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ABSTRACT

The integration of Deep Neural Networks (DNNs) in Reinforcement Learning (RL)
systems has led to remarkable progress in solving complex tasks but also intro-
duced challenges like primacy bias and dead neurons. Primacy bias skews learning
towards early experiences, while dead neurons diminish the network’s capacity
to acquire new knowledge. Traditional reset mechanisms aimed at addressing
these issues often involve maintaining large replay buffers to train new networks
or selectively resetting subsets of neurons. However, These approaches either
incur substantial computational costs or fail to effectively reset the entire network,
resulting in underutilization of network plasticity and reduced learning efficiency.
In this work, we introduce the novel concept of neuron regeneration, which com-
bines reset mechanisms with knowledge recovery techniques. We also propose
a new framework called Sustainable Backup Propagation (SBP) that effectively
maintains plasticity in neural networks through this neuron regeneration process.
The SBP framework achieves whole network neuron regeneration through two key
procedures: cycle reset and inner distillation. Cycle reset involves a scheduled
renewal of neurons, while inner distillation functions as a knowledge recovery
mechanism at the neuron level. To validate our framework, we integrate SBP with
Proximal Policy Optimization (PPO) and propose a novel distillation function for
inner distillation. This integration results in Plastic PPO (P3O), a new algorithm
that enables efficient cyclic regeneration of all neurons in the actor network. This
approach facilitates neuron regeneration while maintaining policy plasticity and
sample efficiency. Extensive experiments demonstrate that, with proper neuron
regeneration methods, the SBP framework can effectively maintain plasticity and
improve sample efficiency in reinforcement learning tasks.

1 INTRODUCTION

Deep reinforcement learning has advanced significantly through the integration of deep neural
networks, resulting in notable achievements across various domains(Singh et al., 2022; Arulkumaran
et al., 2017; Yu et al., 2021). Despite these advancements, a critical issue that has emerged is the loss
of plasticity, as detailed in (Lyle et al., 2023; Abbas et al., 2023). This refers to the diminishing ability
of a network to learn and adapt over time. As network neurons become saturated, they “become
full”, losing the capacity to incorporate new information effectively. This reduction in plasticity
primarily affects the neurons in the network, leading to decreased effectiveness and eventually causing
neurons to become dead(Lu et al., 2019; Shin & Karniadakis, 2020) or dormant(Sokar et al., 2023).
Additionally, the problem of overfitting in deep learning, known as primacy bias (Nikishin et al.,
2022), further causes this loss of plasticity. Consequently, there is an urgent imperative to develop
mechanisms for the repair or revitalization of neurons affected by primacy bias or those that have
lapsed into dormancy, with the objective of reawakening their “hunger” for novel information.

Reset mechanisms have been proven to be effective measures for addressing the loss of plasticity in
neural networks. However, existing reset approaches have demonstrated various limitations. Early
studies (Nikishin et al., 2022; D’Oro et al., 2022; Kim et al., 2024) proposed resetting either the
final layer or all neurons to revitalize learning capabilities. However, these methods often led to
a performance-resource trade-off, requiring additional training to recover lost performance. More
targeted approaches, such as CBP (Dohare et al., 2021) and ReDo (Sokar et al., 2023), focused
on selectively resetting non-contributing neurons. While this strategy reduced information loss,
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Figure 1: Performance of PPO across varying numbers of training epochs per batch. Increasing
training steps impedes performance improvement.

it only partially restored plasticity and achieved limited performance improvements. A common
challenge across these methods is that neurons reaching critical importance become either irresetable
or damaging when reset, rendering the reset strategy ineffective and potentially limiting the network’s
overall potential. This underscores the need for a more sophisticated approach that can enhance
network plasticity without compromising performance. Inspired by regenerative processes in human
cells (Carlson, 2011), we propose the concept of neuron regeneration, which aims to recover plasticity
while preserving crucial knowledge within the network.

Neuron regeneration refers to the periodic renewal of neurons to maintain network plasticity, drawing
inspiration from biological cellular regeneration. This process enables neural networks to sustain
adaptability and long-term learning capabilities without performance degradation. The key innovation
lies in its ability to effectively recover plasticity while preserving network performance, thereby
achieving sustainable plasticity. To implement neuron regeneration, we designed the Sustainable
Backup Propagation (SBP) approach, which integrates reset and distillation mechanisms into tradi-
tional backpropagation(Hecht-Nielsen, 1992). Inspired by natural cellular regeneration cycles(Sender
& Milo, 2021), SBP employs a cyclic reset strategy to mitigate neuron plasticity degradation and pri-
macy bias. The inner distillation process facilitates knowledge transfer from reset neurons to others,
ensuring effective regeneration without performance loss. This approach maintains the network’s
capacity to absorb new information, perpetuating its learning process and maximizing its potential
for continuous growth. By balancing plasticity recovery with performance preservation, SBP enables
neural networks to consistently maintain learning efficiency while enhancing plasticity, thus fully
leveraging the network’s learning capabilities.

As shown in Figure 1, Proximal Policy Optimization (PPO) (Schulman et al., 2017) suffers from
primacy bias, with performance degrading as training epochs increase. This indicates a loss of
plasticity over time, highlighting the need for sustainable plasticity. To address this, we integrated
our Sustainable Backup Propagation (SBP) approach with PPO, introducing the concept of neuron
regeneration. We developed a novel α-weighted Double KL divergence (α-DKL) loss function to
preserve useful knowledge while filtering out harmful information. This integration resulted in the
Plastic PPO (P3O) algorithm, which implements neuron regeneration within the actor network to
maintain learning efficiency and achieve sustainable plasticity. We evaluated P3O across various
environments, including MuJoCo (Todorov et al., 2012), DeepMind Control Suite (Tassa et al.,
2018), and a MuJoCo variant called Cycle Friction. Results demonstrate significant performance
improvements. These findings validate the effectiveness of our neuron regeneration mechanism
in recovering plasticity and enhancing learning capabilities in reinforcement learning tasks. Our
contributions in this work can be summarized as follows:

• Neuron Regeneration: We introduce the concept of neuron regeneration, a novel approach
inspired by biological processes to maintain and recover plasticity in neural networks,
enabling continuous adaptation without performance degradation.

• Sustainable Backup Propagation (SBP): We propose the SBP framework, which im-
plements neuron regeneration through cyclic reset and inner distillation. SBP effectively
addresses issues such as dead neurons and primacy bias, ensuring sustainable plasticity
throughout the network’s lifecycle.

• Plastic PPO (P3O): We introduce P3O, an enhanced version of PPO that integrates SBP
and a novel α-weighted Double KL divergence (α-DKL) loss function. P3O overcomes
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the primacy bias problem in standard PPO, maintaining plasticity and improved sample
efficiency across various reinforcement learning tasks.

2 PRELIMINARIES AND RELATED WORK

2.1 ON-POLICY REINFORCEMENT LEARNING

Reinforcement learning is formalized as a Markov decision process (MDP) (Puterman, 2014). An
MDP consists of a tuple ⟨S,A,R, P, γ⟩, where S denotes the set of states, A the set of actions,
R : X × S → R a reward function, P : S × A → P ( a possibly stochastic transition probability
function, γ ∈ [0, 1) the discount factor. In reinforcement learning, The goal is to seek an optimal
policy π∗ : S → P (A) which maximizes the expected accumulated returns with discounted.

In on-policy reinforcement learning, the Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) is utilized to update policies during interaction with the environment. The core objective
function of PPO, denoted as Lclip(θ), includes a clipping operation that sets gradients to zero
when the probability ratio rt(θ) falls outside [1− ϵ, 1 + ϵ]. This prevents the policy from learning
from advantages that would push it further outside the trust region, thereby enforcing trust region
constraints in a computationally efficient manner. This operation ensures that the policy does not
deviate excessively from the previous policy. The objective function is expressed as:

Lclip(θ) = Et

[
min

(
rt(θ) · Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) · Ât

)]
(1)

Here, rt(θ) =
πθ(at|st)
πθold (at|st) represents the probability ratio between new and old policies, and Ât is

the estimated advantage function. The advantage function measures the value of the current policy
relative to a baseline policy, calculated from trajectory data acquired during interactions with the
environment. In on-policy training environments with dynamic data, where both input data and target
values are nonstationary, network plasticity may be compromised, leading to suboptimal performance.

2.2 PLASTICITY IN REINFORCEMENT LEARNING

Plasticity loss in neural networks, the gradual decline in learning capacity over time, poses a critical
challenge in deep learning by limiting adaptation to new tasks. This issue has prompted extensive
research(Lyle et al., 2023; Abbas et al., 2023; Nikishin et al., 2022; Nauman et al., 2024; Dohare
et al., 2024) into methods for preserving neural network plasticity, with two main categories of
approaches emerging to address this problem. The first involves various training techniques such as
regularization, adjustments in activation functions, weight decay, and normalization strategies (Kumar
et al., 2023; Delfosse et al., 2021; Lee et al., 2024; Lyle et al., 2024). These methods have proven
somewhat effective at alleviating the problem by reducing overfitting and preventing parameters from
becoming overly large, thereby delaying the onset of plasticity loss.

The second category of approaches involves resetting the network (Nikishin et al., 2022; Schwarzer
et al., 2023; Nikishin et al., 2024) to recover the plasticity. This reset-based methodology addresses
both neuron dormancy and primacy bias. Typically implemented by reinitializing weights of specific
layers or the entire network, resets have been shown to effectively scale replay ratios, contributing
to performance improvements (Kim et al., 2024; Xu et al., 2023). However, while resets can revive
learning capabilities, they might lead to temporary performance degradation and require additional
training to restore previously learned information. To mitigate these drawbacks, methods like CBP
(Dohare et al., 2021) and ReDo (Sokar et al., 2023) selectively reinitialize neurons deemed less useful
based on certain metrics, minimizing the impact on overall performance. This approach highlights
the delicate balance between recovering plasticity and maintaining network efficiency. However,
there remains a need for more sophisticated methods that can effectively regenerate neurons while
preserving learned knowledge, which is the focus of our proposed approach.

The importance of addressing plasticity loss is further underscored by recent studies. These have
demonstrated that enhancing neural plasticity can lead to significant improvements in sample effi-
ciency (D’Oro et al., 2022; Schwarzer et al., 2023; Lee et al., 2024; Ma et al., 2023; Nauman et al.,
2024), a particularly attractive property for reinforcement learning tasks where data efficiency is
crucial.
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2.3 POLICY DISTILLATION IN REINFORCEMENT LEARNING

Policy distillation is a technique that involves the extraction and transfer of knowledge or policy
from a reinforcement learning agent to a smaller network, thereby improving efficiency (Rusu et al.,
2015). Prior research (Igl et al., 2020; Lyle et al., 2022) has highlighted its utility in addressing
potential generalization loss in deep reinforcement learning agents due to nonstationarity and over-
fitting, respectively. This suggests that policy distillation serves two main functions: transferring
knowledge and enhancing generalization, aligning well with the goals of plasticity recovery such
as preserving knowledge and mitigating primacy bias. A critical aspect of effectively implementing
policy distillation is quantifying the quality of knowledge transfer, which necessitates appropriate
divergence measures. A study by (Martins et al., 2021) discusses two types of Kullback-Leibler (KL)
divergence measures: Forward KL (FKL) and Reverse KL (RKL). The Forward KL divergence, D→KL,
weights the state space according to the teacher’s policy, prioritizing learning in states where the
teacher’s policy is more probable. Conversely, the Reverse KL divergence, D←KL, weights according to
the student’s policy, promoting exploration and robustness but risking neglect of some teacher-favored
behaviors. Their mathematical expressions are:

D→KL(π1 ∥ π2) =
∑
s∈S

π1(s) log

(
π1(s)

π2(s)

)
(2)

D←KL(π2 ∥ π1) =
∑
s∈S

π2(s) log

(
π2(s)

π1(s)

)
(3)

Recognizing the complementary strengths of these measures, our work proposes an integrated
FKL-RKL approach, aiming to enhance knowledge transfer for plasticity recovery.

3 NEURON REGENERATION

Maximizing the utilization of a neural network’s capacity is a primary goal in training, yet several
challenges impede this objective. Plasticity in neural networks, often viewed as a consumable
resource, diminishes as the network learns and integrates knowledge. This depletion can result from
suboptimal configurations such as inappropriate activation functions (Abbas et al., 2023), poor data
quality (Lee et al., 2024), or inherent limitations of backpropagation (Dohare et al., 2024), leading to
biased or irrelevant information acquisition and suboptimal network performance.

While neuron reset techniques can restore plasticity, they risk performance degradation if not carefully
implemented(Nauman et al., 2024). Research by D’Oro et al. (2022) suggests that resetting all
neurons, including those affected by primacy bias, is necessary to maximize network capacity.
Building upon the idea of neuron reset while addressing its limitations, we introduce a new concept:
neuron regeneration.

Definition 3.1: Neuron Regeneration

Given a neural network parameterized by θ, let NR denote a regeneration operation that
resets arbitrary neurons to their initial plastic states, resulting in a new parameter set θ′.
Neuron regeneration maintains two key properties:
1. Neuron-level Plasticity Recovery: Plasticity(NR(θ′)) > Plasticity(θ)
2. Performance Guarantee: P (NR(θ′)) ≥ P (θ)
where Plasticity denotes a measure of the network’s adaptability and P represents the net-
work’s performance.

Neuron regeneration aims to achieve sustainable plasticity without performance degradation, enabling
long-term learning and exploration of the network’s potential. This approach addresses the limitations
of traditional training methods and reset techniques, potentially maximizing the utilization of the
entire network’s capacity. By implementing neuron regeneration, we propose a framework for
maintaining learning ability and efficiency, pushing the boundaries of neural network capabilities
beyond current limitations.

4
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Figure 2: Left: Cycle Reset. Right: Inner Distillation. The right figure illustrates our method
combining neuron reset and knowledge distillation. This approach restores neuron plasticity and
transfers knowledge, enhancing overall network plasticity while maintaining performance.

4 METHODOLOGY

To maximize the utilization of neural network capabilities, we propose the Sustainable Backprop-
agation (SBP) method. SBP achieves sustainable plasticity through a novel neuron regeneration
mechanism, which combines two key components: Cycle Reset and Inner Distillation.

4.1 SUSTAINABLE BACKPROPAGATION

Our neuron regeneration mechanism consists of two complementary processes: Reset and Distillation.
The Reset process discards outdated knowledge and rejuvenates inactive neurons by resetting their
parameters to initial states. Complementing this, the Distillation process preserves valuable knowl-
edge by transferring information from the pre-reset state to the post-reset network. This combination
allows neurons to restore plasticity while retaining crucial learned information.

To implement network-wide neuron regeneration, we introduce the Cycle Reset mechanism, governed
by two key parameters: Reset frequency F and Reset ratio p. Every F training steps, p% of neurons in
each layer undergo reset and regeneration. This cyclical process, illustrated in Figure 2, continuously
refreshes neurons across all layers throughout training.

Inner Distillation completes the neuron regeneration process initiated by Reset. As shown in Figure 2,
before resetting, the current policy πθ is copied to a temporary policy πtem. Selected neurons then
undergo reset, clearing outdated information. Subsequently, knowledge from πtem is selectively
distilled back to the reset policy πθ′ at the neuron level, with reset neurons temporarily frozen
to preserve their renewed plasticity. This neuron-specific distillation process complements the
Reset operation, jointly achieving neuron regeneration. The integration of Cycle Reset and Inner
Distillation results in a cyclic neuron regeneration process. This approach ensures that all neurons in
the network undergo periodic regeneration, maintaining network-wide plasticity while preserving
valuable knowledge. Through this cyclic neuron regeneration, we achieve sustainable plasticity,
enabling the neural network to continually adapt to new information without compromising its learned
capabilities. This process maximizes the utilization of the neural network’s capacity, effectively
balancing ongoing learning with performance preservation.

The SBP algorithm, which incorporates reset operations and distillation, is outlined in Algorithm 1.

4.2 DOUBLE KL DIVERGENCE

Our analysis of Figure1 revealed that the PPO algorithm faces challenges with plasticity loss. To
address this issue, we propose integrating the SBP framework into PPO, aiming to enhance its
capabilities. The Inner Distillation process presents a complex scenario where neurons may contain
either valuable knowledge or irrelevant information. To maximize generalization and plasticity, we
must carefully control this distillation process. In the context of reinforcement learning, we leverage
the KL divergence as our distillation function, building upon previous research(Martins et al., 2021)

5
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that demonstrated the effectiveness of both Forward KL (FKL) and Reverse KL (RKL) in different
aspects of knowledge transfer. Specifically, FKL has shown efficiency in transferring knowledge from
a teacher policy to a student policy, while RKL is effective in preventing the infiltration of potentially
harmful knowledge into the student model. To capitalize on the strengths of both approaches, we
introduce a combined method. We also incorporate a parameter α to adapt the loss function to
various distillation scenarios. This results in our proposed α-weighted Double KL divergence (DKL),
expressed as:

L(θ) = min
θ

α ·D→KL(πtem ∥ πθ′) + (1− α) ·D←KL(πθ′ ∥ πtem) (4)

• πθ represents the primary policy, πtemp denotes a temporary policy typically used before a
reset, and πθ′ signifies the policy after the reset of certain neurons.

• D→KL(πtem ∥ πθ′) denotes the Forward KL divergence, which measures how well the policy
πθ′ approximates the policy πtem. This term is crucial for the effective transfer of essential
knowledge from the πtem to the πθ′ .

• D←KL(πθ′ ∥ πtem) represents the Reverse KL divergence, which acts as a regularizer to
prevent the πθ′ from adopting potentially harmful or irrelevant information from the policy
πtem.

• α ∈ [0, 1] is a tuning parameter that balances the contributions of the Forward and Reverse
KL divergences to the overall loss function.

The α-DKL approach offers a flexible and robust method for knowledge distillation, allowing us to
balance the transfer of useful information with the prevention of harmful knowledge infiltration. By
adjusting the α parameter, we can fine-tune the distillation process to suit different learning scenarios
and optimize the trade-off between knowledge preservation and plasticity restoration. Leveraging
α-DKL, we propose Plastic PPO (P3O), an enhanced version of the PPO algorithm that integrates
SBP and employs α-DKL as its distillation loss function. The details of P3O are presented in
Algorithm 2. This integration allows P3O to maintain sustainable plasticity throughout the learning
process, potentially overcoming the limitations observed in standard PPO implementations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Figure 3: Cycle Friction.

Environment & Task To evaluate our algorithm’s performance, we
employed a diverse set of tasks. These include standard benchmarks
from MuJoCo (Todorov et al., 2012) and the state-based versions of
DeepMind Control Suite (DMC) (Tassa et al., 2018). Additionally,
we introduce the Cycle Friction Control task, an innovative variant of
the MuJoCo environment inspired by the slip MuJoCo task (Dohare
et al., 2024). Fig. 3 shows a task with a cyclically changing friction
coefficient. It starts at 4, decreases by 1 every million steps to 1,
then increases back to 4. This discrete evolution significantly increases environmental complexity,
challenging the algorithm.

Baseline Throughout the entire experiment, we employed PPO as the base algorithm. In the reset
experiment, we examined the impact of various reset strategies. CBP (Dohare et al., 2021) involves
selecting neurons based on a utility function that considers both weight and activation values. ReDo
(Sokar et al., 2023) selects neurons based on a score derived from their activation values. Cycle
involves selecting neurons in a specific order.
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Table 1: Performance comparison across MuJoCo environments, with results averaged across 5 differ-
ent random seeds. Percentages show improvement over baseline PPO. H-stand: HumanoidStandup,
Half: HalfCheetah.

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

Hopper 3,613 3,606 (-0.19%) 3828(5.95%) 3280 (-9.22%) 3,735 (3%)
H-stand 144,831 143,763(-0.74%) 151,254 (4.43%) 154323 (6.55%) 158,361 (9%)
Walker 5,878 5,028 (-14.46%) 5,594 (-4.83%) 5743 (-2.30%) 7,402 (9%)

Ant 3,514 4,860(38.30%) 3995 (13.69%) 3256 (-7.34%) 5,683 (62%)
Half 4,575 5,458 (19.30%) 4,962 (8.46%) 4843 (5.86%) 9,065 (98%)

Humanoid 972 3,307 (240.23%) 2,573 (164.71%) 1578 (62.35%) 7,469 (669%)
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Figure 4: Performance of various reset strategies in MuJoCo environments.

5.2 EXPERIMENTAL RESULTS

MuJoCo Our experimental results demonstrate the effectiveness of our P3O algorithm across several
key dimensions. Table 1 shows that P3O consistently outperforms other algorithms across all MuJoCo
environments, with particularly remarkable improvements in the Humanoid environment, where
the performance boost reaches 669%. This substantial increase in maximum rewards indicates
that our framework effectively enables neuronal regeneration, enhancing learning efficiency and
more fully utilizing the neural network’s capacity. The learning curves in Figure 4 further support
this, demonstrating that P3O achieves the highest learning efficiency in most environments and
maintains an upward trend for extended periods. This sustained improvement suggests that we
have indeed achieved sustainable plasticity, continuously providing the neural network with the
capacity for learning and adaptation. Moreover, our ablation study using a standalone cycle reset
without distillation demonstrates that knowledge recovery plays a crucial role in this process, further
validating the importance of our integrated approach in P3O.

As illustrated in Figure 5, we analyzed the average L1 norm of all neuron weights in the network
during training. We observed that the original PPO algorithm tends to produce larger weights. In
contrast, algorithms incorporating resets, including P3O, maintain weights in a more stable, lower
range. This aligns with research(Dohare et al., 2024) indicating that excessively large weights are a
symptom of reduced plasticity. Our findings, detailed in Table 4 in the appendix, show a correlation
between reset frequency and weight magnitude: more frequent resets lead to smaller overall weights.
P3O, with its moderate reset frequency, achieves a balanced weight distribution, positioned between
the frequent resets of CBP and the limited resets of ReDo. This observation demonstrates that
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Figure 5: Weight Norm of actor network. Lower weight norm indicates greater plasticity.

resetting is indeed an effective measure for restoring plasticity, as it helps to maintain weights within
a more optimal range for learning.

Crucially, as illustrated in Figure 6, P3O consistently maintains higher gradient norms compared to
other tested algorithms across various MuJoCo environments. This is significant because learning oc-
curs through gradients, and within a certain range, higher gradients indicate higher learning efficiency
and plasticity. The phenomenon of vanishing gradients is often associated with a loss of plasticity.
Our algorithm effectively reduces weight values while maintaining robust gradients, resulting in
optimal performance. Other algorithms show less effective gradient maintenance, suggesting that
knowledge retention is crucial for sustaining gradients.

The superior performance of P3O can be attributed to its appropriate reset frequency and effective
knowledge retention measures. This combination enables efficient neuronal regeneration, balancing
adaptation to new information with preservation of essential knowledge. By effectively navigating
the plasticity-stability trade-off, P3O enhances sample efficiency in reinforcement learning tasks
while maintaining learning stability. Moreover, P3O’s success highlights the importance of neuronal
regeneration and sustainable plasticity in neural networks. It demonstrates how continuous renewal
of neuron, coupled with crucial information preservation, can achieve long-term adaptability without
compromising performance or stability.
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Figure 7: Correlation between distillation epochs
and performance improvements.

Distillation Cost Distillation is conducted in
epochs using an online replay buffer, allowing us
to calculate the cost of distillation by statistically
analyzing its epochs. Table 2 presents these
specific statistical results. However, indiscrim-
inately increasing the number of epochs can ex-
acerbate the primacy bias (Nikishin et al., 2022).
This phenomenon is also observed in PPO, as
demonstrated in Fig. 1. Thus, a strategic com-
bination of distillation and reset mechanisms is
crucial to optimize their benefits. Analysis of
distillation epochs and their impact on P3O per-
formance, as shown in Figure 7, reveals a clear
trend: more training epochs lead to greater per-
formance improvements. This suggests that distillation not only recovers past knowledge but also
improves sample efficiency. Crucially, the extra training epochs necessitated by distillation should be
viewed as a key advantage of our algorithm, not a drawback. This strategic use of additional epochs
significantly enhances sample efficiency, which is the primary reason our algorithm outperforms
baseline algorithms such as CBP and ReDo. By leveraging these increased training steps, our frame-
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Figure 6: Grad Norm of actor network. Higher gradient norm indicates greater plasticity.

work aligns well with prior research on replay ratios in off-policy learning, while providing superior
performance through improved sample utilization.

Table 2: Extra distillation epochs in P3O vs. PPO baseline (18,310 epochs) across environments.

Hopper Humanoid Stand Walker Ant HalfCheetah Humanoid

Total Epochs 597.66 638.19 1536.80 7698.40 2548.40 6525.25
Per-Reset Epochs 2.39 2.55 6.14 30.79 10.19 26.10

Epoch Ratio 0.0327 0.0349 0.0840 0.4204 0.1392 0.3564
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Figure 8: Performance of various reset strategies in Cycle Friction(CF) environments.
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Figure 9: Performance of various reset strategies in DMC environments.

DMC & Cycle Friction Figures 8 and 9 reveal that in these complex benchmarks, while PPO struggles
and other algorithms show only marginal improvements, our SBP approach achieves substantial
progress. This superior performance in challenging environments demonstrates our algorithm’s
effectiveness and indicates that increased environmental complexity demands higher neural plasticity.
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Our method’s success underscores the importance of effective neuronal regeneration in complex tasks.
These findings not only validate our approach but also highlight the need for further research into
maximizing neural plasticity, especially in intricate learning environments.

The experimental outcomes observed across the Humanoid 4, Hopper Hop 8, and Cycle Friction
Ant 9 environments demonstrate that it is often the constrained plasticity of neural networks, rather
than the inherent limitations of the algorithms, that restricts the acquisition of valuable knowledge
from data. This insight emphasizes the critical need for further research into the plasticity of neural
networks, highlighting its pivotal role in advancing learning capabilities.

5.3 ABLATION OF DISTILLATION α

The alpha parameter plays a role in controlling knowledge transfer during distillation, potentially
influencing the effectiveness of neural regeneration. Our experiments, as illustrated in Figure 10,
suggest that different alpha values can affect learning efficiency.
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Figure 10: Performance of P3O with varying α values across Mujoco environments.

Our experiments show that an alpha of 0.3 generally yields better performance, suggesting that
limiting forward-propagated information may be beneficial. This finding hints at the presence of
primacy bias in current learning frameworks, potentially hindering ongoing performance improve-
ments. The effectiveness of a lower alpha value indicates that the current learning paradigm may
capture a limited amount of truly beneficial knowledge. This observation underscores the importance
of resetting a significant portion of neurons to mitigate biased information learned early in training.
Consequently, effective neuron regeneration becomes crucial to balance the preservation of valuable
learned information with the network’s ability to acquire new knowledge.

6 CONCLUSION

In this work, we introduced the Sustainable Backup Propagation(SBP) framework, centered on the
concept of neuronal regeneration to achieve sustainable plasticity in neural networks. Our approach
aims to maximize the utilization of neural networks by maintaining their long-term learning capacity.
The core components of SBP, including a novel distillation mechanism and strategic reset mecha-
nism, work in concert to preserve valuable knowledge while enabling continuous adaptation to new
information. We implemented this framework in Plastic PPO(P3O) algorithm, which demonstrated
significant performance improvements across various reinforcement learning tasks. Our findings
highlight the potential of neuronal regeneration and sustainable plasticity as critical components in
advancing deep learning paradigms. By addressing the plasticity-stability trade-off, SBP and P3O
pave the way for more adaptive and efficient neural networks. Despite our significant progress, we
acknowledge that in some environments, our approach did not achieve optimal performance. This
suggests that neuronal regeneration requires further research to reach its full potential.
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A APPENDIX

A.1 HYPERPARAMETER

• Python 3.8
• Pytorch 2.0.1 (Paszke et al., 2019)
• Gym 0.23.1 (Brockman et al., 2016)
• MuJoCo 2.3.7 (Todorov et al., 2012)
• mujoco-py 2.1.2.14

Our experiment is based on PPO and incorporates SBP, CBP, and ReDo variants. We use the
hyperparameters described in Table 3 for all algorithms. It’s important to note that we’ve slightly
modified the ReDo mechanism: instead of using a threshold-based selection, each reset is based
on evaluating the scores of the bottom one percent of neurons. To ensure statistical significance
and reproducibility, all experiments were conducted with 5 different random seeds, and the results
presented are the mean values with corresponding standard deviations across these runs.

Table 3: Algorithm Parameters

Category Hyperparameter Value

PPO

Optimizer Adam (Kingma & Ba, 2014)
Learning rate (Actor & Critic) 3e-4

Online replay buffer size 8192
Mini-batch size 256
Discount factor 0.99
Training steps 1.25e7 / 2e7

Epochs per update 10
Clip range 0.2

Architecture
Actor & Critic hidden dim 256

Actor & Critic hidden layers 3
Actor & Critic activation function tanh

SBP

Reset Rate 0.01
Reset Frequency 50000 Environment Step

Neuron Utility Type Neuron lifetime
Distillation α 0.4

τ 0.01

CBP

Reset Rate 0.01
Reset Frequency 10000 Gradient Step

Neuron Utility Type Contribution

ReDo
Reset Rate 0.01

Reset Frequency 50000 Environment Step
Neuron Utility Type ReDo score

A.2 COMPARISON OF RESET STRATEGIES

In our study, we made deliberate choices in reset counting methods to align with each algorithm’s
characteristics while maintaining comparability. For CBP, we retained its original approach of using
gradient steps for reset counting, preserving its algorithmic features. In contrast, for P3O, we opted
to use environment interaction steps as the basis for reset counting. This decision was motivated by
our focus on understanding how changes in input data affect neural plasticity. For consistency and to
facilitate better comparison, we applied this same counting method based on environment interaction
steps to ReDo as well. This approach allowed us to maintain the unique aspects of each algorithm
while ensuring a meaningful comparative analysis across different reset strategies.

Table 4 presents a comparative analysis of neuron reset statistics for the CBP, P3O, and ReDo
algorithms throughout their respective training processes. The data represents the average across six
Mujoco environments. Our findings reveal distinct patterns in reset frequency and scope among these
algorithms:
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• CBP exhibits the highest reset frequency, followed by P3O, with ReDo having the least
frequent resets.

• In terms of reset scope, both CBP and P3O can reset all neurons, while ReDo has limitations
in this aspect.

These reset patterns align with the weight norm distributions observed in Figure 5. The data
suggests an inverse relationship between reset frequency and weight magnitude: more frequent
resets correspond to smaller neuronal weights. This observation unveils a simple yet significant
principle: the more frequent and comprehensive the resets, the smaller the neuron weights tend to be.
These findings highlight the importance of carefully considering reset strategies in the design and
implementation of neural plasticity algorithms, as they can significantly affect the learning dynamics
and ultimate performance of the models.

Table 4: Reset Statistics Comparison (768 Neurons)

Total Resets Average Resets Reset Proportion (%)
CBP 44208.6 57.6 100.0
ReDo 1800.0 2.3 22.3
SBP 2304.0 3.0 100.0

Algorithm 1 Sustainable Backup Propagation (SBP)
Neural Network fθ, Temporary Model ftmp, Reset Rate γ, Training Steps T , Reset Frequency F ,
Reset Index p = 0, Distillation Threshold τ , Distillation Loss d = None. for t = 1 to T do

Update Neural Network fθ with standard backpropagation.
if t mod F = 0 then

Copy the weights of Neural Network fθ to Temporary Model ftmp.
for each layer L of the Network do

Let l = neurons of layer L.; Reinitialize input weights of neuron i in layer L:
i ∈ [p · l : (p+ γ) · l].

Freeze all the reset neurons in Neural Network fθ.
while d > τ or d = None do

Update Neural Network fθ using Temporary Model ftmp as a teacher network, focusing
on reducing the distillation loss d according to a distillation loss.
Recalculate Distillation Loss d.

Unfreeze all the reset neurons in Neural Network fθ.
if p+ γ < 1 then

p = p+ γ;
else

p = 0;

A.3 ALGORITHM

In this section, we present two novel algorithms designed to achieve sustainable plasticity in neural
networks: Sustainable Backup Propagation (SBP) and Plastic Proximal Policy Optimization (P3O).
These algorithms address the challenge of maintaining neural network plasticity over extended
periods.

A.3.1 SUSTAINABLE BACKUP PROPAGATION (SBP)

SBP is a general framework designed to maintain the plasticity of neural networks over extended
periods. It incorporates a neuron regeneration mechanism into standard backpropagation, creating a
sustainable learning process. The key components of SBP are:

• Cycle Reset: Periodically reinitializes a portion of neurons to prevent overspecialization.
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• Inner Distillation: Utilizes a temporary model as a teacher network to recover essential
knowledge after neuron reset.

This approach allows neural networks to maintain plasticity indefinitely, continually adapting to new
information without catastrophic forgetting.

The SBP algorithm implements the cycle reset and inner distillation mechanisms. The reset rate γ
determines the proportion of neurons reset in each cycle, while the distillation process ensures that
essential knowledge is retained after each reset.

A.3.2 PLASTIC PROXIMAL POLICY OPTIMIZATION (P3O)

P3O is a concrete implementation of the SBP framework within the context of reinforcement learning,
specifically tailored for the Proximal Policy Optimization (PPO) algorithm. A specialized distillation
function, DKL, is designed for PPO, ensuring effective knowledge transfer in policy space. P3O
demonstrates how the general SBP framework can be applied to specific machine learning paradigms,
in this case, enabling sustainable plasticity in reinforcement learning policies.

Both algorithms represent a significant step towards creating AI systems that can learn continuously
and adapt to changing environments without losing previously acquired knowledge. They offer a
promising approach to overcoming the limitations of traditional neural network training methods,
particularly in scenarios requiring long-term learning and adaptation.

Algorithm 2 Plastic PPO(P3O)
Policy πθ, Temporary Policy πtmp, Reset Rate γ, Training Steps T , Reset Frequency F , Reset Index
p = 0, Distillation Threshold τ , Distillation Loss d = None. for t = 1 to T do

Update Policy πθ with regular policy gradient.
if t mod F = 0 then

Copy the weights of Policy πθ to Temporary Policy πtmp.
for each layer L of the Network do

Let l = neurons of layer L. Reinitialize input weights of neuron i in layer L:
i ∈ [p · l : (p+ γ) · l].

Freeze all the reset neurons in Policy πθ.
while d > τ or d = None do

Update Policy πθ using Temporary Policy πtmp as a teacher network based on Equation 4.
Update Distillation Loss d.

Unfreeze all the reset neurons in Policy πθ.
if p+ γ < 1 then

p = p+ γ

else
p = 0

P3O adapts the SBP framework to the context of reinforcement learning. The key difference lies in
the update mechanism policy gradient and the specialized distillation function (Equation 4) designed
for policy space.

Both SBP and P3O represent significant advancements in creating AI systems capable of continuous
learning and adaptation. By incorporating neuron regeneration and knowledge distillation, these
algorithms offer a promising approach to overcoming the limitations of traditional neural network
training methods, particularly in scenarios requiring long-term learning and adaptation to changing
environments.

A.4 ABLATION

A.4.1 ABLATION STUDY OF ACTIVATION

To comprehensively evaluate our algorithm’s capability in maintaining plasticity, we conducted
additional experiments across different activation functions, recognizing that neural networks exhibit
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Figure 11: Performance Comparison of Different Reset Strategies with ReLU Activation in MuJoCo
Environments.

varying characteristics under different activation schemes. We maintained the same parameter settings
as shown in Table3 across all six environments.

1. Cross-Activation Function Analysis:
• Our method demonstrates consistent performance improvements with both ReLU and

tanh activation functions
• The magnitude of improvement remains comparable between ReLU and tanh conditions

2. Comparative Robustness:
• Baseline methods show strong performance with ReLU activation
• However, these methods exhibit significant performance degradation with tanh activa-

tion
• Our approach maintains stable performance across both activation functions

The results demonstrate that our algorithm exhibits superior robustness compared to existing methods,
as it maintains consistent effectiveness regardless of the choice of activation function, showing that its
plasticity-maintaining capabilities are not limited to specific activation functions but rather represent
a more general and robust solution.

Plasticity Exploration

To better investigate the PPO algorithm, we chose the tanh activation function based on previous
research experience. However, when attempting to use dormancy rate as a measure of plasticity, we
made an unexpected discovery. In networks using tanh activation, we found a correlation between
the magnitude of the activation function outputs and the size of the weights. Inspired by the neuron
activation analysis in ReDo, we directly use the absolute value of neuron activations as the neuron
scoring metric, since the activation values (tanh) are bounded in [-1,1]. This score reflects the activity
level of each neuron, and we calculate the average score across all neurons to measure the overall
network activation. As shown in Fig. 15 and 5, our analysis reveals a clear correlation between the
overall magnitude of activation values and the weights.

To address this concern, we conducted additional experiments with ReLU activation functions, with
results shown in Fig. 11, and calculated the dormant ratio using a threshold of 0.1 12. The dormancy
rate curves closely align with performance variations - lower dormancy rates correlate with higher
performance. Our method consistently maintains lower dormancy rates across most environments,
following trends similar to those observed in weight and gradient norms (Fig. 16 and Fig. 13).
However, the activation norm shows a more nuanced relationship. Comparing Fig. 15 and Fig.
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Figure 12: Dormant Ratio (Threshold=0.1) with ReLU Activation across MuJoCo Environments.

14 reveals that both extremely high and low activation norms can be problematic. Our method
consistently maintains stable activation norms across environments - approximately 0.7 for tanh and
0.3 for ReLU activations. This suggests that maintaining activation values within specific, activation
function-dependent ranges might be crucial for plasticity, though this hypothesis requires further
investigation. Therefore, weight and gradient norms can effectively indicate neural network plasticity
and demonstrate the effectiveness of our algorithm.

To further evaluate plasticity across methods, we visualized gradient covariance matrices across
different environments. In Walker and HalfCheetah environments (Fig. 29, 28) where baseline and
Redo achieve similar performance to P3O, the gradient correlations in P3O are notably lower than the
other two methods, indicating better plasticity. In the Humanoid environment (Fig. 30), while other
methods show largely uncorrelated neuronal patterns, P3O demonstrates richer neuron interactions,
suggesting a more effective utilization of the neural network capacity - an advantage we attribute to
knowledge distillation.
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Figure 13: Grad Norm of Actor Network with ReLU Activation. Higher gradient norm indicates
greater plasticity.
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Figure 14: Activation Norm with ReLU Activation across MuJoCo Environments.
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Figure 15: Activation Norm of tahn across six MuJoCo environments.

A.4.2 ABLATION STUDY OF RESET RATE

To investigate the impact of reset rates across different environments, we conducted a series of
ablation experiments. The results, illustrated in Figure 17, yield several significant observations:

• Lower Reset Rates: In most environments, lower reset rates generally yielded better
performance. This suggests that retaining a larger portion of previously learned information
is beneficial for many tasks.

• Higher Reset Rates: In some specific environments, such as the HumanoidStand task,
higher reset rates (up to 0.5) produced superior results. This indicates that for more com-
plex tasks, a significant portion of previously learned information may become obsolete,
necessitating a higher reset rate to discard outdated knowledge.

• Full Network Reset: Interestingly, in environments like Walker and Half Cheetah, resetting
the entire network outperformed resetting only half of it. This phenomenon could be
attributed to the quality of newly sampled data in these environments. Learning from scratch
with fresh data may lead to higher efficiency, especially in environments where performance
is already satisfactory. This observation could potentially serve as evidence for the impact
of primacy bias on learning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(f) Humanoid

Figure 16: Weight Norm of Actor Network with ReLU Activation. Lower weight norm indicates
greater plasticity.
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Figure 17: Ablation of Per-Reset Network Reset Ratio

• Stability vs. Performance: While higher reset rates showed improved performance in
certain scenarios, they also introduced greater volatility compared to our default parameter
of 0.01. This trade-off between performance and stability needs to be carefully considered.

These findings underscore the importance of task-specific tuning for reset rates. The optimal reset
rate can vary significantly depending on the complexity of the task, the quality of sampled data, and
the desired balance between performance and stability. Future work could explore adaptive reset rate
mechanisms that automatically adjust based on task characteristics and learning progress.

A.4.3 ABLATION OF RESET FREQUENCY

Fig. 18 presents our comprehensive analysis of various reset frequencies, specifically examining
intervals of 20000, 40000, 80000, and 100000 steps. Our results did not reveal a clear, universally
applicable pattern across different environments. Instead, we observed that the performance of neuron
regeneration at different frequencies varied significantly depending on the specific task environment.
This variability suggests that the optimal reset frequency is highly task-dependent and requires
case-by-case analysis. The lack of a consistent trend across environments highlights the complexity
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Figure 18: Ablation of Reset Frequency

of determining an ideal neuron regeneration cycle. Our findings indicate that the reset frequency is a
nuanced parameter that cannot be universally prescribed. This complexity underscores the need for
further research to better understand the relationship between task characteristics and optimal reset
frequencies. Future studies should aim to develop a more comprehensive framework for determining
appropriate reset frequencies based on specific task attributes and learning dynamics. The challenge
of identifying optimal reset frequencies represents an important area for ongoing investigation in the
field of sustainable neural plasticity.

A.4.4 ABLATION OF RESET RATIO

In this section, we investigate the impact of different reset ratio through ablation studies to validate
the necessity of cycle reset.

We conducted experiments by restricting the reset range to the initial x% (x 0.2, 0.5, 0.8) of neurons
in the network throughout training. The resulting weight and gradient variations are shown in Fig. 20
and Fig. 19, respectively.

Our experiments reveal a clear correlation between reset ratio and network characteristics:

1. Higher reset ratio lead to smaller weight magnitudes across the network

2. Networks with higher reset ratio maintain larger gradient norms throughout training

These findings support our hypothesis about the relationship between reset mechanisms and network
plasticity - higher reset ratio are crucial for maintaining the network in a more plastic state, as
evidenced by both the weight magnitudes and gradient characteristics. Building upon this insight, our
cycle reset mechanism systematically resets neurons in order and ensures that the longest-surviving
neurons are reset in each cycle, providing a principled approach to address the issues of weight
magnitude growth and gradient diminishing. The experimental results validate that this mechanism is
both well-founded and essential for maintaining network plasticity throughout training.
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Figure 19: Grad Norm: Total Network Reset Ratio over Complete Training
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Figure 20: Weight Norm: Total Network Reset Ratio over Complete Training
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Figure 21: Performance Comparison with Recovery Training (RT)

A.4.5 INNER DISTILLATION VERSUS EXTRA TRAINING

To rigorously evaluate the necessity of our distillation mechanism, we conducted comparative
experiments between inner distillation and simple extra training after cycle reset. We implemented
a recovery-based training protocol where the network was allowed additional training epochs post-
reset until reaching a reward threshold of 100, before proceeding to the next training cycle. This

Table 5: Comparison of Distillation Epochs and Extra Recovery Epochs

Hopper Humanoid Stand Walker Ant HalfCheetah Humanoid

Distillation Epochs 597.66 638.19 1536.80 7698.40 2548.40 6525.25
Recovery Epochs 809.75 2731.60 524.00 700.20 253.20 485.25
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Figure 22: Baseline with Inner Distillation(INDS).

experimental design allows us to directly compare the effectiveness of distillation versus simple
training recovery in mitigating knowledge loss caused by reset. Our experimental results, as shown
in Fig. 21, reveal that recovery to moderate reward levels through extra training requires less
computational cost and performs slightly better than cycle reset alone. However, while extra training
is efficient for basic recovery, it fails to generate substantial performance improvements, indicating
that the ability to recover previous performance does not guarantee continued learning progress. In
contrast, our distillation mechanism demonstrates superior capabilities in sample efficiency, network
plasticity utilization, and sustained performance improvements beyond simple recovery. These
findings emphasize that while simple retraining cannot fully recover lost knowledge, our inner
distillation mechanism effectively preserves and restores knowledge while maximizing learning
efficiency and leveraging the network’s plastic potential.

Baseline with Inner Distillation

To further explore the value of knowledge preservation through distillation, we conducted experiments
combining various baselines with inner distillation. As illustrated in Figure 22, we observed that
the performance improvements brought by distillation were limited for random resets and ReDo.
However, for CBP, distillation sometimes yielded beneficial improvements, notably in the Ant
environment where positive gains were observed. Despite these improvements, the overall learning
process remained unstable. It’s worth noting that we used default parameters in these experiments,
which may have limited the full integration of our algorithm with CBP.

These findings lead to an encouraging conclusion: distillation can be effectively combined with
other reset strategies, serving as a mechanism for knowledge retention in new neuronal regeneration
paradigms. While the results are promising, they also highlight the need for further research to
optimize the various parameter settings. This refinement process is crucial for fully realizing the
potential of combining distillation with neuronal reset strategies and developing more robust and
effective learning algorithms.

A.5 SAC WITH SBP

To further validate the generality of our framework, we integrated SBP into SAC and evaluated it
across four Mujoco environments, as shown in Fig. 23. We compared both redo and cycle reset
approaches with the hyperparameter configurations detailed in Table 6. Our results demonstrate that
SBP consistently improves SAC’s performance. The analysis of dormant ratio (Fig. 24), gradient
norm (Fig. 27), weight norm (Fig. 26), and activation norm (Fig. 25) reveals trends similar to those
observed in PPO: lower dormancy rates, larger gradients, smaller weights, and activation values
maintained within stable ranges. However, we believe these improvements represent only a fraction
of SBP’s potential benefit to SAC, particularly considering that our current implementation, which
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Figure 23: Performance Comparison of SAC across four MuJoCo environments.

randomly samples just 1% (8,192 samples) from the replay buffer for inner distillation, already
achieves significant performance gains. The current approach, while effective, leaves substantial
room for exploring more sophisticated sampling strategies to better utilize the rich information
available in off-policy settings.
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Figure 24: Dormant Ratio (Threshold=0.1) of SAC across four MuJoCo environments

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.2

0.4

A
ct

iv
at

io
n 

N
or

m

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

A
ct

iv
at

io
n 

N
or

m

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

A
ct

iv
at

io
n 

N
or

m

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

A
ct

iv
at

io
n 

N
or

m

(d) Ant

Figure 25: Activation Norm of SAC across four MuJoCo environments.
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Figure 26: Weight Norm of SAC across four MuJoCo environments.

Table 6: Hyperparameter Configuration of SAC with SBP

Parameter Value
Reset Frequency 10,000 steps
Reset Percentage 0.01
Alpha Value 0.8
Replay Buffer Size 1 million samples
Distillation Buffer Size 8,192 samples
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Figure 27: Grad Norm of sac across four MuJoCo environments.
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Figure 28: Gradient Correlation of Walker-2d across Different Algorithms.

(a) PPO+CBP (b) PPO+Cycle (c) PPO+ReDo (d) P3O (e) PPO

Figure 29: Gradient Correlation of HalfCheetah across Different Algorithms
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Figure 30: Gradient Correlation of Humanoid across Different Algorithms. Dark red represents
strong negative correlation, while dark blue indicates strong positive correlation.
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