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ABSTRACT

The Polyak step size (PSS) is an adaptive learning rate that has yet to see much
prominence in deep learning (DL). This paper investigates using the PSS in train-
ing Convolutional Neural Networks (CNN) for image classification (IC). We show
that by introducing two upper bounds for the PSS, we can train accurate CNNs
without the need for calculating a learning rate apriori. Additionally, we com-
pare the upper-bounded PSS rates against other adaptive learning rate methods
and show that they achieve competitive performance.

1 INTRODUCTION AND RELATED WORKS

The PSS is an adaptive learning rate used within gradient descent and its stochastic variants (Polyak,
1987). Since gradient descent features as the predominant method for optimising DL models, it’s
worth exploring how learning rates such as the PSS can affect this procedure. According to the PSS,
updates to the learning rate αt are calculated as follows.

αt =
f(xt)− f∗

∇f(xt)T∇f(xt)
(1)

In the context of DL, f in the above equation is a cost function. The PSS assumes knowing the
minimum of this function (f∗), but can be assumed to be 0 for many standard cost functions in DL
(e.g the cross-entropy loss for multi-class classification). It is also worth noting that the gradient
values, ∇f(xt), and the total cost, f(xt), are already known from back-propagation (Rumelhart
et al., 1986). This means that calculating αt introduces minimal computational overhead.

The PSS remains largely unstudied in DL, though recent papers such as Ren et al. (2022) explore
its mathematical complexities, whilst Loizou et al. (2021) begin to study its use for training DL
models. Our work reinforces the utility of the PSS in DL, showing that an upper-bounded PSS can
train accurate CNNs without an apriori learning rate choice.

2 METHOD AND RESULTS

We introduce the following two distinct methods of placing an upper-bound on αt.

γt = min{αt, 1} (2) δt = min{γt, δt−1} (3)

The need for these upper-bounds arose from our initial empirical investigations. In the early stages
of CNN training, large losses and comparatively small gradients resulted in values of αt >> 1.
This resulted in excessively large model-parameter updates and poor predictive performance. Using
equation 2 allows the learning rate γt to remain within the range (0, 1], and equation 3 ensures that
δt progresses in a descending, step-like manner.

In order to have a baseline to compare the above methods against, we trained AlexNet (Krizhevsky
et al., 2012) and ResNet-18 (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009). The
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(a) Using γt, δt and η (b) Using γt, δt, AdaGrad, AdaDelta, Adam

Figure 1: Validation Accuracies obtained using different learning rates.

constant η learning rates used for these base models were 0.1 and 0.01 respectively, these acted as
preferred initial learning rate choices and were determined using grid-search. The aforementioned
set ups (and their equivalent using γt and δt) were trained for 50 epochs, using a batch size of 64.

Fig. 1(a) clearly shows that the CNNs using γt and δt achieved competitive performance relative
to those that used η rates. In particular, ResNet-18 using the γt learning rate achieved the highest
validation accuracy in the least number of epochs. This confirms that using an upper-bounded PSS
rate is a viable alternative to choosing a learning rate apriori, this is most useful when the time and
computational resources to perform extensive hyper-parameter optimisation (e.g grid-search for η)
are unavailable.

Following the above, we must ask how γt and δt fare against other adaptive learning rates? To
answer this question we compare our proposed methods against AdaGrad (Duchi et al., 2011) with a
base learning rate αb that was determined using grid search, AdaDelta (Zeiler, 2012) with an αb of 1
(as per the original paper) and Adam (Kingma & Ba, 2017) using the default hyper-parameters. Fig.
1(b) depicts the validation accuracies obtained by all methods whilst training AlexNet on CIFAR-
10. Though AdaGrad outperforms γt and δt in this instance, it’s worth re-emphasising the initial
time cost needed for calculating AdaGrad’s αb. Again, we note that γt and δt provide competitive
performance (surpassing Adam and AdaDelta) whilst doing away with this upfront cost.

3 CONCLUSIONS AND FUTURE DIRECTIONS

The introduced learning rates γt and δt resulted in varied performance characteristics while training
different CNN architectures (see those trained with δt in Fig. 1(a)). This poses questions for further
study (e.g when should δt increase?). Despite this, the introduced rates proved to be a competitive
option for training CNNs - one that discards the need for deciding a learning rate apriori. Additional
future works would apply γt and δt to training larger CNN architectures on more complex datasets.
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4 APPENDIX

4.1 GRID-SEARCH DETAILS

The following array of learning rates was used when determining the η values (used as constant
learning rates in training the baseline AlexNet and ResNet-18 models) and αb (for AdaGrad usage
when training AlexNet), using 10-fold, cross-validated grid-search.

α = [0.5, 0.1, 0.01, 0.001, 0.0001] (4)

4.2 CNN TRAINING SETUPS

The following describes the setup for the baseline models trained using constant η learning rates.

Dataset Model η Batch size Epochs

CIFAR-10 AlexNet 0.1 64 50
ResNet-18 0.01 64 50

The following describes the setup for the models trained using our proposed γt and δt learning rates.

Dataset Model γt δt Batch size Epochs

CIFAR-10

AlexNet X ✓ 64 50
AlexNet ✓ X 64 50

ResNet-18 X ✓ 64 50
ResNet-18 ✓ X 64 50

The following describes the setup for the models trained using AdaGrad and AdaDelta methods.

Dataset Model AdaGrad AdaDelta αb Batch size Epochs

CIFAR-10 AlexNet X ✓ 1 64 20
AlexNet ✓ X 0.001 64 20

4.3 UNBOUNDED POLYAK STEP SIZE VALUES

The following table describes the setup for a model trained using the unbound PSS. The learning
rates derived in this training process are depicted below in Fig. 2.

Dataset Model Batch size Epochs
CIFAR-10 AlexNet 64 20

Figure 2: Without an upper-bound the PSS values far exceed 1.

The following graph depicts how the γt and δt rates progress during training.
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(a) γt progression (b) δt progression

Figure 3: γt and δt progressions whilst training AlexNet on CIFAR-10.
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