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Abstract

This study aims to investigate the challenge of insuf-001
ficient three-dimensional context in synthetic datasets002
for scene text rendering. Although recent advances in003
diffusion models and related techniques have improved004
certain aspects of scene text generation, most existing005
approaches continue to rely on 2D data, sourcing au-006
thentic training examples from movie posters and book007
covers, which limits their ability to capture the complex008
interactions among spatial layout and visual effects in009
real-world scenes. In particular, traditional 2D datasets010
do not provide the necessary geometric cues for accu-011
rately embedding text into diverse backgrounds. To ad-012
dress this limitation, we propose a novel standard for013
constructing synthetic datasets that incorporates sur-014
face normals to enrich three-dimensional scene charac-015
teristic. By adding surface normals to conventional 2D016
data, our approach aims to enhance the representation017
of spatial relationships and provide a more robust foun-018
dation for future scene text rendering methods. Exten-019
sive experiments demonstrate that datasets built under020
this new standard offer improved geometric context, fa-021
cilitating further advancements in text rendering under022
complex 3D-spatial conditions.023

1. Introduction024

Recent advances in scene text generation have enabled025
remarkable progress in synthesizing text-rich images026
through image-to-image and text-to-image paradigms027
[1, 2, 7, 9, 13, 16]. However, a critical bottleneck028
persists: existing methods predominantly rely on train-029
ing data confined to 2D planar text (e.g., book covers,030
posters)(see Fig. 1a) or synthetic benchmarks inherited031
from SRNet-style pipelines [11, 14, 16](see Fig. 1b).032
While these datasets suffice for frontal-view text ren-033
dering, they fundamentally lack the intricate 3D visual034
effects ubiquitous in real-world scenarios—such as per-035
spective distortion, multi-axis rotations, and complex036
scene text arrangement.This discrepancy significantly037
restricts the model’s generalizability in practical applica-038

tions. Consequently, it exhibits reduced accuracy in text 039
recognition and editing across diverse real-world envi- 040
ronments, along with suboptimal image quality in scene 041
text generation. 042

Current approaches face two intertwined limitations. 043
First, while real-world datasets [1, 3] (see Fig. 1a) en- 044
compass 3D text scene data, they suffer from sparse 045
text instances, inconsistent annotation quality, and in- 046
sufficient diversity, leading to significant shortcomings 047
in robust training. Moreover, these datasets are primar- 048
ily designed for scene text recognition tasks, providing 049
only bounding box annotations without 3D characteris- 050
tics labeling, which hinders the model’s ability to learn 051
complex spatial relationships and realistic text place- 052
ments. Second, existing synthetic datasets [14] predom- 053
inantly employ simplified 2D warping strategies, fail- 054
ing to effectively simulate the geometric interactions be- 055
tween text and 3D scenes in a physically plausible man- 056
ner. Although some studies [4, 8] attempt to generate 057
text that aligns with the 3D layout and color of the back- 058
ground, these data sets are still mainly constructed for 059
text recognition and lack complete 3D annotations. Con- 060
sequently, even state-of-the-art models [11, 16] continue 061
to struggle with tasks requiring perspective consistency, 062
text placement in non-frontal viewpoints, or maintaining 063
realistic background textures on curved surfaces. 064

To fully address these challenges, we propose a novel 065
synthetic data generation engine that directly embeds 3D 066
geometric characteristics into text masks, improving the 067
model’s understanding of text-scene interactions. Com- 068
pared to previous approaches that encode only simplistic 069
2D positional maps [14], our primary innovation lies in 070
the representation of 3D spatial characteristics, such as 071
surface normals, by RGB-colored masks, providing the 072
model with more intuitive geometric cues. This enables 073
accurate learning of text-environment interactions under 074
precise perspective projections. Specifically, we render 075
highly detailed 3D text meshes with fine-grained con- 076
trol over background, text content, curvature, color, 3D 077
orientation, and font design, ensuring both diversity and 078
realism in the generated data. This text data generation 079
engine offers two key advantages: (1) it disentangles 080
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(a) (b)

Figure 1. Example of previous Dataset (a) MARIO-10M, constructed by [1], which captures real-world text instances predomi-
nantly within 2D imagery but lacks comprehensive 3D geometric annotations. (b) Synthetic dataset generated using the SRNet[14]
pipeline, which primarily applies simplified 2D warping transformations without incorporating 3D spatial details. These examples
illustrate that existing datasets mainly consist of 2D images and rarely include accurate representations of text within realistic 3D
environments, limiting their utility in training robust models capable of handling complex spatial interactions in scene text synthesis
tasks.

complex geometric transformations (such as perspective081
foreshortening, scaling, and rotation) from appearance082
features, allowing for more precise geometric reason-083
ing; and (2) it provides physically grounded supervision084
cues, ensuring that text is realistically embedded into di-085
verse 3D scenes while adhering to real-world lighting086
and geometric constraints.087

We validate the efficacy of our method rigorously us-088
ing extensive benchmarking experiments on the MOS-089
TEL architecture. Experimental results demonstrate that090
models trained on our proposed 3D-augmented dataset091
outperform traditional 2D baselines by achieving an092
impressive 15% improvement in perspective-consistent093
text editing, as quantified by Perspective-Aware SSIM,094
and 17.7% in FID [5]. Qualitative assessments (Figure095
2) further substantiate our approach’s superiority, ex-096
hibiting enhanced realism and precision, especially in097
challenging scenarios involving oblique angles, curved098
surfaces, and complex lighting conditions. To encour-099
age widespread adoption and facilitate future research100
endeavors, we will publicly release our data generation101
toolkit along with pre-trained models.102

Our contributions are summarized as follows:103

• Introduce a synthetic data generation framework with104
3D geometric cues and controllable variations, and105
publicly release the toolkit to support future research.106

• Release two novel synthetic datasets, Syn3DTxt and107
Syn3DTxt-wrap, specifically designed for scene text108
rendering. These datasets explicitly incorporate 3D109
geometric supervision to facilitate the training of110
perspective-aware text editing models.111

• Experimental validation demonstrates a 15% improve-112
ment in SSIM and 17.7% in FID for perspective-113
consistent text editing tasks compared to traditional114
2D methods.115

This work can provide a novel perspective to the 116
research on scene text generation. The code and 117
dataset are available at: https://github.com/ 118
xxxxxxx-123456789/Syn3DTxt 119

In the following, we first review previous work in 120
Sec. 2, then present our approach in Sec. 3, then the ex- 121
periments in Sec. 4, and then a conclusion to this work 122
in Sec. 5. 123

2. Related Work 124

The field of scene text editing has long been explored, 125
with many studies and synthetic dataset generation 126
methods proposed. However, the challenge lies in 127
accommodating the angular variations present in three- 128
dimensional environments. Building on this foundation, 129
our work provides a generator capable of producing 130
synthetic data with text orientation vectors, which can 131
be used for training text replacement models. In the 132
following, we discuss the relationship between our work 133
and several related research areas. 134

135

2.1. Real Datasets 136

Real datasets continue to play an essential role in bench- 137
marking and validating scene text models. Datasets such 138
as CUTE80[12] provide curved text instances that chal- 139
lenge recognition systems with their non-linear struc- 140
tures. Total-Text offers a comprehensive set of arbitrar- 141
ily oriented text instances, which are particularly use- 142
ful for evaluating detection models under diverse condi- 143
tions. Additionally, MARIO-10M[1] serves as a large- 144
scale real dataset that further aids in assessing the gener- 145
alization and robustness of models in real-world scenar- 146
ios. These real datasets complement synthetic data by 147
introducing the natural variations and complexities that 148
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occur in practical applications, ensuring that the devel-149
oped models are capable of handling diverse text appear-150
ances and environmental conditions.151

2.2. Synthetic Data152

In recent years, due to the high cost and potential er-153
rors associated with manually annotating scene text data,154
synthetic data has played a crucial role in text detection155
and recognition. For example, the Synth90k[6] dataset156
contains 9 million synthetic text instance images gen-157
erated from 90k common English words. These words158
are rendered onto natural images using random transfor-159
mations and effects, such as various fonts, colors, blurs,160
and noise, and every image is annotated with a ground-161
truth word. This dataset effectively emulates the dis-162
tribution of text images from real scenes and serves as163
an excellent substitute for real-world data when training164
data-hungry deep learning algorithms.165

Moreover, in the field of scene text recognition,166
SynthTIGER[15] presents a synthesis engine that in-167
tegrates effective rendering techniques from existing168
methods (such as Synth90k[6] and SynthText[4]) to169
produce bounding boxes for text images that incor-170
porate both text noise and natural background noise.171
SynthTIGER[15] overcomes the long-tail distribution172
problem inherent in traditional synthetic datasets by in-173
troducing two strategies: text length distribution aug-174
mentation and infrequent character augmentation. These175
techniques balance the distribution across different text176
lengths and character frequencies, thereby enhancing the177
generalization ability of scene text recognition models.178

Additionally, SynthText3D[8] leverages characteris-179
tic from 3D virtual worlds to synthesize scene text im-180
ages, diverging from traditional methods that simply181
paste text onto static 2D backgrounds. Based on Unreal182
Engine 4 and the UnrealCV plugin, SynthText3D em-183
ploys four modules—Camera Anchor Generation, Text184
Region Generation, Text Generation, and 3D Rendering185
to integrate realistic perspective transformations, illumi-186
nation variations, and occlusion effects. As a result, the187
generated images more accurately reflect the complex-188
ity of real-world environments. Together, these studies189
demonstrate the significant potential of synthetic data to190
emulate real-world scene text distributions and diverse191
visual effects.192

2.3. Scene Text Editing193

Beyond synthetic data generation, scene text editing,194
where text replacement, content modification, and style195
preservation are critical challenges, has also attracted in-196
creasing attention recently. SRNet (Editing Text in the197
Wild)[14], proposed by Liang Wu et al., is the first end-198
to-end trainable network addressing scene text editing199
at the word level. Its architecture decomposes the text200

editing task into three main components: the text con- 201
version module, the background inpainting module, and 202
the fusion module. The text conversion module trans- 203
fers the text style from a source image to the target 204
text while preserving the text skeleton through skeleton- 205
guided learning to maintain semantic consistency. The 206
background inpainting module restores the background 207
in the text regions. The fusion module then integrates 208
these outputs to generate visually realistic and stylisti- 209
cally consistent edited images. Notably, SRNet[14] also 210
introduces a synthetic data generator that randomly se- 211
lects fonts, colors, and deformation parameters to render 212
text on background images in a unified style while au- 213
tomatically producing corresponding background, fore- 214
ground text, and text skeleton annotations via image 215
skeletonization, thereby providing large scale synthetic 216
training data. 217

In addition, MOSTEL (Exploring Stroke-Level Mod- 218
ifications for Scene Text Editing)[11] further investi- 219
gates stroke-level modification techniques by generating 220
explicit stroke guidance maps. This approach effectively 221
differentiates and preserves unchanged background re- 222
gions while focusing on editing rules within text areas. 223
MOSTEL[11] combines this with semi-supervised hy- 224
brid learning, leveraging extensive synthetic annotated 225
data alongside unlabeled real-world images to bridge the 226
domain gap between synthetic and real data. Experi- 227
mental results indicate that MOSTEL[11] outperforms 228
previous methods in various quantitative metrics. 229

Furthermore, TextCtrl (Diffusion-based Scene Text 230
Editing with Prior Guidance Control)[16] is a diffusion- 231
based method centered on content modification and style 232
preservation. It addresses common issues found in 233
GAN-based and diffusion-based STE methods by con- 234
structing fine-grained text style disentanglement and ro- 235
bust text glyph structure representations. TextCtrl[16] 236
explicitly incorporates style-structure guidance into its 237
model design and training, significantly improving text 238
style consistency and rendering accuracy. Additionally, 239
it introduces a Glyph-adaptive Mutual Self-attention 240
mechanism to further leverage style priors, enhancing 241
style consistency and visual quality during inference. To 242
fill the gap in real-world STE evaluation, the authors also 243
created the first real-world image-pair dataset, Scene- 244
Pair, which facilitates fair comparisons. Experimental 245
results demonstrate that TextCtrl[16] outperforms prior 246
methods in both style fidelity and text accuracy. 247

3. Methodology 248

Most text synthesis studies focus on generating text 249
within 2D imagery [6, 14, 15] but struggle to capture the 250
complex geometric interactions between text and real- 251
world 3D environments (refer to Fig. 1). Although some 252
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Figure 2. Visualization of RGB-encoded normal vectors within a spherical coordinate system. Each point on the sphere represents
a distinct orientation, with its normal vector coordinates mapped directly to RGB colors. By connecting these spherical points to
corresponding text images generated at specific rotation angles, we illustrate how text rendering outcomes vary according to precise
3D orientations. All angles follow the defined order (θ, ϕ, γ).

Number of Axes Single Dual Triple

(ϕ) (θ) (γ) (θ,ϕ) (θ,γ) (ϕ,γ) (θ,ϕ,γ)
Percentage (%) 20% 20% 20% 20% 5% 5% 10%

Table 1. Distributions of rotation angles in terms of single-, dual-, and
triple-axis combinations, reflecting realistic rotational behavior observed in
real-world scenarios.

Rotate Angle Catagory

Small medium large
CCW (°) 30◦ 45◦ ∼ 60◦ 65◦ ∼ 70◦

CW (°) −30◦ −45◦ ∼ −60◦ −65◦ ∼ −70◦

Table 2. Categorization of rotation angles into
small, medium, and large, further subdivided into
(CW) and (CCW) rotations.

work attempts to integrate text into 3D scenes [4, 8],253
they primarily serve as data augmentation for text recog-254
nition and lack comprehensive 3D geometric details to255
guide generative models in learning perspective varia-256
tions. Instead of designing new model architectures to257
tackle real-world challenges, we focus on 3D feature258
augmentation based on object attributes, providing novel259
insights to improve model interpretability and scene text260
generation quality. The following sections present our261
object attribute editing tool and the Syn3DTxt dataset,262
highlighting their significance in scene text synthesis.263

3.1. Controlling text, 3D orientation and curva-264
ture265

In general, human visual system exhibits remarkable ro-266
bustness to changes in position, orientation, and view-267
point. However, it remains an open question whether268
deep learning models can consistently handle variations269
in these object properties. To investigate this issue, we270
propose a data generation pipeline that manipulates im-271
ages by controlling the 3D orientation and curvature of272
objects, thereby evaluating model performance under re-273
alistic visual transformations.274

The process is as follows. First, a fixed-size text mask275
image is generated based on the provided textual con-276

tent and font, with its initial state represented as a two- 277
dimensional plane P ∈ R3×h×w next, a uniform two- 278
dimensional arc distortion is applied to induce varying 279
degrees of curvature in the text image. Subsequently, to 280
more faithfully simulate spatial variations encountered 281
in real-world scenes, a 3D rotation transformation is im- 282
posed on the text image. This transformation encom- 283
passes single-axis, dual-axis, and triple-axis rotations 284
along the X, Y, and Z axes (corresponding to roll γ, pitch 285
θ, and yaw ϕ, respectively), thus mimicking the diversity 286
and complexity of objects in practical scenarios and gen- 287
erating Tx · P , Ty · P , and Tz · P . (see Eqs. (1) to (3), 288
in which Tx, Ty , Tz denote the rotation matrices corre- 289
sponding to rotations about the X, Y, and Z axes, respec- 290
tively. Specifically, Tx adjusts the roll (γ), Ty modifies 291
the pitch (θ), and Tz alters the yaw (ϕ) of the text mask 292
P . When these matrices are applied to P , they generate 293
rotated versions of the text, simulating a range of real- 294
world 3D perspective variations.) 295

Tx =


cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

 (1) 296
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297

Ty =


cosϕ 0 − sinϕ 0
0 1 0 0

sinϕ 0 cosϕ 0
0 0 0 1

 (2)298

299

Tz =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (3)300

Since matrix operations are not commutative (i.e.,301
AB ̸= BA), the order of rotations must be rigorously302
defined during multiaxis transformations to accurately303
replicate real-world viewpoint changes. In practice, hu-304
mans typically maintain a view cone, and scene texts,305
such as signboards, are often placed with a fixed roll γ.306
We thus design that the rotation in roll γ should take307
place before the rotations taken place in pitch θ and yaw308
ϕ. Moreover, when simulating viewpoint changes solely309
through rotations (as opposed to translations), it is crit-310
ical to determine whether to adjust the vertical rotation311
pitch θ or the horizontal rotation yaw ϕ first. For in-312
stance, close-up viewpoint where vertical displacement313
is more pronounced, adjusting pitch θ first enables rapid314
alignment with the object, followed by fine-tuning with315
yaw ϕ; in contrast, for distant signboards, where math-316
ematically tends toward zero as distance increases and317
vertical angular effects become minimal, the influence318
is predominantly governed by horizontal parallax, thus319
necessitating the prioritization of yaw ϕ (refer to Eq. (4),320
in which y represents the height and x represents the dis-321
tance.)322

lim
x→∞

tan−1
(y

x

)
≈ 0 (4)323

Additionally, in contrast to simply rotating the en-324
tire plane, we have also generated text data with three-325
dimensional bending, in which each character exhibits a326
distinct normal vector (see Fig. 3). This approach more327
faithfully captures the complex and varied transforma-328
tions of objects as encountered in real-world scenes.329

In summary, by carefully defining the sequence of330
multiaxis rotations based on the target object’s relative331
position and displacement within the field of view, our332
approach closely emulates the variations in real-world333
observation. This enables a more precise evaluation of334
the robustness of deep learning models when faced with335
such visual changes.336

3.2. Syn3DTxt Dataset337

With the aforementioned methods, we generate text im-338
ages based on a large-scale text corpus and a diverse font339
library, incorporating arc distortion, font transformation,340
and 3D rotation processing. Precise mask annotations341
are provided for each pair of generated images. To en-342
sure the quality of the dataset, we selected 70 fonts from343

Figure 3. Example of generated text data with three-
dimensional bending effects. The first column shows the ren-
dered text images; the second column displays the correspond-
ing normal vector masks encoded in RGB, highlighting de-
tailed 3D spatial characteristics; and the third column presents
binary masks indicating text regions. Unlike simple planar ro-
tations, our approach assigns distinct normal vectors to each
character, enabling more accurate modeling of the complex
geometric transformations commonly observed in real-world
scenes.

a curated font collection to guarantee that the rendered 344
text is both clear and aesthetically pleasing. Ultimately, 345
our dataset comprises over 200k paired training samples 346
and 6k testing samples generated from the initial text 347
files, with each sample undergoing both arc distortion 348
and 3D rotation to fully simulate the diverse variations 349
of text in natural scenes. 350

For 3D rotation processing, we defined a rotation 351
distribution to realistically mimic object rotations 352
observed in real-world scenarios. Specifically, the 353
designed rotation distribution includes (see Tab. 1): 354

355
Single-axis rotations: rotations around the θ, ϕ, 356
and γ axes each account for 20%, ensuring balanced 357
representation of each axis; 358
Dual-axis rotations: the θ + ϕ combination comprises 359
20%, while the θ + γ and ϕ + γ combinations each 360
comprise 5%. This reflects real-world scenarios where 361
horizontal and vertical rotations (θ and ϕ) dominate, 362
while other combinations occur less frequently; 363
Triple-axis rotations: rotations involving all three axes 364
(θ + ϕ + γ) constitute 10%, adding further complexity 365
to the data set. 366

367

Additionally, based on visual inspection after coordi- 368
nate calculations, we categorized the rotation angles into 369
small, medium, and large, further subdividing them into 370
clockwise and counterclockwise rotations (see Tab. 2; 371
CCW denotes counterclockwise rotation, CW denotes 372
clockwise rotation). To intuitively visualize normal vec- 373
tors, we mapped the calculated coordinates to RGB 374
color space (see Fig. 2 and Eq. (5)). This approach en- 375
hances the rotational diversity of the data set, providing 376
comprehensive and varied training data to ensure robust 377
model performance. 378
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RG
B

 =

sin θ × cosϕ
sin θ × sinϕ

cos θ

 (5)379

To further simulate the appearance of curved text in380
natural scenes, each pair of text images is also randomly381
subjected to three arc distortion operations (namely 0°,382
60° and 120°). This dual transformation strategy not383
only preserves the integrity of the original text charac-384
teristic but also introduces a controlled degree of defor-385
mation, making the generated dataset more suitable for386
training text generation models that can handle diverse387
scene requirements.388

4. Experiments389

To validate the effectiveness of our proposed method,390
we conducted extensive experiments utilizing our novel391
synthetic datasets integrated with detailed surface nor-392
mal. We adopted the MOSTEL architecture [11] as a393
baseline, modifying its decoder output from a single394
channel (1D) to three channels (3D). This modification395
enables the model to directly leverage the richer geomet-396
ric characteristic encoded in the RGB masks. We evalu-397
ated the impact of our proposed 3D-augmented datasets398
on scene text editing tasks through comprehensive ex-399
perimentation.400

4.1. Datasets401

Considering the lack of publicly available benchmarks402
explicitly tailored for 3D-enhanced scene text editing,403
we introduced the Syn3DTxt dataset, specifically de-404
signed to address this gap.405

Syn3DTxt. Our proposed synthetic data set com-406
prises 150,000 images, meticulously generated using407
our advanced methodology. Each image integrates ex-408
plicit 3D surface normal via RGB masks that encode409
precise surface normals. We utilized 70 high-quality410
fonts and various transformations, including random411
rotations, curvature alterations, and multiaxis spatial412
transformations, to realistically emulate complex real-413
world scenarios. Furthermore, two specialized data414
sets for evaluation, Syn3DTxt-eval-2k and Syn3DTxt-415
eval-advanced, each containing 2,000 images, are in-416
cluded for complete evaluation. Notably, Syn3DTxt-417
eval-advanced specifically contains images featuring418
medium- and large-angle rotations, categorized accord-419
ing to the criteria detailed in Tab. 1.420

Syn3DTxt-wrap-2k. To further evaluate per-421
formance in scenarios involving pronounced three-422
dimensional bending (see Fig. 3), we generated an addi-423
tional 2,000 images with increased complexity and var-424
ied curvature transformations. This subset facilitates as-425
sessing the model’s capacity to handle intricate geomet-426

ric distortions. This test set will be used to further eval- 427
uate our method. 428

MOSTEL-150K. The dataset comprises 150,000 la- 429
beled synthetic images, specifically generated for super- 430
vised training of the MOSTEL method. Each image is 431
created by integrating various randomized visual trans- 432
formations applied across 300 distinct fonts and 12,000 433
diverse background images. 434

Tamper-Syn2k. The Tamper-Syn2k dataset, intro- 435
duced by [11] in their work on stroke-level modifications 436
for scene text editing, addresses the scarcity of pub- 437
lic evaluation data sets in the field of Scene Text Edit- 438
ing (STE). It comprises 2,000 pairs of synthetic images, 439
each pair maintaining consistent style attributes such as 440
font, size, color, spatial transformation, and background. 441
However, Tamper-Syn2k exhibits limited diversity in 442
perspective and curvature transformations, which may 443
restrict models’ ability to generalize to real-world sce- 444
narios involving complex viewing angles and text cur- 445
vatures. 446

MLT-2017. The ICDAR 2017 Multilingual Scene 447
Text [10] dataset comprises diverse images of real-world 448
scene text covering multiple scripts and languages, in- 449
cluding Arabic, Chinese, English, and others. It con- 450
sists of 34,625 images annotated with text transcripts, 451
offering a valuable resource for training robust scene- 452
text methods. Specifically, it was used for the training of 453
MOSTEL, enhancing its effectiveness in practical mul- 454
tilingual scenarios. 455

4.2. Training Strategy 456

To accommodate the richer geometric representations 457
provided by our 3D masks, the MOSTEL decoder was 458
modified to output predictions with three channels in- 459
stead of the original single channel. This modification 460
served as the basis for our structured, incremental train- 461
ing strategy, designed to progressively introduce and re- 462
inforce complex 3D geometric characteristic within the 463
MOSTEL architecture. 464

We structured our training strategy into three distinct 465
phases: 466

1. Baseline Training.: We initialized the model 467
with the original 150,000-image MOSTEL synthetic 468
dataset (MOSTEL-150k) and the 34,625-image real- 469
world scene text dataset (MLT-2017). Both datasets 470
are characterized by planar 2D masks, establishing a 471
foundational baseline for the model’s capabilities. 472

2. 3D Feature Augmentation.: Subsequently, the 473
model was fine-tuned using our proposed Syn3DTxt- 474
150k dataset, integrating detailed surface normal via 475
surface normal RGB masks. This step further en- 476
hanced the model’s spatial awareness and depth per- 477
ception. 478
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Models Syn3DTxt-eval-2k Syn3DTxt-wrap Syn3DTxt-eval-advanced Tamper-Syn2k

PSNR ↑ SSIM ↑ MSE ↓ FID ↓ PSNR ↑ SSIM ↑ MSE ↓ FID ↓ PSNR ↑ SSIM ↑ MSE ↓ FID ↓ PSNR ↑ SSIM ↑ MSE ↓ FID ↓
SRNet [14] 17.011 0.5283 0.0234 80.502 16.433 0.5027 0.0267 61.832 17.152 0.5259 0.0228 87.333 18.042 0.6114 0.0216 51.538
TextCtrl [16] 17.837 0.6067 0.0293 36.288 16.646 0.5371 0.0266 40.990 18.523 0.6302 0.0188 34.800
MOSTEL† [11] 20.527 0.7265 0.0119 40.005 17.386 0.6185 0.0179 45.630 19.855 0.7677 0.0133 41.311 20.489 0.7912 0.0128 36.337
MOSTEL + 2D Finetuned 20.846 0.7215 0.0103 33.991 17.196 0.6000 0.0188 37.625 21.356 0.7651 0.0114 34.803 19.746 0.6666 0.0157 41.921
MOSTEL + 3D Finetuned 21.358 0.8151 0.0093 29.834 18.552 0.7251 0.0175 34.086 22.133 0.8326 0.0083 29.174 19.790 0.7663 0.0156 40.420
MOSTEL 3D from scratch 21.256 0.7630 0.0097 28.790 18.592 0.6266 0.0173 35.000 21.976 0.7801 0.0084 28.639 19.698 0.6661 0.0157 42.897

Table 3. Quantitative results on Syn3Dtxt-eval-2k, Syn3Dtxt-wrap, Syn3Dtxt-eval-advanced, and Tamper-Syn2k. †means the
methods that we reproduced. Best two in each metric column are shown in Boldface.

Figure 4. Qualitative Comparison between 2D and 3D models

3. Curvature Adaptation.: Finally, the model under-479
went additional fine-tuning using the Syn3DTxt-480
wrap dataset to explicitly train on pronounced481
curvature and complex geometric distortions, en-482
abling robust handling of challenging 3D scenarios.483

484

To facilitate fair comparisons in subsequent experi-485
ments, we additionally trained two comparative mod-486
els. The first comparative model was fine-tuned from487
the baseline following the above training strategy but488
employed only binary 2D masks. This approach ensured489
consistency with traditional 2D methods in terms of data490
distribution. The second comparative model was trained491
entirely from scratch using exclusively the Syn3DTxt-492
150k dataset with 3D masks, serving as an additional493
benchmark for evaluating our incremental training strat-494
egy.495

4.3. Evaluation Metries496

For visual quality assessment, we employ commonly497
used metrics, including: (i) SSIM (Structural Similar-498
ity Index Measure), quantifying structural similarity;499
(ii) PSNR (Peak Signal-to-Noise Ratio), measuring im-500
age fidelity; (iii) MSE (Mean Squared Error), evaluating501
pixel-level differences; and (iv) FID (Fréchet Inception502
Distance) [5], assessing statistical differences between503
feature distributions.504

4.4. Performance Comparison505

Implementation. We evaluated our trained models506
across multiple data sets, including Tamper-Syn2k507

(from MOSTEL [11]), our proposed Syn3DTxt (in- 508
cluding the advanced data set), and Syn3DTxt-wrap. 509
Additionally, we compared our model with one GAN- 510
based methods, SRNet [14], and one diffusion-based 511
method, TextCtrl [16], using their provided checkpoints. 512
Quantitative results are presented in Tab. 3, while qual- 513
itative comparisons are shown in Fig. 4, Fig. 5 and 514
Fig. 6. Notably, TextCtrl lacks the crucial input required 515
for evaluation on Tamper-Syn2k, limiting its effective 516
comparison on this dataset. 517

518
Text Fidelity in 3D Rotation. To intuitively demon- 519
strate our method’s effectiveness in capturing realistic 520
visual effects during 3D text rotation, we present exam- 521
ples of horizontal rotation (yaw ϕ) in Fig. 5a and vertical 522
rotation (pitch θ) in Fig. 5b, with differences highlighted 523
by red boxes. When text rotates, regions closer to the 524
viewer visually appear thicker, while those farther away 525
become thinner, creating a clear perspective triangle. 526
To explicitly illustrate this phenomenon, we placed two 527
reference lines on the ground-truth image (second row 528
of Fig. 5a), clearly highlighting the perspective effect 529
induced by rotation. These identical reference lines 530
were also applied to the output images from the two 531
models on the left side for direct visual comparison. 532

Our results indicate that the model fine-tuned with 533
3D data accurately captures and preserves the intended 534
3D perspective features, naturally displaying thicker text 535
in closer regions and thinner text in distant areas, all 536
while maintaining clear glyph structures. In contrast, the 537
model trained exclusively on 2D data fails to adequately 538
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(a) (b)

Figure 5. Four visual examples of different models (a) Horizontal 3D Rotation Comparison, Visualization of model outputs under
horizontal rotation (rotation along the ϕ-axis). (b) Vertical 3D Rotation Comparison, Visualization of model outputs under vertical
rotation (likely along the θ-axis).

Figure 6. Font Characteristic Preservation Comparison Be-
tween 2D and 3D Models

capture these perspective cues, resulting in erosion-like539
and dilation-like distortions that significantly degrade540
glyph fidelity, regardless of the text’s proximity to the541
viewer (see Fig. 5a). Moreover, our method effectively542
retains vertical textual features, as demonstrated in the543
second row of Fig. 5b, where the 3D-trained model suc-544
cessfully preserves glyph structures under vertical ro-545
tation (pitch θ), whereas the 2D-trained model mistak-546
enly transforms the character ’h’ into ’n’. Additionally,547
we observe that the model trained with the 3D dataset548
demonstrates superior performance in preserving dis-549
tinctive features of uncommon fonts. (see Fig. 6)550

Quantitatively, as shown in Tab. 3, our method551
achieved an improvement of approximately 10 per-552
centage points across all evaluation metrics, with par-553
ticularly notable gains in SSIM and FID (15% and554
18%, respectively). The table reports results on four555
benchmark datasets, Syn3DTxt-eval-2k, Syn3DTxt-556
wrap, Syn3DTxt-eval-advanced, and Tamper-Syn2k us-557
ing four widely adopted metrics, PSNR, SSIM, MSE,558
and FID. The best two results in each metric column are559
highlighted in boldface, clearly demonstrating the con-560
sistent superiority of our proposed methods over existing561
baselines.562

5. Limitation and Conclusion 563

Limitation. Although our study demonstrates signifi- 564
cant improvements by explicitly incorporating 3D geo- 565
metric characteristic, it still faces challenges when edit- 566
ing text with highly arbitrary shapes and extremely com- 567
plex curvature. These scenarios involve intricate geo- 568
metric characteristics that are difficult to fully capture 569
and disentangle, even with detailed 3D representations. 570
Moreover, the original MOSTEL framework does not 571
address surface normal, which introduces additional dif- 572
ficulties in integrating 3D cues effectively into its ar- 573
chitecture. While our incremental training strategy en- 574
hances model robustness, fully generalizing to arbitrary- 575
shaped text editing remains a key challenge for future re- 576
search. In addition, the quantitative metrics used in this 577
study, such as SSIM and FID, are effective in evaluat- 578
ing visual quality and fidelity but primarily assess pixel- 579
level differences or feature similarity in latent space. 580
As such, these metrics may not fully reflect human vi- 581
sual perception of coherence and realism, especially un- 582
der complex geometric transformations. A more com- 583
prehensive, objective evaluation metric aligned more 584
closely with human perception would further benefit the 585
development of scene text editing tasks. 586

Conclusion. This work presents a novel synthetic 587
data generation toolkit and a structured incremental 588
training strategy aimed at progressively integrating com- 589
plex 3D geometric characteristic into the MOSTEL ar- 590
chitecture. By fine-tuning with our proposed Syn3DTxt- 591
150k and Syn3DTxt-wrap datasets, our model achieves 592
significant improvements in capturing realistic perspec- 593
tive features and maintaining glyph structures under 594
challenging 3D rotations. Extensive quantitative exper- 595
iments and qualitative visual results validate the superi- 596
ority of our approach, particularly with notable gains in 597
SSIM and FID metrics. Overall, our findings highlight 598
the importance and effectiveness of detailed 3D geomet- 599
ric encoding for achieving high-quality text editing in 600
realistic and complex visual scenarios. 601
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