GalaxyTSP: A New Billion-Node Benchmark for TSP

Iddo Drori '*#, Brandon Kates 3, William Sickinger 4, Anant Kharkar *
Brenda Dietrich 3, Avi Shporer 2, Madeleine Udell 3
'MIT, Department of Electrical Engineering and Computer Science
2MIT, Kavli Institute for Astrophysics and Space Research
3Cornell University, School of Operations Research and Information Engineering
4Columbia University, Department of Computer Science

Abstract

We approximate a Traveling Salesman Problem (TSP) three orders of magnitude
larger than the largest known benchmark, increasing the number of nodes from
millions to billions. Previously, the World TSP dataset served as the largest
benchmark for TSP approximation with 1.9 million cities. The dataset we use
is currently the largest catalog of stars in the Milky Way, which we call Galaxy
TSP, consisting of 1.69 billion stars. We use a divide and conquer approach for
approximating the TSP by splitting the problem into tiles, approximating each tile,
and merging the approximations. We learn to split tiles for efficient computation.
We demonstrate our approach on optimization of space telescope target scheduling.

1 Introduction

The traveling salesman problem (TSP) arises in many application areas that involve graphs, such as
circuit design and route planning. Since TSP is NP-hard, it is infeasible to solve exactly for large
graphs; even approximation algorithms often require intractable running time to achieve adequately
accurate solutions when run directly on the entire graph. Currently, the benchmark for the largest
TSP problem is World TSP [3]], which consists of 1.9 million nodes. However, larger datasets do
appear in real-world applications and require novel approaches. In this work, we present Galaxy TSP,
a new large benchmark dataset, for TSP approximation consisting of 1.69 billion nodes. Figure I]
shows our computed tour for the Galaxy TSP.

NI

Declination (deg)
g o 8 o

&
S

250 200 150
Right Ascension (deg)

Figure 1: Computed tour for the Galaxy TSP consisting of 1,691,937,135 stars in the Milky Way
galaxy projected into 2D. The graph is brighter where there are larger concentrations of stars. The
U-shaped feature is the disk of the galaxy as seen from the Earth, which itself is within the disk.
The brightest region along the disk, on the left, is the galactic center where the density of stars is
the largest. The two isolated features at the bottom right of the plot are, from left to right, the Large
Magellanic Cloud and the Small Magellanic Cloud, two satellite galaxies of the Milky Way.

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

Dataset \ Nodes

World TSP [3]] 1,904,711

Geonames [13]] 12,032,452

Galaxy TSP (Ours) | 1,691,937,135
Table 1: Datasets used in this work and corresponding number of nodes. All three datasets use
spherical coordinates. Our dataset is 888 x larger than the World TSP benchmark.

At such a scale, existing approximation algorithms cannot be directly executed on the entire graph.
The Lin-Kernighan heuristic (LKH) algorithm [[7, 8], for example, would require nearly 30 years of
compute time. Instead, we propose a divide-and-conquer approach that runs LKH on smaller tiles of
the graph, using machine learning to guide the tiling split, and merges the tile approximations.

Our algorithm approximates a solution to the TSP on three datasets, summarized in Table |1} World
TSP [3] is a dataset and challenge comprising 1,904,711 locations of cities around the world. The
dataset consists of latitude and longitude (lat/long) coordinates in the World Geodetic System
(WGSB84) format. The challenge has been ongoing since 2003, with a new recent record for the
lowest TSP length as of June 2020 [3]. GeoNames [13] is a dataset containing 19 different attributes
for each of over 12 million unique geographical features found on the Earth. We pre-process the
dataset to contain only lat/long coordinates in the WGS84 format. Galaxy TSP, based on the Gaia
data release 2 (DR2) [2,16], is a catalog of 1.69 billion stars in the Milky Way galaxy, consisting of
their position and other properties. Here we use the stars’ two angular coordinates which describe
their position in the sky. Those positions are used by astronomers to plan observations, which are
optimized for the usage of telescopes by minimizing the angular distance between sequential stars (or
targets). Observations are currently planned for thousands of targets and future space telescopes may
require optimizing for millions of targets.

Applications of TSP in astronomy deal with efficient scheduling of telescope observations, whether
on the ground or in space. The slew time required to move the telescope from one target and position
it on the next target in a sequence of observations is a significant overhead in these observations.
Therefore minimizing that time and making the sequence of observations slew-optimized is critical for
the efficient use of telescope time. An early solution in the context of observations in radio astronomy
was developed by first assigning targets to a partitioned region of the sky and then visiting targets
within each region [9]]. This algorithm used brute force search for regions with fewer than 10 targets
and simulated annealing for more dense regions. Telescope scheduling has had particular significance
for research in gravitational waves, which are transient events where the optically observable signal
of the source of the waves appears soon after the gravitational waves signal. Therefore detecting the
optical signal requires quick follow-up observations of all targets in the area of the sky from which
the gravitational waves signal originated. Addressing a further-constrained scheduling problem, other
work [12,[11]] considers that certain tiles of the sky require longer exposure times than others. Divide
and conquer approaches to TSP have considered problem instances of up to 1 million nodes [[10]
using parallel processing. Previously, the World TSP dataset served as the largest benchmark for TSP
approximation with 1.9 million cities. In contrast, we consider a dataset with 1.69 billion nodes.

2 Dataset

The Galaxy TSP dataset [4]] is based on the European Space Agency (ESA) Gaia space observatory
[2]. Gaia, launched in December 2013, is continuously scanning the sky with the goal of mapping
the position and other properties of over a billion stars (which is an order of 1% of the stars in
the Milky Way galaxy). Here we use the second release of Gaia data (DR2), published in 2018
[6]. We have downloaded the Gaia DR2 data from the online ESA Gaia Archive, and extracted
the on-sky position of the stars, consisting of two angular coordinates: Right Ascension (RA) and
Declination (Dec). Those coordinates of a position on the sky are conceptually similar to the latitude
and longitude coordinates of a location on the Earth. RA ranges between 0 — 360 degrees, and Dec
ranges between —90 and 90 degrees. Figure [I] shows the density maps of stars in the Gaia DR2
catalog. The large U-shaped feature represents the disk of the Milky Way galaxy, whose location is
not aligned with the (RA, Dec) coordinate system. The brightest region in the figures, at (RA, Dec)
~ (266, —29), is the center of the Milky Way galaxy, with the largest density of stars. Also seen in the
figures, in the bottom-right area, are two isolated bright regions which are nearby small galaxies, the
Large Magellanic Cloud (brighter) and the Small Magellanic Cloud (fainter). We consider pairwise
spherical distances between stars.

3 Methods

Running a TSP approximation algorithm, such as LKH, 2-Opt, or Christofides, on the entire graph of
1.69 billion nodes is infeasible. The estimated running time of LKH, the best existing large scale
TSP approximation algorithm, on our dataset would be 30 years of computation on a cloud compute
instance as shown in Figure] which is infeasible. Running LKH in parallel on a few hundred
instances would also be inefficient and very expensive. We therefore take a divide-and-conquer
approach using machine learning to efficiently handle this extremely large scale approximation.
Splitting the entire graph into a uniform grid is inefficient. We divide the problem into sub-problems
by adaptively splitting tiles of the dataset into four sub-tiles and efficiently solving the sub-tiles, as
shown in Figures [3]and 2] We fit a quadratic to the computation time as a function of the number
of nodes, for super-tiles, sub-tiles, and their difference. This is a classical time-accuracy trade-off,
sacrificing accuracy for efficient computation and the ability to utilize additional hardware resources.
Our approach consists of three parts:

1. Split: We first split the entire TSP graph into tiles using a quadtree, shown in Figure [2]
learning the decision of whether or not to split a tile.

2. Approximate: Next, we approximate a solution for each of the tiles. The approximation
is performed in parallel on individual tiles using LKH [1l]. Approximating many relatively
small tiles is computationally feasible.

3. Merge: Finally, we merge the approximations together, resulting in an approximate tour for
the entire dataset of 1.69 billion stars.

Split. The input is the set of all stars in the graph. We use a quadtree [5] to partition the space into
tiles. Starting with a single tile 7" containing all stars in the graph, tiles are recursively split into four
subtiles of equal size St,, ST,, ST, and St, governed by a splitting criterion. We use a quadtree
with at least two million nodes per tile to find a baseline tour length and binary classification on a
set of tile features to learn whether to split, as shown in Figure 2] We experiment with a criterion
for deciding if a tile should be split. Our first approach is to split any tile with more than 2 million
nodes. We improve on this by learning how to split from the data: deciding whether to split a tile
by binary classification on extracted graph features from each supertile. As an example of a result
of our splitting method we compare between a fixed criterion and our machine learning criterion
for the Small Magellanic Cloud shown on the bottom right corner region in Figure P} Using the
fixed splitting criterion (left) results in 7 tiles; whereas using the learning criterion (center) results in
four tiles. The length of the tour using the fixed criterion for this region is 63,093,867 arc-seconds;
whereas the length of the tour using our algorithm for this region is 63,012,660 arc-seconds.

Approximation. There are many heuristics and approximation algorithms available for solving the
TSP. These include the Branch and Cut algorithm, 2-opt, Farthest Insertion, and LKH. We use LKH
due to the availability of a fast approximation for geographic coordinates and the small optimality gap.
Given a graph and a tour, LKH searches for improved tours by swapping subtours until no additional
improvements are made. As shown in Figure [3|time to find an approximation using LKH is quickly
intractable with increasing number of nodes. A tile containing 500,000 stars runs in approximately
30 minutes while a tile containing 3,000,000 stars runs in approximately 250 minutes.

Figure 2: (Left) Tiling using fixed splitting criterion of 2 million stars per tile. (Center) Tiling based
on learning a splitting criterion from data. (Right) Tiling using a fixed criterion of 5 million stars per
tile. Notice the differences in tilings of the Large and Small Magellanic Clouds at the bottom right.

80001 & Supertile 1e8

Subtile
= Difference

* Supertile /

8 Subtile
« Difference /

6000

o

N
S
S
3

CPU-seconds
=

CPU-seconds

2000

A\

0.0 0.5 20 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

10 15
Number of Nodes le6 Number of Nodes 1e9

Figure 3: Running times of LKH for graphs Figure 4: Time complexity of LKH is quadratic,
of sizes 100-2,000,000 nodes. Plot shows time ~ O(n?-?). Running LKH on Galaxy TSP would
saved by approximating supertiles (of four tiles) take around 30 years of computation compared
directly using LKH as well as running time of with around 30 minutes for a tile with 500,000
the split, approximation, and merge processes. nodes.

Merge. We merge the approximations of four individual subtiles St,, St,, St,, St, into an ap-
proximation of a single merged tile 7" using the method proposed by Mulder and Wunsch [[10]. Only
k nodes in a tour nearest the tile boundary are considered as possible join points and serve as tile
tour entry points. Using this frontier is necessary as using every star in a tile would change time
complexity of the merge from O(n) to O(n?).

Algorithm. Our approach begins by splitting the graph from coarse-to-fine, then approximates
individual small tiles, and finally merges the tiles from fine-to-coarse resolutions. Given an input
graph, the algorithm first splits the graph into sub-tiles using a quad tree. An approximation algorithm,
LKH, is then run on each tile to approximate a tour for that tile. Starting with the finest level of the
quad tree hierarchy and iterating upward, all tile groups in a hierarchy level are merged. Once the top
level is merged, a single tile remains, which is the approximate tour of the entire graph.

4 Results

On the World TSP dataset, our approach splits the problem into 7 tiles with a mean of 272,101 nodes
each. Running LKH on the tiles required a maximum of 779 seconds on a single tile and a total
time of 3027 seconds. Our tour length was 7,587,334,983 meters. In contrast, the current record
on this dataset has a tour length of 7,515,770,584, which is within 1% of the length of our tour. On
the Geonames dataset, our approach splits the problem into 13 tiles with a mean of 925,573 nodes
each. Our algorithm runs in 35,917 CPU-seconds, with a maximum of 6,400 seconds for a single tile,
yielding a tour length of 19,718,226,839 meters. In contrast, running LKH on the full dataset resulted
in a tour of 19,672,680,637 meters in 85,000 seconds, which is within 0.24% of our tour length.

Our Galaxy TSP dataset is 888 times larger than World TSP. The algorithm splits Galaxy TSP into
1,963 tiles with an average of 861,913 nodes per tile and maximum of 1,998,413 nodes in a single
tile. LKH requires a maximum of 17,257 seconds for a single tile, and 8, 128, 680 CPU-seconds,
running LKH on tiles in parallel. Merging the tiles takes 344, 455 CPU-seconds. The final tour length
is 15, 780,464, 837 arc-seconds. Our learning algorithm splits Galaxy TSP into 1, 753 tiles with an
average of 965, 281 nodes per tile and maximum of 4, 732, 478 nodes in a single tile. LKH requires a
maximum of 66, 601 seconds for a single tile, and 8,961, 439 CPU-seconds in parallel. Merging the
tiles takes 307, 587 seconds. The final tour length is 15, 779, 149, 332 arc-seconds.

5 Conclusions

In this work we introduce a new dataset called Galaxy TSP and find an approximate solution for the
TSP. Our approach is applicable to other large-scale TSPs and allows trading-off between accuracy
and approximation time. We learn a splitting criterion from data which provides an adaptive solution.
We demonstrate the benefits of adaptive splitting over a simple partitioning of space on the maximum
number of nodes per tile. In future work we would like to use a graph neural network for learning
the splitting criteria, improving generalization and providing fine-grained control over the tradeoff
between accuracy and running time.

References

[1] David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP Solver, 2006.
http://www.math.uwaterloo.ca/tsp/concorde.html.

[2] Gaia Collaboration et al. Gaia data release 1. summary of the astrometric, photometric, and
survey properties. Astronomy & Astrophysics, 595:A2, 2016.

[3] Bill Cook. World TSP, 2003. http://www.math.uwaterloo.ca/tsp/world.

[4] Iddo Drori, Brandon Kates, William Sickinger, Anant Kharkar, Brenda Dietrich, Avi Shporer,
and Madeleine Udell. Galaxy TSP, 2020. https://www.galaxytsp.com.

[5] Raphael Finkel and Jon Bentley. Quad trees: A data structure for retrieval on composite keys.
Acta Informatica, 4:1-9, 1974.

[6] Collaboration Gaia, AGA Brown, A Vallenari, T Prusti, JHJ de Bruijne, C Babusiaux, AL Juhasz,
G Marschalk6, G Marton, L. Molndr, et al. Gaia data release 2 summary of the contents and
survey properties. Astronomy & Astrophysics, 616(1), 2018.

[7] Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical Journal,
44(10):2245-2269, 1965.

[8] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498-516, 1973.

[9] Walter Max-Moerbeck. Scheduling and calibration strategy for continuous radio monitoring of
1700 sources every three days. In Observatory Operations: Strategies, Processes, and Systems
V, 2014.

[10] Samuel A. Mulder and Donald C. Wunsch. Million city traveling salesman problem solution
by divide and conquer clustering with adaptive resonance neural networks. Neural Networks,
16(5-6):827-832, 2003.

[11] Javed Rana, Shreya Anand, and Sukanta Bose. Optimal search strategy for finding transients in
large-sky error regions under realistic constraints. The Astrophysical Journal, 876(2):104, 2019.

[12] Javed Rana, Akshat Singhal, Bhooshan Gadre, Varun Bhalerao, and Sukanta Bose. An enhanced
method for scheduling observations of large sky error regions for finding optical counterparts to
transients. The Astrophysical Journal, 838(2):108, 2017.

[13] Mark Wick. GeoNames, 2020. https://www.geonames.org.

6 Appendix

Algorithm 1 Approximate and Merge Tiles

Input: Tiles T = (11, 1,13, T4)
Output: Merged super-tile S
Compute LKH(T1), LKH (1), LKH(T3), LK H(T4)
Compute tile centroids (p1, pa2, 43, p1a)
Let current shortest tour S = LK H (1)
for t =2,3,4 do
Find m nearest neighbors in St to (i1 Nmesy (w¢) and let these be join points.
for each n; € Ny, (p¢) do
Find k nearest neighbors in tile 73 to n;: Nier, (n;)and let these be tile tour entry points.
for each n; € Ni(n;) do
Let n, be node after n; in St
Let ny, be node before n; in LK H (T})
Remove edges n; — nq and ny, — n;
Add edges n; — nj and ny — ng
Compute new merged tour and length and store
end for
end for
St = Shortest tour found, up to tile 7
end for
return Merged tile solution St

()

(d) (e)

Figure 5: (a) Two adjacent tiles before a merge. T2 is a tile tour to be inserted into the tour of T1. (b)
The nearest neighbors N, (12) to uo in 7. (c) The nearest neighbors N (n;) to n; in Ts. (d) The
edge from best join point n; to the next star n, and the edge to the best tile tour entry point n; from
the previous tour star n; are removed. (e) Next, edges from n; to n; and ny to n, are added. This
yields a single merged tour that includes each star from both T1 and T2.

Implementation details. All experiments are performed on a cloud instance with 96 vCPUs and
624 GB of RAM. Our feature set consists of the mean declination, mean right ascension, mean
distance from the graph centroid, mean distance from the tile center, and the mean clustering
coefficient across all nodes in the 20-nearest-neighbors graph of the tile. We train a logistic regression
binary classifier to predict whether a tile should be split or not and use this model to guide our
approximation algorithm. The model is trained on 168 super tiles of sizes between 2-5 million nodes
using 5-fold cross-validation with an F1-score of 0.922. We set up a binary classification problem to
predict whether the % from splitting the tile is in the bottom 75"-percentile, in which case, we
split the tile. This percentile is chosen as a trade-off between the gained time and the increase in tour

length.

Visual results. Figure[6]shows the final tour of World TSP, showing the full graph and zoomed in
at x64 resolution centered on Long Island. Figure [/|shows the final tour of Geonames, showing the
full graph and zoomed in at x64 resolution centered on Long Island. Figure 8| shows the final tour of
Galaxy TSP zooming at increasing resolutions of x1, x4, x16, x64, x256, x1024, and x4096.

Figure 6: The final tour of World TSP. Showing Figure 7: The final tour of Geonames TSP.
the full graph and zoomed in x64 centered on Showing the full graph and zoomed in x64 cen-
Long Island. tered on Long Island.

Figure 8: The final tour of Galaxy TSP, zoomed in at resolutions x1, x4, x16, x64, x256, x1024 and

x4096.

	Introduction
	Dataset
	Methods
	Results
	Conclusions
	Appendix

