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Abstract

By filling in missing values in datasets, imputation allows these datasets to be used with
algorithms that cannot handle missing values by themselves. However, missing values may
in principle contribute useful information that is lost through imputation. The missing-
indicator approach can be used in combination with imputation to instead represent this
information as a part of the dataset. There are several theoretical considerations why
missing-indicators may or may not be beneficial, but there has not been any large-scale
practical experiment on real-life datasets to test this question for machine learning predic-
tions. We perform this experiment for three imputation strategies and a range of different
classification algorithms, on the basis of twenty real-life datasets. We find that on these
datasets, missing-indicators generally increase classification performance. In addition, we
find no evidence for most algorithms that nearest neighbour and iterative imputation lead
to better performance than simple mean/mode imputation. Therefore, we recommend the
use of missing-indicators with mean/mode imputation as a safe default, with the caveat that
for decision trees, pruning is necessary to prevent overfitting. In a follow-up experiment, we
determine attribute-specific missingness thresholds for each classifier above which missing-
indicators are more likely than not to increase classification performance, and observe that
these thresholds are much lower for categorical than for numerical attributes. Finally, we
argue that mean imputation of numerical attributes may preserve some of the information
from missing values, and we show that in the absence of missing-indicators, it can similarly
be useful to apply mean imputation to one-hot encoded categorical attributes instead of
mode imputation.

1 Introduction

Missing values are a frequent issue in real-life datasets, and the subject of a large body of ongoing research.
Some implementations of machine learning algorithms can handle missing values natively, requiring no
further action by practitioners. But whenever this is not the case, a common general strategy is to replace
the missing value with an estimated value: imputation. An advantage of imputation is that we obtain a
complete dataset, to which we can apply any and all algorithms that make no special provision for missing
values. However, missing values may be informative, and a disadvantage of imputation is that it removes
this information.

The missing-indicator approach (Cohen, 1968) is a well-established way to represent and thereby preserve
the information encoded by missing values. For every original attribute, this approach adds a new binary
‘indicator’ or ‘dummy’ attribute that takes a value of 1 if the value for the original attribute is missing, and
0 if not.1 The missing-indicator approach is often presented as an alternative to imputation, but since it
does not resolve the missing values in the original attributes, it can only be used in addition to, not instead
of imputation.

Both imputation and the missing-indicator approach originate in the statistical literature. While imputation
strategies have been the subject of a rich body of research, the missing-indicator approach has not received a
large amount of attention, and is often dismissed or disregarded in overviews of approaches towards missing

1Some authors use the opposite convention, letting the indicator express non-missingness.
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values. In particular, it is an open question whether missing-indicators should be used for predictive tasks
in machine learning (Sperrin et al., 2020). On the one hand, the addition of missing-indicators results in
a more complete, higher-dimensional representation of the data. On the other hand, their omission can be
seen as a form of dimensionality reduction, which may increase the efficiency and effectiveness of a dataset
by eliminating redundancy.

To determine whether this trade-off is useful, a key question is to which extent missing values in a given
dataset are informative, and to which extent their distribution is predictable. In the latter case, the phrase
“missing at random” (MAR) (Rubin, 1976) is used to indicate that the distribution of missing values is
dependent on the known values, while the stricter phrase “missing completely at random” (MCAR) denotes
values that are distributed truly randomly. In contrast, informative missing values are often denoted as
“missing not at random” (MNAR). For real-life datasets, unless we have specific knowledge about the process
responsible for the missing values, we have to assume some degree of informativeness in principle.2 However,
Schafer (1997) has argued that in practice, the attributes of a dataset can be sufficiently redundant that one
can get away with assuming its missing values are MAR. But even if this is so, imputation may not always
perform optimally, in which case missing-indicators may still prove useful.

A more subtle point is that even when missing values are informative, the information they encode need not
be lost completely through imputation. This is particularly evident in the case of numerically encoded binary
attributes, where imputation can represent missing values as a third, intermediary value. More generally,
Le Morvan et al. (2021) have observed that almost all deterministic imputation functions map records with
missing values to distinct manifolds in the attribute space that can in principle be identified by sufficiently
powerful algorithms. Nevertheless, including missing-indicators can still potentially make this learning task
easier.

In light of these conflicting theoretical arguments, the usefulness of missing-indicators for real-life machine
learning problems is an interesting empirical question. However, previous experiments in this direction have
been limited in scope and number. These limitations include the use of only one or a handful of datasets, the
use of datasets from which values have been removed artificially, at random (corresponding to the MCAR
setting), and not comparing the same imputation strategies with and without missing-indicators.

The purpose of the present paper is straightforward. On the basis of twenty real-life classification problems
with naturally occurring missing values, we evaluate the effect of missing-indicators on the performance of a
range of popular classification algorithms, paired with three common types of imputation.

In Section 2, we provide a brief overview of the existing literature on missing-indicators, including previous
experimental evaluations. In Section 3, we describe our experimental setup. We report our results in Section 4
and conclude in Section 5.

2 Background

We start with a brief discussion of the origins and reception of the missing-indicator approach, as well as
previous experimental evaluations of the use of missing-indicators in prediction tasks.

2.1 Origins and reception

The missing-indicator approach originates in the statistical literature on linear regression, and dates back to
at least Cohen (1968). Cohen pointed out that values in real-life datasets are typically not missing completely
at random, and that the distribution of missing values may in particular depend on the values of the attribute
that is to be predicted. He proposed that each attribute could be said to have two ‘aspects’, its value, and
whether that value is present to begin with, which should be encoded with a pair of variables. For missing
attribute values, the first of these variables was to be filled in with the mean of the known values, although
other applications might call for different values. Cohen’s proposal was subsequently expanded in Cohen

2This is acknowledged by authors working under the assumption of MAR, e.g. “When data are missing for reasons beyond
the investigator’s control, one can never be certain whether MAR holds. The MAR hypothesis in such datasets cannot be
formally tested unless the missing values, or at least a sample of them, are available from an external source.” (Schafer, 1997)
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& Cohen (1975), but received only limited recognition in the following years (Kim & Curry, 1977; Stumpf,
1978; Chow, 1979; Hutcheson & Prather, 1981; Anderson et al., 1983; Orme & Reis, 1991).

Cohen’s proposal was subjected to a formal analysis by Jones (1996), who showed that, if one assumes
that missing values are MAR, and the true linear regression model does not contain any terms related to
missingness, it produces biased estimates of the regression coefficients (unless the sample covariance between
independent variables is zero). However, these assumptions run directly counter to the position set out
by Cohen & Cohen (1975) that a priori, the missingness of each attribute is a possible explanatory factor,
that it is safer not to assume that missing values are distributed randomly, and that the usefulness of
missing-indicators is ultimately an empirical question.

Allison (2001), motivated by Jones (1996) and working under the general assumption of MAR, dismissed
missing-indicators as “clearly unacceptable”, before conceding that they in fact produce optimal estimates
when the missing value is not just missing, but cannot exist, such as the marital quality of an unmarried
couple. However, this semantic distinction may not always be clear-cut in practice, and the more pertinent
question may be whether missing values are informative. Allison (2010) later acknowledged that missing-
indicators may lead to better predictions and their use for that purpose was acceptable. Missing-indicators
have also been dismissed by Pigott (2001); Schafer & Graham (2002); Graham (2009); Aste et al. (2015),
and are frequently omitted in overviews of missing data strategies (Schafer, 1997; Enders, 2010; Eirola, 2014;
García et al., 2015; Das et al., 2018).

2.2 Previous experiments

Only a handful of experimental comparisons of missing data approaches have included the missing-indicator
approach, and these have been limited in scope. Vamplew & Adams (1992) and Ng & Yusoff (2011) only
use a single dataset with randomly removed values, and base their evaluation on the performance of a
single algorithm (respectively a neural network and linear regression). Pereira Barata et al. (2019) use three
classification algorithms and 22 datasets, but again with randomly removed values, explicitly assuming a
MCAR context. They conclude that imputation outperforms missing-indicators, but the comparison is not
like-for-like, since it involves several forms of imputation but only combines indicator attributes with zero
imputation. Van der Heijden et al. (2006) compare missing-indicators with zero imputation against several
other forms of imputation without missing-indicators on one real dataset, for logistic regression. However,
it appears that they do not use a test set, and only evaluate the resulting models on the training set.

Ding & Simonoff (2010) conduct a more extensive investigation, using insights from a series of Monte Carlo
simulations to systematically remove values from 36 datasets to simulate different forms of missingness. They
use these datasets to compare zero imputation3 with indicator attributes against mean/mode imputation
without, as well as a number of other missing data approaches, for logistic regression. In addition, the
authors evaluate a related representation of missing values4 on the same set of 36 datasets, and on one real-
life dataset with missing values, for decision trees. They find that there is strong evidence that representing
missing values is the best approach when they are informative; when this is not the case their results show
no strong difference with respect to imputation.

The comparison by Grzymala-Busse & Hu (2000) is based on 10 datasets with naturally occurring missing
values. However, the setting is purely categorical — all attributes are transformed into categorical attributes
— the only form of imputation is mode imputation, and the missing value approaches are evaluated on the
basis of the LERS classifier (Learning from Examples based on Rough Sets (Grzymala-Busse, 1988)).

Marlin (2008) compares zero imputation with missing-indicators (augmentation with response indicators)
against several forms of imputation without, for logistic regression and neural networks, on the basis of an
extensive series of simulations, one dataset with artificially removed values, and three real datasets. For the
real datasets, there is no strong difference in performance between the different approaches.

3Presumably, Ding & Simonoff (2010) use one-hot encoding for categorical attributes, in which case zero imputation is
equivalent to treating missing values as a separate category, but they do not state this explicitly.

4For categorical values, encoding missing values as a separate category, for numerical values, encoding missing values as an
extremely large value that can always be split from the other values.
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Most recently, Josse et al. (2020) and Le Morvan et al. (2021) respectively evaluate missing-indicators (miss-
ingness mask) for regression trees, Random Forest and XGBoost, and for multilayer perceptrons, on simu-
lated regression datasets, and conclude that when missing values are informative, using missing-indicators
clearly increases performance. This work has been continued by Perez-Lebel et al. (2022), who compare
four different imputation techniques with and without missing-indicators on seven prediction tasks derived
from four real medical datasets, and conclude that missing-indicators consistently improve performance for
gradient boosted trees, ridge regression and logistic regression.

We point out that the Missingness in Attribute (MIA) proposal (Twala et al., 2008) for decision trees and
decision tree ensembles can be understood as an implicit combination of missing-indicators with automatic
imputation, and has also been shown to outperform imputation without missing-indicators in small-scale
experimental studies (Josse et al., 2020; Perez-Lebel et al., 2022).

Finally, even experimental comparisons of missing data that do not feature the missing-indicator approach
generally do not involve more than a handful of real-life datasets with naturally occurring missing values.
We have only found Luengo et al. (2012a;b), who use 21 datasets from the UCI repository, but 12 of these
are problematic.5

3 Experimental setup

To evaluate the effect of the missing-indicator approach on classification performance, we conduct a series
of experiments, using the Python machine learning library scikit-learn (Pedregosa et al., 2011).

3.1 Questions

The aim of our experiments is to answer the following questions:

• Do missing-indicators increase performance, and does it matter which imputation strategy they are
paired with?

• When do missing-indicators start to become useful in terms of missingness?

• Does using mean imputation instead of mode imputation allow for more information to be learned
from missing categorical values?

3.2 Evaluation

We preprocess datasets by standardising numerical attributes and one-hot encoding categorical attributes
(as required by the implementations in scikit-learn).

We measure classification performance by performing stratified five-fold cross-validation, repeating this for
five different random states (which determine both the dataset splits and the initialisation of algorithms
with a random component), and calculating the mean area under the receiver operator curve (AUROC). For
multi-class datasets, we use the extension of AUROC defined by Hand & Till (2001).

To compare two alternatives A and B, we consider the p-value of a one-sided Wilcoxon signed-rank test
(Wilcoxon, 1945) on the mean AUROC scores for our selection of datasets. When we compare A vs B, a

5The target column of the echocardiogram dataset (‘alive-at-1’) is supposed to denote whether a patient survived for at
least one year, but it doesn’t appear to agree with the columns from which it is derived, that denote how long a patient (has)
survived and whether they were alive at the end of that period. The audiology dataset has a large number of small classes with
complex labels and should perhaps be analysed with multi-label classification. In addition, it has ordinal attributes where the
order of the values is not entirely clear, and three different values that potentially denote missingness (‘?’, ‘unmeasured’ and
‘absent’), and it is not completely clear how they relate to each other. The house-votes-84 dataset contains ‘?’ values, but
its documentation explicitly states that these values are not unknown, but indicate different forms of abstention. The ozone
dataset is a time-series problem, while the task associated with the sponge and water-treatment datasets is clustering, with no
obvious target for classification among their respective attributes. Finally, the breast-cancer (9), cleveland (7), dermatology
(8), lung-cancer (5), post-operative (3) and wisconsin (16) datasets contain only very few missing values, and any performance
difference between missing value approaches on these datasets may to a large extent be coincidental.

4



Under review as submission to TMLR

Table 1: Classification algorithms.

Name Description
NN-1 Nearest neighbours (Fix & Hodges, 1951) with (Boscovich) 1-distance
NN-2 Nearest neighbours with (Euclidean) 2-distance
NN-1-D Nearest neighbours with 1-distance, distance-weighted (Dudani, 1976)
NN-2-D Nearest neighbours with 2-distance, distance-weighted
SVM-L Soft-margin Support Vector Machine (Cortes & Vapnik, 1995) with linear kernel
SVM-G Soft-margin Support Vector Machine with Gaussian kernel
LR Multinomial logistic regression (Cox, 1966)
MLP Multilayer perceptron (Rosenblatt, 1961) with ReLu activation (Fukushima, 1969), Glorot

initialisation (Glorot & Bengio, 2010) and Adam optimisation (Kingma & Ba, 2014)
CART Classification and Regression Tree (Breiman et al., 1984)
RF Random Forest (Breiman, 2001)
ERT Extremely Randomised Trees (Geurts et al., 2006)
ABT Ada-boosted trees (Freund & Schapire, 1995) with SAMME (stagewise additive modeling

using a multi-class exponential loss function) (Zhu et al., 2009)
GBM Gradient Boosting Machine (Friedman, 2001)

score below 0.5 means that A increased performance on our selection of datasets; the lower the scores, the
more confident we can be that this generalises to other similar datasets. Conversely, a score higher than 0.5
means that A decreased performance on our selection of datasets.

3.3 Imputation Strategies

We consider the following three imputation strategies:

• Mean/mode imputation replaces missing values of numerical and categorical attributes by, respec-
tively, the mean and the mode of the non-missing values.

• Nearest neighbour imputation (Troyanskaya et al., 2001) replaces missing values of numerical and
categorical attributes by, respectively, the mean and the mode of the 5 nearest non-missing values,
with distance determined by the corresponding non-missing values for the other attributes.

• Iterative imputation, as implemented in scikit-learn, based on Van Buuren & Groothuis-Oudshoorn
(2011), predicts missing values of one attribute on the basis of the other attribute values using
a round-robin approach. For numerical attributes, this uses Bayesian ridge regression (Tipping,
2001), initialised with mean imputation, while for categorical attributes, we use logistic regression,
initialised with mode imputation.

The scikit-learn implementations of nearest neighbour and iterative imputation can currently only impute
numerical features, so we had to adapt them for categorical imputation. In all other aspects, we follow the
default settings of scikit-learn.6

3.4 Classification Algorithms

We consider the classification algorithms listed in Table 1, as implemented in scikit-learn. Hyperparameters
take their default values, except for SVM-L, LR and MLP, where we increase the maximum number of
iterations to 10 000 to increase the probability of convergence.

For a number of these algorithms, specific ways have been proposed to handle missing values: e.g. NN-2-D
(Dixon, 1979), SVM-G (Śmieja et al., 2019), MLP (Tresp et al., 1994; Śmieja et al., 2018; Ipsen et al., 2020)

6For the nomao dataset, iterative imputation diverged, so we had to restrict imputation to the interval [−100, 100].
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Table 2: Real-life classification datasets with missing values from the UCI repository for machine learning.

Dataset Records Classes Attributes Missing value rate Source
Num Cat Total Num Cat Total

adult 48 842 2 5 8 13 0.0 0.017 0.010 Kohavi (1996)
agaricus-lepiota 8124 2 2 20 22 0.0 0.015 0.014 Schlimmer (1987)
aps-failure 76 000 2 170 0 170 0.083 0.083 Ferreira Costa & Nascimento

(2016)
arrhythmia 452 13 279 0 279 0.0032 0.0032 Güvenir et al. (1997)
bands 540 2 19 15 34 0.054 0.054 0.054 Evans & Fisher (1994)
ckd 400 2 24 0 24 0.11 0.11 Rubini & Eswaran (2015)
crx 690 2 6 9 15 0.0060 0.0068 0.0065 Quinlan (1987)
dress-sales 500 2 3 9 12 0.20 0.19 0.19
exasens 399 4 7 0 7 0.43 0.43 Soltani Zarrin et al. (2020)
hcc 165 2 49 0 49 0.10 0.10 Santos et al. (2015)
heart-disease 1611 2 13 1 14 0.18 0.0 0.17 Detrano et al. (1989)
hepatitis 155 2 19 0 19 0.057 0.057 Efron & Gong (1981)
horse-colic 368 2 19 1 20 0.25 0.39 0.26 McLeish & Cecile (1990)
mammographic-
masses

961 2 2 2 4 0.042 0.041 0.042 Elter et al. (2007)

mi 1700 8 111 0 111 0.085 0.085 Golovenkin et al. (2020)
nomao 34 465 2 89 29 118 0.38 0.37 0.38 Candillier & Lemaire (2012)
primary-tumor 339 21 16 1 17 0.029 0.20 0.039 Cestnik et al. (1987)
secom 1567 2 590 0 590 0.045 0.045 McCann et al. (2008)
soybean 683 19 22 13 35 0.099 0.096 0.098 Michalski & Chilausky (1980)
thyroid0387 9172 18 7 22 29 0.22 0.0015 0.055 Quinlan et al. (1986)

and CART (Quinlan, 1989; Twala et al., 2008). The purpose of the present experiment is to evaluate the gen-
eral approach of using imputation with missing-indicators when these solutions have not been implemented,
as is the case in scikit-learn.

3.5 Datasets

We use twenty real-life datasets with naturally occurring missing values from the UCI repository for machine
learning (Dua & Graff, 2019) (Table 2). We have preprocessed these datasets in the following manner. When
it was clear from the description that an attribute was categorical, we treated it as such, even if it was orig-
inally represented with numerals. Conversely, where the possible values of an attribute admitted a semantic
order, we encoded them numerically. We have removed attributes that were labelled non-informative by the
accompanying documentation, as well as identifiers and alternative target values. For dress-sales (which does
not appear to have been used in any publication), we cleaned up the data by eliminating spelling variations.
For heart-disease, we reduced the id-attribute to only identify the source hospital. In thyroid0387, a small
number of records belonged to multiple classes, which we resolved by retaining the most specific class.

4 Results

Using the experimental setup detailed in the previous section, we now try to answer the questions listed in
Subsection 3.1. Note that fuller results are listed in the Appendix.

4.1 Do missing-indicators increase performance, and does it matter which imputation strategy they
are paired with?

The p-values obtained by comparing imputation with and without missing-indicators are displayed in Table 3.
Missing-indicators generally lead to increased performance — with the notable exception of CART, to which
we return below.

Next, we consider how useful the more complicated imputation strategies are with respect to mean/mode
imputation when we pair imputation with missing-indicators. Not very much, it turns out (Table 4). At best,
nearest neighbour and iterative imputation only lead to a modest improvement, and for many classifiers,

6



Under review as submission to TMLR

Table 3: One-sided p-values, imputation with missing-indicators vs without.

Classifier Imputation strategy
Mean/mode Neighbours Iterative

NN-1 0.024 0.0027 0.0011
NN-2 0.035 0.0050 0.00085
NN-1-D 0.016 0.0031 0.00085
NN-2-D 0.0063 0.0070 0.00042
SVM-L 0.18 0.31 0.11
SVM-G 0.0063 0.0063 0.0027
LR 0.092 0.079 0.074
MLP 0.0050 0.013 0.011
CART 0.84 0.75 0.70
RF 0.058 0.12 0.29
ERT 0.36 0.018 0.027
ABT 0.089 0.10 0.49
GBM 0.39 0.022 0.18

Table 4: One-sided p-values, missing-indicators with iterative and nearest neighbour vs mean/mode impu-
tation.

Classifier Imputation strategy
Neighbours Iterative

NN-1 0.90 0.27
NN-2 0.74 0.26
NN-1-D 0.95 0.71
NN-2-D 0.80 0.34
SVM-L 0.48 0.61
SVM-G 0.47 0.94
LR 0.36 0.85
MLP 0.29 0.56
CART 0.67 0.69
RF 0.63 0.86
ERT 0.47 0.51
ABT 0.63 0.94
GBM 0.94 0.83
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Figure 1: Test AUROC for GBM for two illustrative datasets, using mean/mode imputation without missing-
indicators, for one random state and one cross-validation fold.

they actually decrease performance. Therefore, we focus on mean/mode imputation for the remainder of
this section.

A possible reason for the poor performance of missing-indicators with CART, is that by default, the scikit-
learn implementation of this classifier does not perform pruning, making it prone to overfitting. To test
this hypothesis, we repeat our experiment for CART and mean imputation, but this time we apply cost
complexity pruning (α = 0.01). The resulting AUROC scores are now much better than the original scores
without missing-indicators (p = 0.013) and somewhat better than cost complexity pruning without missing-
indicators (p = 0.23).

In the case of ERT, missing-indicators may not lead to a clear performance improvement because of under-
fitting. If we increase the number of trees from the default 100 to 1000, the improvement becomes somewhat
clearer (p = 0.15).

For GBM, the default choice of 100 iterations of gradient descent can lead to both under- or overfitting,
depending on the dataset (Fig. 1). We believe that it is generally preferable to continue training until an
early-stopping criterion is met. If we apply the same criterion as with MLP,7 the performance increase due
to missing-indicators also becomes clearer (p = 0.19).

4.2 When do missing-indicators start to become useful in terms of missingness?

The theoretical motivation for representing missing values through missing-indicators is that this allows
classifiers to learn the information encoded in their distribution. In general, this should be easier when
there are more examples to learn from. If true, we can use this to obtain a better understanding of when
missing-indicators might be useful on a per-attribute level.

We test this with the following additional experiment. For each attribute with missing values in each dataset,
we reduce the original dataset by removing all other attributes with missing values. We thus obtain 1148
derived datasets, on which we again apply each of our classifiers (with pruning for CART, 1000 trees for
ERT and early-stopping for GBM) and consider whether missing-indicators increase or decrease AUROC
(we dismiss ties). Finally, for each classifier we fit a logistic regression model with cluster robust covariance
(clustered by the originating dataset), with the following potential parameters: categoricalness (whether the

7Setting aside 10% of the data for validation, stopping when validation loss has not decreased by at least 0.0001 for ten
iterations, with a maximum of 10 000 iterations.
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Table 5: Thresholds above which missing-indicators are more likely than not to increase AUROC, in terms
of the absolute number of missing values or the missing rate

Classifier Missing values Missing rate
Categorical Numerical Categorical Numerical

NN-1 20 296
NN-2 10 146
NN-1-D 21 370
NN-2-D 6 80
SVM-L 0.0 0.0
SVM-G 0.0 0.44
LR 0.0 0.0
CART 1 13
ERT 0.0 1.0
ABT 1 18850
GBM 0.0 0.0

attribute is categorical) and either the number of missing values (log-transformed) or the missing rate. We
use the Akaike information criterion (Akaike, 1971) to decide whether to select these parameters.

We find that for most classifiers, either the absolute or the relative number of missing values is an informative
parameter with positive coefficient. For MLP, neither parameter is informative, while for RF, the number
of missing values is an informative parameter with negative coefficient, for which we have no explanation at
present. For every classifier except NN-1, NN-1-D and LR, categoricalness is an informative parameter with
positive coefficient, meaning that missing-indicators are more beneficial for categorical than for numerical
attributes.

The fitted logistic regression models allow us to calculate attribute-specific thresholds above which missing-
indicators are more likely than not to increase AUROC, for all classifiers except MLP and RF (Table 5).
In many cases, these thresholds are 1 or 0.0, indicating that missing-indicators are always likely to increase
AUROC. We have included NN-1 and NN-1-D in this table on the basis of a model that includes the cat-
egoricalness parameter, since we find it implausible that it should not be relevant only for these specific
classifiers. If we exclude it, the thresholds respectively become 233 and 285 records for categorical and nu-
merical attributes alike. For LR, the threshold is a missing rate of 0.0, whether we include the categoricalness
parameter or not.

4.3 Does using mean imputation instead of mode imputation allow for more information to be
learned from missing categorical values?

As indicated above, missing-indicators are generally more likely to increase performance for categorical than
for numerical attributes. A potential explanation for this is the fact that the mode of a categorical attribute
is one of the non-missing values, whereas the mean of a numerical attribute is generally not equal to one
of the non-missing values. Therefore, categorical imputation renders missing values truly indistinguishable
from non-missing values, whereas numerical imputation does not — the information expressed by missing
values may be partially recoverable, as argued by Le Morvan et al. (2021) and discussed in the Introduction.

We can achieve a similar partial representation of missing categorical values by changing the order in which
we perform imputation and one-hot encoding, i.e. by performing numerical imputation on one-hot encoded
categorical attributes with missing values. For imputation without missing-indicators, this indeed leads to
better performance for some classifiers, while in combination with missing-indicators, it does not make much
of a difference (Table 6)8.

8LR is an exception here. We have no explanation for this, although we note that it corresponds with our finding in
Subsection 4.2 that categoricalness is not a relevant factor for LR.
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Table 6: One-sided p-values, mean imputation after one-hot encoding vs mode imputation of missing cate-
gorical values.

Classifier Without missing-indicators With missing-indicators
NN-1 0.030 0.22
NN-2 0.32 0.17
NN-1-D 0.030 0.36
NN-2-D 0.29 0.17
SVM-L 0.44 0.71
SVM-G 0.22 0.56
LR 0.88 0.023
MLP 0.14 0.52
CART 0.50 0.34
RF 0.084 0.78
ERT 0.023 0.95
ABT 0.56 0.66
GBM 0.12 0.56

We finish this section with a note of caution: because we have performed multiple statistical tests, it is
quite likely that some particular results do not generalise to other datasets, without necessarily changing the
overall picture. It is difficult to say much more about this, because the tests are not independent of each
other.

5 Conclusion

We have presented the first large-scale experimental evaluation of the effect of the missing-indicator approach
on classification performance, conducted on real datasets with naturally occurring missing values, paired with
three different imputation techniques. The central question was whether, on balance, more benefit can be
derived from the additional information encoded in a representation of missing values, or from the lower-
dimensional projection of the data obtained by omitting missing-indicators.

We found that, on the whole, missing-indicators increase performance for the classification algorithms that
we considered, although we cannot be sure for each classifier that this result will generalise to other datasets.
The only classifier for which missing-indicators decreased performance was CART. We argued that this is
due to overfitting by the default configuration of the scikit-learn implementation of CART, and showed that
missing-indicators do increase performance when pruning is applied. For ERT and GBM, we were able to
show that the advantage of including missing-indicators becomes more significant when the number of trees
of ERT is increased to limit underfitting, and the number of iterations of GBM is determined dynamically
by an early-stopping criterion to avoid both under- and overfitting.

We also looked at the relative performance of the three different imputation strategies and found that, in
the presence of missing-indicators, nearest neighbour and iterative imputation do not increase performance
over simple mean/mode imputation, with the possible exception of NN-2 and NN-2-D in the case of iterative
imputation. This is a useful finding, because implementations of more sophisticated imputation strategies
may not always be available to practitioners working in different frameworks, or easy to apply.

In a follow-up experiment, we were able to determine attribute-specific missingness thresholds above which
missing-indicators are more likely than not to increase performance. We found that for categorical attributes,
this threshold is generally very low, while for numerical attributes, there is more variation among classifiers,
in particular as to whether this threshold is absolute or relative to the total number of records.

A possible explanation for the finding that missing-indicators are more useful for categorical than for nu-
merical attributes is the fact that the mean of a numerical attribute is not generally identical to any of
the non-missing values, and that mean imputation therefore preserves some of the information of missing
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values. This is supported by the results of a further experiment, which showed that in the absence of missing-
indicators, applying mean imputation to one-hot encoded categorical attributes results in somewhat better
performance than mode imputation.

On the basis of the experiments in this paper, we conclude that the combination of mean/mode imputation
with missing-indicators is a safe default approach towards missing values in classification tasks. While over-
or underfitting is a concern for certain classifiers, it is a concern for these classifiers with or without missing-
indicators. However, practitioners may want to omit missing-indicators when the classification algorithm to
be used has a special provision for missing values, when the missingness thresholds that we determined are
not met, or on the basis of specific information about the distribution of missing values in the dataset. The
use of missing-indicators can also be combined with feature selection and dimensionality reduction algorithms
to increase the information density of the resulting dataset.

While we have considered the use of missing-indicators with imputation, they can in principle also be used
to supplement other, learner-specific solutions for missing-values. Whether this makes sense and increases
performance will differ from case to case, and we leave this as an open question. In any case, we believe that
going forward, any experimental evaluation of such learner-specific proposals should take missing-indicators
into account.

The problem of missing data has been the subject of a rich body of theoretical literature. We hope to have
contributed with this paper to the practical evaluation of some of that theory. In particular, we are happy to
have identified twenty real-life datasets with missing values, and hope that in the future, more such datasets
will be collected, which would allow drawing even firmer conclusions.
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A Appendix

We list here the results of our experiments in greater detail. Table 7 contains the mean AUROC across
five-fold cross-validation and five random states for each classifier, each dataset, each imputation strategy,
without and with missing-indicators. Table 8 contains the mean AUROC for CART, GBM and ERT with
updated hyperparameter values (as discussed in Subsection 4.1). Table 9 contains the mean AUROC obtained
by imputing missing categorical values with the mean, after one-hot encoding (Subsection 4.3).

Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

NN-1 adult 0.857 0.858 0.858 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.926 0.926 0.922 0.928 0.923
arrhythmia 0.760 0.760 0.760 0.760 0.760 0.760
bands 0.836 0.838 0.834 0.847 0.836 0.848
ckd 0.998 0.994 0.991 0.993 0.989 0.991
crx 0.908 0.909 0.904 0.908 0.909 0.910
dress-sales 0.548 0.555 0.540 0.545 0.527 0.531
exasens 0.710 0.726 0.703 0.713 0.717 0.726
hcc 0.699 0.760 0.707 0.745 0.712 0.753
heart-disease 0.846 0.847 0.841 0.844 0.843 0.846
hepatitis 0.849 0.841 0.841 0.850 0.839 0.847
horse-colic 0.716 0.733 0.738 0.734 0.726 0.738
mammographic-masses 0.821 0.827 0.821 0.825 0.824 0.831
mi 0.572 0.579 0.564 0.580 0.569 0.579
nomao 0.983 0.982 0.978 0.981 0.983 0.982
primary-tumor 0.675 0.687 0.678 0.693 0.676 0.687
secom 0.641 0.651 0.641 0.643 0.646 0.653
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.879 0.877 0.878 0.877 0.875 0.875

NN-2 adult 0.860 0.861 0.861 0.861 0.861 0.860
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.920 0.921 0.921
arrhythmia 0.733 0.733 0.734 0.734 0.733 0.733
bands 0.830 0.832 0.818 0.835 0.825 0.836
ckd 0.999 0.996 0.992 0.995 0.991 0.993
crx 0.899 0.900 0.898 0.899 0.900 0.901
dress-sales 0.554 0.547 0.541 0.539 0.532 0.527
exasens 0.709 0.716 0.699 0.706 0.712 0.718
hcc 0.690 0.696 0.695 0.709 0.698 0.705

Continued on next page
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Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

heart-disease 0.831 0.835 0.828 0.837 0.829 0.836
hepatitis 0.861 0.851 0.846 0.850 0.860 0.862
horse-colic 0.684 0.710 0.724 0.706 0.695 0.704
mammographic-masses 0.820 0.825 0.821 0.824 0.822 0.828
mi 0.561 0.563 0.555 0.560 0.563 0.563
nomao 0.980 0.982 0.976 0.980 0.980 0.981
primary-tumor 0.667 0.673 0.670 0.675 0.666 0.677
secom 0.607 0.612 0.614 0.617 0.607 0.613
soybean 0.986 0.988 0.987 0.988 0.986 0.988
thyroid0387 0.878 0.877 0.878 0.876 0.871 0.871

NN-1-D adult 0.838 0.838 0.837 0.839 0.837 0.838
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.929 0.926 0.927 0.922 0.928 0.923
arrhythmia 0.764 0.764 0.763 0.763 0.764 0.764
bands 0.871 0.875 0.865 0.879 0.870 0.880
ckd 0.998 0.994 0.991 0.993 0.989 0.991
crx 0.907 0.908 0.905 0.908 0.908 0.909
dress-sales 0.544 0.560 0.538 0.545 0.528 0.535
exasens 0.629 0.641 0.625 0.634 0.632 0.640
hcc 0.728 0.786 0.733 0.772 0.738 0.773
heart-disease 0.847 0.848 0.843 0.845 0.843 0.847
hepatitis 0.857 0.853 0.841 0.855 0.841 0.853
horse-colic 0.743 0.751 0.762 0.752 0.749 0.757
mammographic-masses 0.802 0.806 0.798 0.805 0.803 0.808
mi 0.572 0.580 0.564 0.580 0.569 0.579
nomao 0.984 0.983 0.979 0.982 0.984 0.983
primary-tumor 0.665 0.676 0.667 0.684 0.665 0.677
secom 0.644 0.652 0.644 0.645 0.647 0.655
soybean 0.993 0.993 0.992 0.993 0.993 0.993
thyroid0387 0.881 0.879 0.880 0.879 0.877 0.877

NN-2-D adult 0.842 0.843 0.842 0.843 0.842 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.920 0.922 0.918 0.921 0.922 0.922
arrhythmia 0.735 0.736 0.736 0.736 0.735 0.735
bands 0.859 0.861 0.844 0.863 0.850 0.863
ckd 0.999 0.996 0.992 0.995 0.991 0.993
crx 0.898 0.899 0.898 0.900 0.900 0.901
dress-sales 0.548 0.548 0.543 0.538 0.534 0.532
exasens 0.628 0.635 0.623 0.629 0.629 0.634
hcc 0.710 0.723 0.716 0.737 0.719 0.729
heart-disease 0.833 0.838 0.830 0.839 0.831 0.839
hepatitis 0.862 0.856 0.847 0.852 0.859 0.865
horse-colic 0.712 0.731 0.745 0.730 0.719 0.729
mammographic-masses 0.802 0.805 0.799 0.804 0.802 0.807
mi 0.560 0.563 0.556 0.560 0.564 0.565
nomao 0.981 0.983 0.977 0.981 0.981 0.982
primary-tumor 0.659 0.666 0.660 0.667 0.657 0.669

Continued on next page
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Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

secom 0.606 0.610 0.612 0.615 0.606 0.611
soybean 0.986 0.988 0.987 0.988 0.986 0.988
thyroid0387 0.880 0.878 0.879 0.878 0.872 0.872

SVM-L adult 0.905 0.906 0.905 0.906 0.905 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.966 0.969 0.961 0.969 0.963 0.966
arrhythmia 0.818 0.843 0.819 0.843 0.818 0.843
bands 0.796 0.817 0.791 0.809 0.760 0.801
ckd 1.000 1.000 0.999 1.000 0.999 1.000
crx 0.922 0.920 0.920 0.920 0.922 0.921
dress-sales 0.598 0.593 0.594 0.588 0.591 0.597
exasens 0.762 0.780 0.761 0.769 0.761 0.780
hcc 0.757 0.738 0.781 0.756 0.746 0.733
heart-disease 0.866 0.865 0.866 0.867 0.867 0.868
hepatitis 0.848 0.824 0.857 0.831 0.856 0.833
horse-colic 0.790 0.784 0.798 0.784 0.770 0.762
mammographic-masses 0.865 0.867 0.862 0.865 0.864 0.864
mi 0.641 0.666 0.639 0.669 0.636 0.671
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.769 0.769 0.772 0.770 0.778 0.777
secom 0.626 0.629 0.671 0.659 0.631 0.628
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.964 0.964 0.964 0.964 0.954 0.956

SVM-G adult 0.895 0.897 0.896 0.896 0.896 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.967 0.968 0.960 0.965 0.965 0.966
arrhythmia 0.848 0.848 0.848 0.848 0.848 0.848
bands 0.855 0.865 0.858 0.870 0.857 0.869
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.926 0.927 0.924 0.927 0.926 0.928
dress-sales 0.618 0.620 0.620 0.619 0.607 0.612
exasens 0.772 0.780 0.767 0.780 0.773 0.780
hcc 0.778 0.790 0.785 0.793 0.770 0.783
heart-disease 0.865 0.864 0.863 0.864 0.864 0.864
hepatitis 0.893 0.892 0.888 0.887 0.893 0.890
horse-colic 0.768 0.771 0.784 0.786 0.767 0.769
mammographic-masses 0.840 0.845 0.838 0.841 0.839 0.842
mi 0.635 0.643 0.637 0.645 0.639 0.648
nomao 0.991 0.992 0.988 0.991 0.989 0.991
primary-tumor 0.762 0.765 0.764 0.767 0.766 0.767
secom 0.699 0.694 0.702 0.698 0.689 0.685
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.978 0.978 0.978 0.977 0.969 0.970

LR adult 0.905 0.906 0.906 0.906 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.971 0.979 0.971 0.980 0.967 0.978
arrhythmia 0.860 0.860 0.860 0.860 0.859 0.860
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Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

bands 0.819 0.833 0.811 0.830 0.808 0.828
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.924 0.923 0.923 0.923 0.924 0.924
dress-sales 0.620 0.620 0.619 0.624 0.614 0.620
exasens 0.774 0.783 0.768 0.775 0.773 0.782
hcc 0.778 0.760 0.796 0.774 0.772 0.755
heart-disease 0.867 0.868 0.867 0.869 0.867 0.869
hepatitis 0.863 0.856 0.871 0.862 0.870 0.862
horse-colic 0.789 0.786 0.793 0.786 0.769 0.764
mammographic-masses 0.866 0.868 0.863 0.865 0.865 0.865
mi 0.654 0.685 0.645 0.685 0.650 0.688
nomao 0.986 0.988 0.986 0.988 0.985 0.988
primary-tumor 0.773 0.776 0.772 0.775 0.780 0.783
secom 0.686 0.678 0.687 0.680 0.676 0.673
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.974 0.975 0.975 0.975 0.973 0.973

MLP adult 0.890 0.890 0.891 0.889 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.928 0.942 0.931 0.943 0.931 0.942
arrhythmia 0.831 0.846 0.831 0.845 0.831 0.845
bands 0.871 0.879 0.873 0.885 0.868 0.882
ckd 1.000 1.000 1.000 1.000 0.999 1.000
crx 0.902 0.906 0.901 0.905 0.900 0.905
dress-sales 0.549 0.553 0.560 0.561 0.544 0.545
exasens 0.759 0.762 0.746 0.755 0.757 0.763
hcc 0.778 0.781 0.791 0.796 0.777 0.781
heart-disease 0.819 0.815 0.816 0.811 0.818 0.816
hepatitis 0.861 0.861 0.870 0.865 0.872 0.866
horse-colic 0.714 0.744 0.727 0.756 0.719 0.734
mammographic-masses 0.845 0.840 0.841 0.836 0.847 0.840
mi 0.659 0.695 0.656 0.697 0.660 0.697
nomao 0.991 0.991 0.987 0.990 0.990 0.991
primary-tumor 0.768 0.782 0.765 0.778 0.769 0.785
secom 0.693 0.701 0.699 0.704 0.686 0.697
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.988 0.988 0.988 0.987 0.986 0.985

CART adult 0.776 0.775 0.776 0.775 0.776 0.774
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.855 0.858 0.858 0.857 0.854 0.857
arrhythmia 0.712 0.710 0.712 0.702 0.714 0.702
bands 0.716 0.713 0.697 0.716 0.706 0.717
ckd 0.965 0.964 0.979 0.978 0.972 0.970
crx 0.818 0.812 0.813 0.810 0.815 0.809
dress-sales 0.524 0.548 0.526 0.529 0.534 0.532
exasens 0.618 0.616 0.618 0.608 0.621 0.626
hcc 0.593 0.603 0.619 0.617 0.614 0.601
heart-disease 0.702 0.703 0.701 0.700 0.703 0.706
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Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

hepatitis 0.660 0.657 0.691 0.673 0.703 0.700
horse-colic 0.695 0.673 0.700 0.663 0.680 0.676
mammographic-masses 0.748 0.744 0.747 0.746 0.744 0.746
mi 0.572 0.572 0.549 0.574 0.557 0.571
nomao 0.935 0.935 0.922 0.925 0.926 0.927
primary-tumor 0.621 0.621 0.625 0.627 0.622 0.623
secom 0.547 0.552 0.555 0.558 0.542 0.538
soybean 0.975 0.977 0.973 0.974 0.971 0.973
thyroid0387 0.897 0.888 0.875 0.871 0.886 0.883

RF adult 0.890 0.890 0.890 0.891 0.891 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.988 0.989 0.988 0.989 0.988 0.988
arrhythmia 0.883 0.884 0.885 0.885 0.886 0.883
bands 0.893 0.896 0.886 0.898 0.896 0.896
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.932 0.931 0.934 0.932 0.931 0.931
dress-sales 0.591 0.606 0.583 0.602 0.582 0.597
exasens 0.701 0.701 0.689 0.694 0.698 0.701
hcc 0.803 0.816 0.813 0.813 0.794 0.806
heart-disease 0.861 0.864 0.862 0.866 0.864 0.866
hepatitis 0.882 0.887 0.890 0.887 0.888 0.886
horse-colic 0.800 0.791 0.811 0.809 0.793 0.792
mammographic-masses 0.812 0.821 0.815 0.819 0.812 0.820
mi 0.687 0.687 0.676 0.681 0.687 0.679
nomao 0.994 0.994 0.991 0.992 0.993 0.993
primary-tumor 0.749 0.758 0.730 0.761 0.748 0.761
secom 0.722 0.710 0.719 0.713 0.722 0.710
soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.993 0.992 0.995 0.992

ERT adult 0.846 0.847 0.847 0.847 0.846 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.989 0.989 0.988 0.989 0.989
arrhythmia 0.885 0.889 0.881 0.885 0.881 0.885
bands 0.889 0.890 0.874 0.890 0.885 0.892
ckd 1.000 1.000 1.000 1.000 1.000 1.000
crx 0.913 0.911 0.916 0.915 0.912 0.910
dress-sales 0.572 0.600 0.563 0.594 0.560 0.589
exasens 0.633 0.632 0.622 0.626 0.624 0.630
hcc 0.783 0.799 0.776 0.804 0.771 0.796
heart-disease 0.858 0.861 0.862 0.865 0.861 0.861
hepatitis 0.871 0.861 0.876 0.877 0.882 0.871
horse-colic 0.793 0.780 0.818 0.796 0.790 0.780
mammographic-masses 0.793 0.801 0.791 0.800 0.793 0.801
mi 0.689 0.683 0.661 0.683 0.676 0.686
nomao 0.994 0.993 0.991 0.992 0.993 0.993
primary-tumor 0.702 0.718 0.698 0.717 0.704 0.721
secom 0.718 0.713 0.716 0.705 0.706 0.716
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Table 7: AUROC, main experiment. Bold: higher value (without or with missing-indicators).

Classifier Dataset Imputation strategy, missing-indicators no/yes
Mean/mode Neighbours Iterative
No Yes No Yes No Yes

soybean 0.999 0.999 0.999 0.999 0.999 0.999
thyroid0387 0.979 0.976 0.980 0.979 0.975 0.977

ABT adult 0.915 0.915 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.987 0.987 0.987 0.987 0.986 0.987
arrhythmia 0.634 0.632 0.634 0.633 0.634 0.632
bands 0.806 0.806 0.793 0.809 0.805 0.807
ckd 1.000 1.000 0.998 0.999 0.998 1.000
crx 0.905 0.906 0.907 0.906 0.909 0.905
dress-sales 0.590 0.582 0.584 0.578 0.587 0.589
exasens 0.720 0.720 0.705 0.717 0.713 0.711
hcc 0.715 0.724 0.739 0.735 0.708 0.687
heart-disease 0.860 0.860 0.857 0.861 0.861 0.858
hepatitis 0.797 0.804 0.824 0.830 0.805 0.814
horse-colic 0.753 0.752 0.749 0.742 0.735 0.729
mammographic-masses 0.856 0.857 0.855 0.856 0.854 0.855
mi 0.555 0.572 0.572 0.586 0.573 0.572
nomao 0.987 0.987 0.985 0.986 0.986 0.986
primary-tumor 0.661 0.660 0.670 0.668 0.668 0.671
secom 0.670 0.670 0.661 0.661 0.663 0.663
soybean 0.863 0.871 0.777 0.850 0.855 0.865
thyroid0387 0.685 0.685 0.666 0.666 0.674 0.674

GBM adult 0.921 0.921 0.921 0.921 0.921 0.921
agaricus-lepiota 1.000 1.000 1.000 1.000 1.000 1.000
aps-failure 0.989 0.988 0.988 0.989 0.988 0.988
arrhythmia 0.873 0.874 0.880 0.875 0.879 0.878
bands 0.869 0.870 0.857 0.871 0.870 0.873
ckd 1.000 1.000 0.998 0.998 0.998 0.999
crx 0.932 0.932 0.930 0.931 0.929 0.931
dress-sales 0.612 0.606 0.597 0.601 0.612 0.609
exasens 0.725 0.725 0.720 0.724 0.723 0.725
hcc 0.759 0.780 0.762 0.773 0.747 0.742
heart-disease 0.872 0.872 0.869 0.870 0.873 0.872
hepatitis 0.837 0.828 0.837 0.838 0.854 0.854
horse-colic 0.793 0.789 0.794 0.789 0.798 0.789
mammographic-masses 0.850 0.853 0.847 0.851 0.846 0.853
mi 0.664 0.663 0.659 0.663 0.654 0.661
nomao 0.991 0.991 0.989 0.990 0.991 0.991
primary-tumor 0.760 0.763 0.762 0.762 0.754 0.752
secom 0.708 0.710 0.717 0.716 0.708 0.711
soybean 0.999 0.999 0.998 0.999 0.998 0.998
thyroid0387 0.916 0.914 0.896 0.896 0.903 0.905
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Table 8: AUROC, additional experiment for mean/mode imputation and classifiers with adjusted hyperpa-
rameter values. Bold: higher value (without or with missing-indicators).

Dataset Classifier, missing-indicators no/yes
CART GBM ERT
No Yes No Yes No Yes

adult 0.844 0.844 0.927 0.927 0.847 0.847
agaricus-lepiota 0.991 0.992 1.000 1.000 1.000 1.000
aps-failure 0.859 0.859 0.988 0.988 0.991 0.991
arrhythmia 0.749 0.748 0.850 0.852 0.897 0.899
bands 0.749 0.759 0.855 0.857 0.890 0.890
ckd 0.968 0.967 0.998 0.998 1.000 1.000
crx 0.897 0.897 0.934 0.933 0.914 0.914
dress-sales 0.568 0.570 0.608 0.614 0.572 0.602
exasens 0.723 0.732 0.755 0.757 0.626 0.626
hcc 0.577 0.588 0.737 0.745 0.791 0.808
heart-disease 0.777 0.777 0.870 0.871 0.861 0.862
hepatitis 0.626 0.578 0.812 0.809 0.877 0.873
horse-colic 0.742 0.724 0.789 0.783 0.799 0.782
mammographic-masses 0.823 0.823 0.857 0.859 0.795 0.802
mi 0.586 0.592 0.650 0.639 0.702 0.695
nomao 0.916 0.916 0.994 0.994 0.994 0.994
primary-tumor 0.703 0.707 0.766 0.767 0.705 0.714
secom 0.500 0.500 0.684 0.677 0.746 0.747
soybean 0.990 0.991 0.999 0.999 0.999 0.999
thyroid0387 0.909 0.909 0.913 0.923 0.987 0.987

Table 9: AUROC, additional experiment for imputation of categorical attributes (mode imputation or mean
imputation after one-hot encoding). Bold: higher value.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

NN-1 adult 0.857 0.858 0.858 0.858
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.836 0.839 0.838 0.843
crx 0.908 0.909 0.909 0.909
dress-sales 0.548 0.533 0.555 0.539
horse-colic 0.716 0.737 0.733 0.737
mammographic-masses 0.821 0.831 0.827 0.828
nomao 0.983 0.984 0.982 0.982
primary-tumor 0.675 0.679 0.687 0.693
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.879 0.879 0.877 0.877

NN-2 adult 0.860 0.861 0.861 0.861
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.830 0.829 0.832 0.834
crx 0.899 0.898 0.900 0.900
dress-sales 0.554 0.548 0.547 0.531
horse-colic 0.684 0.688 0.710 0.719
mammographic-masses 0.820 0.824 0.825 0.825
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Table 9: AUROC, additional experiment for imputation of categorical attributes (mode imputation or mean
imputation after one-hot encoding). Bold: higher value.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

nomao 0.980 0.981 0.982 0.982
primary-tumor 0.667 0.669 0.673 0.674
soybean 0.986 0.986 0.988 0.988
thyroid0387 0.878 0.879 0.877 0.876

NN-1-D adult 0.838 0.838 0.838 0.838
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.875 0.876
crx 0.907 0.908 0.908 0.908
dress-sales 0.544 0.537 0.560 0.544
horse-colic 0.743 0.763 0.751 0.756
mammographic-masses 0.802 0.810 0.806 0.807
nomao 0.984 0.985 0.983 0.983
primary-tumor 0.665 0.669 0.676 0.681
soybean 0.993 0.993 0.993 0.993
thyroid0387 0.881 0.880 0.879 0.879

NN-2-D adult 0.842 0.843 0.843 0.843
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.859 0.857 0.861 0.862
crx 0.898 0.898 0.899 0.900
dress-sales 0.548 0.543 0.548 0.535
horse-colic 0.712 0.716 0.731 0.739
mammographic-masses 0.802 0.806 0.805 0.806
nomao 0.981 0.982 0.983 0.983
primary-tumor 0.659 0.661 0.666 0.667
soybean 0.986 0.986 0.988 0.988
thyroid0387 0.880 0.880 0.878 0.877

SVM-L adult 0.905 0.905 0.906 0.906
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.796 0.797 0.817 0.817
crx 0.922 0.921 0.920 0.920
dress-sales 0.598 0.590 0.593 0.593
horse-colic 0.790 0.794 0.784 0.784
mammographic-masses 0.865 0.866 0.867 0.867
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.769 0.769 0.769 0.769
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.964 0.965 0.964 0.964

SVM-G adult 0.895 0.896 0.897 0.897
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.856 0.865 0.867
crx 0.926 0.925 0.927 0.927
dress-sales 0.618 0.609 0.620 0.614
horse-colic 0.768 0.774 0.771 0.774
mammographic-masses 0.840 0.843 0.845 0.843
nomao 0.991 0.991 0.992 0.992
primary-tumor 0.762 0.764 0.765 0.766
soybean 0.999 0.999 0.999 0.999
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Table 9: AUROC, additional experiment for imputation of categorical attributes (mode imputation or mean
imputation after one-hot encoding). Bold: higher value.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

thyroid0387 0.978 0.978 0.978 0.978
LR adult 0.905 0.906 0.906 0.906

agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.819 0.814 0.833 0.832
crx 0.924 0.924 0.923 0.924
dress-sales 0.620 0.611 0.620 0.620
horse-colic 0.789 0.788 0.786 0.787
mammographic-masses 0.866 0.867 0.868 0.868
nomao 0.986 0.984 0.988 0.988
primary-tumor 0.773 0.773 0.776 0.776
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.974 0.974 0.975 0.975

MLP adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.871 0.874 0.879 0.882
crx 0.902 0.902 0.906 0.906
dress-sales 0.549 0.540 0.553 0.549
horse-colic 0.714 0.727 0.744 0.749
mammographic-masses 0.845 0.844 0.840 0.841
nomao 0.991 0.991 0.991 0.991
primary-tumor 0.768 0.769 0.782 0.781
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.988 0.989 0.988 0.988

CART adult 0.844 0.844 0.844 0.844
agaricus-lepiota 0.991 0.991 0.992 0.991
bands 0.749 0.744 0.759 0.757
crx 0.897 0.899 0.897 0.899
dress-sales 0.568 0.568 0.570 0.568
horse-colic 0.742 0.728 0.724 0.723
mammographic-masses 0.823 0.822 0.823 0.821
nomao 0.916 0.916 0.916 0.916
primary-tumor 0.703 0.739 0.707 0.738
soybean 0.990 0.995 0.991 0.995
thyroid0387 0.909 0.909 0.909 0.909

RF adult 0.890 0.891 0.890 0.890
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.893 0.895 0.896 0.890
crx 0.932 0.933 0.931 0.930
dress-sales 0.591 0.589 0.606 0.589
horse-colic 0.800 0.802 0.791 0.795
mammographic-masses 0.812 0.823 0.821 0.822
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.749 0.753 0.758 0.759
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.994 0.994 0.994 0.993

ERT adult 0.847 0.848 0.847 0.847
agaricus-lepiota 1.000 1.000 1.000 1.000
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Table 9: AUROC, additional experiment for imputation of categorical attributes (mode imputation or mean
imputation after one-hot encoding). Bold: higher value.

Classifier Dataset Without missing-indicators With missing-indicators
Mode Mean Mode Mean

bands 0.890 0.893 0.890 0.889
crx 0.914 0.914 0.914 0.914
dress-sales 0.572 0.589 0.602 0.591
horse-colic 0.799 0.806 0.782 0.785
mammographic-masses 0.795 0.804 0.802 0.801
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.705 0.711 0.714 0.713
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.987 0.987 0.987 0.987

ABT adult 0.915 0.915 0.915 0.915
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.806 0.806 0.806 0.805
crx 0.905 0.906 0.906 0.904
dress-sales 0.590 0.582 0.582 0.579
horse-colic 0.753 0.763 0.752 0.764
mammographic-masses 0.856 0.857 0.857 0.858
nomao 0.987 0.987 0.987 0.987
primary-tumor 0.661 0.640 0.660 0.639
soybean 0.863 0.859 0.871 0.873
thyroid0387 0.685 0.685 0.685 0.685

GBM adult 0.927 0.927 0.927 0.927
agaricus-lepiota 1.000 1.000 1.000 1.000
bands 0.855 0.855 0.857 0.854
crx 0.934 0.934 0.933 0.934
dress-sales 0.608 0.606 0.614 0.608
horse-colic 0.789 0.792 0.783 0.788
mammographic-masses 0.857 0.857 0.859 0.858
nomao 0.994 0.994 0.994 0.994
primary-tumor 0.766 0.770 0.767 0.769
soybean 0.999 0.999 0.999 0.999
thyroid0387 0.913 0.914 0.923 0.923
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