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Abstract

Recurrent neural networks (RNNs) are popular machine learning tools for modeling
and forecasting sequential data and for inferring dynamical systems (DS) from
observed time series. Concepts from DS theory (DST) have variously been used
to further our understanding of both, how trained RNNs solve complex tasks, and
the training process itself. Bifurcations are particularly important phenomena in
DS, including RNNs, that refer to topological (qualitative) changes in a system’s
dynamical behavior as one or more of its parameters are varied. Knowing the
bifurcation structure of an RNN will thus allow to deduce many of its computa-
tional and dynamical properties, like its sensitivity to parameter variations or its
behavior during training. In particular, bifurcations may account for sudden loss
jumps observed in RNN training that could severely impede the training process.
Here we first mathematically prove for a particular class of ReLU-based RNNs
that certain bifurcations are indeed associated with loss gradients tending toward
infinity or zero. We then introduce a novel heuristic algorithm for detecting all
fixed points and k-cycles in ReLU-based RNNs and their existence and stability
regions, hence bifurcation manifolds in parameter space. In contrast to previous
numerical algorithms for finding fixed points and common continuation methods,
our algorithm provides exact results and returns fixed points and cycles up to high
orders with surprisingly good scaling behavior. We exemplify the algorithm on
the analysis of the training process of RNNs, and find that the recently introduced
technique of generalized teacher forcing completely avoids certain types of bifurca-
tions in training. Thus, besides facilitating the DST analysis of trained RNNs, our
algorithm provides a powerful instrument for analyzing the training process itself.

1 Introduction

Recurrent neural networks (RNNs) are common and powerful tools for learning sequential tasks or
modeling and forecasting time series data [31, 65, 2, 43, 9, 26]. Typically, RNNs are "black boxes,"
whose inner workings are hard to dissect. Techniques from dynamical system theory (DST) can
significantly aid in this effort, as RNNs are formally discrete-time dynamical systems (DS) [37]. A
better understanding of how RNNs solve their tasks is important for detecting failure modes and
designing better architectures and training algorithms. In scientific machine learning, on the other
hand, RNNs are often employed for reconstructing unknown DS from sets of time series observations
[10, 30, 64, 63, 23, 55], e.g. in climate or disease modeling. In this case, the RNN is supposed
to provide an approximation to the flow of the observed system that reproduces all its dynamical
properties, e.g., cyclic behavior in climate or epidemiological systems. In such scientific or medical
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settings, a detailed understanding of the RNN’s dynamics and its sensitivity to parameter variations is
in fact often crucial.

Beyond understanding the dynamical properties of a once trained RNN, it may also be of interest
to know how its dynamical repertoire changes with changes in its parameters. The parameter space
of any DS is partitioned into regions (or sets) with topologically different dynamical behaviors by
bifurcation curves (or, more generally, manifolds). Such bifurcations, qualitative changes in the
system dynamics due to parameter variations, may not only be crucial in scientific applications where
we use RNNs, for instance, to predict tipping points in climate systems or medical scenarios like
sepsis detection [45]. They also pose severe challenges for the training process itself as qualitative
changes in RNN dynamics may go in hand with sudden jumps in the loss landscape [16, 44]. Although
methods from DST have significantly advanced the field in recent years, especially with regards to
algorithms for reconstructing nonlinear DS from data [55, 46, 67], progress is still hampered by the
lack of efficient tools for analysing the dynamics of higher-dimensional RNNs and their bifurcations.
In particular, methods are needed for exactly locating geometrical objects like fixed points or cycles
in an RNN’s state space, but current numerical techniques do not scale well to higher-dimensional
scenarios and provide only approximate solutions [29, 21, 61].

The contributions of this work are threefold: After first providing an introduction into bifurcations of
piecewise-linear (ReLU-based) RNNs (PLRNNs), which have been extensively used for reconstruct-
ing DS from empirical data [10, 30], we mathematically prove that certain bifurcations during the
training process will indeed cause loss gradients to diverge to infinity, resulting in abrupt jumps in
the loss, while others will cause them to vanish. As RNNs are likely to undergo several bifurcations
during training on their way from some initial parameter configuration toward a dynamics that
successfully implements any given task, this poses severe challenges for RNN training and may be
one of the reasons for exploding and vanishing gradients [16, 44, 8, 25]. We then create a novel,
efficient heuristic algorithm for exactly locating all fixed points and k-cycles in PLRNNs, which can
be used to delineate bifurcation manifolds in higher-dimensional systems. Our algorithm finds these
dynamical objects in many orders of magnitude less time than an exhaustive search would take. Using
this algorithm, we demonstrate empirically that steep cliffs in loss landscapes and bifurcation curves
indeed tightly overlap, and that bifurcations in the system dynamics are accompanied by sudden
loss jumps. Finally, we prove and demonstrate that the recently introduced technique of generalized
teacher forcing (GTF) [24] completely eliminates certain types of bifurcation in training, providing
an explanation for its efficiency.

2 Related Work

DS analysis of trained RNNs In many areas of science one is interested in identifying the nonlinear
DS that explains a set of observed time series [12, 23]. A variety of purely data-driven machine
learning approaches have been developed for this purpose [11, 51, 15], but mostly RNNs are used for
the goal of reconstructing DS from measured time series [10, 55, 30, 64, 63, 46, 45]. In scientific
settings in particular, but also often in engineering applications, we seek a detailed understanding of
the system dynamics captured – or the dynamical repertoire produced – by a trained RNN [62, 33,
61, 14, 13]. To analyze an RNN’s dynamics, typically its fixed points are determined numerically,
for instance by optimizing some cost function [21, 34, 61], by numerically traversing directional
fibers [29], or by co-training a switching linear dynamical system [56]. These techniques, however,
often scale poorly with dimensionality, provide only approximate solutions, and are not designed
for detecting other dynamical objects like k-cycles. This is, however, crucial for understanding the
complete dynamical repertoire of a trained RNN. PLRNNs are of particular interest in this context
[10, 55, 30, 38], because their piecewise linear nature makes some of their properties analytically
accessible [55, 10], which is a tremendous advantage from the perspective of DST. In this work, we
develop an efficient heuristic algorithm for locating a PLRNN’s fixed points exactly, as well as its
k-cycles.

Bifurcations and loss jumps in RNN training The idea that bifurcations in RNN dynamics could
impede the training process is not new [16, 44]. Doya [16], to our knowledge, was the first to point
out that even in simple single-unit RNNs with sigmoid activation function (saddle-node) bifurcations
may occur as an RNN parameter is adapted during training. This may not only cause an abrupt jump
in training loss, but could lead to situations where it is impossible, even in principle, to reach the
training objective (the desired target output), as across the bifurcation point there is a discrete change
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in network behavior [16, 68, 4]. Pascanu et al. [44] discussed similar associations between steep
cliffs in RNN loss functions and bifurcations. Although profound for training success, this topic
received surprisingly little attention over the years. Haschke and Steil [22] extended previous work
by a more formal treatment of bifurcation boundaries in RNNs, and Marichal et al. [35] examined
fold bifurcations in RNNs. The effects of bifurcations and their relation to exploding gradients in
gated recurrent units (GRUs) was investigated in Kanai et al. [27]. Ribeiro et al. [50] looked at the
connection between dynamics and smoothness of the cost function, but failed to find a link between
bifurcations and jumps in performance. In contrast, Rehmer and Kroll [49] observed large gradients at
bifurcation boundaries and concluded that bifurcations can indeed cause problems in gradient-based
optimization. To the best of our knowledge, we are, however, the first to formally prove a direct
link between bifurcations and the behavior of loss gradients, and to derive a systematic and efficient
algorithmic procedure for identifying bifurcation manifolds for a class of ReLU-based RNNs.

3 Theoretical analysis

In this paper we will focus on PLRNNs as one representative of the wider class of ReLU-based RNNs,
but similar derivations and algorithmic procedures could be devised for any type of ReLU-based
RNN (in fact, many other types of ReLU-based RNNs could be brought into the same functional
form as PLRNNs; e.g. [10]). We will first, in sect. 3.1, provide some theoretical background on
bifurcations in PLRNNs, and illustrate how existence and stability regions of fixed points and cycles
could be analytically computed for low dimensional (2d) PLRNNs. In sect. 3.2 we will then state
two theorems regarding the association of bifurcations and loss gradients in training. It turns out that
for certain types of bifurcations exploding or vanishing gradients are inevitable in gradient-based
training procedures like Back-Propagation Through Time (BPTT).

3.1 Bifurcation curves in PLRNN parameter space

The PLRNN, originally introduced as a kind of discrete time neural population model [18], has the
general form

zt = Fθ(zt−1, st) = Azt−1 +Wϕ(zt−1) +Cst + h, (1)

where zt ∈ RM is the latent state vector and θ are system parameters consisting of diagonal matrix
A ∈ RM×M (auto-regression weights), off-diagonal matrix W ∈ RM×M (coupling weights),
ϕ(zt−1) = max(zt−1, 0) is the element-wise rectified linear unit (ReLU ) function, h ∈ RM a
constant bias term, and st ∈ RK represents external inputs weighted by C ∈ RM×K . The original
formulation of the PLRNN is stochastic [18, 30], with a Gaussian noise term added to eq. (1), but
here we will consider the deterministic variant.

Formally, like other ReLU-based RNNs, PLRNNs constitute piecewise linear (PWL) maps, a sub-
class of piecewise smooth (PWS) discrete-time DS. Define DΩ(t) := diag(dΩ(t)) as a diagonal
matrix with indicator vector dΩ(t) := (d1, d2, · · · , dM ) such that dm(zm,t) =: dm = 1 whenever
zm,t > 0, and zero otherwise. Then (1) can be rewritten as

zt = Fθ(zt−1) = (A+WDΩ(t−1))zt−1 + h =: WΩ(t−1) zt−1 + h, (2)

where we have ignored external inputs st for simplicity. There are in general 2M different con-
figurations for matrix DΩ(t−1) and hence for matrix WΩ(t−1), dividing the phase space into 2M

sub-regions separated by switching manifolds (see Appx. A.1.1 for more details).

Recall that fixed points of a map zt = Fθ(zt−1) are defined as the set of points for which we have
z∗ = Fθ(z

∗), and that the type (node, saddle, spiral) and stability of a fixed point can be read off
from the eigenvalues of the Jacobian Jt :=

∂Fθ(zt−1)
∂zt−1

= ∂zt

∂zt−1
evaluated at z∗ [3, 47]. Similarly,

a k-cycle of map Fθ is a periodic orbit {z∗
1 , z

∗
2 , . . . ,z

∗
k} such that each of the periodic points

z∗
i , i = 1 . . . k, is distinct, and is a solution to the equation z∗

i = F k
θ (z

∗
i ), i.e. the k times iterated

map Fθ. Type and stability of a k-cycle are then determined via the Jacobian
∏k

r=1 Jt+k−r =∏k
r=1

∂zt+k−r

∂zt+k−r−1
= ∂zt+k−1

∂zt−1
. Solving these equations and computing the corresponding Jacobians

thus allows to determine all existence and stability regions of fixed points and cycles, where the latter
are a subset of the former, bounded by bifurcation curves (see Appx. A.1 for more formal details).

3



To provide a specific example, assume M = 2 and fix – for the purpose of this exposition – parameters
w12 = w22 = 0, such that we have

WΩ1 = WΩ3 =

(
a11 0

0 a22

)
, WΩ2 = WΩ4 =

(
a11 + w11 0

w21 a22

)
, (3)

i.e. only one border which divides the phase space into two distinct sub-regions (see Appx. A.1.1).
For this setup, Fig. 1A provides examples of analytically determined stability regions for two low
order cycles in the (a11, a11 + w11)-parameter plane (see Appx. A.1). Note that there are regions in
parameter space where two or more stability regions overlap: In these regions we have multi-stability,
the co-existence of different attractor states in the PLRNN’s state space.

As noted above, bifurcation curves delimit the different stability regions in parameter space and
are hence associated with abrupt changes in the topological structure of a system’s state space. In
general, there are many different types of bifurcations through which dynamical objects can come into
existence, disappear, or change stability (see, e.g., [3, 40, 47]), the most common ones being saddle
node, transcritical, pitchfork, homoclinic, and Hopf bifurcations. In comparison with smooth systems,
bifurcation theory of PWS (or PWL) maps includes additional dynamical phenomena related to the
existence of borders in the phase space [6]. Border-collision bifurcations (BCBs) arise when for a PWS
map a specific point of an invariant set collides with a border and this collision leads to a qualitative
change of dynamics [5, 6, 42]. More specifically, a BCB occurs, if for a PWS map zt = Fθ(zt−1) a
fixed point or k-cycle either crosses the switching manifold

∑
i := {z ∈ Rn : eTi z = 0} transversely

at θ = θ∗ and its qualitative behavior changes in the event, or if it collides on the border with another
fixed point or k-cycle and both objects disappear [7, 41]. Degenerate transcritical bifurcations (DTBs)
occur when a fixed point or a periodic point of a cycle tends to infinity and one of its eigenvalues
tends to 1 by variation of a parameter. Specifically, let Γk, k ≥ 1, be a fixed point or a k-cycle with
the periodic points {z∗

1 , z
∗
2 , . . . ,z

∗
k}, and assume λi denotes an eigenvalue of the Jacobian matrix at

the periodic point z∗
i , i ∈ {1, 2, · · · , k}. Then Γk undergoes a DTB at θ = θ∗, if λi(θ∗)→ +1 and

∥z∗
i ∥ → ∞. Γk undergoes a degenerate flip bifurcation (DFB), iff λi(θ∗) = −1 and the map F k has

locally, in some neighborhood of z∗
i , infinitely many 2-cycles at θ = θ∗. A center bifurcation (CB)

occurs, if Γk has a pair of complex conjugate eigenvalues λ1,2 and locally becomes a center at the
bifurcation value θ = θ∗, i.e. if its eigenvalues are complex and lie on the unit circle (|λ1,2(θ

∗)| = 1).
Another important class of bifurcations are multiple attractor bifurcations (MABs), discussed in more
detail in Appx. A.1.5 (see Fig. S3). In addition to existence and stability regions of fixed points and
cycles, in Appx. A.1.2-A.1.4 we also illustrate how to analytically determine the types of bifurcation
curves bounding the existence and stability regions of k-cycles (DTB, DFB, CB and BCB curves; see
also Fig. S6 for a 1d example).

3.2 Bifurcations and loss jumps in training

Here we will prove that major types of bifurcations discussed above are always associated with
exploding or vanishing gradients in PLRNNs during training, and hence often with abrupt jumps
in the loss. For this we may assume any generic loss function L(θ), like a negative log-likelihood
or a mean-squared-error (MSE) loss, and a gradient-based training technique like BPTT [52] or
Real-Time-Recurrent-Learning (RTRL) that involves a recursion (via chain rule) through loss terms
across time. The first theorem establishes that a DTB inevitably causes exploding gradients.
Theorem 1. Consider a PLRNN of the form (2) with parameters θ = {A,W ,h}. Assume that it
has a stable fixed point or k-cycle Γk (k ≥ 1) with BΓk

as its basin of attraction. If Γk undergoes
a degenerate transcritical bifurcation (DTB) for some parameter value θ = θ0 ∈ θ, then the
norm of the PLRNN loss gradient,

∥∥∂Lt

∂θ

∥∥, tends to infinity at θ = θ0 for every z1 ∈ BΓk
, i.e.

limθ→θ0

∥∥∂Lt

∂θ

∥∥ =∞.

Proof. See Appx. A.2.1

However, bifurcations may also cause gradients to suddenly vanish, as it is the case for a BCB as
established by our second theorem:
Theorem 2. Consider a PLRNN of the form (2) with parameters θ = {A,W ,h}. Assume that it
has a stable fixed point or k-cycle Γk (k ≥ 1) with BΓk

as its basin of attraction. If Γk undergoes a
border collision bifurcation (BCB) for some parameter value θ = θ0 ∈ θ, then the gradient of the
loss function, ∂Lt

∂θ , vanishes at θ = θ0 for every z1 ∈ BΓk
, i.e. limθ→θ0

∥∥∂Lt

∂θ

∥∥ = 0.
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Figure 1: A) Analytically calculated stability regions for a 2-cycle (SRL, red), a 3-cycle (SRL2 ,
blue), and their intersection (yellow) in the (a11, a11 + w11)-parameter plane for the system eq. (3)
with a22 = 0.2, w21 = 0.5. B) Same as determined by SCYFI, with bifurcation curves bordering
the stability regions labeled by the type of bifurcation (DTB = Degenerate Transcritical Bifurcation,
BCB= Border Collision Bifurcation, DFB = Degenerate Flip Bifurcation). C) Bifurcation graph
(showing the stable cyclic points in the z1 coordinate) along the cross-section in A indicated by
the gray line, illustrating the different types of bifurcation encountered when moving in and out of
the various stability regions in A. D) State space at the point denoted ’D’ in A (for a11 = 0.253,
a11 + w11 = −2.83), where the 2-cycle (red) and 3-cycle (blue) co-exist for the same parameter
settings, with their corresponding basins of attraction indicated by lighter colors.

Proof. See Appx. A.2.2.

Corollary 1. Assume that the PLRNN (2) has a stable fixed point Γ1 with BΓ1
as its basin of

attraction. If Γ1 undergoes a degenerate flip bifurcation (DFB) for some parameter value θ = θ0 ∈ θ,
then this will always coincide with a BCB of a 2-cycle, and as a result limθ→θ0

∥∥∂Lt

∂θ

∥∥ = 0 for every
z1 ∈ BΓ1 .

Proof. See Appx. A.2.3.
Hence, certain bifurcations will inevitably cause gradients to suddenly explode or vanish, and often
induce abrupt jumps in the loss (see Appx. A.3.2 for when this will happen for a BCB). We emphasize
that these results are general and hold for systems of any dimension, as well as in the presence of
inputs. Since inputs do not affect the Jacobians in eqn. (70), (71) and (76), they do not change the
theorems (even if they would affect the Jacobians, Theorem 2 would be unaltered, and Theorem
1 could be amended in a straightforward way). Furthermore, since we are addressing bifurcations
that occur during model training, from this angle inputs may simply be treated as either additional
parameters (if piecewise constant) or states of the system (without changing any of the mathematical
derivations). In fact, mathematically, any non-autonomous dynamical system (RNN with inputs) can
always and strictly be reformulated as an autonomous system (RNN without inputs), see [3, 47, 66].

4 Heuristic algorithm for finding PLRNN bifurcation manifolds
4.1 Searcher for fixed points and cycles (SCYFI): motivation and validation

In sect. 3.1 and Appx. A.1.2-A.1.4 we derived existence and stability regions for fixed points and low
order (k ≤ 3) cycles in 2d PLRNNs with specific parameter constraints analytically. For higher-order
cycles and higher-dimensional PLRNNs (or any other ReLU-type RNN) this is no longer feasible
due to the combinatorial explosion in the number of subregions that need to be considered as M and
k increase. Here we therefore introduce an efficient search algorithm for finding all k-cycles of a
given PLRNN, which we call Searcher for Cycles and Fixed points: SCYFI (Algorithm 1). Once all
k-cycles (k ≥ 1) have been detected on some parameter grid, the stability-/existence regions of these
objects and thereby the bifurcation manifolds can be determined. k-cycles were defined in sect. 3.1,
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Algorithm 1 SCYFI
The algorithm is iteratively run with k = 1 · · ·Kmax, with Kmax the max. order of cycles tested
Input: PLRNN parameters A, W , h;

L = {Ln}k−1
n=1: collection of all sets Ln = {{z(m)

l }nl=1}
Mn
m=1 of all lower order n-cycles

discovered so far, where Mn is the number of found cycles {z(m)
l }nl=1 of order n, with

corresponding ReLU derivative matrices {D(m)
l }nl=1.

Parameters:
Nout: max. number of random initialisations;
Nin: max. number of iterations

Output: L ∪ Lk; Lk: set of all discovered k-cycles

1: Lk = {}
2: i→ 0
3: while i < Nout . . . do
4: Select k subregions Dinit = {D1,D2, ...,Dk} at random with replacement
5: c→ 0
6: while c < Nin . . . do
7: Solve eq. (4) for a cycle candidate {z∗

l }kl=1 with WΩ(k−r) as defined in eq. (2) based
on Dinit

8: Determine {D∗
l }kl=1 based on the signs of the corresponding components of {z∗

l }kl=1

9: if Dinit = {D∗
l }kl=1 (self-consistency) and ∀1 ≤ s ≤ k,∀{z(m)

l }k−s+1
l=1 ∈ Lk−s+1 :

{z(m)
l }k−s+1

l=1 ̸⊆ {z∗
l }kl=1 then

10: Lk → Lk ∪ {{z∗
l }kl=1}

11: i→ c→ 0
12: else
13: Dinit → {D∗

l }kl=1
14: end if
15: c→ c+ 1
16: end while
17: i→ i+ 1
18: end while

and for the PLRNN, eq. (2), are given by the set of k-periodic points {z∗
1 , . . . ,z

∗
l , . . . ,z

∗
k}, where

z∗
k =

(
1−

k−1∏
r=0

WΩ(k−r)

)−1[ k−1∑
j=2

k−j∏
r=0

WΩ(k−r) + 1

]
h, (4)

if
(
1−

∏k−1
r=0 WΩ(k−r)

)
is invertible (if not, we are dealing with a bifurcation or a continuous set

of fixed points). The other periodic points are zl = F l(z∗
k), l = 1, · · · , k − 1, with corresponding

matrices WΩ(l) = A+WDl . Now, if the diagonal entries in Dl are consistent with the signs of the
corresponding states z∗ml, i.e. if d(l)mm = 1 if z∗ml > 0 and d

(l)
mm = 0 otherwise for all l, {z∗

1 , . . . ,z
∗
k}

is a true cycle of eq. (2), otherwise we call it virtual. To find a k-cycle, since an M -dimensional
PLRNN harbors 2M different linear sub-regions, there are approximately 2Mk different combinations
of configurations of the matrices Dl, l = 1 . . . k, to consider (strictly, mathematical constraints rule
out some of these possibilities, e.g. not all periodic points can lie within the same sub-region/orthant).

Clearly, for higher-dimensional PLRNNs and higher cycle orders exhaustively searching this space
becomes unfeasible. Instead, we found that the following heuristic works surprisingly well: First, for
some order k and a random initialization of the matrices Dl, l = 1 . . . k, generate a cycle candidate
by solving eq. (4). If each of the points z∗

l , l = 1 . . . k, is consistent with the diagonal entries
in the corresponding matrix Dl, l = 1 . . . k, and none of them is already in the current library of
cyclic points, then a true k-cycle has been identified, otherwise the cycle is virtual (or a super-set of
lower-order cycles). We discovered that the search becomes extremely efficient, without the need
to exhaustively consider all configurations, if a new search loop is re-initialized at the last visited
virtual cyclic point (i.e., all inconsistent entries d

(l)
mm in the matrices Dl, l = 1 . . . k, are flipped,

d
(l)
mm → 1−d(l)mm, to bring them into agreement with the signs of the solution points, z∗

l = [z∗ml], of eq.
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(4), thus yielding the next initial configuration). It is straightforward to see that this procedure almost
surely converges if Nout is chosen large enough, see Appx. A.2.4. The whole procedure is formalized
in Algorithm 1, and the code is available at https://github.com/DurstewitzLab/SCYFI.

To validate the algorithm, we can compare analytical solutions as derived in sect. 3.1 to the output
of the algorithm. To delineate all existence and stability regions, the algorithm searches for all
k-cycles up to some maximum order K along a fine grid across the (a11, a11+w11)-parameter plane.
A bifurcation happens whenever between two grid points a cycle appears, disappears, or changes
stability (as determined from the eigenvalue spectrum of the respective kth-order Jacobian). The
results of this procedure are shown in Fig. 1B, illustrating that the analytical solutions for existence
and stability regions precisely overlap with those identified by Algorithm 1 (see also Fig. S7).

4.2 Numerical and theoretical results on SCYFI’s scaling behavior

Because of the combinatorial nature of the problem, it is generally not feasible to obtain ground truth
settings in higher dimensions for SCYFI to compare to. To nevertheless assess its scaling behavior,
we therefore studied two specific scenarios. For an exhaustive search, the expected and median
numbers of linear subregions n until an object of interest (fixed point or cycle) is found, i.e. the
number of {D1:k} constellations that need to be inspected until the first hit, are given by

E[n] =
N + 1

m+ 1
=

2Mk + 1

m+ 1
, n = min

{
n ∈ N

∣∣∣∣∣
(
2Mk − n

m

)
≤ 1

2

(
2Mk

m

)}
(5)

with m being the number of existing k-cycles and N the total number of combinations, as shown
in Ahlgren [1] (assuming no prior knowledge about the mathematical limitations when drawing
regions). The median n as well as the actual median number of to-be-searched combinations required
by SCYFI to find at least one k-cycle is given for low-dimensional systems in Fig. 2A as a function
of cycle order k, and can be seen to be surprisingly linear as confirmed by linear regression fits to the
data (see Fig. 2 legend for details). To assess scaling as a function of dimensionality M , we explicitly
constructed systems with one known fixed point (see Appx. A.3.1 for details) and determined the
number n of subregions required by SCYFI to detect this embedded fixed point (Fig. 2B). In general,
the scaling depended on the system’s eigenspectrum, but for reasonable scenarios was polynomial or
even sublinear (Fig. 2B, see also Fig. S8). In either case, the number of required SCYFI iterations
scaled much more favorably than would be expected from an exhaustive search.

Figure 2: A) Number of linear subregions n searched until at least one cycle of order k was
found by SCYFI (blue) vs. the median number n an exhaustive search would take by randomly
drawing combinations without replacement (black) as a function of cycle order (M = 2 fixed).
Each data point represents the median of 50 different initializations across 5 different PLRNN
models. Error bars = median absolute deviation. Linear regression fit using weighted least-squares
(R2 ≈ 0.998, p < 10−30). B) Number of linear subregions n searched until a specific fixed point was
found as function of dimensionality M for different eigenvalue spectra (see Appx. A.3.1 for details).

How could this surprisingly good scaling behavior be explained? As shown numerically in Fig. S9,
when we initiate SCYFI in different randomly selected linear subregions, it converges to the sub-
regions including the dynamical objects of interest exponentially fast, offsetting the combinatorial
explosion. A more specific and stronger theoretical result about SCYFI’s convergence speed can be
obtained under certain conditions on the parameters (which agrees nicely with the numerical results in
Fig. 2). It rests on the observation that SCYFI is designed to move only among subregions containing
virtual or actual fixed points or cycles, based on the fact that it is always reinitialized with the next
virtual fixed (cyclic) point in case the consistency check fails. The result can be stated as follows:
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Theorem 3. Consider a PLRNN of the form (2) with parameters θ = {A,W ,h}. Under certain
conditions on θ (for which ∥A∥+ ∥W ∥ < 1), SCYFI will converge in at most linear time.

Proof. See Appx. A.2.5

5 Loss landscapes and bifurcation curves
5.1 Bifurcations and loss jumps in training

Figure 3: A) Logarithm of gradient norm of the loss in PLRNN parameter space, with ground
truth parameters centered at (0, 0). Superimposed in yellow are bifurcation curves computed by
SCYFI, and in green two examples of training trajectories from different parameter initial conditions
(indicated by the stars). Red dots indicate the bifurcation crossing time points shown in C & D. B)
Relief plot of the loss landscape from A to highlight the differences in loss altitude associated with
the bifurcations. C) Loss during the training run represented by the green trajectory labeled C in A
and B. Red dot indicates the time point of bifurcation crossing corresponding to the red dot in A and
B. D) Same for trajectory labeled D in A and B.

Fig. 3 provides a 2d toy example illustrating the tight association between the loss landscape and
bifurcation curves, as determined through SCYFI, for a PLRNN trained by BPTT on reproducing
a specific 16-cycle. Fig. 3A depicts a contour plot of the gradient norms with overlaid bifurcation
curves in yellow, while Fig. 3B shows the MSE loss landscape as a relief for better appreciation
of the sharp changes in loss height associated with the bifurcation curves. Shown in green are
two trajectories from two different parameter initializations traced out during PLRNN training in
parameter space, where training was confined to only those two parameters given in the graphs (i.e.,
all other PLRNN parameters were kept fixed during training for the purpose of this illustration).
As confirmed in Fig. 3C & D, as soon as the training trajectory crosses the bifurcation curves in
parameter space, a huge jump in the loss associated with a sudden increase in the gradient norm
occurs. This illustrates empirically and graphically the theoretical results derived in sect. 3.

Next we illustrate the application of SCYFI on a real-world example, learning the behavior of a rodent
spiking cortical neuron observed through time series measurements of its membrane potential (note
that spiking is a highly nonlinear behavior involving fast within-spike and much slower between-spike
time scales). For this, we constructed a 6-dimensional delay embedding of the membrane voltage
[53, 28], and trained a PLRNN with one hidden layer (cf. eq. 6) using BPTT with sparse teacher
forcing (STF) [37] to approximate the dynamics of the spiking neuron (see Appx. A.3.2 for a similar
analysis on a biophysical neuron model). With M = 6 latent states and H = 20 hidden dimensions,
the trained PLRNN comprises 220 different linear subregions and |θ| = 272 parameters, much
higher-dimensional than the toy example considered above. Fig. 4A gives the MAE loss as a function
of training epoch (i.e., single SGD updates), while Figs. 4B & C illustrate the well-trained behavior
in time (Fig. 4B) and in a 2-dimensional projection of the model’s state space obtained by PCA
(Fig. 4C). The loss curve exhibits several steep jumps. Zooming into one of these regions (Fig. 4A;
indicated by the red box) and examining the transitions in parameter space using SCYFI, we find
they are indeed produced by bifurcations, with an example given in Fig. 4D. Note that we are now
dealing with high-dimensional state and parameter spaces, such that visualization of results becomes
tricky. For the bifurcation diagram in Fig. 4D we therefore projected all extracted k-cycles (k ≥ 1)
onto a line given by the PCA-derived maximum eigenvalue component, and plotted this as a function
of training epoch.1 Since SCYFI extracts all k-cycles and their eigenvalue spectrum, we can also
determine the type of bifurcation that caused the jump. While before the loss jump the PLRNN
already produced time series quite similar to those of the physiologically recorded cell (Fig. 4E), a

1Of course, very many of the PLRNN parameters may change from one epoch to the next.
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DTB (cf. Theorem 1) produced catastrophic forgetting of the learned behavior with the PLRNN’s
states suddenly diverging to minus infinity (Fig. 4F; Fig. S10 also provides an example of a BCB
during PLRNN training, and Fig. S11 an example of a DFB). This illustrates how SCYFI can be used
to analyze the training process with respect to bifurcation events also for high-dimensional real-world
examples, as well as the behavior of the trained model (Fig. 4C).

Figure 4: A) Loss across training epochs for a PLRNN with one hidden layer trained on electro-
physiological recordings from a cortical neuron. Red box zooms in on one of the training phases
with a huge loss jump, caused by a DTB. Letters refer to selected training epochs in other subpanels.
B) Time series of true (gray) and PLRNN-simulated (black) membrane potential in the well trained
regime (see A). C) All fixed points and cycles discovered by SCYFI for the well-trained model in
state space projected onto the first two principle components using PCA. Filled circles represent
stable and open circles unstable objects. The stable 39-cycle corresponds to the spiking behavior.
D) Bifurcation diagram of the PLRNN as a function of training epoch around the loss peak in A.
Locations of stable (filled circles) and unstable (open circles) objects projected onto the first principle
component. E) Model behavior as in B shortly before the DTB and associated loss jump (from the
epoch indicated in A, D). F) Model behavior as in B right around the DTB (diverging to −∞).

5.2 Implications for designing training algorithms

What are potential take-homes of the results in sects. 3.2 & 5.1 for designing RNN training algorithms?
One possibility is to design smart initialization or training procedures that aim to place or push an
RNN into the right topological regime by taking big leaps in parameter space whenever the current
regime is not fit for the data, rather than dwelling within a wrong regime for too long. These ideas
are discussed in a bit more depth in Appx.A.3.3, with a proof of concept in Fig. S12.

Figure 5: Example loss curves during training a PLRNN (M = 10) on a 2d cycle using gradient
descent, once without GTF (α = 0, blue curve) but gradient clipping, and once with GTF (α = 0.1).
Note that without GTF there are several sharp loss jumps associated with bifurcations in the PLRNN
parameters, while activating GTF leads to a smooth loss curve avoiding bifurcations. Note: For direct
comparability both loss curves were cut off at 4 and then scaled to [0, 1].The absolute loss is much
lower for GTF.
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More importantly, however, we discovered that the recently proposed technique of ‘generalized
teacher forcing (GTF)’ [24] tends to circumvent bifurcations in RNN training altogether, leading
to much faster convergence as illustrated in Fig. 5. The way this works is that GTF, by trading off
forward-iterated RNN latent states with data-inferred states according to a specific annealing schedule
during training (see Appx. A.2.6), tends to pull the RNN directly into the right dynamical regime.
In fact, for DTBs we can strictly prove these will never occur in PLRNN training with the right
adjustment of the GTF parameter:
Theorem 4. Consider a PLRNN of the form (2) with parameters θ = {A,W ,h}. Assume that it
has a stable fixed point or k-cycle Γk (k ≥ 1) that undergoes a degenerate transcritical bifurcation
(DTB) for some parameter value θ = θ0 ∈ θ.

(i) If ∥A∥+∥W ∥ ≤ 1, then for any GTF parameter 0 < α < 1, GTF controls the system, avoiding
a DTB and, hence, gradient divergence at θ0.

(ii) If ∥A∥ + ∥W ∥ = r > 1, then for any 1 − 1
r < α < 1, GTF prevents a DTB and, hence,

gradient divergence at θ0.
Proof. See Appx. A.2.6.

As this example illustrates, we may be able to amend training procedures such as to avoid specific
types of bifurcations.

6 Discussion

DS theory [3, 47, 58] is increasingly appreciated in the ML/AI community as a powerful mathematical
framework for understanding both the training process of ML models [49, 54, 44, 16] as well as the
behavior of trained models [62, 33, 61]. While the latter is generally useful for understanding how a
trained RNN performs a given ML task, with prospects of improving found solutions, it is in fact
imperative in areas like science or medicine where excavating the dynamical behavior and repertoire
of trained models yields direct insight into the underlying physical, biological, or medical processes
the model is supposed to capture. However, application of DS theory is often not straightforward,
especially when dealing with higher-dimensional systems, and commonly requires numerical routines
that may only find some of the dynamical objects of interest, and also only approximate solutions.
One central contribution of the present work therefore was the design of a novel algorithm, SCYFI,
that can exactly locate fixed points and cycles of a wide class of ReLU-based RNNs. This provides
an efficient instrument for the DS analysis of trained models, supporting their interpretability and
explainability.

A surprising observation was that SCYFI often finds cycles in only linear time, despite the com-
binatorial nature of the problem, a feature shared with the famous Simplex algorithm for solving
linear programming tasks [36, 32, 57]. While we discovered numerically that SCYFI for empirically
relevant scenarios converges surprisingly fast, deriving strict theoretical guarantees is hard, and so
far we could establish stronger theoretical results on its convergence properties only under specific
assumptions on the RNN parameters. Further theoretical work is therefore necessary to precisely
understand why the algorithm works so effectively.

In this work we applied SCYFI to illuminate the training process itself. Since RNNs are themselves
DS, they are subject to different forms of bifurcations during training as their parameters are varied
under the action of a training algorithm (similar considerations may apply to very deep NNs). It has
been recognized for some time that bifurcations in RNN training may give rise to sudden jumps in the
loss [44, 16], but the phenomenon has rarely been treated more systematically and mathematically.
Another major contribution of this work thus was to formally prove a strict connection between
three types of bifurcations and abrupt changes in the gradient norms, and to use SCYFI to further
reveal such events during PLRNN training on various example systems. There are numerous other
types of bifurcations (e.g., center bifurcations, Hopf bifurcations etc.) that are likely to impact
gradients during training, only for a subset of which we could provide formal proofs here. As we have
demonstrated, understanding the topological and bifurcation landscape of RNNs could help improve
training algorithms and provide insights into their working. Hence, a more general understanding of
how various types of bifurcation affect the training process in a diverse range of RNN architectures is
a promising future avenue not only for our theoretical understandings of RNNs, but also for guiding
future algorithm design.
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A Appendix

A.1 Analysis of bifurcation curves

A.1.1 PLRNNs

The standard PLRNN [18], given in eq. (1) in sect. 3.1, was defined by

zt = Fθ(zt−1, st) = Azt−1 + Wϕ(zt−1) + Cst + h,

where ϕ(zt−1) = max(zt−1, 0). There are various extensions of this basic architecture like the
dendPLRNN [10] or the ‘shallow PLRNN’ (shPLRNN) [24], as used in sect. 5.1 for training on
single cell membrane potentials. The latter is essentially a 1-hidden-layer version of the form

zt = Fθ(zt−1, st) = Azt−1 +W1ϕ(W2zt−1 + h2) +Cst + h1, (6)

with W1 ∈ RM×L and W2 ∈ RL×M , L ≥ M , connectivity matrices, h1 ∈ RM , h2 ∈ RL bias
terms, and all other parameters and variables as in eq. (1). While this formulation is beneficial for
training, the shPLRNN can essentially be rewritten in standard PLRNN form (see [24]).

Assume that DΩ(t) := diag(dΩ(t)) is a diagonal matrix with an indicator vector dΩ(t) :=
(d1, d2, · · · , dM ) such that dm(zm,t) =: dm = 1 whenever zm,t > 0, and zero otherwise. Then eq.
(1) can be rewritten as

zt = (A+WDΩ(t−1))zt−1 + Cst + h =: WΩ(t−1) zt−1 + Cst + h.

Let us ignore the inputs for simplicity. There are 2M different configurations for matrix DΩ(t−1) and
so 2M different forms for matrix WΩ(t−1) in the system

zt = Fθ(zt−1) = WΩ(t−1) zt−1 + h. (7)

Thus, the phase space of the system is divided into 2M sub-regions corresponding to the indexed
matrices

WΩk := A+WDΩk , k = 1, 2, · · · , 2M , (8)

see [38, 39] for more details. For M = 2, assuming

W =

(
w11 0

w21 0

)
, (9)

in (8), we have

WΩ1 = WΩ3 =

(
a11 0

0 a22

)
= A,

WΩ2 = WΩ4 =

(
a11 + w11 0

w21 a22

)
. (10)

Hence, for this parameter constellation, the map simplifies as there exists only one border which
divides the phase space into two distinct sub-regions, such that (7) can be rewritten as a map of the
form(

z1,t

z2,t

)
= T (z1,t−1, z2,t−1)

=



TL(z1,t−1, z2,t−1) =

(
al c

bl d

)
︸ ︷︷ ︸

AL

(
z1,t−1

z2,t−1

)
+

(
h1

h2

)
; z1,t−1 ≤ 0

TR(z1,t−1, z2,t−1) =

(
ar c

br d

)
︸ ︷︷ ︸

AR

(
z1,t−1

z2,t−1

)
+

(
h1

h2

)
; z1,t−1 ≥ 0

, (11)
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with al = a11, ar = a11+w11, br = w21, d = a22, bl = c = 0. The map (11) is a PWL dynamical
system whose phase space is split into left and right half-planes (sub-regions) by the borderline Σ
(z2-axis). Note that bifurcation curves of the 2d PLRNN (7) in the (a11, a11+w11)-parameter space
can be determined analogous to those of the PWL map (11) in the (al, ar)-parameter space.

Another way to simplify the PLRNN to a 2d (M = 2) PWL map with just a single border is to
remove one of the ReLU nonlinearities and define ϕ(zt−1) = (ϕ1(z1,t−1), β z2,t−1)

T, where β ∈ R
and ϕ1 is some variant of the ReLU function such as the leaky or parametric ReLU given by

ϕ1(z) =

{
z; z > 0

α z; z ≤ 0
(α ∈ R). (12)

Then DΩ(t) := diag(d1, β) such that

d1(z1,t) =: d1 =

{
1; z1,t > 0

α; z1,t ≤ 0
, (13)

and so

WΩ1 = WΩ3 =

(
a11 + αw11 βw12

αw21 a22 + βw22

)
=:

(
al c

bl d

)
,

WΩ2 = WΩ4 =

(
a11 + w11 βw12

w21 a22 + βw22

)
=:

(
ar c

br d

)
. (14)

This gives another example of a representative of 2d PWL maps with only one border defined in eq.
(11). We are pointing this out because eq. (11) is a generic system considered more widely in the
discrete dynamical systems literature [5, 6], and also was the basis for the analyses below and in
Fig. 1.

A.1.2 Fixed points of the map (11) and their bifurcations

For al, ar, bl, br, c, d, h1, h2 ∈ R, the map (11) has the following two fixed points

OL/R =
(
z
L/R
1 , z

L/R
2

)T
=

(
(1− d)h1 + c h2

(1− d)(1− al/r)− bl/r c
,

bl/r h1 + (1− al/r)h2

(1− d)(1− al/r)− bl/r c

)T

. (15)

The fixed points OL and OR exist iff zL1 < 0 and zR1 > 0 respectively; otherwise they are virtual.
Hence, the existence regions of admissible fixed points are

EOL =

{
(h1, h2, al, bl, c, d)

∣∣ (1− d)h1 + c h2

(1− d)(1− al)− bl c
< 0

}
,

EOR =

{
(h1, h2, ar, br, c, d)

∣∣ (1− d)h1 + c h2

(1− d)(1− ar)− br c
> 0

}
. (16)

Let DL/R be the determinant and TL/R the trace of AL/R, and

PL/R(λ) = λ2 − (al/r + d)λ+ al/r d− bl/r c = λ2 − TL/R λ+DL/R, (17)

its characteristic polynomial. The corresponding eigenvalues are given by

λ1,2(OL/R) =
al/r + d

2
±
√
(al/r − d)2 + 4 bl/r c

2
=
TL/R

2
±

√
T 2
L/R − 4DL/R

2
, (18)

which are always real for bl/r c ≥ 0, while for bl/r c < 0 they are real provided that |al/r − d| >
2
√
−bl/r c. For complex conjugate eigenvalues of AL/R obviously |λ|2 = DL/R. Thus computing

the real eigenvalues, the stability condition for the fixed points is determined as

−(1 +DL/R) < TL/R < 1 +DL/R. (19)

Accordingly, the stability region of the fixed points OL and OR can be obtained by PL/R(±1) =
1∓ (al/r + d) + al/r d− bl/r c > 0 and DL/R < 1 as

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r d− bl/r c < 1,
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1± (al/r + d) + al/r d− bl/r c > 0

}
. (20)

Note that when DL/R < 0, all the eigenvalues are real and so there cannot be any spiralling orbit.
Remark 1. Consider the PLRNN (2) with M = 2. For the parameter setting (3), i.e.

WΩ1 = WΩ3 =

(
a11 0

0 a22

)
=: AL, WΩ2 = WΩ4 =

(
a11 + w11 0

w21 a22

)
=: AR,

(21)

the two fixed points OL/R =
(
z
L/R
1 , z

L/R
2

)T
are given by

OL =

(
h1

1− a11
,

h2

1− a22

)T

, OR =

(
h1

1− a11 − w11
,
w21 h1 + (1− a11 − w11)h2

(1− a22)(1− a11 − w11)

)T

.

(22)

Hence, the existence regions of admissible fixed points are

EOL =

{
(h1, a11, a22)

∣∣ h1

1− a11
< 0

}
, EOR =

{
(h1, a11, a22, w11)

∣∣ h1

1− a11 − w11
> 0

}
,

and their stability regions can be obtained as

SL =

{
(h1, a11, a22) ∈ EOL

∣∣ a11 a22 < 1, 1± (a11 + a22) + a11 a22 > 0

}
, (23)

SR =

{
(h1, a11, a22, w11) ∈ EOR

∣∣(a11 + w11)a22 < 1, 1± (a11 + w11 + a22) + (a11 + w11)a22 > 0

}
.

Remark 2. If bl/r c = 0, then λ1,2(OL/R) are real and the stability regions SL/R become

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ bl/r c = 0, −1 ≤ al/r ≤ 1, −1 ≤ d ≤ 1

}
. (24)

The fixed points are regular saddles for all parameters that belong to{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d > 1, al/r d− al/r − d+ 1 < bl/r c < al/r d

}
,

(25)

and in this case λ1(OL/R) > 1, 0 < λ2(OL/R) < 1. Furthermore, they are flip saddles (i.e., with
one negative eigenvalue) if parameters are in{

(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d > 1, al/r d < bl/r c < al/r d+ al/r + d + 1

} ⋃
{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ d− al/r − d+ 1 < bl/r c < al/r d+ al/r + d+ 1,

0 < al/r + d ≤ 1, al/r

}
, (26)

for which λ1(OL/R) > 1, −1 < λ2(OL/R) < 0, as well as in{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r + d ≤ −1, al/r d < bl/r c < al/r d− al/r − d+ 1

}⋃
{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ al/r d+ al/r + d+ 1 < bl/r c < al/r d− al/r + d− 1,

− 1 < al/r + d < 0

}
(27)
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such that 0 < λ1(OL/R) < 1, λ2(OL/R) < −1.

When bl/r c < 0 and |al/r − d| < 2
√
−bl/r c, the eigenvalues are complex conjugates and both OL

and OR are spirally attracting (attracting focus) if al/r d− bl/r c < 1. In this case, if al/r + d > 0
then they are clockwise spiral, while for al/r + d < 0 the spiralling motion will be counterclockwise.
Moreover, for al/r d− bl/r c > 1 they are repelling foci. Finally, for al/r d− bl/r c = 1, the fixed
points are locally centers and they undergo a CB at the following boundaries:

CL =

{
(al, bl, c, d)

∣∣ bl c < 0, |al − d| < 2
√
−bl c, al d− bl c = 1

}
,

CR =

{
(ar, br, c, d)

∣∣ br c < 0, |ar − d| < 2
√
−br c, ar d− br c = 1

}
. (28)

At these boundaries, the fixed points lose their stability with a pair of complex conjugate eigenvalues
crossing the unit circle. For the parameters belonging to CL/R, the Jacobian JL/R is a rotation matrix
whose determinant is equal to 1. In this case, JL/R can be determined by a rotation number which is
either rational (pq ) or irrational (ρ). Therefore, in some neighborhood of OL/R, there is a region filled
with invariant ellipses such that they are periodic with period p (if the rotation number is a rational
number p

q ) or quasiperiodic (if the rotation number is an irrational number ρ); for more information
see [60, 59]. For (1− d)h1 + c h2 ̸= 0, at the boundary

τL =

{
(h1, h2, al, bl, c, d)

∣∣ 1− al − d+ al d− bl c = 0

}
, (29)

the fixed point OL undergoes a DTB, since, if the parameters tend to τL, then OL → ±∞ and
λ(OL) → 1. Similarly, for (1 − d)h1 + c h2 ̸= 0, a DTB occurs for the fixed point OR at the
boundary

τR =

{
(h1, h2, ar, br, c, d)

∣∣ 1− ar − d+ ar d− br c = 0

}
. (30)

A DTB of a fixed point results in its disappearance, as in this case the fixed point becomes virtual
which may lead to changes in the global dynamics [6]. Furthermore, the BCB curves are given by

ξL =

{
(h1, h2, al, bl, c, d)

∣∣ (1− d)(1− al)− bl c ̸= 0, (1− d)h1 + c h2 = 0

}
, (31)

and

ξR =

{
(h1, h2, ar, br, c, d)

∣∣ (1− d)(1− ar)− br c ̸= 0, (1− d)h1 + c h2 = 0

}
. (32)

In addition, the DFB curves for the fixed points OL and OR are

FL =

{
(h1, h2, al, bl, c, d)

∣∣ 1 + al + d+ al d− bl c = 0

}
,

FR =

{
(h1, h2, ar, br, c, d)

∣∣ 1 + ar + d+ ar d− br c = 0

}
. (33)

Remark 3. The existence regions EOL and EOR are bounded by the BCB curves ξL and ξR.
Remark 4. The stability regions SL/R of fixed points (eq. (20)) are bounded by the DTB curves
τL/R (eqn. (29) and (30)), the DFB curves FL/R (eq. (33)), and the CB curves al/r d− bl/r c = 1.
For instance, for d = 1, SL/R are illustrated in Fig. S1(a). In this case, the stability regions only
exist for bl/r c < 0 and al/r − d < −2

√
−bl/r c. Moreover, as shown in Fig. S1(b), for d = 0.01,

these stability regions can exist for both cases bl/r c < 0, al/r − d < −2
√
−bl/r c (in blue), and

bl/r c < 0, al/r − d > 2
√
−bl/r c (in green), but not for bl/r c ≥ 0. Furthermore, if c = 1, there are

stability regions SL/R for the two cases bl/r c < 0, al/r−d < −2
√
−bl/r c (in blue), and bl/r c > 0

(in purple); see Fig. S2(a). Finally, when c = 0, as explained in Remark 2, the stability regions have
the form (24), i.e.

SL/R =

{
(h1, h2, al/r, bl/r, c, d) ∈ EOL/R

∣∣ c = 0, bl/r ∈ R, −1 ≤ al/r, d ≤ 1

}
. (34)

which are displayed in Fig. S2(b).

19



Figure S1: Stability regions SL/R. Left: for d = 1; right: for d = 0.01. The case bl/r c < 0,
al/r − d < −2

√
−bl/r c is plotted in blue, and the case bl/r c < 0, al/r − d > 2

√
−bl/r c is drawn

in green.

Figure S2: Stability regions SL/R. Left: for c = 1; the case bl/r c < 0, al/r − d < −2
√
−bl/r c is

plotted in yellow, and the case bl/r c > 0 is drawn in purple. Right: for c = 0.

Since the system (11) is a linear map in each sub-region L and R, there cannot be any n-cycle,
n ≥ 2, with all periodic points on only one linear side. So, all period-n orbits have both letters L and
R in their symbolic sequence.

A.1.3 2-cycles of the map (11) and their bifurcations

The 2-cycleORL of the map (11) is determined by solving the equation TL◦TR(z1, z2) = (z1, z2)
T

where

TL◦TR(z1, z2) =

(
al ar + br c al c+ c d

ar bl + br d d2 + bl c

)(
z1

z2

)
+

(
c h2 + h1

(
al + 1

)
bl h1 + h2

(
d+ 1

)) . (35)

In this case if
(
I − JL JR

)
is invertible, then the solution (z1, z2)

T =
(
z
(1)
1 , z

(1)
2

)T
is given by

(
z
(1)
1 , z

(1)
2

)T
=

( (
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

,

h2

(
1 + d− al ar − br c− al ar d+ ar bl c

)
+ h1

(
bl + ar bl + br d+ al br d− bl br c

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

)
.

(36)

Also TR
(
z
(1)
1 , z

(1)
2

)
=
(
z
(2)
1 , z

(2)
2

)T
yields

(
z
(2)
1 , z

(2)
2

)T
=

( (
(1− d)h1 + c h2

)(
ar + d+ ar d− br c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

,

h2

(
1 + d− al ar − bl c− al ar d+ al br c

)
+ h1

(
br + al br + bl d+ ar bl d− bl br c

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

)
.

(37)

Hence, the existence region of the 2-cycle ORL is

EORL =

{
(h1, h2, al, bl, c, d)

∣∣ (
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

> 0,
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(
(1− d)h1 + c h2

)(
ar + d+ ar d− br c+ 1

)
(ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1

< 0

}
. (38)

The characteristic polynomial of JRL = JL JR =

(
al ar + br c al c+ c d

ar bl + br d d2 + bl c

)
is given by

PORL(λ) = λ2 − (d2 + al ar + bl c+ br c)λ+ (ar d− br c)(al d− bl c), (39)

and

DRL = (ar d− br c)(al d− bl c),

PORL(1) = (ar d− br c)(al d− bl c)− c(bl + br)− d2 − al ar + 1,

PORL(−1) = (ar d− br c)(al d− bl c) + c(bl + br) + d2 + al ar + 1,

λ1,2(ORL) =
al ar + c(bl + br) + d2

2

±
√
(al ar + bl c)2 + (br c+ d2)2 + 2(al ar − bl c)(br c− d2) + 4 c d(al br + ar bl)

2
.

(40)

Thus, the stability region of ORL is

SRL =

{
(h1, h2, al/r, bl/r, c, d) ∈ EORL

∣∣ − 1 < (ar d− br c)(al d− bl c) < 1,

− (ar d− br c)(al d− bl c)− 1 < c(bl + br) + d2 + al ar < (ar d− br c)(al d− bl c) + 1

}
.

(41)

In addition, for
(
(1− d)h1 + c h2

)(
al + d+ al d− bl c+ 1

)
̸= 0, the set

τRL =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ al ar + bl c+ br c+ d2 − al ar d
2 − bl br c

2 + al br c d

+ ar bl c d− 1 = 0

}
, (42)

is the DTB curve for the 2-cycle ORL. As in this case, for the parameter values belonging to τRL,
the points of the 2-cycle ORL tend to ±∞, and the corresponding eigenvalue tends to one. Moreover,
for (1− d)h1 + c h2 ̸= 0, the BCB curves of ORL can be computed as

ξ1RL =

{
(h1, h2, al, bl, c, d)

∣∣ al + d+ al d− bl c+ 1 = 0

}
,

ξ2RL =

{
(h1, h2, ar, br, c, d)

∣∣ ar + d+ ar d− br c+ 1 = 0

}
. (43)

Note that here the condition (1− d)h1 + c h2 ̸= 0 guarantees a regular BCB in the sense that only
one periodic point of ORL collides with the switching boundary; for more details see [6]. Besides,

FRL =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ alar + blc+ brc+ d2 + al ard
2 + bl brc

2

− al br c d− ar blcd+ 1 = 0

}
, (44)

is the DFB curve of the 2-cycle ORL.

Remark 5. One can see that for (1− d)h1 + c h2 ̸= 0 the DFB curves of the fixed points OL and
OR (FL and FR) and the BCB boundaries of the 2-cycle ORL (ξ1RL and ξ2RL) are the same. In this
case, the DFB of the fixed points can lead to the (attracting) 2-cycle ORL.

21



A.1.4 3-cycles of the map (11) and their bifurcations

Here, we investigate the existence, stability and bifurcation structure of maximal or basic 3-cycles.
Note that for the continuous map (11), basic n-cycles ORLn−1 (n ≥ 3) exist in pairs with their
complementary cycles (ORLn−2R), and they appear via BCBs such that one of them may be attracting
and the other repelling [6, 20, 38]. In this case, a BCB of basic cycles demonstrates a non-smooth fold
bifurcation which includes a stable basic orbit and an unstable nonbasic orbit [6, 5, 19]. Furthermore,
the complementary orbits can have nonempty stability regions such that, similar to the basic orbits,
they are bounded by curves of BCBs, DTBs and DFBs [6, 5].

Basic 3-cycles ORL2 and their complementary cycles OR2L. The basic 3-cycle ORL2 can be
obtained from the equation TL ◦ TL ◦ TR(z1, z2) = (z1, z2)

T where

TL ◦ TL ◦ TR(z1, z2) =

(
ar(a

2
l + bl c) + br(al c+ c d) c(a2l + bl c) + d(al c+ c d)

br(d
2 + bl c) + ar(al bl + bl d) d(d2 + bl c) + c(al bl + bl d)

)(
z1

z2

)

+

(
h1

(
bl c+ al(al + 1) + 1

)
+ h2

(
al c+ c(d+ 1)

)
h1

(
bl d+ bl(al + 1)

)
+ h2

(
bl c+ d(d+ 1) + 1

)) . (45)

If
(
I − J2

L JR
)

is invertible, then the solution (z1, z2)
T =

(
z
(1)
1 , z

(1)
2

)T
is

(z
(1)
1 , z

(1)
2 )T =

(((1− d)h1 + c h2

)
G1

G
,
G2

G

)T
, (46)

where

G1 = a2l d
2 + a2l d+ a2l − 2al blcd− alblc+ ald

2 + ald+ al + b2l c
2 − blcd+ blc+ d2 + d+ 1,

G = −a2l ar − d3 − c
(
al bl + al br + ar bl + d(2 bl + br)

)
+ (ar d− br c)(al d− bl c)

2 + 1,

G2 = h2 + blh1 + dh2 + d2h2 + alblh1 + blch2 + bldh1 − a2l arh2 + brd
2h1 − arb

2
l ch1

− a2l ardh2 + albrd
2h1 + blbrc

2h2 − arb
2
l c

2 h2 − a2l ard
2h2 + a2l br d

2h1 + b2l br c
2h1

+ al ar bl h1 − al br c h2 − ar bl c h2 + ar bl d h1 + bl br ch1 − br c dh2 + al ar blch2

+ al ar bl dh1 − al br c d h2 − bl br c dh1 + 2al ar bl c dh2 − 2al bl br c dh1. (47)

Further

TR(z
(1)
1 , z

(1)
2 ) =

(
z
(2)
1 , z

(2)
2

)T
=
(((1− d)h1 + c h2

)
K1

G
,
K2

G

)T
,

TL(z
(2)
1 , z

(2)
2 ) =

(
z
(3)
1 , z

(3)
2

)T
=
(((1− d)h1 + c h2

)
H1

G
,
H2

G

)T
, (48)

where

K1 = ar + d+ alar + blc+ ard+ ard
2 + d2 + alard− albrc− brcd+ alard

2 + blbrc
2

− albrcd− arblcd+ 1,

K2 = h2 + brh1 + dh2 + d2h2 + albrh1 + brch2 + bldh1 − a2l arh2 + a2l brh1 + bld
2h1

+ a2l brch2 + arbld
2h1 + blbrc

2h2 − a2l ard
2h2 + b2l brc

2h1 − alblch2 − arblch2 + albldh1

+ bl br ch1 − bl cd h2 + alarbldh1 − al blbrch1 − ar bl c dh2 − blbrc dh1 + al arbld
2h1

− al blbrc
2h2 − arb

2
l cdh1 + a2l brcdh2 + al ar bl c d h2 − al bl br c d h1 − a2l ardh2,

H1 = al + d+ alar + ald+ brc+ ald
2 + d2 + alard− ar blc− blcd+ alard

2 + blbrc
2

− albrcd− arblcd+ 1,

H2 = h2 + blh1 + dh2 + d2h2 + b2l c
2h2 + arblh1 + blch2 + brdh1 − a2l arh2 + b2l ch1
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+ bld
2h1 − a2l ardh2 − blcdh2 + albld

2h1 + a2l brdh1 − b2l cdh1 − a2l ard
2h2 + b2l brc

2h1

+ alarblh1 − alblch2 − albrch2 + albrdh1 + alarblch2 − alblbrch1 − alblcd h2

+ alarbld
2h1 − alblbrc

2h2 − arb
2
l cdh1 + a2l brcdh2 + alarblcdh2 − alblbrcdh1. (49)

Therefore, the existence region of the 3-cycle ORL2 is given by

EORL2 =

{
(h1, h2, al, bl, c, d)

∣∣ ((1− d)h1 + c h2

)
G1

G
> 0,

(
(1− d)h1 + c h2

)
K1

G
< 0,(

(1− d)h1 + c h2

)
H1

G
< 0

}
, (50)

where G,G1,K1 and H1 are defined in (47) and (49). On the other hand, the characteristic
polynomial of

JRL2 = J2
L JR =

(
ar(a

2
l + bl c) + br(al c+ c d) c(a2l + bl c) + d(al c+ c d)

br(d
2 + bl c) + ar(al bl + bl d) d(d2 + bl c) + c(al bl + bl d)

)
,

is

PORL2 (λ) = λ2 −
(
a2
l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

))
λ+ (ard− brc)(ald− blc)

2.

(51)

According to

DRL2 = (al d− bl c)
2(ar d− br c),

PORL2 (1) = −a2l ar − d3 − c
(
albl + albr + arbl + d(2bl + br)

)
PORL2 (−1) = a2l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

)
+ (ard− brc)(ald− blc)

2 + 1,
(52)

the stability region of the 3-cycle ORL2 is given by

SRL2 =

{
(h1, h2, al/r, bl/r, c, d) ∈ EORL2

∣∣ − 1 < (al d− bl c)
2(ar d− br c) < 1,

− (ald− blc)
2(ar d− brc)− 1 < a2l ar + d3 + c

(
albl + albr + arbl + d(2bl + br)

)
< (al d− bl c)

2(ar d− br c) + 1

}
. (53)

Furthermore, for (1− d)h1 + c h2 ̸= 0 and G1, G2, K1, K2, H1, H2 ̸= 0, the DTB curve for the
3-cycle ORL2 is

τRL2 =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ br a2l cd2 − ar a
2
l d

3 + ara
2
l − 2 br alblc

2d+ 2ar al bl c d
2

+ al bl c+ br al c+ br b
2
l c

3 − ar b
2
l c

2d+ 2 blcd+ arbl c+ br c d+ d3 − 1 = 0

}
.

(54)

For (1− d)h1 + c h2 ̸= 0

ξ1RL2 =

{
(h1, h2, ar, br, c, d)

∣∣K1 = ar + d+ alar + bl c+ ard+ ard
2 + d2 + alard

− al br c− br c d+ al ar d
2 + bl br c

2 − al br c d− ar bl c d+ 1 = 0

}
,

ξ2RL2 =

{
(h1, h2, ar, br, c, d)

∣∣H1 = al + d+ al ar + al d+ br c+ al d
2 + d2 + al ar d
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− ar bl c− bl c d+ al ar d
2 + bl br c

2 − al br c d− ar bl c d+ 1 = 0

}
, (55)

are (regular) BCB curves of ORL2 . Furthermore, the set

FRL2 =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ − br a
2
l cd

2 + ara
2
l d

3 + ara
2
l + 2bralblc

2d− 2aralblcd
2

+ alblc+ bralc− brb
2
l c

3 + ar b
2
l c

2d+ 2blcd+ arblc+ br c d+ d3 + 1 = 0

}
,

(56)

is the DFB curve of ORL2 . As noted, the basic 3-cycle ORL2 exists in a pair with its complementary
cycleOR2L. Moreover, the existence region ofOR2L can easily be found by interchanging the letters
L andR in all notations of the equations (45)- (49) and considering

z
(1)
1 < 0, z

(2)
1 > 0, z

(3)
1 > 0. (57)

Further, the stability region of the 3-cycle OR2L for the parameter values satisfying (57) is given by

SR2L =

{
(h1, h2, al/r, bl/r, c, d)

∣∣ − 1 < (ar d− br c)
2(al d− bl c) < 1,

− (ard− brc)
2(ald− blc)− 1 < a2ral + d3 + c

(
arbr + arbl + albr + d(2br + bl)

)
< (ar d− br c)

2(al d− bl c) + 1

}
. (58)

Notice that whenever the stable 3-cycle ORL2 exists, its complementary orbit OR2L also exists, but
it is unstable. Furthermore, for (1− d)h1 + c h2 ̸= 0 both the 3-cycles ORL2 and OR2L appear at
the same BCB curves (55). On the other hand, the DTB and DFB curves of the 3-cycle OR2L are
given by

τR2L =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ bla2rcd2 − ala
2
rd

3 + ala
2
r − 2blarbrc

2d+ 2alarbrcd
2

+ ar br c+ blarc+ bl b
2
rc

3 − al b
2
r c

2d+ 2brcd+ albrc+ bl c d+ d3 − 1 = 0

}
,

(59)

and

FR2L =

{
(h1, h2, al, ar, bl, br, c, d)

∣∣ − bla
2
rcd

2 + ala
2
rd

3 + ala
2
r + 2blarbrc

2d− 2alarbrcd
2

+ arbrc+ bl arc− bl b
2
rc

3 + al b
2
rc

2 d+ 2brcd+ al br c+ bl c d+ d3 + 1 = 0

}
,

(60)

respectively.

A.1.5 Multiple attractor bifurcations (MABs) of the map (11)

To detect multiple attractor bifurcations for the map (11), a straightforward way is to determine
the overlapping stability regions of different periodic orbits. For instance, as shown in Fig. 1A,
for c = 0.8, d = 0.2, bl = −0.4, br = 0.5, two stability regions SRL and SRL2 overlap in the
(al, ar)-parameter plane (or in the (a11, a11 + w11)-parameter space for the 2d PLRNN (7)). Their
overlapping region, displayed in yellow, reveals the structure of the (al, ar)-parameter plane. This
helps us to find various MABs. Assuming h2 = 0 and varying h1 from a negative value to a positive
one, an MAB of the form

Os
L

h1←→ Os
RL + Os

RL2 , (61)

occurs in the overlapping region. An example of this kind of bifurcation is illustrated in Fig. S3A.
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Moreover, Fig. S4 indicates, for c = 0.9, d = 0.3, bl = −0.6, br = −1.54 , there are nonempty
overlapping regions SRL ∩ SRL2 and SRL2 ∩ SR. This leads to the occurrence of two different
MABs given by (61) and

Os
L

h1←→ Os
R + ORL2 , (62)

for h2 = 0 and h1 changing from negative to positive values. Both of these bifurcations are shown in
Fig. S3A and Fig. S3B, associated with the points P1and P2 in Fig. S4. Note that in Fig. S4, all the
points P2, P3 and P4 belong to the overlapping region SRL2 ∩ SR (in sky blue). These points are
related to the parameter values c = 0.9, d = 0.3, bl = −0.6, br = −1.54, ar = −1.8, h2 = 0, and
they only differ in the parameter al. In this case, one can see that fixing all parameters and changing
only the parameter al, from P2 to P4, the basins of attraction change. The corresponding basins of
attraction for these three points are demonstrated in Fig. S3B (right) and Fig. S5 for h1 = 0.5 (after
the bifurcation).

Figure S3: MAB at c = 0.9, d = 0.3, bl = −0.6, br = −1.54, h2 = 0. A) Left: Bifurcation dia-
gram for al = −0.44 and ar = −1.8 corresponding to the point P1 in Fig. S4. Right: Multistability
of the fixed point Os

R and the 3-cycle Os
RL2 after the bifurcation and their basins of attraction at

h1 = 0.5. B) Left: Bifurcation diagram for al = −0.35 and ar = −2.2 corresponding to the point
P2 in Fig. S4. Right: Multistability of the 2-cycle Os

RL and the 3-cycle Os
RL2 after the bifurcation

and their basins of attraction at h1 = 0.7.

Figure S4: Analytically calculated stability regions for a different parameter setting than used in
Fig. 1. Left: Analytically calculated stability regions SR, SRL and SRL2 , shown in green, red
and blue, respectively, in the (a11, a11 + w11)-parameter plane for a22 = 0.3, w21 = −1.54. The
overlapping regions SRL ∩ SRL2 and SRL2 ∩ SR, representing multi-stable regimes, are given in
yellow and sky blue. Right: Bifurcation curves for the same parameter settings as determined by
SCYFI. Note that SCYFI identifies additional structure (regions demarcated by gray curves) not
included in our analytical derivations.
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Figure S5: Multistability of the fixed point Os
R and the 3-cycle Os

RL2 at c = 0.9, d = 0.3, bl =
−0.6, br = −1.54, ar = −1.8, h2 = 0 after the bifurcation and their basins of attraction at h1 = 0.5.
Left: al = 0.06 (point P3 in Fig. S4); right: al = 0.26 (point P4 in Fig. S4).

A.2 Proofs of theorems

A.2.1 Proof of theorem 1

Proof. Let L(θ) be some loss function employed for PLRNN training that decomposes in time as
L =

∑T
t=1 Lt. Then

∂L
∂θ

=

T∑
t=1

∂Lt

∂θ
,

∂Lt

∂θ
=

∂Lt

∂zt

∂zt
∂θ

. (63)

Denoting the Jacobian of system (2) at time t by

Jt :=
∂Fθ(zt−1)

∂zt−1
=

∂zt
∂zt−1

, (64)

we have
∂zt
∂θ

=
∂zt

∂zt−1

∂zt−1

∂θ
+

∂+zt
∂θ

= Jt
∂zt−1

∂θ
+

∂+zt
∂θ

, (65)

where ∂+ denotes the immediate partial derivative (see [48] for more details). Assume that Γk is a
k-cycle (k ≥ 1) of (2). Thus, Γk is a set of temporally successive periodic points

Pk := {zt∗k , zt∗k−1, · · · , zt∗k−(k−1)} = {zt∗k , F (zt∗k), . . . , F
k−1
θ (zt∗k)}, (66)

such that all of them are fixed points of

zt+k = F k
θ (zt) = Fθ(Fθ(Fθ(...Fθ(zt)...))), (67)

and k is the smallest such positive integer (for k = 1, Γ1 is a fixed point of Fθ). Similar to (65), the
tangent vector ∂zt+k

∂θ can be computed as

∂zt+k

∂θ
=

∂zt+k

∂zt

∂zt
∂θ

+
∂+zt+k

∂θ
=

k−1∏
r=0

Jt+k−r
∂zt
∂θ

+
∂+zt+k

∂θ
. (68)

Thus, for zt∗k = F k
θ (zt∗k) we have

∂zt∗k

∂θ
=

k−1∏
r=0

Jt∗k−r

∂zt∗k

∂θ
+

∂+zt∗k

∂θ
. (69)

Accordingly

∂zt∗k

∂θ
=

(
I −

k−1∏
r=0

Jt∗k−r

)−1
∂+zt∗k

∂θ
=

adj

(
I −

∏k−1
r=0 Jt∗k−r

)
P∏k−1

r=0 J
t∗k−r

(1)

∂+zt∗k

∂θ
, (70)
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where P∏k−1
r=0 J

t∗k−r
(1) = det

(
I −

∏k−1
r=0 Jt∗k−r

)
. Moreover, from (63) and (70) we have

∥∥∥∥∂Lt

∂θ

∥∥∥∥ =
1

P∏k−1
r=0 J

t∗k−r
(1)

∥∥∥∥∥ ∂Lt

∂zt∗k
adj

(
I −

k−1∏
r=0

Jt∗k−r

)
∂+zt∗k

∂θ

∥∥∥∥∥ . (71)

Now, suppose that Γk undergoes a DTB, such that the fixed or cyclic points given by (66) tend
to infinity and one of their eigenvalues tends to 1 for some parameter value θ = θ0. This implies
P∏k−1

r=0 J
t∗k−r

(1) becomes zero at θ = θ0 and so, due to (70),
∥∥∥∂z

t∗k
∂θ

∥∥∥ goes to infinity. Therefore

the norm of the loss gradient,
∥∥∂Lt

∂θ

∥∥, tends to infinity at θ = θ0 which results in a abrupt jump in the
loss function.

Let {zt1 , zt2 , zt3 , . . .} be an orbit which converges to Γk, i.e.

lim
n→∞

d(ztn ,Γk) = 0. (72)

Then there exists a neighborhood U of Γk and k sub-sequences {ztkm
}∞m=1, {ztkm+1

}∞m=1, · · · ,
{ztkm+(k−1)

}∞m=1 of the sequence {ztn}∞n=1 such that all these sub-sequences belong to U and

a) ztkm+s
= F k(ztk(m−1)+s

), s = 0, 1, 2, · · · , k − 1,

b) lim
m→∞

ztkm+s
= zt∗k−s, s = 0, 1, 2, · · · , k − 1,

c) for every ztn ∈ U there is some s ∈ {0, 1, 2, · · · , k − 1} such that ztn ∈ {ztkm+s
}∞m=1.

This implies for every ztn ∈ U with ztn ∈ {ztkm+s
}∞m=1 , there exists some ñ ∈ N such that

ztn = ztkñ+s
and lim

ñ→∞
ztkñ+s

= zt∗k−s . Consequently, there exists some Ñ ∈ N such that for

every ñ ≥ Ñ both ztkñ+s
and zt∗k−s belong to the same sub-region and so the matrices WΩ(tkñ+s)

and WΩ(t∗k−s) (s ∈ {0, 1, 2, · · · , k − 1}) are identical. Without loss of generality, let s = 0. Since
ztk(ñ+1)

= F k(ztkñ
), so

∂ztk(ñ+1)

∂θ
=

k−1∏
r=0

Jt∗k−r

∂ztkñ

∂θ
+

∂+ztk(ñ+1)

∂θ
. (73)

On the other hand, limn̄→∞
∂ztk(ñ+1)

∂θ = limn̄→∞
∂ztkñ

∂θ , which results in

limn̄→∞
∂ztk(ñ+1)

∂θ
=

(
I −

k−1∏
r=0

Jt∗k−r

)−1

limn̄→∞
∂+ztk(ñ+1)

∂θ

=

adj

(
I −

∏k−1
r=0 Jt∗k−r

)
P∏k−1

r=0 J
t∗k−r

(1)
limn̄→∞

∂+ztk(ñ+1)

∂θ
. (74)

This means as n̄→∞, for any orbit converging to Γk the norm of the loss gradient tends to infinity
at θ = θ0 which completes the proof.

A.2.2 Proof of theorem 2

Proof. Let Γk be a k-cycle (k ≥ 1) of (2) defined by periodic points (66). Suppose further that
Γk undergoes a BCB for some parameter value θ = θ0. Hence, one of its periodic points, e.g.
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zt∗k , collides with one border. Therefore, zmt∗k = 0 for some 1 ≤ m ≤ M by the definition of
discontinuity boundaries in [38, 39]. Similar to the proof of Theorem 1, for θ = A,W we have

∂zt∗k−1

∂θ
=

adj

(
I −

∏k−1
r=0 Jt∗k−1−r

)
P∏k−1

r=0 J
t∗k−1−r

(1)

∂+zt∗k−1

∂θ
, (75)

in which

∂+zt∗k−1

∂wnm
= 1(n,m) DΩ(t∗k) zt∗k ,

∂+zt∗k−1

∂amm
= 1(m,m) zt∗k , (76)

where 1(n,m) is an M ×M indicator matrix with a 1 for the (n,m)’th entry and 0 everywhere else.

Since zmt∗k = 0 at θ = θ0, due to (76)
∂+z

t∗k−1

∂θ becomes the zero vector at θ = θ0. Consequently,∥∥∥∂z
t∗k−1

∂θ

∥∥∥ and so
∥∥∂Lt

∂θ

∥∥ vanishes at θ = θ0. Now it can be shown that at θ = θ0 the loss gradient
goes to zero for every z1 ∈ BΓk

(the proof is similar to the last part of the proof of Theorem 1).

A.2.3 Proof of corollary 1

Proof. For M = 2, let h1 ̸= 0. Then the DFB curves of the fixed point Γ1 coincide with the BCB
curves of the 2-cycle ORL of the form

F1 = ξ1RL = {(h1, h2, a11, a22)|1 + a11 + a22 + a11a22 = 0}, (77)

or

F2 = ξ2RL = {(h1, h2, a11, w11, w21, a22)
∣∣1 + a11 + w11 + a22 + (a11 + w11)a22 = 0}. (78)

For M > 2, assume that Γ1 = {z∗
1} is a fixed point of the system, i.e.

z∗
1 = (I −WΩ(t∗1)

)−1 h =
adj(I −WΩ(t∗1)

)

PI−WΩ(t∗1)
(1)

h, (79)

where PI−WΩ(t∗1)
(1) is the characteristic polynomial of I −WΩ(t∗1)

at 1. Let us denote the first
row of the adjoint matrix of I −WΩ(t∗1)

by adj(I −WΩ(t∗1)
)1. If adj(I −WΩ(t∗1)

)1 h ̸= 0, then
we can analogously demonstrate that the DFB curves of the fixed point align with the BCB curves of
the 2-cycles. This implies that, in accordance with Theorem 2, DFBs of fixed points will also lead to
vanishing gradients in the loss function.

A.2.4 Convergence of SCYFI

To ensure that SCYFI almost surely converges, we can simply choose the number of random
initializations (i.e., Nout in algorithm 1) large enough such that every linear subregion will have
been sampled with probability almost 1.More precisely, drawing uniformly from the 2M different
DΩ-matrices (linear subregions) for initialization, the probability that a particular subregion has not
been drawn after r repetitions is p = (1− 1

2M
)r. Hence, in order to ensure that all 2M subregions

have been visited with probability 1 − ϵ we need r ≥ ⌈ ln(ϵ)

ln(1− 1

2M
)
⌉ iterations. Choosing Nout = r,

we can thus ensure that SCYFI was initialized in each subregion with probability almost 1, and
thus, in the limit, will have probed all subregions for dynamical objects. This argument extends
to k-cycles by replacing 2M by 2kM above (strictly, a more precise bound for k ≥ 2 is given by
2M(k−1) × (2M − 1) = 2Mk − 2M(k−1), due to the fact that the PLRNN (2) is a linear map in each
subregion and, hence, cannot have any k-cycles with all periodic points in only one subregion).
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A.2.5 Proof of theorem 3

Proof. We examine the convergence and scaling behavior of SCYFI for fixed points. A similar
argument applies to k-cycles where k > 1.

Let z∗
1 be a fixed point of the system, i.e.

z∗
1 =

(
I −WΩ(t∗1)

)−1
h. (80)

z∗
1 is a true fixed point iff

(dm(t∗1)− a) · zm,t∗1
> 0, ∀m ∈ {1, 2, · · · ,M}, (81)

where DΩ(t∗1)
= diag(d1(t

∗
1), d2(t

∗
1), · · · , dM (t∗1)) and 0 < a < 1 is a positive real constant.

For examining SCYFI’s efficiency, here we focus on two scenarios that impose specific constraints
on parameters θ; other cases remain to be investigated.

Case (I) : Let R be a randomly generated matrix with uniformly distributed entries in the interval
[0, 1), and h ̸= 0 be a random vector with all its components being non-negative. For an arbitrary
ϵ > 0, we set

A =
1

2 + ∥R∥+ ϵ
diag(R),

W =
1

2 + ∥R∥+ ϵ

(
R− diag(R)

)
. (82)

Then

∥A∥ =
∥diag(R)∥
2 + ∥R∥+ ϵ

<
1

2 + ∥R∥+ ϵ
,

∥W ∥ =
∥R− diag(R)∥
2 + ∥R∥+ ϵ

≤ ∥R∥+ ∥diag(R)∥
2 + ∥R∥+ ϵ

<
1 + ∥R∥

2 + ∥R∥+ ϵ
, (83)

and so ∥A∥+ ∥W ∥ < 1. Therefore

∀t
∥∥WΩ(t)

∥∥ =
∥∥A+WDΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ ∥∥DΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ < 1, (84)

and so

∀t ρ(WΩ(t)) ≤
∥∥WΩ(t)

∥∥ < 1. (85)

In this case, for any n ∈ N, we also have∥∥∥∥∥
n∏

i=1

WΩ(ti)

∥∥∥∥∥ ≤
n∏

i=1

∥∥WΩ(ti)

∥∥ ≤ ( ∥A∥+ ∥W∥)n < 1. (86)

This ensures the stability of all fixed points and k-cycles of the system.

According to (85), we have(
I −WΩ(t∗1)

)−1
=

∞∑
n=0

W n
Ω(t∗1)

= I +WΩ(t∗1)
+W 2

Ω(t∗1)
+ · · · . (87)

Hence, all the elements of
(
I −WΩ(t∗1)

)−1
are positive, and so zm,t∗1

> 0 for every t∗1. This implies
that all true and virtual fixed points exist within a singular sub-region. Additionally, only one fixed
point is true, while all the other fixed points are virtual.

Case (II) : Let h = (h1, h2, · · · , hM )T be a random vector with all hm uniformly distributed in
(0, 1] and

βmin = min
{
hm : hm ∈ h, 1 ≤ m ≤M

}
> 0, 0 < βmin ≤ 1,

βmax = max
{
hm : hm ∈ h, 1 ≤ m ≤M

}
> 0, 0 < βmax ≤ 1. (88)
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Assume further that R1 is a randomly generated matrix with uniformly distributed entries in the
interval (−1, 0], and for M ≥ 2

W =
βmin

M + ∥R1∥+ ϵ

(
R1 − diag(R1)

)
. (89)

Consider

αmax = max
{
|wij | : wij ∈W

}
, 0 ≤ αmax <

βmin

M + ∥R∥+ ϵ
(90)

and S ⊂ {1, 2, · · · ,M} = I such that K = 2M−card(S) ≪ 2M . Suppose that R2 =
diag(r1, · · · , rM ) is a randomly chosen diagonal matrix with rm uniformly distributed in (−1, 1)
for m ∈ I \ S, and the other elements (m ∈ S) uniformly distributed in (r∗ − 1, 0) where
r∗ = (M−1)αmax βmax

βmin
. Since

0 ≤ (M − 1)αmax βmax

βmin
<

(M − 1)βmax

M + ∥R∥+ ϵ
≤ (M − 1)

M + ∥R∥+ ϵ
<

(M − 1)

M
< 1, (91)

so −1 ≤ r∗ − 1 < 0.

If

A =
1

2 + ∥R1∥+ ϵ
R2, (92)

then

∥A∥ =
∥R2∥

2 + ∥R1∥+ ϵ
<

1

2 + ∥R1∥+ ϵ
,

∥W ∥ =
βmin ∥R1 − diag(R1)∥

M + ∥R1∥+ ϵ
≤ ∥R1∥+ ∥diag(R1)∥

M + ∥R1∥+ ϵ
<

1 + ∥R1∥
2 + ∥R1∥+ ϵ

, (93)

which implies ∥A∥+ ∥W ∥ < 1. We set ϵ > 0 large enough to satisfy the condition(
I −WΩ(t∗1)

)−1
=

∞∑
n=0

W n
Ω(t∗1)

≈ I +WΩ(t∗1)
∀ t∗1. (94)

On the other hand, for any t we have

WΩ(t) = A+WDΩ(t) =


a11 w12d2(t) w13d3(t) · · · w1MdM (t)

w21d1(t) a22 w23d3(t) · · · w2MdM (t)
w31d1(t) w32d2(t) a33 · · · w3MdM (t)

...
...

...
. . .

...
wM1d1(t) wM2d2(t) wM3d3(t) · · · aMM

 . (95)

Hence

zm,t∗1
= (1 + amm)hm +

M∑
j=1

j ̸=m

wmj dj(t
∗
1)hj = (1 + amm)hm −

M∑
j=1

j ̸=m

|wmj | dj(t∗1)hj . (96)

Since for every t∗1
M∑
j=1

j ̸=m

|wmj | dj(t∗1)hj ≤
M∑
j=1

j ̸=m

|wmj |hj , (97)

so

zm,t∗1
≥ (1 + amm)hm −

M∑
j=1

j ̸=m

|wmj |hj ∀m ∈ I. (98)
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Moreover ass ∈ (r∗ − 1, 0), for every s ∈ S, and thus

ass + 1 >
(M − 1)αmaxβmax

βmin
=

∑M
j=1

j ̸=s

αmaxβmax

βmin
≥

∑M
j=1

j ̸=s

|wsj |hj

hs
. (99)

Therefore, due to (98) and (99), zs,t∗1 > 0 for every t∗1 and s ∈ S. This means that all true
and virtual fixed points only exist within a relatively small number of sub-regions, denoted as
K = 2M−card(S) ≪ 2M . Given our specific initalization of θ, in both cases (I) and (II) there is a set
of K different sub-regions, each associated with a unique DΩ(t) matrix. We refer to the entire set of
these matrices as

DK = {D1, ...,DK}. (100)

SCYFI, by its definition, only moves within the sub-regions that have virtual and true fixed points,
continuing until it discovers a true fixed point (or gets stuck in a virtual cycle). Thus, it can iterate
between J ≤ K sub-regions

DJ = {D1, ...,DJ} ⊆ DK , (101)

or within the set of virtual fixed points

ZL = {z1, ...,zL}. (102)

In case (I), there is only one true fixed point. Since all virtual fixed points are located within the same
single sub-region, SCYFI’s initialization will naturally position it within the correct linear region,
requiring no more than 1 iteration. Hence, it needs at most 2 iterations to find the true fixed point.
Consequently, SCYFI’s scaling is constant.

For case (II), if we suppose that SCYFI follows the virtual/true fixed point structure of the underlying
system in these K sub-regions, the necessity for the probability of discovering the fixed point to be
close to 1, specifically 1− ϵ, is to have

N ≥ ⌈ ln(ϵ)

ln(1− 1
2M−card(S) )

⌉ = ⌈ ln(ϵ)

ln(1− 1
K )
⌉, (103)

iterations. Since 1 ≤ card(S) ≤ M − 1, so K ≥ 2 and ln(1 − 1
K ) ≈ −1

K . For ϵ∗ ≥ ϵ, let
N = ⌈ ln(ϵ∗)

ln(1− 1
K )
⌉ ≥ ⌈ ln(ϵ)

ln(1− 1
K )
⌉, then

N = ⌈ ln(ϵ∗)

ln(1− 1
K )
⌉ ≤ ln(ϵ∗)

ln(1− 1
K )
≈ ln(

1

ϵ∗
)K := cK, (104)

which implies the number of iterations is bounded from above. If, for every M , we choose K small
enough, then the upper bound will stay within a linear growth.

A.2.6 Proof of theorem 4

In GTF [24], during training RNN latent states are replaced by a weighted sum of forward propagated
states zt = Fθ(zt−1) and data-inferred states z̄t = G−1

ϕ (xt) (obtained by inversion of the decoder
model Gϕ):

z̃t := (1− α)zt + αz̄t, (105)

where 0 ≤ α ≤ 1 is the GTF parameter (usually adaptively regulated in training, see [24]). This leads
to the following factorization of Jacobians in PLRNN (2) training:

JGTF
t =

∂zt
∂zt−1

=
∂zt

∂z̃t−1

∂z̃t−1

∂zt−1
=

∂Fθ(z̃t−1)

∂z̃t−1

∂z̃t−1

∂zt−1
= (1− α)J̃t = (1− α)WΩ(t). (106)

Proof. (i) Since ∥A∥+ ∥W ∥ ≤ 1, we have

∀t
∥∥WΩ(t)

∥∥ =
∥∥A+WDΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥∥∥DΩ(t)

∥∥ ≤ ∥A∥+ ∥W∥ ≤ 1, (107)
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and so

∀t ρ(WΩ(t)) ≤
∥∥WΩ(t)

∥∥ ≤ 1, (108)

where ρ denotes the spectral radius of a matrix. In this case, for any n ∈ N, we also have

ρ(

n∏
i=1

WΩ(ti)) ≤

∥∥∥∥∥
n∏

i=1

WΩ(ti)

∥∥∥∥∥ ≤
n∏

i=1

∥∥WΩ(ti)

∥∥ ≤ ( ∥A∥+ ∥W∥)n ≤ 1. (109)

Now, for any 0 < α < 1, the product of Jacobians under GTF is
n∏

i=1

JGTF
ti = (1− α)n

n∏
i=1

J̃ti = (1− α)n
n∏

i=1

WΩ(ti), (110)

and

ρ
( n∏

i=1

JGTF
ti

)
= ρ

(
(1− α)n

n∏
i=1

WΩ(ti)

)
= (1− α)nρ

( n∏
i=1

WΩ(ti)

)
≤ (1− α)n < 1. (111)

Hence ρ
(∏n

i=1 J
GTF
ti

)
< 1 which implies for any n ∈ N and 0 < α < 1, the product

∏n
i=1 J

GTF
ti

has no eigenvalue equal to 1 and so no DTB can occur (see definition of DTB in sect. 3).

(ii) Let ∥A∥+ ∥W ∥ = r > 1, then for any n ∈ N we have

ρ
( n∏

i=1

J̃ti

)
≤ rn, (112)

and thus

ρ
( n∏

i=1

JGTF
ti

)
= (1− α)nρ

( n∏
i=1

WΩ(ti)

)
≤ [(1− α) r]n. (113)

Since 0 < 1 − 1
r < 1, inserting 1 − 1

r < α = α∗ < 1 into the r.h.s. of (113) again gives

ρ
(∏n

i=1 J
GTF
ti

)
< 1 for any n ∈ N, implying that no DTB can occur.
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A.3 Additional results

Figure S6: A) Analytically calculated stability regions for a 2-cycle SRL (red), and a fixed point SR
(green) for the 1d skew tent map, as defined in the figure, in the parameter plane given by (ar, al). B)
Bifurcation diagram along the cross section indicated by the gray line in A, showing a BCB and DFB
occurring simultaneously at ar = −1 and a DTB occurring at ar = 1.

Figure S7: Results from SCYFI (blue) versus analytical results (orange) for the 2-cycle in Fig. 1
(a11 + w11 = −2). Eigenvalues (left) and location in state space (right) for one of the cyclic points.
This confirms that fixed point locations and eigenvalues computed in closed-form and via SCYFI
exactly agree, as they should.

A.3.1 Scaling analysis

Although the results presented in Fig. 2 suggest that SCYFI’s scaling behavior is much better than
theoretically expected, the fact that it is hard to obtain ground truth comparisons for high-dimensional
systems (because of the combinatorial explosion) generally makes an extensive empirical analysis
difficult. For Fig. 2 we therefore focused on scenarios for which we can also provide analytical
curves for an exhaustive search strategy (eq. (5)) and where we then either examined scaling with
cycle-order k for rather low-dimensional systems, or where we explicitly embedded fixed points to
search for which allowed us to move to very high dimensionality M . In general we observed that
the scaling behavior also depended on the PLRNN’s matrix norms and the eigenspectrum of the
embedded fixed points, so we constructed different scenarios where we varied these factors as well.

To construct a fairly well behaved case with low matrix norms, we randomly generated matrices
R with uniformly distributed entries in the interval [−1, 1] and then normalized by its maximal
eigenvalue: We set PLRNN parameters A = 1

λmax
diag(R) and W = 1

λmax
(R − diag(R)), and

chose h uniformly in the interval [−50, 50]. For each of 10 different such systems, we fixed the
number of outer loops and inner loops (Nout, Nin in Algorithm 1) such that a fixed point would be
detected in at least 50/75 independent runs of the algorithm, and then determined the total number n
of linear regions (i.e., across all Nout different initializations) the algorithm needed to cycle through
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to detect a stable fixed point. We also ensured that across all different runs this stable fixed point
would be the same, in accordance with our assumptions. The resulting scaling behavior was well
fitted by a doubly-logarithmic curve of the form c1 ln(ln(M)) + c2 (R2 ≈ 0.913, p < 10−4). This
low-matrix norm scenario with a stable fixed point may be seen as a kind of lower bound on the
scaling.

To embed a specific fixed point z∗, we again start with a matrix R as described above and take
A = diag(R) and W = (R− diag(R)). We then minimize

min
A,W ,h

| z∗ − ((A+W ·DΩ(t∗)) · z∗ + h) |, (114)

subject to A staying diagonal and W off-diagonal (we observed that adding a small Gaussian noise
term to the right appearance of z∗ in eq. 114 which decayed proportionally to the learning rate
improved numerical stability in the optimization process). The such constructed PLRNNs generally
have several fixed points, but to compute n we only search for the inserted fixed point z∗ (making
eq. (5) directly applicable). This way we produced 5 − 10 systems, initializing R with values in
[−0.2, 0.2] (orange curve in Fig. 2B) or [−1.0, 1.0] (blue curve in Fig. 2B), thus effectively restricting
the eigenspectrum of the fixed point as well as the matrix norms of the PLRNN to a certain range.
However, since matrix norms may change during optimization, eq. (114), our procedure is not
strictly guaranteed to produce eigenspectra and matrix norms within a desired range, which is crucial
especially for the first scenario where we wanted to keep norms within a ‘typical range’ (see below).
So here, to ensure consistency among drawn systems and with our assumptions, the mean absolute
eigenvalue of the embedded fixed points was kept close to 0.31 ± 0.05 and the mean maximum
absolute eigenvalue close to 1.25± 0.13. For > 75% of the resulting systems spectral matrix norms
were within the range [1.0, 3.0]. While this produced matrix spectra typical for trained PLRNNs
(> 95% out of 361 PLRNNs trained on various benchmarks and data had spectral matrix norms
within [1.0, 3.0]), the second initialization range resulted in unnaturally large matrix norms and hence
may be seen as providing a kind of upper bound on SCYFI’s scaling behavior. Fig. S8 shows the best
case (left; purple curve in Fig. 2B) and typical (right; orange curve in Fig. 2B) scaling scenarios on
linear scale to better expose the scaling behavior and function fits.

Figure S8: Zoom-ins on linear axes of the scenarios with doubly-logarithmic (left; R2 ≈ 0.913, p <
10−4) and quadratic (right; R2 ≈ 0.925, p < 10−5) scaling behaviors from Fig. 2B.
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Figure S9: A) Initializing SCYFI in a wide array of different subregions (different colors), it quickly
converges – within just a few iterations – to the same set of linear subregions which contain the
dynamical objects of interest (fixed points in this case). B) The number of different subregions
explored by SCYFI when started from different initializations shrinks exponentially fast with the
number of iterations. Shown are means (± stdv) from 10 different systems with M = 10.

A.3.2 Loss jumps & bifurcations in PLRNN training on biophysical model simulations

Here we provide an additional illustration of how SCYFI can be used to dissect bifurcations in
model training. For this, we produced time series of membrane voltage and a gating variable from
a biophysical neuron model [17], on which we trained a dendPLRNN [10] using BPTT [52] with
sparse teacher forcing (STF) [37]. The dendPLRNN used (M = 9 latent states, B = 2 bases) has 218
different linear subregions and |θ| = 124 parameters. Fig. S10A gives the MSE loss as a function of
training epoch (i.e., single SGD updates). The loss curve exhibits several steep jumps. Zooming into
these points and examining the transitions in parameter space using SCYFI, we find they are indeed
produced by bifurcations, with an example given in Fig. S10B. As we had done for Fig. 4 in the main
text, since the state and parameter spaces are very high dimensional, for the bifurcation diagram in
Fig. S10B all extracted k-cycles (k ≥ 1), including fixed points, were projected onto a line given by
the PCA-derived maximum eigenvalue component, and plotted as a function of training epoch. For
the example in Fig. S10B, we found that a BCB (Theorem 2) underlies the transition in the qualitative
dynamics of the PLRNN as training progresses. Fig. S10C illustrates the dendPLRNN dynamics just
before (left) and right after (right) the bifurcation point highlighted in Fig. S10B, together with time
series from the true system.

More generally, whether a bifurcation associated with vanishing gradients produces a loss jump
depends on the system’s dynamics before and after the bifurcation point. In the case of BCBs, one
possible scenario involves a change in stability, as illustrated in Fig . S10. During a BCB, a stable
fixed point (or cycle) can loose stability as it passes through the bifurcation point. The maximum
Lyapunov exponent of an unstable fixed point (or cycle) is positive, resulting in exploding gradients
right after the bifurcation point [37], and consequently to a very steep slope in the loss function near
the bifurcation point as in Fig . S10.
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Figure S10: A) Loss across training epochs for a dendPLRNN (M = 9 states, B = 2 bases) trained
on a biophysical neuron model in a limit cycle (spiking) regime. Red dots indicate training epochs
just before and after a loss jump for which time graphs are given in C and D. B) Bifurcation diagram
of the dendPLRNN as a function of training epoch, with all state space locations of stable (filled
circles) and unstable (open circles) objects projected onto the first principle component. The loss
jump in A is accompanied by a bifurcation from fixed point to cyclic behavior. C) Time series of the
voltage variable (x1) of the biophysical model (gray) and that predicted by the dendPLRNN (black)
before the bifurcation event indicated in B. D) Same directly after the bifurcation event.

Figure S11: Loss jump induced by a degenerate flip bifurcation (DFB). A) Loss during a training
run of a PLRNN (M = 5) on a 2-cycle. The gray line indicates a loss jump corresponding to a DFB
and a simultaneously occurring border collision bifurcation (BCB). B) Bifurcation diagram of the
PLRNN, with the DFB and BCB leading to the destruction of the fixed point and the emergence of a
2-cycle as indicated by the gray line.

A.3.3 Dealing with bifurcations in RNN training

Here are some additional thoughts on how RNN training algorithms could possibly be modified to
deal with bifurcations. If the algorithm finds itself during training in a parameter regime which does
not exhibit the right topological structure, it does not make sense to further dwell within that regime,
or possibly anywhere within the vicinity of the current parameter estimate. Unlike standard SGD,
the algorithm should therefore perhaps take large leaps in parameter space as soon as it gets stuck
in a non-suitable dynamical regime. One possibility to implement this is through a ‘look-ahead’
mechanism that probes for topological properties of regions not visited so far. While fully fleshing
out this idea is beyond this paper, a proof of concept that this may speed up convergence is provided
in Fig. S12. Along similar lines, if we knew the model’s full bifurcation structure in parameter
space ahead of time, we could simply pick a parameter set which corresponds to the right dynamics
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describing patterns in the data best. While of course it will in general not be feasible to chart the whole
bifurcation structure before training (this is in a sense the whole point of a training algorithm), it may
be possible to design smart initialization procedures based on this insight, e.g. probing topological
regimes at randomly selected points in parameter space before starting training and initializing with
parameters that produce a desired type of dynamics (e.g., cyclic behavior) to begin with.

Figure S12: A) Example loss curves for RNNs trained on electrophysiological recordings by BPTT
without (blue) vs. with (black) ’look-ahead’ (the look-ahead function checks whether there would
be a bifurcation away from a stable fixed point when taking 10× the current gradient step). Dashed
yellow line indicates the epoch at which the look-ahead step was executed. B) Average across 6 loss
curves of RNNs trained without (blue) vs. with (black) look-ahead. Error bands = SEM.
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