, machine 1 fetches the output features of the previous GNN layer of remote
neighbors. During the backward pass, machine 1 sends back the gradients of the features fetched
during the forward pass.

Real-world large-scale graph data typically cannot fit within the memory of a single machine or
accelerator, which forces GNNs to be learned in a distributed manner. To do this efficiently, several
solutions have been proposed. Distributing the datasets and learning a common representation,
denoted Federated Learning is a useful technique (Bonawitz et al., 2019; Li et al., 2020a;b). The GNN
FL counterpart has proven to be successful when the graph can be split into different machines(He
et al., 2021; Mei et al., 2019). However, training locally while assuming no interaction between
datasets is not always a reasonable assumption for graph data.

This work is drawn by two observations of GNNs. First, large graph datasets cannot be split into
non-interacting pieces across a set of machines. Therefore, training GNNs distributively requires
interaction between agents in the computation of the gradient updates. Second, the quality of the
communicated data affects the performance of the trained model. In this paper, we posit that the
compression rate in the communication between agents should vary between the different stages of
the GNN training. Intuitively, at the early stages of training, the communication can be less reliable,
but as training progresses, and we are required to estimate the gradient more precisely, the quality
of the communicated data should improve.

In this paper, we consider the problem of efficiently learning a GNN across a set of machines,
each of which has access to part of the graph data. Drawn from the observation that in a GNN,
model parameters are significantly smaller than the graph’s input and intermediate node feature, we
propose to compress the intermediate GNN node features that are communicated between different
machines. Given that this compression hurts the accuracy of the GNN, in this paper we introduce a
variable compression scheme that trades-off the time needed to train a GNN distributively and the
accuracy of the GNN.

The contributions of this paper are:

1. We present a novel algorithm to learn graph representations that compresses the data
communicated between the training agents. We propose to vary the compression rate
progressively, in order to achieve a comparable performance to the no-compression case at a
fraction of the communication costs.
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2. We theoretically show that our method converges to a first-order stationary point of the full
graph training problem while taking distributed steps and compressing the communications.

3. We empirically show that our method attains a comparable performance to the full graph
training scenario while incurring less communication costs. In particular, by plotting accuracy
as a function of the communication costs, our method outperforms full communication and
fixed compression rates in terms of accuracy achieved per communicated byte.

Related work

Mini-Batch Training. In the context of distributed GNN training, Zheng et al. (2020) proposes to
distribute mini-batches between a set of machines, each of which computes a local gradient, updates
the GNN, and communicates it back to the server. Zheng et al. (2020) uses METIS (Karypis and
Kumar, 1998) to partition the graph, which reduces communication overhead and balances the
computations between machines. Although (Zheng et al., 2020) provides good results in practice,
the GNN does not process data on the full graph, only a partition of it, which can yield sub-optimal
results compared to processing the full graph.

Memory Optimization. In this work we do full batch training, which has also been considered in
the literature. Similar to us is sequential aggregation and remasterization (Mostafa, 2022), which
sequentially re-constructs and frees pieces of the large GNN during the backward pass computation.
Even in densely connected graphs, this deals with the memory limitations of the GNN, showing
that the memory requirements per worker decrease linearly with the number of workers.

Quantization. A related approach to dealing with the limitations of a single server for training
compression in communication is quantization in the architecture. In order to train GNNs more
efficiently using quantization, the most salient examples are feature quantization (Ma et al., 2022),
Binary Graph Neural Networks (Bahri et al., 2021), vector quantization (Ding et al., 2021), last bit
quantization (Feng et al., 2020), and degree quantization (Tailor et al., 2020). Although related
in spirit, quantizing a GNN is a local operation that differs from compressing the communication
between servers.

2 Learning Graph Neural Networks

In this paper, we consider the problem of training GNNs on large-scale graphs that are stored in a
set of machines. Formally, a graph is described by a set of vertices and edges G = (V,E), where
V = n is the set of vertices whose cardinality is equal to the number of nodes, and E ⊆ V ×V is
the set of edges. The graph G can be represented by its adjacency matrix S. Oftentimes, the graph
includes vertex features, FV ∈ R|V|×Dv , and edge features, FE ∈ R|E|×Dv , where Dv and DE are
the vertex and edge feature dimensions, respectively. Graph problems fall into three main categories:
node-level prediction where the goal is to predict properties of individual nodes; edge-level prediction
where the goal is to predict edge features or predict the locations of missing edges; and graph-level
prediction where the goal is to predict properties of entire graphs. In this paper, we focus on
distributed training of GNNs for node classification problems. Our distributed training approach is
still relevant to the other two types of graph problems, as they also involve a series of GNN layers,
followed by readout modules for edge-level or graph-level tasks.

A GNN is a multi-layer network, where at each layer, messages are aggregated between neighboring
nodes via graph convolutions. Formally, given a graph signal x ∈ Rn, where [x]i represents the value
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of the signal at node i, the graph convolution can be expressed as

zn =

K−1∑
k=0

hkS
kxn, (1)

where h = [h0, . . . , hK−1] ∈ RK are the graph convolutional coefficients. In the case that K = 2,
and S is binary, the graph convolution 1 translates into the AGGREGATE function in the so-called
message-passing neural networks.

A GNN is composed of L layers, each of which is composed of a graph convolution (1) followed by a
point-wise non-linear activation function ρ such as ReLU, or tanh. The l-th layer of a GNN can be
expressed as,

Xl = ρ

(K−1∑
k=0

SkXl−1Hl,k

)
, (2)

where Xl−1 ∈ Rn×Fl−1 is the output of the previous layer (with X0 is equal to the input data
X = [x0, . . . ,x0]), and Hl,k ∈ RFl−1×Fl are the convolutional coefficients of layer l and hop k. We
group all learnable coefficients H = {Hl,k}l,k, and define the GNN as Φ(x,S,H).

2.1 Empirical Risk Minimization

We consider the problem of learning a GNN that given an input graph signal x is able to predict an
output graph signal y of an unknown distribution p(X,Y ),

minimize
H

Ep[ℓ(yi,Φ(xi,S,H))], (SRM)

where ℓ is a non-negative loss function ℓ : Rd × Rd → R+, such that ℓ(y, ŷ) = 0 iif y = ŷ.
Common choices for the loss function are the cross-entropy loss and the mean square error. Problem
(SRM) is denoted called Statistical Risk Minimization (Vapnik, 2013), and the choice of GNN for a
parameterization is justified by the structure of the data, and the invariances in the graph Bronstein
et al. (2017). However, problem (SRM) cannot be solved in practice given that we do not have
access to the underlying probability distribution p. In practice, we assume to be equipped with a
dataset D = {xi, yi}i drawn i.i.d. from the unknown probability p(X,Y ) with |D| = m samples. We
can therefore obtain the empirical estimator of (SRM) as,

minimize
H

1

m

m∑
i=1

ℓ(yi,Φ(xi,S,H)). (ERM)

The empirical risk minimization problem (ERM) can be solved in practice given that it only requires
access to a set of samples D. The solution to problem ERM will be close to (SRM) given that the
samples are i.i.d., and that there is a large number of samples m(Vapnik, 2013). To solve problem
(ERM), we will resort to gradient descent, and we will update the coefficients H according to,

Ht+1 = Ht − ηt∇Hℓ(yi, f(xi,S,H)), (SGD)

where t represents the iteration, and ηt the step-size. In a centralized manner computing iteration
(SGD) presents no major difficulty, and it is the usual choice of algorithm for training a GNN. When
the size of the graph becomes large, and the graph data is partitioned across a set of agents, iteration
(SGD) requires communication. In this paper, we consider the problem of solving the empirical risk
minimization problem (ERM) through gradient descent (SGD) in a decentralized and efficient way.
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3 Distributed GNN training

Consider a set Q, |Q| = Q of machines that jointly learn a single GNN Φ. Each machine q ∈ Q
is equipped with a subset of the graph S, and node data, as shown in Fig. 1a. Each machine is
responsible for computing the features of the nodes in its local partitions for all layers in the GNN.
The GNN model H is replicated across all machines. In order to learn a GNN, we update the weights
according to gradient descent (SGD), and average them across machines. This procedure is similar
to the standard FedAverage algorithm used in Federated Learning(Li et al., 2020b).

Note that the gradient descent iteration (SGD) cannot be computed without communication given
that the data in (yi,xi) is distributed in the Q machines. Therefore, in order to compute the gradient
step (SGD), we need the machines to communicate graph data. The simplest way to communicate
could be to transmit the data of each node in the adjacent machines. That is, communicate the
input feature xj for each j ∈ N k

i , j ∈ q
′
. That is to say, for each node that we would like to classify,

we would require all the graph data belonging to the k-hop neighborhood graph. This procedure,
however, is costly and grows with the size of the graph, which renders it unimplementable in practice.

As opposed to communicating the node features, and the graph structure for each node in the
adjacent machine, we propose to communicate the features and activation of the nodes at the
nodes in the boundary. Note that in this procedure the bits communicated between machines do
not depend on the number of nodes in the graph and the number of features compressed can be
controlled by the width of the architecture used (see Appendix A). The only computation overhead
that this method requires is computing the value of the GNN at every layer for a given subset of
nodes using local information only.

3.1 Computing the Gradient Using Remote Compressed Data

Following the framework of communicating the intermediate activation, in order to compute a
gradient step (SGD), we require 3 communication rounds (i) the forward pass, in which each machine
fetches the feature vectors of remote neighbors and propagates their messages to the nodes in the
local partition, (ii) the backward pass, in which the gradients flow in the opposite direction and are
accumulated in the GNN model weights, and (iii) the aggregation step in which the weight gradients
are summed across all machines and used to update the GNN model weights. The communication
steps for a single GNN layer are illustrated in Fig. 1b.

To compute a gradient step, we first compute the forward pass, for which we need the output of
the GNN at a node i. To compute the output of a GNN at node i, we need to evaluate the GNN
according to the graph convolution (1). Note that to evaluate (1), we require access to the value of
the input features xj for each j ∈ N k

i , which might not be on the same client as i. In this paper, we
propose that the clients with nodes in N k

i , compute the forward passes locally (i.e. using only the
nodes in their client), and communicate the the compressed outputs.

Once the values of the activations are received, they are decompressed, processed by the local
machine, and the output of the GNN is obtained. To obtain the gradient of the loss ℓ, the output of
the GNN is compared to the true label, and the gradient with respect to the parameters of the GNN
is computed. The errors are once again compressed and communicated back to the clients. Which,
will update the values of the parameters of the GNN Hq

t1 . After every client updates the values of
the parameters H, there is a final round of communication where the values are averaged. Note that
this procedure allows the GNN to be updated using the whole graph. The communication costs are
reduced given that the number of bits communicated is controlled by the compressing-decompressing
mechanism. The compressing and decompressing mechanism can be modeled as follows,
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Definition 1 The compression and decompression mechanism gϵ,r, gϵ−1,r with compression error
ϵ, and compression rate c, satisfies that given a set of parameters x ∈ Rn, when compressed and
decompressed, the following relation holds i.e.,

z = gϵ,c(x), and x̃ = g−1
ϵ (gϵ(x)) and E[∥x̃− x∥] ≤ δ with E[||x̃− x||2] ≤ ϵ2, (3)

where z ∈ Rn/c with n/c ∈ Z is the compressed signal. If δ = 0, the compression is lossless.

Intuitively, the error ϵ, and compression rate c are related; a larger compression rate c will render a
larger compression error ϵ. Also, signals that are more compressed require less bandwidth to be
communicated. Relying on the compression mechanism (3), a GNN trained using a fixed compression
ratio c during training, will converge to a neighborhood of the optimal solution. The size of the
neighborhood will be given by the variance of the compression error ϵ2.

AS1 The loss ℓ function has L Lipschitz continuous gradients, ||∇ℓ(y1,x)−∇ℓ(y2,x)|| ≤ L||y1−y2||.

AS2 The empirical estimator of the gradient ∇̂Hℓ(yi,Φ(xi,S;Ht)) is an unbiased estimator of the
gradient ∇Hℓ(yi,Φ(xi,S;Ht)), and the variance is σ2,

E
[
||∇̂Hℓ(y,Φ(x,S;Ht))−∇Hℓ(y,Φ(x,S;Ht))||2

]
≤ σ2. (4)

AS3 The non-linearity ρ is normalized Lipschitz.

AS4 The GNN, and its gradients are M -Lipschitz with respect to the parameters H.

AS5 The graph convolutional filters in every layer of the graph neural network are bounded, i.e.

||h∗Sx|| ≤ ||x||λmax

( T∑
t=0

htS
t

)
, with λmax

( T∑
t=0

htS
t

)
< ∞. (5)

Assumption 1 holds for most losses used in practice over a compact set. Assumption 2 is true for
i.i.d. data, the exact characterization of σ depends on the architecture. Assumption 3 holds for most
non-linearities used in practice over normalized signals. Assumption 4 is a standard assumption,
and the exact characterization is an active area of research (Fazlyab et al., 2019). Assumption 5
holds in practice when the weights are normalized.

Proposition 1 (Convergence of GNNs Trained on Fixed Compression) Under assump-
tions 1 through 5, consider the iterates generated by equation (SGD) where the normalized signals x
are compressed using compression rate c with corresponding error ϵ(cf. Definition 3). Consider an
L layer GNN with F , and K features and coefficients per layer respectively. Let the step-size be
η ≤ 1/L∇, with L∇ = 4MλL

max

√
KFL if the compression error is such that at every step k, and

any β > 0,

E[||∇Hℓ(y,Φ(x,S;Ht))||2] ≥ L2
∇ϵ2 + σ2 + β, (6)

then the fixed compression mechanism converges to a neighborhood of the first-order stationary point
of SRM in K ≤ O( 1β ) iterations, i.e.,

E[||∇Hℓ(y,Φ(x,S;Ht))||2] ≤ L2
∇ϵ2 + σ2 + β. (7)
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Algorithm 1 VARCO: Distributed Graph Training with VARiable COmmunication Rates
Split graph G into W partitions and assign them to each worker wi

Initialize GNN with weights H0 and distribute to all workers wi

Fix initial compression rate c0, and scheduler r
repeat

Each Worker wi: Compute forward pass by using non-compressed activations for local nodes
and compressed activations for non-local nodes that are fetched from other machines.

Each Worker wi: Compute parameter gradients by backpropagating errors across machines
and through the differentiable compression routine. Apply the gradient step to the parameters in
each worker.

Server: Average parameters from workers, and send them back to workers.
Update compression rate ct+1

until Convergence

Proof: The proof can be found in Appendix C ■

Proposition 1 is important because it allows us to show that the fixed compression mechanism is able
to converge to a neighborhood of the first-order stationary point of 1. The size of the neighborhood
can be controlled by the compression rate ϵ, as well as the variance of the estimator σ. Although
useful, Proposition 1, presents a limitation on the quality of the solution that can be obtained
through compression. In what follows we introduce a variable compression scheme that is able to
trade-off between efficient communication and sub-optimality guarantees.

4 VARCO - Variable Compression For Distributed GNN

In this paper, we propose variable compression rates as a way to close the gap between training in
a centralized manner and efficient training in a distributed manner. We use proposition (1) as a
stepping stone towards a training mechanism that reduces the compression ratio rt as the iterates
progress. We begin by defining a scheduler s : Z → R as a monotonically decreasing function that
given a train step t ∈ Z, it returns a compression ratio s(t), such that r(k

′
) ≤ r(k) if k

′ ≥ k. The
scheduler r will be in charge of reducing the compression ratio as the iterates increase. An example
of scheduler can be the linear rlin(k) =

cmin−cmax

K k + cmax scheduler (see Appendix 2). Note that
the previous section considers a constant scheduler r(k) = c. In this paper, we propose to train
GNN by following a compression scheme by a scheduler r, given a GNN architecture, a number of
clients C, a dataset D.

After choosing a scheduler r, for every step t, we obtain the compression rate r(t). During the forward
pass, we compute the output of the GNN at a node n using the local data, and the compressed
data from adjacent machines. The compress data, encompasses both the features at the adjacent
nodes, as well as the compress activations of the intermediate layers for that node. The compression
mechanism, compresses the values of the GNN using scheduler r(t), and communicates them the to
machine that own node n. The backward pass, receives the gradient from the machine that own
node n, and updates the values of the GNN. After the GNN values are updates, the coefficients of
the GNN are communicated to a centralized agent that averages them and sends them back to the
machines. A more succinct explanation of the aforementioned procedure can be seen in Algorithm 1.
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Algorithm
OGBN-Products OGBN-Arxiv

Number of Servers
2 4 8 16 2 4 8 16

Full Comm 78.46 78.43 78.41 78.44 69.64 69.04 69.71 69.76
No Comm 77.2 75.09 72.28 69.05 65.74 59.96 57.36 55.46

Fixed Comp Rate 2 79.57 78.86 78.25 78.38 66.71 66.48 65.59 64.62
Fixed Comp Rate 4 79.32 78.13 76.94 75.58 66.08 65.53 63.58 64.38
Fixed Comp Rate 8 78.83 77.49 74.53 70.45 67.41 66.13 63.39 62.5
Fixed Comp Rate 16 78.52 76.6 70.25 70.04 68.21 66.58 65.45 62.06
Fixed Comp Rate 32 78.64 75.26 71.29 68.31 67.76 66.14 64.74 63.94
Fixed Comp Rate 64 78.57 75.53 70.10 67.19 68.43 67.16 64.04 64.8

Variable Compression 79.27 79.06 79.75 78.72 68.12 68.76 69.02 68.01

Table 1: Accuracy results when training GNNs with full-communication, no communication, fixed
and variable compression in both OGBN-Arxiv, and OGBN-Products. We test our algorithm with
a GNN based on Graph-Sage, and Graph Convolutions for 2, 10 and 20 clients.

4.1 Convergence of the VARCO Algorithm

We characterize the convergence of the VARCO algorithm in the following proposition.

Proposition 2 (Scheduler Convergence) Under assumptions 1 through 5, consider the iterates
generated by equation (SGD) where the normalized signals x are compressed using compression rate
r with corresponding error ϵ(cf. Definition 3). Consider an L layer GNN with F , and K features
and coefficients per layer respectively. Let the step-size be η ≤ 1/L∇, with L∇ = 4MλL

max

√
KFL.

Consider a scheduler such that the compression error ϵt decreases at every step ϵt+1 < ϵt, then

E[||∇Hℓ(y,Φ(x,S;Ht))||2] ≤ σ2. (8)

happens infinitely often.

Proof: The proof can be found in Appendix D. ■

According to Proposition 2, for any scheduler, we are able to obtain an iterate t, whose gradient
is smaller than σ2. The conditions on the scheduler are simple to satisfy, the compression error ϵ
needs to decrease on every step (see Appendix D). It is important to note that the scheduler does
not require information about the gradient of the GNN. Compressing the activations in a GNN can
prove to reduce the communication required to train it. However, keeping a fixed compression ratio
might not be enough to obtain a GNN of a comparable accuracy than the one trained using no
compression. By using a variable compression for the communications, we obtain the best of both
worlds – we reduce the communication overhead needed to train a GNN, without compromising the
overall accuracy of the learned solution. The key observation is that in the early stages of training,
an estimator of the gradient with larger variance is acceptable, while in the later stages, a more
precise estimator needs to be used.

5 Experiments

To illustrate the benefits our method we tested our method in 2 real-world datasets: OGBN-Arxiv
(Wang et al., 2020) and OGBN-Products (Bhatia et al., 2016). In the case of OGBN-Arxiv, the graph
has 169, 343 nodes, and 1, 166243 edges and it represents the citation network between computer
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science arXiv papers. The node features are 128 dimensional embeddings of the title and abstract of
each paper Mikolov et al. (2013). The objective is to predict which of 40 categories does the paper
belong to. In the case of OGBN-Products, the graph represents products that were bought together
on an online marketplace. There are 2, 449, 029 nodes, that represent products, and 61, 859, 140
edges between nodes represent that those products were bought together. Feature vectors are 100
dimensional and the objective is to classify each node into 47 categories. For each dataset, we
partition the graph at random and distribute it over {2, 4, 8, 16} machines. In all cases, we trained
for 300 epochs, and we reported the best accuracy achieved by the model over the unseen data.
We benchmarked VARCO against full-communication, no intermediate communication, and fixed
compression for {2, 4, 8, 16, 32, 64} compression ratios. For the GNNs, we used a 3 layered GNN
with 256 hidden units per layer, ReLU non-linearity, and SAGE convolution (Hamilton et al., 2017).
For VARCO, we used a linear compression with slope 2, and 128 and 1.5 maximum and minimum
compression ratio respectively (see Appendix D).

In Table 1 we show the results of our Algorithm VARCO. For all configurations, VARCO attains a compa-
rable performance to the full communication setup. It should also be noted that VARCO is robust given
that it does not depend on the the number of servers or the dataset. Table 1 therefore validates the
claim that our VARCO attains a comparable performance to the one obtained with full communication.
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Figure 2: Accuracy of the GNNs as a function
of the communicated floats for the OGBN-Arxiv
with 16 machines.

In Figure 2, we show the accuracy as a function
of the communicated floating points values for
OGBN-Arxiv with 16 machines. In Figure 2,
we show that VARCO obtains the most efficient
training curve in terms of communication costs,
given that the variable compression line is above
all other curves. Intuitively, all learning curves
show a similar slope at the beginning of training,
and they converge to different values in the later
stages, decreasing the compression rate is an
efficient way of learning a GNN as shown in Fig-
ure 2. Given that the VARCO curve in Figure 2
is above all curves, this means that for any com-
munication budget i.e. number of bits, VARCO
obtains the best accuracy of all methods consid-
ered. This indeed validates our claim that using
VARCO is an efficient way of training a GNN.
In all, our experiments on real-world datasets
show that VARCO is an efficient way of obtaining
GNNs that attain a comparable performance
to the one obtained using full communication,
but, at a fraction of the communication costs.
In Appendix D, we show different combinations of variable compressions, all of which attain same
similar results, showcasing the robustness of our algorithm.

6 Conclusion

In this paper, we presented a distributed method to train GNNs by compressing the communications.
We theoretically showed that our method converges to a neighborhood of the optimal solution.
Empirically, we benchmarked our algorithm in two real-world datasets and showed that our method
obtains a GNN that attains a comparable performance to the one trained on full communication, at
a fraction of the communication costs.
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