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Abstract

Learning the intrinsic dimensionality of subjective perceptual spaces such as taste,
smell, or aesthetics from ordinal data is a challenging problem. We introduce
LORE (Low Rank Ordinal Embedding), a scalable framework that jointly learns
both the intrinsic dimensionality and an ordinal embedding from noisy triplet
comparisons of the form, “Is A more similar to B than C?”. Unlike existing
methods that require the embedding dimension to be set apriori, LORE regularizes
the solution using the nonconvex Schatten-p quasi norm, enabling automatic joint
recovery of both the ordinal embedding and its dimensionality. We optimize this
joint objective via an iteratively reweighted algorithm and establish convergence
guarantees. Extensive experiments on synthetic datasets, simulated perceptual
spaces, and real world crowdsourced ordinal judgements show that LORE learns
compact, interpretable and highly accurate low dimensional embeddings that
recover the latent geometry of subjective percepts. By simultaneously inferring
both the intrinsic dimensionality and ordinal embeddings, LORE enables more
interpretable and data efficient perceptual modeling in psychophysics and opens
new directions for scalable discovery of low dimensional structure from ordinal
data in machine learning.

1 Introduction

Learning subjective percepts (SPs), such as taste, smell, or aesthetic preference, poses unique chal-
lenges for machine learning. Traditional approaches rely on absolute queries that presuppose known
perceptual axes. For example, a taste study might ask participants to rate stimuli on a 1-5 Likert
scale (Likert, 1932) for “sweetness” or “bitterness”. Such methods suffer from two critical flaws:
(1) inconsistency, as respondents interpret scales differently (e.g., one person’s “moderately sweet”
is another’s “very sweet”) (Stewart et al., 2005), and (2) predefined conceptual frameworks that
limit discovery by forcing ratings on predefined axes. Consequently, researchers risk missing latent
dimensions (e.g., a “metallic” undertone in coffee) that participants lack vocabulary to describe.

In contrast, relative queries circumvent these issues by capturing perceptual relationships directly.
For example, a triplet comparison like “Is coffee A more similar to coffee B or coffee C in taste?”
allows participants to express nuanced judgments without relying on language or preset scales. Such
relative comparisons are therefore particularly well suited for discovering the latent dimensions that
organize subjective perceptual spaces.

Relative Similarity or Ordinal Embedding methods (OE) leverage these relative judgements to learn
a multidimensional representation. However, all existing OE approaches require the user to specify
the embedding dimension in advance (Agarwal et al., 2007; Jain et al., 2016; Tamuz et al., 2011;
Terada and Luxburg, 2014; Van Der Maaten and Weinberger, 2012), with little guidance to the “true”
complexity of the perceptual space. In practice, this can lead to unnecessarily high dimensional
embeddings, concealing the actual structure. For instance, an OE may perfectly satisfy all triplet
constraints in a 10-dimensional space, even if the underlying percept is only 2-dimensional.

Scientific discovery demands parsimony, a principle formalized as Occam’s razor (Bishop and
Nasrabadi, 2006). For the taste example, a 2D embedding is preferable to a 10D alternative: it is
easier to interpret, less computationally intensive, and more useful for downstream analyses. In
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Figure 1: LORE jointly learns both the intrinsic dimensionality and relative similarities by
balancing dimensionality with similarity constraints.: Other methods require the embedding
dimension to be chosen in advance, making them less data driven and often suboptimal.

practical terms, a 10D taste embedding might fragment “sweetness” into several axes, complicating
flavor design or neurological interpretation. Yet, most OE approaches, despite high triplet accuracy,
produce overly complex models that mask the true structure of the latent percept.

To address this gap, We introduce LORE, a new ordinal embedding algorithm that jointly learns
both the embedding and the intrinsic dimensionality, instead of needing to specify the dimension
apriori. LORE regularizes using the nonconvex Schatten-p quasi-norm, explicitly balancing triplet
accuracy with representation compactness and is optimized via an iteratively reweighted algorithm,
with guarantees of convergence to stationary points. Our main contributions are:

1. LORE, a novel ordinal embedding algorithm that recovers latent representations that
match the intrinsic dimensionality of human perceptual similarity data. LORE, jointly
infers both the embedding and its dimensionality by regularizing with the nonconvex
Schatten-𝑝 quasi-norm. By balancing triplet accuracy and rank regularization we can
infer a compact yet accurate representation avoiding underfitting or overparameterization.
We optimize the resulting objective using an iteratively reweighted schattent quasi norm
algorithm, and provide convergence guarantees of the OE to stationary points.

2. LORE reliably uncovers the intrinsic dimensionality of data through an extensive
evaluation where the dimensionality is known apriori. We first extensively test our
algorithm on data with various dimensionality, noise levels and number of queries and
demonstrate it outperforms existing methods by far in estimating intrinsic dimensionality
with close to optimal performance in triplet accuracy. Secondly, we conduct a simulated
perceptual experiment to model taste using an LLM as the ground truth perceptual space
we try to model. See Figure 1 for a high level summary of our results.

3. LORE outperforms numerous state of the art methods on the large crowd sourced
datasets and learns semantically interpretable axes. We find that LORE achieves a lower
rank representation compared to all baselines while achieving comparable triplet accuracy
on three separate crowdsourced datasets (Ellis et al., 2002; Kleindessner and Von Luxburg,
2017; Wilber et al., 2014) and learns axes which are semantically interpretable.

We anticipate LORE will be a valuable tool for mapping subtle subjective phenomena to interpretable
low-dimensional spaces across psychology, neuroscience, and social science. By removing the need
to hand tune embedding dimension, LORE jointly learns both the relative similarities and recover
true intrinsic dimensionality enabling data driven discovery of subjective percepts.
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2 Related Work

Ordinal Embeddings as Tools for Psychophysical Scaling: Psychophysics aims to discover the
quantitative mappings that humans use to connect external stimuli to inner perceptual experiences.
Psychological percepts are usually studied via relative judgements as they are less prone to indi-
vidual biases, scale interpretation and memory limitations than absolute judgements as humans do
not perceive stimuli in isolation (Stewart et al., 2005). Given the constraints of data collection, a
core challenge in psychophysics is reconstructing perceptual spaces from a few human similarity
judgments. OEs address this challenge; they are both query efficient and capable of reconstructing
multidimensional perceptual spaces. For example, (Filip et al., 2024) derived a tactile-visual embed-
ding for wood textures, identifying roughness and gloss as perceptually orthogonal dimensions.
(Huber et al., 2024) used one such OE to map philosophical concepts onto conceptual axes from
human similarity data and (Sauer et al., 2024) used it to map perceived distortions of vision from
spectacles. Moreover, active learning approaches like (Canal et al., 2020) have demonstrated how
query efficiency for data collection can be further improved.

Metric Learning/Contrastive Learning are distinct from OEs: Learning from relative compar-
isons has been used in metric learning (Suárez-Díaz et al., 2018) and contrastive learning (Chen
et al., 2020). Metric learning aims to learn a metric space from the data while contrastive learning
separates similar and dissimilar datapoints. Metric Learning typically combines relative judgements
and explicit representations (say images). The goal is to learn a distance metric from both sources
of information. This additional representation, absent in OEs, changes the optimization problem and
prevents direct transfer of metric learning approaches. Contrastive learning seeks to group similar
datapoints together and push dissimilar ones apart with the presence of explicit additional supervised
information which do not exist for OEs. Therefore, while metric learning and contrastive learning
methods are similar in learning from relative information, they cannot be directly applied to OEs.

Intrinsic Dimensionality recovery is critical for psychophysics: A core goal in psychophysics is
to recover the latent internal representations that individuals use to perceive psychophysical stimuli.
Each representation is composed of two important characteristics: how well the representation
recovers the ordinal relationships between the percepts and the intrinsic rank or dimensionality of
the representation obtained. While OEs are able to maintain ordinal consistency (Vankadara et al.,
2023), they are unable to identify the intrinsic dimensionality as we show in this paper. This is a
key limitation of OEs that reduces their utility for psychophysical analysis. (Künstle et al., 2022)
addressed this problem by modelling it as a multiple hypothesis test with separate embeddings
trained for each candidate dimension and triplet accuracies used to estimate the true intrinsic rank.
This approach, however, has two main limitations:

1. Hypothesis dependence: It requires predefining plausible dimensionalities, risking model
misspecification and reducing statistical power if the true dimensionality exceeds or is less
than the hypothesized bounds.

2. Lack of Scalability: Training multiple embeddings for each hypothesized rank is compu-
tationally expensive and quickly becomes prohibitive for a greater number of percepts. This
is especially problematic for active querying where efficiency is critically important.

Building on these limitations, we propose a method to jointly infer both dimensionality and
multidimensional representations via a novel OE method, eliminating the need for explicit hypoth-
esis enumeration. For psychophysics, this enables recovery of perceptual geometry without prior
assumptions on dimensionality. For machine learning, it offers a scalable approach to uncovering
low dimensional structure directly from ordinal data.

3 Background on Ordinal Embeddings

The ordinal embedding problem seeks to learn an embedding matrix 𝒁 ∈ ℝ𝑁×𝑑′  from triplet judge-
ments from the true perceptual space lying in an unknown 𝑷 ∈ ℝ𝑁×𝑑 where 𝑑 ≪ 𝑁  is the intrinsic
dimensionality or the intrinsic rank of the perceptual space. OE problems usually assume integral
dimensionalities/ranks due to low number of percepts and we do the same. 𝒁 is learned indirectly
via noisy similarity triplet comparisons where the anchor percept 𝑎 is more similar or closer in the
perceptual space to percept 𝑖 than percept 𝑗 into an embedding space of dimension 𝑑′. Specifically,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Characterization of Different Ordinal Embedding Algorithms

Method Optimizes
Over

Recovers
Intrinsic Rank

Scalable High Triplet
Accuracy

Semantically
Interpretable

GNMDS Gram Matrix × × × ×
CKL Gram Matrix × × ✓ ✓

FORTE Gram Matrix × ✓ ✓ ×
t-STE Embedding × − ✓ ×
SOE Embedding × ✓ ✓ ×

OENN Embedding × ✓ × ×
LORE (ours) Embedding ✓ ✓ ✓ ✓

this is denoted by (𝑎, 𝑖, 𝑗) = 𝑡 ∈ 𝑇  where 𝑑(𝑷𝑎,:, 𝑷𝑖,:) < 𝑑(𝑷𝑎,:, 𝑷𝑗,:) where 𝑷𝑎,:, 𝑷𝑖,:, 𝑷𝑗,: are the
rows indexed by percepts 𝑎, 𝑖, 𝑗 respectively in 𝑷  and 𝑑(., .) is the Euclidean distance between
the unknown percepts. A central challenge is that intrinsic rank is unknown and the embedding
dimension is set heuristically.

Though this framework is relatively simple, solving OEs efficiently can be challenging as the OE
problem is NP-Hard (Bower et al., 2018), most loss functions are nonconvex and efficient learning
demands at least 𝒪(𝑁𝑑 log 𝑁) actively sampled triplets (Jain et al., 2016). As a result, the choice of
optimization framework is crucial to obtaining a good OE and depending on dataset characteristics,
different OE methods may be preferred for different situations (Vankadara et al., 2023).

Gram matrix approaches optimize a positive semidefinite matrix 𝑮 = 𝒁𝒁𝑇 ∈ ℝ𝑁×𝑁  that capture
the pairwise differences. While theoretically appealing because they are agnostic to the embedding
dimension during optimization, they require enforcing PSD constraints that are not scalable for large
𝑁 . Early methods like Generalized Non Metric Multi Dimensional Scaling (GNMDS) (Agarwal et
al., 2007) and probabilistic models like Crowd Kernel Learning (CKL) suffer from limited accuracy
or poor scalability. Fast Ordinal Triplet Embedding (FORTE) accelerates this with a kernelized
nonconvex triplet loss optimized by efficient Projected Gradient Descent (PGD) and line search.

Direct embedding approaches optimize 𝒁 which leads to faster gradient updates that scale with
the smaller 𝒪(𝑁𝑑′) versus 𝒪(𝑁2) with Gram matrix approaches. Examples include t-distributed
Stochastic Triplet Embedding (t-STE) (Van Der Maaten and Weinberger, 2012) and Soft Ordinal
Embedding (SOE) (Terada and Luxburg, 2014) with the latter widely used for its efficiency and high
accuracy. A deep learning variant, Ordinal Embedding Neural Network (OENN) (Vankadara et al.,
2023) underperforms likely due to the limited supervisory signal in purely ordinal data.

However, a shared fundamental limitation of all existing methods is the inability to recover the
intrinsic rank 𝑑, which risks overparameterizing the true perceptual latent space.

4 Methods

We introduce a scalable ordinal embedding (OE) framework that jointly learns both the embedding
and the intrinsic rank of the perceptual space. To ensure computational efficiency on large datasets
(large 𝑇  and 𝑁 ) we directly optimize the embedding 𝒁 instead of the Gram matrix 𝑮. The key
insight is that we want the learning algorithm to adaptively the select embedding dimensionality as
needed to fit the percepts well but not use any more extra space than necessary. Therefore, a natural
approach is to penalize the rank of the learned embedding via regularization.

As SOE has the best properties of all the OEs that optimize over 𝒁, we extend it with regularization.
As the rank constraint is NP-Hard and non-convex (Fazel et al., 2001) a common approach is to
regularize with the nuclear norm instead where ‖𝒁‖∗ = ∑min {𝑁,𝑑′}

𝑖=1 𝜎𝑖(𝒁), where 𝜎𝑖(𝒁) is the 𝑖th
singular value (Candes and Recht, 2008; Fazel et al., 2001). The objective then becomes:
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min
𝒁

 Ψ(𝒁) = ∑
(𝑎,𝑖,𝑗)∈𝑇

max{0, 1 + 𝑑(𝒁𝑎,:, 𝒁𝑖,:) − 𝑑(𝒁𝑎,:, 𝒁𝑗,:)} + 𝜆 ‖𝒁‖∗.

Though the nuclear norm is convex and relatively easy to optimize, it uniformly shrinks all
of singular values (Negahban and Wainwright, 2011; Zhang, 2010). Recent theoretical and empir-
ical evidence indicates that the nonconvex Schatten-𝑝 quasi norm ‖𝒁‖𝑝

𝑝 = ∑min {𝑁,𝑑}
𝑖=1 𝜎𝑖(𝒁)𝑝 =

∑min {𝑁,𝑑}
𝑖=1 𝑔[𝜎𝑖(𝒁)] for 0 < 𝑝 < 1, recovers the intrinsic rank for low rank recovery problems better

than the nuclear norm can (Lu et al., 2014; Marjanovic and Solo, 2012). The Schatten-𝑝 quasi norm
generalizes the nuclear norm by penalizing larger singular values less severely which is shown to
aid in intrinsic rank recovery. We leverage this property and for the first time, to our knowledge,
integrate the Schatten quasi-norm into a scalable ordinal embedding framework, allowing implicit
perceptual rank discovery as seen below in

min
𝒁

 Ψ(𝒁) = ∑
(𝑎,𝑖,𝑗)∈𝑇

max{0, 1 + 𝑑(𝒁𝑎,:, 𝒁𝑖,:) − 𝑑(𝒁𝑎,:, 𝒁𝑗,:)} + 𝜆 ‖𝒁‖𝑝
𝑝.

Though incorporating the Schatten Quasi-Norm improves rank recovery properties, it also introduces
additional nonconvexity into the regularizer that makes optimization more challenging. To overcome
the inherent non-differentiability of the ordinal loss and the complexity of nonconvex regularization,
we smooth the hinge triplet loss with the softplus function (Dugas et al., 2001). This transformation
makes the objective differentiable except where the embedding collapses (𝒁𝑎,: = 𝒁𝑖,: or 𝒁𝑎,: =
𝒁𝑗,:). However, collapses can be avoided with wide initializations of 𝒁. This smoothing enables
provable convergence and is empirically essential, as it mitigates zero gradient plateaus to facilitate
training on large datasets. Then the objective function is defined as

min
𝒁

 Ψ(𝒁) = ∑
(𝑎,𝑖,𝑗)∈𝑇

log(1 + exp(1 + 𝑑(𝒁𝑎,:, 𝒁𝑖,:) − 𝑑(𝒁𝑎,:, 𝒁𝑗,:)))) + ∑
min{𝑁,𝑑′}

𝑖=1
𝜎𝑖(𝒁)𝑝.

Despite smoothing the ordinal loss, our objective remains highly nonconvex due to the Schatten-p
quasi-norm regularization, which makes reliable optimization difficult. Standard gradient methods
often get stuck in poor local minima or fail to converge. To overcome this, we use an iteratively
reweighted algorithm inspired by (Sun et al., 2017). At each step, the algorithm minimizes a weighted
surrogate of the original objective, leading to steady improvement even in complex landscapes. As
established in Theorem 1, this procedure is guaranteed to converge to a stationary point, ensuring
robust and reliable learning.

Theorem (LORE converges to a stationary point)   The sequence of OEs generated by the LORE
algorithm {𝒁𝑘}

𝑘=1,2,3,…
 converges. i.e.

∑
+∞

𝑘=1
‖𝒁𝑘+1 − 𝒁𝑘‖𝐹 < +∞

Proof Sketch: We use the general framework for nonconvex Schatten Quasi-Norm optimization as
seen in (Sun et al., 2017) but crucially, check the specific conditions for the LORE objective. The
full proof is in Appendix A.

Our convergence guarantee is significant because, for ordinal embedding problems, stationary points
are widely believed to be nearly as good as global optima in objective value. This is supported
empirically (Vankadara et al., 2023) and theoretically. (Bower et al., 2018) proved that for certain OE
settings with 𝑑 = 2, all local optima are global. Moreover, when sufficient triplet data is available,
sub-optimal local minima are rarely observed. Building on these insights, we expect that our method
will also recover high quality embeddings in realistic settings. Our experimental results confirm
that LORE learns high accuracy ordinal embeddings, even with the inherent nonconvexity of the
objective.

We implement the optimization using an efficient iteratively reweighted algorithm, seen in Algo-
rithm 1, that updates the embedding and regularization at each step. In the typical regime where the
embedding dimension is much smaller than the number of items and triplets, each iteration requires
𝒪(𝑑′(𝑇 + 𝑁𝑑′)) operations, making LORE scalable to large datasets. Additional implementation
specifics are in Appendix B.
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Algorithm 1:  Learning LORE

1: procedure LORE((𝒁0 ∈ ℝ{𝑁×𝑑′},𝑇 ,𝜆)) 
2: prev_objs ← [∞]
3: for 𝑘 = 0, 1, 2, …. do
4: 𝜎 ← Singular Values (𝒁𝑘)
5: curr_obj ← ∑

(𝑎,𝑖,𝑗)∈𝑇
log(1 + exp(1 + 𝑑(𝒛𝑎, 𝒛𝑖) − 𝑑(𝒛𝑎, 𝒛𝑗))) + ∑min{𝑁,𝑑′}

𝑖=1 𝜎𝑖(𝒁)𝑝

6: if |curr_obj − prev_objs[-1]| < tol then ▷ Convergence check
7: break
8: 𝑼, 𝑺, 𝑽 𝑇   ← SVD (𝒁𝑘 − 1

𝜇∇𝒁𝑘𝑓(𝒁𝑘))
9: 𝑺𝑘  ← 𝑺 − 𝑝

𝜇𝜎𝑝−1

10: 𝑺𝑘  ← sorted (𝑺𝑘[𝑺𝑘 > 0], descending)
11: 𝒁𝑘+1  ← 𝑼𝑺𝑘𝑽 𝑇

12: prev_objs[k] ← curr_obj
13: if ‖𝒁𝑘+1 − 𝒁0‖∞ < tol then ▷ Check if close to stationary point
14: break
15: return 𝒁𝑘+1

In summary, our methodological contributions are: (1) formulating a new ordinal embedding
approach that jointly learns the ordinal embedding and intrinsic rank using Schatten quasi-norm
regularization; (2) establishing an efficient optimization strategy based on iteratively reweighted
minimization tailored for this nonconvex objective, along with convergence guarantees and (3)
providing a scalable algorithm suitable for large scale perceptual similarity data.

5 Results

In this section, we present five pieces of empirical evidence in support of our method’s claims.
First, we outline our experimental setup, including baseline methods and the generative process for
producing ordinal embedding (OE) tasks. Next, we show how to select regularization levels for
LORE. We then benchmark LORE against standard baselines across key metrics, followed by a
comparison on proxy large language model (LLM) generated perceptual spaces. Finally, we assess
performance on real, crowdsourced triplet data involving human judgments and see that LORE’s
learned axes have semantic meaning. Collectively, these results demonstrate that LORE is uniquely
effective at jointly learning high quality ordinal embeddings with intrinsic rank recovery, a property
no other existing OE method can.

5.1 Setup

We benchmark LORE primarily against (1) SOE and (2) FORTE. These methods represent the
best performing direct and Gram matrix OE approaches, respectively, as established by prior work
(Vankadara et al., 2023). For our experiment on a simulated perceptual experiment and our last
experiment on crowdsourced data, which is computationally less demanding, we also compare
against additional OE methods like t-STE, CKL and the dimensionality estimation method using
hypothesis testing from (Künstle et al., 2022) which is denoted as Dim-CV for simplicity.

Our core evaluation criteria are:

• Test Triplet Accuracy: The proportion of held-out triplets correctly satisfied by the learned
embedding and the primary metric in the OE literature.

• Measured Rank: The effective rank of the learned embedding, as a measure of intrinsic
dimensionality recovery.

An ideal ordinal embedding should achieve high test triplet accuracy while maintaining a measured
rank close to the true intrinsic rank of the underlying perceptual space.
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For LORE, we fix 𝑝 = 0.5 as it offers a good balance between rank recovery and optimization
stability as seen in prior work (Lu et al., 2014; Sun et al., 2017; Wang et al., 2024). As 𝜇 only
needs to be greater than the Lipschitz constant of triplet loss term, we set it to 0.1 which is greater
than what we find empirically. Both of these are set apriori and do not require tuning. The only
hyperparameter that is tuned is the regularization parameter 𝜆. However, as we show in Section 5.2,
there exists a wide range of 𝜆 around 0.01 that yields both high triplet accuracy and intrinsic rank
recovery across a variety of dataset conditions. Thus, we expect that in practice, a user can set 𝜆
to 0.01 without extensive hyperparameter tuning which our later experiments confirm works well
across real world datasets. Initializations are usually critical for nonconvex optimization problems.
However, due to the guaranteed convergence of LORE to stationary points, and the fact that Ordinal
Embedding algorithms tend to have good local minima we find that random Gaussian initializations
with variance of at least 5 work well across all experiments without any special tuning. All of our
experiments use this initialization scheme and we suggest it as a default choice for practitioners.

We systematically vary four factors: fraction of queries, intrinsic rank, number of percepts, and noise
level in the generative model. For synthetic experiments, we generate perceptual spaces of specified
size and rank, sample noisy triplets to mimic human responses, and fit each method before evaluating
on test triplets. Our synthetic data model generates a random perceptual space of specified rank and
number of percepts, followed by sampling triplets with replacement to simulate human queries. We
then use a standard approach (Canal et al., 2020; Vankadara et al., 2023) to model response uncer-
tainty by sampling Gaussian noise independently and adding to each triplet distance. The resulting
triplet data is then used to fit all OE algorithms, which are evaluated on held-out test triplets for
both accuracy and measured rank. Unless otherwise stated, all experiments use query_fraction =
0.1, 𝑝 = 0.5, 𝑑 = 5, 𝑁 = 50, noise = 0.1, and 𝑑′ = 15 for 30 independent seeds. We include code
to reproduce this generative process in the supplemental material.

5.2 LORE has a consistent and stable regularization setting that yields high
triplet accuracy and intrinsic rank recovery

Figure 2: LORE has high test triplet accuracy and intrinsic rank recovery across varying
number of queries. (Left) Mean test triplet accuracy vs 𝜆 for LORE as Fraction of Queries varies.
(Right) Mean measured rank vs 𝜆 for LORE as Fraction of Queries varies.

Our first set of experiments explores whether LORE admits a regularization regime that yields both
high test triplet accuracy and reliable intrinsic rank recovery. As shown in Figure 2, across a broad
range of the regularization parameter (𝜆 ≈ 0.01), LORE achieves nearly perfect test triplet accuracy
and accurate intrinsic rank recovery, even as the fraction of queried triplets varies. Further results in
Appendix C show that LORE performs similarly with varying noise, number of percepts and intrinsic
rank. These pieces of evidence taken together confirm that high triplet accuracy and intrinsic rank
recovery persists with different noise levels, numbers of percepts and intrinsic rank for the same
regularization range. Thus, LORE is robust in hyperparameter selection (𝜆).

5.3 LORE outperforms baselines in rank recovery; matches in triplet accuracy

Figure 3 (left, center) demonstrates that LORE uniquely recovers the true intrinsic rank of the embed-
ding across all tested query fractions, while baseline methods consistently default to the maximum

7
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Figure 3: Only LORE can recover the intrinsic rank while maintaining comparable test triplet
accuracy as number of queries varies: (Left) Mean test triplet accuracy vs fraction of queries used.
(Center) Mean measured rank vs fraction of queries used. (Right) Mean Measured Rank vs Intrinsic
Rank. The gray dotted line indicates the ideal case where the measured rank is equal to the intrinsic
rank. Shaded Areas indicate ±2 Standard Deviations.

allowed dimension. Importantly, LORE matches the test triplet accuracy of the best baseline across
all conditions, achieving low rank solutions without sacrificing predictive performance.

Additionally, Figure 3 (right) shows that as the true intrinsic rank increases, only LORE tracks this
change, whereas all other methods ignore the underlying complexity and fail to adapt. While some
loss in rank recovery is observed at higher true ranks (expected due to fixed number of triplets and the
curse of dimensionality (Bishop and Nasrabadi, 2006)), LORE consistently outperforms competitors
in recovering reduced the intrinsic rank. Further results in Appendix D confirm that LORE maintains
an advantage across different noise and percept counts. Thus, LORE is the only method to reliably
recover both accurate ordinal embeddings and the intrinsic rank thereby avoiding underfitting or
overparameterizing the true perceptual space. These results highlight the practical value of LORE
for applications where discovering latent structure is critical.

5.4 LORE recovers Intrinsic Rank in a Simulated Perceptual Experiment

Figure 4: LORE outperforms baselines for both test triplet accuracy and intrinsic rank for a
simulated LLM perceptual experiment. (Left) Mean test triplet accuracy vs intrinsic rank. (Center)
Mean measured rank vs intrinsic rank. The gray dotted line is the ideal case where the measured
rank is equal to the intrinsic rank. (Right) Time taken for processing vs intrinsic rank. Shaded Areas
indicate ±2 Standard Deviations.

Human perceptual experiments are a key application of LORE, but for real perceptual datasets,
the true intrinsic rank is unknown. Consequently, we leverage recent findings that large language
models (LLMs) encode human-aligned perceptual information across domains such as taste, pitch,
and timbre (Marjieh et al., 2024). Therefore we use the LLM embedding space as a realistic proxy
of the true perceptual space in humans. To evaluate how our LORE compares to other baseline
algorithms and the Dim-CV, which uses hypothesis testing and training multiple embeddings to
estimate intrinsic rank, we evaluate both the test triplet accuracy and the measured rank of the learned
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embeddings. For Dim-CV we keep the range of hypothesed dimensions from 1 to 10 to match the
true intrinsic ranks we test here.

In our experiment, we obtain SBERT embeddings (Reimers and Gurevych, 2019) for 50 randomly
chosen foods, then control the intrinsic dimensionality for this experiment by applying truncated
singular value decomposition (ranks 1-10). From this lower dimensional space, we generate noisy
triplet comparisons (sampling 5% of the total, 30 repetitions per configuration, with noise 0.1) to
mimic the data limited regime typical in human perceptual experiments. A detailed experimental
setup is included in Appendix H.

Figure 4 summarizes the results. Even in this highly undersampled setting, LORE closely tracks the
intrinsic rank across all tested values, while all baseline OE algorithms default to the embedding
dimension. Dim-CV not only is farther from the intrinsic rank than LORE but also takes consid-
erably longer to run (note the log scaled y axis!) due to training multiple ordinal embeddings from
hypothesis testing and cross validation. Also, LORE significantly outperforms baselines in test triplet
accuracy, demonstrating robust ordinal embedding recovery even with noise, small amounts of data
and realistic semantic structure in the percept while still reliably recovering the intrinsic rank.

5.5 LORE learns low rank and accurate representations on crowdsourced data

To test LORE in practical, noisy settings with unknown intrinsic rank, we evaluate it alongside
baselines on three representative crowdsourced human similarity datasets covering food images
(Wilber et al., 2014), material images (Lagunas et al., 2019), and car images (Kleindessner and Von
Luxburg, 2017). These datasets differ in size, query semantics, and noise, reflecting the variety and
challenges of real world ordinal data with results in Table 2. Further details are in Appendix E with
additional real world dataset evaluations in Appendix J.

All methods are trained on a random sample comprising of 90% of the total triplets, Gaussian noise
and the same embedding dimension. Across all datasets, LORE has comparable test triplet accuracy
to existing methods, but uniquely yields a substantially lower rank (for e.g., Food-100: LORE gets
rank 3.3 vs. 15 for the others), suggesting a low rank structure. For materials, LORE gets both the
highest triplet accuracy and a low rank structure of ~2-3 dimensions verified in UMAP visualizations
from (Lagunas et al., 2019). For cars, extreme noise is reflected in low accuracy for all methods
yet LORE’s embeddings are more compact and do not degenerate to random chance like Dim-CV.
There is considerable variance in time taken across methods and datasets due to the optimization
characteristics of each method but LORE is the second fastest method after FORTE consistently.

Dim-CV performs poorly, likely due to its conservative approach in dimensionality selection by
hypothesis testing, underfitting compared to the other methods. Dim-CV is restricted to a realistic
dimensionality range (1-10) for data with unknown intrinsic rank. LORE not only learns low-rank
representations but also maintains competitive triplet accuracy compared to methods that overpara-
meterize the space, without needing dimensionality assumptions. These results show that only LORE
recovers low rank structure (avoiding overparameterizing) without sacrificing significant accuracy
(avoiding underfitting) from real data, enabling practical perceptual modeling.

5.6 LORE’s learned axes are semantically interpretable

Figure 5 shows that, without semantic supervision, LORE’s first three axes for Food-100, the same
embedding used for Table 2, each align with interpretable food properties: from sweet to savory
(Axis 1), dense to light (Axis 2), and carb-rich to protein/vegetable (Axis 3). The last axis is slightly
less coherent, as is expected for axes linked to smaller singular values. These results demonstrate
that LORE actually recovers semantically meaningful latent dimensions while recovering a low rank
embedding. Consequently, the axes are interpretable and this property is invaluable for scientific
discovery where the subjective percept is not well understood. Additional interpretability results for
the other methods are included in Appendix F show that LORE’s axes are consistently more aligned
with meaningful semantic concepts than every method except CKL which is comparable to it.

6 Discussion
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Table 2: Comparison of OEs on Real Life Ordinal Datasets

Method Food-100 Materials Cars

Metric
± Std

Test
Acc.

Rank Time
(s)

Test
Acc.

Rank Time
(s)

Test
Acc.

Rank Time
(s)

LORE
(Ours)

82.45 ±
0.27

3.3 ±
0.47

6.64 ±
3.90

84.08 ±
0.19

2.23 ±
0.43

5.77 ±
3.37

52.12 ±
1.22

3 ±
0.45

4.45 ±
1.62

SOE 82.34 ±
0.32

15 ±
0.00

27.09 ±
1.38

81.86 ±
0.55

15 ±
0.0

35.48 ±
1.30

53.17 ±
1.42

15.0 ±
0.0

5.53 ±
1.22

FORTE 81.73 ±
0.46

15 ±
0.00

6.34 ±
0.52

79.35 ±
0.77

15 ±
0.0

3.74 ±
0.58

52.91 ±
0.84

15.0 ±
0.0

0.85 ±
0.18

t-STE 82.79 ±
0.24

15 ±
0.00

40.93 ±
20.14

83.44 ±
0.49

15 ±
0.0

27.15 ±
3.16

53.70 ±
1.15

15.0 ±
0.0

15.13 ±
4.29

CKL 82.75 ±
0.20

15 ±
0.00

18.41 ±
7.89

83.94 ±
0.11

15 ±
0.0

14.77 ±
1.79

54.06 ±
1.19

15.0 ±
0.0

4.85 ±
0.39

Dim-
CV

77.67 ±
0.02

1.47 ±
0.51

1721.9 ±
26.71

78.10 ±
3.79

1.0 ±
0.0

1428.6 ±
32.84

50.43 ±
1.07

1.0 ±
0.0

270.56 ±
8.86

Figure 5: LORE’s learned axes are semantically interpretable: Food groups as axis value varies
for the first three learned axes of the LORE embedding learned on the Food-100 dataset. (Same
embedding as one learned for Table 2).

In this work, we introduced LORE, a framework for jointly learning the intrinsic rank and the true
perceptual latent space via an ordinal embedding. Our results show that LORE consistently recovers
low-dimensional representations, with ranks that closely match ground truth while maintaining
competitive test triplet accuracy. Moreover, we show that LORE does not underfit the perceptual
space like Dim-CV does yet does not overparameterize the space like all other baselines do. On
real crowdsourced data, LORE also uncovers interpretable axes aligned with meaningful semantic
concepts, making subjective perceptual spaces easier to analyze.

One limitation is the absence of theoretical guarantees for exact rank recovery or optimal embed-
dings. Our method empirically performs well, but its theoretical underpinnings remain an open
question as LORE’s optimization is only guaranteed to reach stationary points, not global minima.

Future directions include developing theoretical guarantees as well as exploring active learning
methods to collect perceptual data more efficiently. Finally, we hope this work inspires further
applied and theoretical advances, expanding the use of LORE for uncovering the structure of
perceptual spaces across a range of domains.
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7 Reproducibility Statement

We have taken several steps to ensure the reproducibility of our work. All code and detailed docu-
mentation for our artificial human experiments and crowdsourced human experiments are included
in the supplemental material, with full experimental configurations provided in Appendix H and
Appendix I.

For the synthetic experiments and baseline comparisons, which require large scale parallelization
and substantial computational resources, we do not provide raw code. Instead, we describe in detail
the procedures and parameter settings necessary to reproduce them in Appendix G.

Our main theoretical result, establishing convergence of LORE to a local optimum, includes a
complete proof with all required assumptions in Appendix A. To support practical use, we provide a
demo (in the supplemental material) showing how LORE can be applied to new datasets, along with
additional implementation details in Appendix B.

Upon acceptance, we will release the full code and demo on GitHub and integrate the implementation
of LORE into cblearn (Künstle and Luxburg, 2024), a Python package for ordinal embeddings and
comparison-based machine learning. We believe these efforts will make our work fully reproducible
and accessible to the community.
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A Proof for Theorem 1

Theorem (LORE converges to a stationary point)   The sequence of OEs generated by the LORE
algorithm {𝒁𝑘}

𝑘=1,2,3,…
 converges. i.e.

∑
+∞

𝑘=1
‖𝒁𝑘+1 − 𝒁𝑘‖𝐹 < +∞

Proof: We use the general framework for nonconvex Schatten Quasi-Norm optimization as seen in
(Sun et al., 2017) but check the specific conditions for the LORE objective.

Let us split up the objective as follows.

min
𝒁

 Ψ(𝒁) = ∑
(𝑎,𝑖,𝑗)∈𝑇

log(1 + exp(1 + 𝑑(𝒁𝑎,:, 𝒁𝑖,:) − 𝑑(𝒁𝑎,:, 𝒁𝑗,:))) + 𝜆 ‖𝒁‖𝑝
𝑝

= ∑
(𝑎,𝑖,𝑗)∈𝑇

log(1 + exp(1 + 𝑑(𝒁𝑎,:, 𝒁𝑖,:) − 𝑑(𝒁𝑎,:, 𝒁𝑗,:)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓(𝒁)

+ ∑
min{𝑁,𝑑′}

𝑖=1
𝜆𝑔[𝜎𝑖(𝒁)].

There are four assumptions we need to satisfy to apply the general result from (Sun et al., 2017).
A1. 𝑓  is differentiable and has a Lipschitz gradient:

This stems from smoothing the triplet loss with the softplus function. The composition
makes 𝑓  differentiable everywhere except at degenerate collapse points (which do not
arise with practical initializations). The log-sum-exp structure ensures (locally) Lipschitz
gradients (Chen et al., 2020).

A2. 𝑔 is concave, nondecreasing, and Lipschitz:

𝑔(𝑥) = 𝑥𝑝 for 𝑥 > 0 has these properties.
A3. Ψ is coercive:

For our objective, suppose ‖𝒁‖𝐹 ⟶ ∞. Then the sum of squared singular values
diverges, so at least one 𝜎(𝒁) ⟶ ∞. As 𝑔(𝒁) is the sum of all 𝜎(𝒁)𝑝, and 𝑝 > 0, we
therefore have 𝑔(𝒁) ⟶ ∞ and thus Ψ(𝒁) ⟶ ∞.

A4. Ψ has the Kurdyka Lojasciewicz (KL) property:

As established in (Bolte et al., 2010), sums of o-minimal (definable) functions, such as
our loss and regularizer, possess the KL property.

With all required assumptions satisfied, Theorem 1 of (Sun et al., 2017) applies and guarantees:

∑
∞

𝑘=1
‖𝒁𝑘+1 − 𝒁𝑘‖𝐹 < ∞.

Therefore, the LORE algorithm converges to a stationary point. □

B Operational Details for LORE

The optimization algorithm used for LORE is an adaptation of the original algorithm from (Sun et al.,
2017). The function takes the initialized embedding 𝒁0, the regularization parameter 𝜆, the Lipschitz
constant of ∇𝑓(.), 𝜇, and the tolerance for convergence tol. The exact Lipschitz constant of 𝑓(.) is
not known but was be empirically estimated to be strictly greater than 0.013 by the Power Iteration
method. Therefore, we set 𝜇 = 0.1 throughout our experiments. The algorithm initializes the ordinal
embedding and iteratively updates it by minimizing the smoothed ordinal loss plus Schatten-p regu-
larization. Each step performs a proximal gradient update and singular value thresholding, repeating
until convergence. Based on prior literature in the Schatten-p quasi-norm optimization literature (Lu
et al., 2014; Sun et al., 2017; Wang et al., 2024), we fix 𝑝 = 0.5 as it has been shown to have good
empirical results across various applications. Both 𝜇 and 𝑝 are hyperparameters that are needed to be
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tuned for a practitioner. Moreover, though 𝜆 is a clear hyperparameter, our empirical results show that
a setting of 𝜆 = 0.01 works well across all of our experiments and we would suggest a practitioner
start with this value. The tolerance tol is set to 10−5 throughout our experiments. Moreover, we
cap the number of iterations to 1000 for all experiments to ensure reasonable runtimes. If longer
runtimes are acceptable, this cap can be increased to improve performance. However, this is usually
very marginal.

If we consider the most standard operational setting, i.e. 𝑑′ < 𝑁 ≪ 𝑇 , then the time complexity
of each iteration is 𝒪(𝑑′(𝑇 + 𝑁𝑑′)). The dominating terms here are the number of percepts and
the number of triplets used with the most intensive operation is in line 8 where the gradient of 𝑓
is calculated and a singular value decomposition is subsequently performed. As a result, LORE is
scalable for higher 𝑁  and 𝑑′. One does need to be careful as 𝑇  could scale with 𝒪(𝑁3) if many
triplets are chosen which could slow down each iteration.

C Additional plots for Regularization of LORE

Figure 6: LORE has high test triplet accuracy and intrinsic rank recovery across various
number of percepts. (Left) Mean test triplet accuracy vs 𝜆 for LORE as number of percepts varies.
(Right) Mean measured rank vs 𝜆 for LORE as number of percepts varies.

Figure 6 shows the test triplet accuracy and intrinsic rank recovery of LORE as the number of
percepts varies. We see that with greater number of percepts rank recovery stays roughly constant
whereas the test triplet accuracy increases significantly from 25-50 percepts. Baseline parameters
are intrinsic rank = 5, fraction of queries = 0.1, noise = 0.1.

Figure 7: LORE has high test triplet accuracy and intrinsic rank recovery across various noise
levels. (Left) Mean test triplet accuracy vs 𝜆 for LORE as noise varies. (Right) Mean measured rank
vs 𝜆 for LORE as noise varies.

Figure 7 shows the test triplet accuracy and intrinsic rank recovery of LORE as the noise varies. We
see that with greater noise rank recovery and test triplet accuracy both decrease. There is a dramatic
drop in test triplet accuracy from 1 to 5 noise. Baseline parameters are intrinsic rank = 5, number of
percepts = 50, fraction of queries = 0.1.
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Figure 8: LORE has high test triplet accuracy and intrinsic rank recovery across various
intrinsic ranks. (Left) Mean test triplet accuracy vs 𝜆 for LORE as intrinsic rank varies. (Right)
Mean measured rank vs 𝜆 for LORE as intrinsic rank varies.

Figure 8 shows the test triplet accuracy and intrinsic rank recovery of LORE as the intrinsic rank
varies. We see that for the same regularization level till approximately 8 dimensions, LORE can
recover the rank. Baseline parameters are number of percepts = 50, fraction of queries = 0.1, noise
= 0.1.

These results, together with Figure 2, show that LORE is quite robust to the various knobs (noise,
number of percepts, intrinsic rank and number of queries) that can be tuned for OE applications and
that a regularization setting of 𝜆 = 0.01 learns an embedding with both high triplet accuracy yet
recover the intrinsic rank.

D Additional plots comparing LORE to Baselines

Figure 9: Only LORE can recover the intrinsic rank while maintaining comparable test triplet
accuracy. (Left) Mean test triplet accuracy vs number of percepts used for LORE and the baselines.
(Right) Mean measured rank vs number of percepts used for LORE and the baselines.

Figure 9 shows the test triplet accuracy and intrinsic rank recovery of LORE and the baselines as the
number of percepts varies. We see that with greater number of percepts rank recovery stays roughly
constant, though spread decreases, for LORE from 25-50 percepts. Baselines again cannot recover
the intrinsic rank at all. Test triplet accuracy increases from 25-50 percepts for all OE algorithms.
Baseline parameters are intrinsic rank = 5, fraction of queries = 0.1, noise = 0.1.
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Figure 10: Only LORE can recover the intrinsic rank while maintaining comparable test triplet
accuracy. (Left) Mean test triplet accuracy vs noise used for LORE and the baselines. (Right) Mean
measured rank vs noise used for LORE and the baselines.

Figure 10 shows the test triplet accuracy and intrinsic rank recovery of LORE and the baselines
as the noise varies. We see that with greater noise, LORE is still able to recover the intrinsic rank
though spread increases with noise from 1-5. The baselines cannot recover the intrinsic rank at all.
Test triplet accuracy decreases with noise for all OE algorithms though LORE still performs the best.
Baseline parameters are intrinsic rank = 5, number of percepts = 50, fraction of queries = 0.1.

E Crowdsourced Dataset Details

Of these datasets, the Cars dataset is known to be very noisy (Kleindessner and Von Luxburg, 2017;
Vankadara et al., 2023). Food-100 has been used as a dataset to evaluate active querying methods
(Canal et al., 2020). Musicians is known to be very undersampled in terms of triplets compared to the
number of percepts and is not the desired operational setting of this work. A detailed characterization
of the datasets is seen in Table 3.

F Additional Interpretability Plots

In this section we include interpretability plots for the other ordinal embedding methods on the
Food-100 dataset. These plots are analogous to Figure 5 in the main paper. The procedure that we
use to obtain these axes is to take the best performing ordinal embedding learned by each of these
methods from Table 2 and then perform a principal component analysis (PCA) on the embedding
to get the top three principal components. The reason for doing so is because ordinal embeddings
cannot learn the directions of highest variance but only can learn an embedding that may be rotated,
scaled or translated compared to the true perceptual space (Jain et al., 2016; Vankadara et al., 2023).
Then, we vary the value of each principal component from its minimum to maximum value in the
embedding and plot datapoints across each axis separately to see if there is any semantic meaning
to the axis.
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Table 3: Details of Crowdsourced Datasets Used

Datasets Number of
Percepts

Number of
Triplets

Triplet Type Notes

Food-100
(Wilber et al., 2014)

100 190,376 Compared to A,
which is more simi-

lar, B or C or ….?

Images of foods
to user. Converted
data into similar-
ity triplets using
the python package
cblearn (Künstle and

Luxburg, 2024)

Materials
(Lagunas et al.,

2019)

100 22801 Compared to A,
which is more simi-

lar, B or C or ….?

Images of materi-
als presented to user.
Converted data into
similarity triplets us-
ing the python pack-
age cblearn (Künstle
and Luxburg, 2024)

Cars
(Kleindessner and
Von Luxburg, 2017)

68 7097 Which of A, B, C is
the most central?

Images of cars pre-
sented to user. Each
central triplet can be
converted to simi-
larity triplets using
the python package
cblearn (Künstle and

Luxburg, 2024)

Musicians
(Ellis et al., 2002)

448 118,263 Compared to A,
which is more simi-

lar, B or C or ….?

Names of musicians
presented to users.
Converted data into
similarity triplets us-
ing the python pack-
age cblearn (Künstle
and Luxburg, 2024)

Figure 11: CKL’s learned axes are semantically interpretable: Food groups as axis value varies
for the first three learned axes of the CKL embedding learned on the Food-100 dataset. These are
very similar to LORE’s as seen in Figure 5 (Same embedding as one learned for Table 2).
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Figure 12: SOE’s learned axes are semantically interpretable but not parsimonious: Food groups
as axis value varies for the first three learned axes of the SOE embedding learned on the Food-100
dataset. These contain two dimensions that LORE does but not all Figure 5 (Same embedding as one
learned for Table 2).

Figure 13: FORTE’s learned axes are not fully semantically interpretable: Food groups as axis
value varies for the first three learned axes of the FORTE embedding learned on the Food-100
dataset. Only the first two dimensions are semantically interpretable but the third is not compared
to LORE’s Figure 5 (Same embedding as one learned for Table 2).
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Figure 14: t-STE’s learned axes are not fully semantically interpretable: Food groups as axis
value varies for the first three learned axes of the t-STE embedding learned on the Food-100 dataset.
Only the first dimension is semantically interpretable but the second and third are not compared to
LORE’s Figure 5 (Same embedding as one learned for Table 2).

Figure 15: Dim-CV’s learned axes are not fully semantically interpretable: Food groups as axis
value varies for the first two learned axes of the Dim-CV embedding (chosen after retraining and
dimensionality selection) learned on the Food-100 dataset. Only the first dimension is semantically
interpretable but the second is not compared to Figure 5 (Same embedding as one learned for
Table 2). Note that Dim-CV only learns two dimensions so we only show two axes here.

From the above plots, we see that only CKL is able to learn all the three interpretable dimensions that
LORE is able to learn. Both FORTE and TSTE are able to learn one or two interpretable dimensions
but not all three. While SOE does learn all three interpretable dimensions, it splits sweetness to not
sweet across two dimensions rather than one as LORE and CKL do. Dim-CV meanwhile though
it learns a low rank embedding (only two dimensions), the second axis is not interpretable at all.
Moreover, as seen in Table 2, it takes an order of magnitude longer to train. Though both CKL and
LORE are able to learn comparable interpretable dimensions, LORE is superior as it also learns a
lower rank representation as well indicating that it does capture only the most important dimensions
of the perceptual space without underfitting or overparameterizing.

G Experimental Setup for Section 5.2 and Section 5.3

This experiment was performed on a SLURM server with over 30 GPUs of varying quality and
compute power. We do not include the scripts used to run those experiments as they are highly
complex due to parallelism and take too long to run (over 8 days). However, a quick rundown of the
experiment is given below.
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A grid search over all the following parameters was performed for these experiments. The grid search
was performed in parallel over 30 GPUs. Each experiment was run for 30 runs with different random
seeds. The results were averaged over the 30 runs and the standard deviation was calculated.

In our experiments, the various knobs we tune are as follows.
• Number of Percepts (𝑁 ): We vary it from [25, 50, 75, 100] and use 50 Percepts as a

default. We do not increase the number of percepts beyond 100 as the number of queries
increases combinatorially. Additionally, this is not a practical number of percepts to collect
for perceptual experiments.

• True Dimension (𝑑): We vary it from [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and use 5 as a default. We
do not examine over 10 dimensions as it is not possible to resolve that many dimensions
without increasing the number of percepts due to the curse of dimensionality (Bishop and
Nasrabadi, 2006).

• Fraction of Queries used: we vary it from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and use
0.1 as a default.

• Noise (𝜎2): we vary it from [0, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0] and use 0.1 as a default.
• Regularization (𝜆): This is only for LORE but we vary it with [0, 0.001, 0.00158489,

0.00251189, 0.00398107, 0.00630957,
0.00768625, 0.00936329, 0.01, 0.01140625, 0.01389495, 0.01692667, 0.02061986,
0.02511886, 0.0305995, 0.03727594, 0.0454091,  0.05531681, 0.06738627, 0.08208914, 0.1,
0.21544347, 0.46415888, 1.] and use 0.01 as a default.

• Embedding Dimension (𝑑′): This is the dimension of the embedding we are trying to learn.
This is only for the baselines other than LORE. We vary it from [1, 2, 3, 4, 5, 6, 7, 8,  10, 12,
15] and use 15 as a default.

The metrics we measure are as follows
• Test Triplet Accuracy: The accuracy of the test triplets on the test set. This is the main

metric we use to measure performance.
• Measured Rank: The rank of the embedding matrix. This is a measure of how well the

algorithm is able to recover the intrinsic rank of the data. We measure this by taking the SVD
of the embedding matrix and counting the number of non-zero singular values. Specifically,
we use the rank function from the numpy library to compute the rank of the embedding
matrix.

• Peak Signal to Noise Ratio: The PSNR is a measure of the quality of the recovered matrix.
However, note that the recovered embedding matrix has to be aligned to the true percepts
matrix to compute the PSNR. The specific formulation is described in Appendix M.

• Normalized Procrustes Distance: The NPD is a measure of how well the recovered matrix
matches the true matrix up to rotation, scaling and translation. To perform procrustes
analysis, true percepts 𝑷 ∈ ℝ{𝑁×𝑑} and the computed embedding 𝒁 ∈ ℝ{𝑁×𝑑′} must be
the same shape. Therefore, we use the same subspace alignment technique to ensure that the
two matrices have the same shape. The specific formulation is described in Appendix M.

It should be noted that test triplet accuracy and measured rank are the main metrics we use to measure
performance as the other metrics require knowledge of the percepts 𝑷  which is not known in practice.

H Experimental Setup for Section 5.4

50 random foods were chosen from the Food-100 dataset (Wilber et al., 2014). This was run on a
server with 1 RTX3080 GPU and 128 GB of RAM. The names of the specific percepts are as follows.

['Cinnamon Swirl Buns with Cream Cheese Glaze',
 'Shrimp and Bacon Risotto',
 'Shrimp Cocktail',
 'Homemade Cracker Jacks',
 'Creme Brulee French Toast',
 'Red Lobster Cheddar Bay Biscuits',

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

 'Apple Bacon Stuffed Sweet Potatoes',
 'Sweet-and-Sour Chicken',
 'Pumpkin-Chocolate Chunk Pancakes',
 'Chocolate Hazelnut Biscotti',
 'Eggnog Ice Cream',
 'Celery, Blue Cheese and Hazelnut Salad',
 'Shredded and Roasted Brussels Sprouts with Almonds and Parmesan',
 'Low-Sugar Pumpkin and Apple Crumble',
 'Roasted Sweet Potatoes Recipe with Double Truffle Flavor and Parmesan',
 'Chicken Florentine Bowtie Pasta',
 'White Whole Wheat Pizza Dough',
 'Chervil Mayonnaise',
 'Pork Tenderloin in Tomatillo Sauce',
 'Yellow Tomato Salad with Roasted Red Pepper, Feta, and Mint',
 'Daisy Brand Sour Cream Chocolate Cake',
 'Shredded Brussels Sprouts & Apples',
 'Mexican Corn Salad',
 'Potato Skins',
 'Caramel Kettle Cooked Popcorn',
 'Roasted Garlic + Veggie Tostadas',
 'Pan Seared Scallops with Baby Greens and Citrus Mojo Vinaigrette',
 'Lemon Cranberry Scones',
 'Warm Butternut and Chickpea Salad with Tahini Dressing',
 'Fighting Off That Snack Attack with Lower-Carb Snacks',
 'Chicken with Forty Cloves of Garlic',
 'Edna Mae’s Sour Cream Pancakes',
 'Sweet Potato Gnocchi Mac and Blue Cheese',
 'Yorkshire Pudding',
 'Luscious Lemon Squares',
 'Japanese Pizza',
 'Grilled Asparagus & Feta Salad',
 'Grilled Corn Salad',
 'Garlic Meatball Pasta',
 'Roasted Autumn Panzanella Salad',
 'Coconut Marinated Pork Tenderloin',
 'Black Raspberry Sorbet',
 'Mini Whole Wheat BBQ Chicken Calzones',
 'Mussels in White Wine Sauce',
 'Brown Rice, Oat, and Nut Veggie Burger',
 'Dark Chocolate Cookies',
 'Citrus Salad',
 'Roasted Carrots & Parsnip Puree',
 'South African Cheese, Grilled Onion & Tomato Panini (Braaibroodjie)',
 'Pinto Bean Salad with Avocado, Tomatoes, Red Onion, and Cilantro']

These names are passed to the SBERT library (Reimers and Gurevych, 2019) with the “all-mpnet-
base-v2” model to get a 768 dimensional LLM embedding. To simulate various possible intrinsic
ranks, we use the truncated singular value decomposition to constrain the “true” perceptual repre-
sentations of foods to intrinsic ranks 1-10. Specifically, the truncated SVD is the following.

The singular value decomposition of a matrix 𝑷 ′ ∈ ℝ{𝑁×𝑑} is given by

𝑷 ′ = 𝑼𝚺𝑽 𝑇

Here 𝑼 ∈ ℝ{𝑁×𝑁} 𝑺 ∈ ℝ{𝑁×768} and 𝑽 ∈ ℝ{768×768}. 𝑼  and 𝑽  have orthonormal columns and Σ
is a diagonal matrix with singular values 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑁 > 0. The intrinsic rank of the matrix
is the number of non-zero singular values, which in this case is 𝑁  before truncation. We can truncate
the SVD to fix an intrinsic rank of 𝑑.
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If 𝑼𝑑 ∈ ℝ𝑁×𝑑 and 𝑽𝑑 ∈ ℝ768×𝑑 are the first 𝑑 columns of 𝑼  and 𝑽  respectively, Σ𝑑 ∈ ℝ𝑑×𝑑 with
the biggest 𝑑 singular values in the diagonal entries and otherwise 0 then we can write the truncated
SVD of 𝑷 ′ to get the our “true” perceptual representation of the foods as

𝑷 ′ = 𝑼𝑑𝚺𝑑𝑽 𝑇
𝑑

Then, we query just 5% of the total possible triplets (2940 out of a possible 58800) with 0.1 variance
Gaussian noise added to the triplet comparisons to simulate the noise that humans have when
answering triplet queries. 5% of the total queries is a reasonable setting common to most perceptual
scaling experiments as it is usually the bare minimum of queries needed to fit a good embedding
(Künstle et al., 2022; Vankadara et al., 2023). We repeat this sampling and query answer simulation
process thirty times, independently with various random seeds, and train all of the the various
OE algorithms. This is to obtain more robust results and avoid the effects of bad initializations or
pathological training sets. The metrics we measure are as follows.

• Test Triplet Accuracy: The accuracy of the test triplets on the test set (fixed at 3000 queries
not in the train set and chosen at random). This is the main metric we use to measure
performance.

• Measured Rank: The rank of the embedding matrix. This is a measure of how well the
algorithm is able to recover the intrinsic rank of the data. We measure this by taking the SVD
of the embedding matrix and counting the number of non-zero singular values. Specifically,
we use the rank function from the numpy library to compute the rank of the embedding
matrix.

• Peak Signal to Noise Ratio: The PSNR is a measure of the quality of the recovered
matrix.However, note that the recovered embedding matrix has to be aligned to the true
percepts matrix to compute the PSNR. The specific formulation is described in Appendix M.
(We do not report these in the paper)

• Normalized Procrustes Distance: The NPD is a measure of how well the recovered matrix
matches the true matrix up to rotation, scaling and translation. To perform procrustes
analysis, true percepts 𝑷 ∈ ℝ{𝑁×𝑑} and the computed embedding 𝒁 ∈ ℝ{𝑁×𝑑′} must be
the same shape. Therefore, we use the same subspace alignment technique to ensure that the
two matrices have the same shape. The specific formulation is described in Appendix M.
(We do not report these in the paper)

Code for this experiment is included in the supplemental material.

I Experimental Setup for Section 5.5

This was run on a server with 1 RTX3080 GPU and 128 GB of RAM.

For LORE, we set the regularization parameter, 𝜆, to 0.01. For all OE methods, we set the number
of dimensions of the OE, 𝑑′, to 15.

Note that for this experiment unlike in Appendix H, we do not have access to the true percepts 𝑷  and
therefore cannot compute the PSNR or NPD. We only report the test triplet accuracy and measured
rank. For Dim-CV we use a total of 5 cross validation folds but do not use multiple initializations
due to computational constraints. As it is, Dim-CV is already two orders of magnitude slower than
all of the OE algorithms due to the additional burden of training multiple embeddings due to the
cross validation procedure. From our observations, increasing the number of cross validation folds
and using multiple initializations reduces the standard deviation of the Dim-CV test triplet accuracy
and rank but not the mean. Time however, increases linearly with the number of cross validation
folds and initializations.

Code for this experiment is included in the supplemental material.

J Additional Crowdsourced Dataset Experiments

The results on one more crowdsourced real life dataset, the musicians dataset (Ellis et al., 2002)
are seen in Table 4. This dataset contains 448 percepts (musicians) and 118,263 triplet comparisons
collected from human annotators. This is considerably undersampled in terms of triplets compared
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Table 4: Comparison of OEs on Musicians Dataset

Method Musicians

Metric ± Std Test Acc. Rank Time (s)

LORE (Ours) 75.63 ± 0.94 27.8 ± 0.55 13.82 ± 9.72
SOE 81.41 ± 0.93 30 ± 0.0 28.45 ± 2.20

FORTE 69.94 ± 1.61 30 ± 0.0 8.63 ± 2.79
t-STE 79.49 ± 1.52 30 ± 0.0 98.97 ± 81.26
CKL 78.05 ± 0.96 30 ± 0.0 24.3 ± 10.51

to the other datasets included in the main text. For example, Food-100 contains more triplets even
though it has fewer percepts. The results are shown in the figure below. We do not run the Dim-
CV due to computational constraints from the hypothesis testing procedure. We anticipate it would
take ~7000 seconds per iteration to run Dim-CV on this dataset given that it took ~1700 seconds per
iteration on the Food-100 dataset which has roughly one fourth the number of percepts. Therefore,
we exclude it from this experiment. We set 𝑑′ = 30 as the embedding dimension for all OE methods
as this has considerably more number of percepts than the other datasets.

K Scalability of LORE

Figure 16: LORE remains scalable as dataset parameters change: (A) Time and Number of
Iterations as Number of Percepts Varies (log scaled x axis) (B) Time and Number of Iterations as
Number of Triplets Varies (log scaled x axis) (C) Time and Number of Iterations as Intrinsic Rank
Varies. Error bars indicate ± two standard deviations over 30 random seeds of the generative process
for different datasets. Baseline parameters are intrinsic rank = 5, number of percepts = 50, number
of triplets = 2500.

For our empirical implementation in this paper, we cap the number of iterations of LORE to 1000.
In this experiment, we fix the noise to a moderate noise of 0.1 variance sampled from a Gaussian
distribution. As seen in Figure 16, which varies one dataset characteristic while keeping the others
constant, the number of iterations correlates almost perfectly with the time taken to run LORE.
Therefore, if LORE converges in fewer iterations, it will take less time to run and the length of each
iteration is roughly constant for a given dataset. We see that as number of percepts increases, the
number of iterations increases until it hits the 1000 iteration cap. This is likely due to the fact that as
the number of percepts increases, the optimization problem becomes more ambiguous as 𝒁 increases
in size. As the number of triplets increases, the number of iterations decreases likely because there
are more constraints to guide the optimization. Finally, the intrinsic rank does not seem to have a
significant effect on the number of iterations needed to converge.
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L Convergence of LORE

Figure 17: LORE convergences smoothly despite different initializations and nonconvexity:
Objective function values as LORE trains for 30 random seeds for the same true perceptual space.
Each color is a separate seed run. Number of Percepts, Number of Triplets and Intrinsic Rank are
varied individually. Baseline parameters are a space defined by intrinsic rank = 5, number of percepts
= 50, number of triplets = 2500.

To visually examine the convergence of LORE we run an experiment where we fix the true perceptual
space and vary the random seed of the initialization of LORE. We see in Figure 17 that despite
the non-convexity of the optimization problem, LORE converges smoothly across different random
initializations. We vary one dataset characteristic at a time while keeping the others constant like in
the previous section. We see that as the number of percepts increases (25, 50, 500), the objective
function convergence takes longer likely due to the increased ambiguity of the optimization problem
as the size of 𝒁 increases. As the number of triplets increases (250, 2500, 5000), convergence is
faster likely due to the increased constraints on the optimization problem. Finally, the intrinsic rank
(2, 5, 10) does not seem to have a significant effect on convergence speed.

Taken together with Appendix K, these results indicate that LORE smoothly converges despite the
non-convexity of the optimization problem and that the number of iterations taken to converge scales
reasonably with dataset parameters. This empirically shows the provable convergence to a stationary
point that we show in Appendix A. This result in combination with the fact that local minima for
ordinal embedding problems are often good solutions (Vankadara et al., 2023) indicates that LORE
is a scalable and practical algorithm for ordinal embedding in real world settings and that the theory
supports the empirical findings.

M Formulation of Other Metrics

Code for all of these implementations is included in the supplemental material.

M1. Subspace Alignment

To perform procrustes analysis, true percepts 𝑷 ∈ ℝ{𝑁×𝑑} and the computed embedding 𝒁 ∈
ℝ{𝑁×𝑑′} must be the same shape.

Specifically we compute

𝑷𝒄 = 𝑷 − 1𝑁𝜇𝑇
𝑷  and 𝒁𝒄 = 𝒁 − 1𝑁𝜇𝑇

𝒁
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Then, we compute the tikhonov regularized projection matrix to prevent numerical instability due
to ill conditioning. We use a regularization parameter of 𝜂 = 1𝑒 − 3.

𝑨 = (𝒁𝑇
𝑐 𝒁𝑐 + 𝜂𝐼𝑑)𝒁𝑇

𝑐 𝑷𝑐

Then, we can get the aligned ordinal embedding 𝒁aligned = 𝒁𝑐𝑨 + 1𝑁𝜇𝑇
𝑷 .

M2. Normalized Procrustes Distance

Now that we have an aligned matrix the same shape as 𝑷 , the normalized procrustes distance
between the aligned embedding and the true percepts can be computed as

Normalized Procrustes Distance = ‖𝑷−𝒁aligned‖𝐹
‖𝒁𝑐‖𝐹

M3. Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) is a measure of the quality of the recovered matrix and is
defined as 20 log10(

max(𝒁𝐚𝐥𝐢𝐠𝐧𝐞𝐝)
‖𝒁aligned−𝑷‖𝐹

) where 𝑷  is the true matrix.

N LLM Usage

In this work, we leverage the use of large language models for two purposes. (1) to refine the
writing by eliminating grammatical errors and improving flow. However, these were only used at
the individual paragraph level rather than whole sections and (2) to discover similar papers during
the literature review for the related work. Specifically, we searched for terms like “distance metric
learning”, “contrastive learning”, “psychophysical scaling” etc.
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