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Abstract
We propose a Unified Test-Time Adaptation
(UniTTA) benchmark, which is comprehensive
and widely applicable. Alongside this bench-
mark, we propose a versatile UniTTA framework,
which includes a Balanced Domain Normalization
(BDN) layer and a COrrelated Feature Adaptation
(COFA) method–designed to mitigate distribution
gaps in domain and class, respectively. Extensive
experiments demonstrate that our framework ex-
cels within the UniTTA benchmark and achieves
state-of-the-art performance on average.

1. Introduction
Recent studies have extended TTA to more realistic sce-
narios, proposing various methods to address challenges
such as continual domain shifts (Wang et al., 2022), mixed
domains (Marsden et al., 2024; Tomar et al., 2024), and tem-
porally correlated (Boudiaf et al., 2022; Gong et al., 2022;
Yuan et al., 2023) or imbalanced class distributions (Su et al.,
2024). However, many of the current methods have only
been evaluated in specific scenarios and lack a unified and
comprehensive benchmark for performance assessment.

To address this issue, we propose a Unified Test-Time
Adaptation (UniTTA) benchmark that is both comprehen-
sive and widely applicable. We present a novel method for
constructing test data of various scenarios using a defined
Markov state transition matrix. The UniTTA benchmark
can assist researchers in evaluating their methods in a more
comprehensive and realistic manner, facilitating the develop-
ment of versatile and robust TTA methods. Moreover, it also
provides a evaluating benchmark for practitioners to select
the most suitable TTA method for their specific scenarios.
To obtain a versatile and robust TTA method, we need to
simultaneously address domain and class distribution shifts.
This poses two primary challenges: potential domain cor-
relation and imbalance leading to inaccurate domain-wise
statistics, and class correlation and imbalance further bias-
ing domain-wise statistics towards majority classes.

In this work, we simultaneously tackle both challenges by
proposing a novel Balanced Domain Normalization (BDN)

layer. Our primary insight is to unify both domain-aware
and class-aware normalization. We compute the statistics
for each class within each domain and then average across
classes to obtain balanced domain-wise statistics, mitigat-
ing the impact of class imbalance on domain-wise statistics.
During prediction, we select the corresponding statistics
based on the current sample’s domain, effectively address-
ing domain correlation and imbalance. Moreover, to address
potential temporal correlation of class, we leverage the cor-
relation characteristic by referencing the feature of the pre-
vious sample, resulting in an effective and efficient method
named COFA (COrrelated Feature Adaptation), without
requiring any modifications to model parameters.

2. Benchmark
2.1. Existing Realistic TTA Settings

The realistic TTA settings can be divided into two cate-
gories: domain setting and class setting, as shown in Tab. 1.
For the class setting, real-world data streams are typically
highly correlated, which means that data categories do not
change abruptly. Given these scenarios, we can classify
the factors in existing realistic TTA settings into two cate-
gories: Temporal Correlation and Imbalance. Therefore, a
more general realistic TTA setting should consider different
combinations of these factors to better simulate real-world
scenarios. Based on this analysis, a natural question arises:
how can we generate such a data stream?

2.2. UniTTA Benchmark

We propose a new UniTTA benchmark, based on a Markov
state transition matrix from a novel local perspective. In the
following discussion, we consider the temporal correlation
and imbalance of domains and classes as two independent
factors. Specifically, the Markov state can represent either
the domain or the class of the data. Our key idea is to gener-
ate data that satisfies temporal correlation by controlling the
probability of samples transitioning to themselves. While
this method might appear to neglect the issue of data imbal-
ance, we have discovered that by properly configuring the
Markov state transition matrix, we can effectively address
both temporal correlation and imbalance simultaneously.
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Table 1. Comparison of the proposed UniTTA benchmark with existing realistic TTA settings.
Domain Setting Class Setting

Realistic TTA Setting Method Temporal Correlation Imbalance Temporal Correlation Imbalance

Correlated TTA (Boudiaf et al., 2022) LAME N/A (Single) N/A (Single) Correlated Imbalanced/Balanced
Continual TTA (Wang et al., 2022) CoTTA Continual Balanced i.i.d. Balanced
Practical TTA (Yuan et al., 2023) RoTTA Continual Balanced Correlated Balanced
GLI-TTA (Su et al., 2024) TRIBE Continual Balanced Correlated Imbalanced/Balanced
Mixed Domain (Marsden et al., 2024) ROID i.i.d. Balanced i.i.d Balanced

UniTTA Benchmark UniTTA Continual/Correlated/i.i.d. Imbalanced/Balanced Continual/Correlated/i.i.d. Imbalanced/Balanced

Continual

Temporal Correlated

i.i.d. Imbalanced Balanced

Kronecker
Product

State
Transition

Domain/Class/Overall
Markov Matrix

Domain/Class 
Correlation and Imbalance Factor 

Data Stream
Sampling

Realistic Settings of Domain/Class Markov Matrix Generation

Test Data Stream Test Data Distribtuion

Figure 1. Data generation process for the UniTTA benchmark. Continual TTA describes a scenario in which the domain remains consistent
over an extended period before shifting to a new domain, which exemplifies an extreme case of correlation settings. We consider the
domain and class as two independent attributes, each associated with its own Markov matrix.

First, we define a simple uniformly leaving Markov state
transition matrix P , where each element Pij represents the
probability of transitioning from state i to state j. Intu-
itively, this transition matrix implies that the probability of
transitioning from any state to any other state is uniform.

Definition 1 (Uniformly Leaving Markov Matrix). A Uni-
formly Leaving Markov Matrix (ULMM) is a transition
matrix in a Markov chain where each non-diagonal entry
Pij , representing the transition probability from state i to
state j (where i ̸= j), is identical across all states j. Specifi-
cally, the matrix is defined as:

Pij =

{
1−Pii

n−1 if i ̸= j

Pii if i = j
(1)

Based on the above definition, the ULMM can be character-
ized by a single vector α, where αi = Pii. This matrix has
n degrees of freedom. By adjusting αi ∈

[
1
n , 1

]
, we can

generate data with varying levels of temporal correlation.
Therefore, we refer to α as the (temporal) correlation vector
and αi as the (temporal) correlation factor.

A key question we address is whether the state distribution
of data sampled from a ULMM satisfies the criteria for
imbalance. According to Markov Chain theory, this distribu-
tion corresponds to the stationary distribution of the matrix,
as stated in the following proposition:

Proposition 1 (Stationary Distribution). For a Uniformly
Leaving Markov Matrix with diagonal elements α where
αi = Pii for all i, there exists a unique stationary distribu-
tion π = (π1, π2, · · · , πn). This distribution satisfies the
following relationship: (1− α1)π1 = (1− α2)π2 = · · · =
(1− αn)πn.

To ensure that the sampled data follows a long-tail distribu-
tion (assuming, without loss of generality, thatπ1

π2
= · · · =

πn−1

πn
≥ 1, where π1

πn
= β is the imbalance factor), the con-

figurations of α are described by the following corollary:

Corollary 1 (Temporal Correlation and Imbalance). If the
category distribution of data sampled based on a Uniformly
Mixing Markov Matrix follows a long-tailed (power law)
distribution characterized by an imbalance factor β ≥ 1.
Under these conditions, α are constrained such that:

1− α1

1− αn
=

1

β
, and

1− α1

1− α2
= · · · =

(
1

β

) 1
n−1

. (2)

Additionally, if the distribution exhibits temporal correlation,
which implies that α1, α2, . . . , αn > 1

n , then the following
inequality holds: (1− α1)β < n−1

n , and α1 < 1.

In summary, as shown in Fig. 1, generating data that satisfies
both temporal correlation and imbalance requires tuning two
parameters of the ULMM. Specifically, it is sufficient to set
the (maximum temporal) correlation factor α1 ∈ [1/n, 1]
and the imbalance factor β ∈ [1,∞) to satisfy inequality
in Corollary 1. The remaining αi can then be determined.
We then combine the domain and class ULMMs using the
Kronecker product to obtain a final ULMM for sampling,
where the (domain, class) pair is treated as a new state.

3. UniTTA Framework
3.1. Overview

As illustrated in the Fig. 2, the UniTTA framework utilizes a
progressive prediction strategy through three forward passes:
Forward 1: In the absence of prior domain and class infor-
mation, we perform a forward pass using global statistics to
obtain initial pseudo-labels. Forward 2: With class labels
available, we conduct a second forward pass, updating both
class and global statistics. At a specified BDN layer (as
a hyper-parameter), we also predict the domain based on
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Conv

COFA

Forward 1 Forward 2 Forward 3

Conv

Layer m

Conv

COFA

Predict
Domain

Class & Domain
 Pseudo-label

Class-wise &
Global Statistics

Domain-class-wise &
Domain-wise Statistics

Balanced Domain
 Normalization Layer

Update
Statistics

Figure 2. The overall architecture of the UniTTA framework. The original model’s BN layers are replaced by BDN layers, and the linear
classifier is equipped with the COFA method. The UniTTA framework sequentially predicts the class label and domain label in the m-th
BDN layer through three forward passes, ultimately providing the final prediction.

domain statistics. Forward 3: Finally, with both class and
domain labels, we perform a forward pass using domain
statistics for the final prediction, updating both domain-class
and domain statistics.

3.2. Balanced Domain Normalization

The core idea of Balanced Domain Normalization (BDN) is
to implement a domain-aware normalization in an unsuper-
vised manner. To counteract the bias caused by imbalanced
class data, which skews domain statistics towards the ma-
jority classes, we suggest calculating both domain-specific
and class-specific statistics. By averaging these statistics,
we can remove the class bias and obtain more accurate do-
main statistics. For each sample, we calculate the instance
statistics (Ulyanov et al., 2016) (µi and σ2

i ) of the feature
map, which are essential for domain assignment, expansion,
and updating the statistics.
Domain assignment (prediction) and expansion. First,
all domain statistics, including those generated by expan-
sions, are initialized using the corresponding batch nor-
malization (BN) statistics of the original pretrained model
(µori, σ2

ori). Initially, the number of domains is set to one.
Next, domain assignment and the decision to expand the
domain are performed at a specific layer, which is the only
hyper-parameter in our method. Specifically, we calculate
the Kullback-Leibler (KL) divergence between the instance
statistics of each sample and the domain statistics, assuming
they follow a normal distribution. If the KL divergence of
the sample to all domain statistics is greater than that to
the original domain statistics, the sample is considered to
belong to a new domain, necessitating domain expansion
during the Forward 3. This condition is satisfied when:

min
d

DS
KL(N (µi,σ

2
i ) || N (µd,σ

2
d))

>DS
KL(N (µi,σ

2
i ) || N (µori,σ

2
ori)), (3)

where DS
KL is the symmetric KL divergence. Otherwise, the

sample is assigned to the domain with the minimum KL

divergence:
ŷDi = argmin

d
DS

KL(N (µi,σ
2
i ) || N (µd,σ

2
d)). (4)

Domain-class statistics update. Based on the domain as-
signment, we update the domain-class statistics (µdk, σdk)
and domain statistics (µd, σd) using the instance statistics
µi and σ2

i . The class statistics (µk, σk) and global statistics
(µg, σg) can be considered as the domain-class statistics
and domain statistics for a single domain, respectively. Var-
ious updating methods can be applied independently of our
core method. We utilize the commonly applied Exponential
Moving Average (EMA) to update the domain-class statis-
tics µdk and σdk. Specifically, we adopt the EMA update
from Balanced BN (Su et al., 2024) without modification.
For detailed update rules, please refer to App. D.

3.3. Correlated Feature Adaptation

The COFA method leverages the correlation characteristics
of data to enhance prediction accuracy by utilizing the infor-
mation of the previous sample when predicting the current
sample. Implementing this method is straightforward, re-
quiring only the storage of feature from the previous sample.
Specifically, the classifier with COFA is defined as follows:

pCOFA
i = softmax

(
wT (zi + zi−1)

2
+ b

)
, (5)

where zi is the feature of the i-th sample, and w and b
are the weight and bias of the original classifier of the pre-
trained model, respectively. However, direct implementa-
tion of COFA results in a marked performance decrease
under i.i.d. conditions. To address this, we propose a con-
fidence filtering strategy to combine the predictions of the
COFA and the original classifier, as follows:

pi =

{
pCOFA
i , if max(pCOFA

i ) > max(psingle
i )

psingle
i , otherwise

(6)

where psingle
i = softmax(wTzi + b). By filtering out low-

confidence predictions, COFA balances performance in both
i.i.d. and correlation conditions.
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Table 2. Average error (%) on ImageNet-C within the UniTTA benchmark. ({i, n, 1}, {1, u}) denotes correlation and imbalance
settings, where {i, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting i.i.d. and balanced (i,1) correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) (i,1) (1,1) (i,1) (i,u) (n,1) (n,u) (1,1) (i,1) (i,u) (n,1) (n,u)

Corresponding setting CoTTA ROID RoTTA – – – – TRIBE – – – – Avg.

TENT (Wang et al., 2021) 70.58 91.88 98.72 99.31 99.53 99.12 99.32 97.50 99.22 99.13 97.03 98.86 95.85
ROID (Marsden et al., 2024) 60.67 79.18 98.51 99.71 99.84 99.52 99.61 91.76 99.77 99.57 98.15 99.37 93.80
NOTE (Gong et al., 2022) 91.62 88.18 93.67 95.27 96.82 95.00 95.81 92.49 95.93 95.41 88.93 95.05 93.68
CoTTA (Wang et al., 2022) 66.87 80.67 95.13 96.80 97.33 96.22 96.33 89.70 95.20 94.50 92.11 93.71 91.22
TRIBE (Su et al., 2024) 75.85 84.78 89.78 92.62 96.54 95.19 95.99 88.72 92.85 93.71 89.37 94.05 90.79
BN (Nado et al., 2020) 69.33 82.87 93.79 95.08 95.15 95.10 95.01 88.40 92.24 92.25 91.31 91.84 90.20
UnMIX-TNS (Tomar et al., 2024) 79.64 85.55 79.74 84.42 82.67 84.57 82.91 78.67 83.28 82.34 85.04 82.38 82.60
TEST 81.99 82.05 81.92 82.10 81.66 81.96 81.74 81.60 81.21 81.42 81.20 81.52 81.70
RoTTA (Yuan et al., 2023) 67.77 79.91 71.72 80.54 79.65 80.30 79.63 68.74 78.26 77.94 79.78 78.36 76.88
LAME (Boudiaf et al., 2022) 82.55 82.26 74.48 72.21 71.77 73.52 73.13 75.70 73.44 73.54 74.38 74.39 75.12

UniTTA 78.07 78.00 70.25 66.83 66.42 68.29 68.05 72.02 65.68 66.87 68.48 67.58 69.71 (-5.41)

4. Experiments
In this section, we mainly present the main results on our
proposed UniTTA benchmark in Sec. 4.1. For detailed
information on the experimental setup and more results,
please refer to App. E and App. G.

4.1. Main Results

To better simulate real-world scenarios, we exclude the con-
tinual setting for classes, as it is rare for all samples from a
single class to appear consecutively in practice. We present
the results for 12 of these settings in the main paper, encom-
passing both existing and the most challenging scenarios.
Additional results for all methods and components of all
24 settings for all three datasets are available in App. G.
We can compare the robustness of different methods across
various datasets and settings in Tab. 2. Our method out-
performs the others on all datasets across most settings,
consistently achieving superior performance, particularly in
more realistic scenarios.

4.2. Ablation Study

We conduct an ablation study across various settings and
datasets to evaluate the impact of different components,
benchmarking them against similar methods as shown in
Tab. 3 and Tab. 4. This section presents the overall results,
while detailed results are provided in App. G.

(a) Effectiveness of different components. We first investi-
gate the impact of different components on model perfor-
mance across all settings and datasets. The results in Tab. 3
demonstrate the effectiveness of our two core components,
COFA and BDN. Additionally, applying the confidence fil-
ter further enhances model performance.

(b) Comparison with similar methods. We compare our two
components with both parameter-free method which do not
require modifications to model parameters and normaliza-
tion methods. Our BDN consistently outperforms other nor-

Table 3. Ablation study of different components. The average
of 12 settings are reported on CIFAR10-C, CIFAR100-C, and
ImageNet-C.

C10-C C100-C IN-C Avg.

TEST 42.03 46.42 81.70 56.72
COFA 37.22 37.34 76.38 50.31
BN (Nado et al., 2020) 46.97 68.06 90.20 68.41
BDN 26.64 40.88 77.15 48.22

UniTTA 20.68 32.43 69.71 40.94

Table 4. Comparison of our two components with parameter-
free and normalization methods.

C10-C C100-C IN-C Avg.

Parameter-free Method
LAME (Boudiaf et al., 2022) 40.12 36.38 75.12 50.74

COFA 37.22 37.34 76.38 50.31

Normalization Method
Robust BN (Yuan et al., 2023) 32.34 46.33 85.30 54.66
UnMIX-TNS (Tomar et al., 2024) 30.84 44.75 82.60 52.73
Balanced BN (Su et al., 2024) 30.10 43.83 82.54 52.17

BDN 26.64 40.88 77.15 48.22

malization methods, including UnMIX-TNS (Tomar et al.,
2024) and Balanced BN (Su et al., 2024). Notably, our
COFA achieves performance comparable to LAME by lever-
aging the temporal correlation characteristic (just averaging
with the lastest feature).

5. Conclusion
In this work, we propose a unified benchmark, UniTTA, for
Test-Time Adaptation. It sets a benchmark for evaluating re-
alistic TTA scenarios and provides a guideline for selecting
the most suitable TTA method for specific scenarios. Build-
ing on this, we introduce a versatile UniTTA framework
consisting of a Balanced Domain Normalization (BDN)
layer and a COFA method, which are simple and effective
without additional training. Empirical evidence from the
UniTTA benchmark demonstrates that our framework excels
in various Realistic TTA scenarios and achieves state-of-the-
art performance on average.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

UniTTA: Unified Benchmark and Versatile Framework Towards Realistic Test-Time Adaptation

Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Marsden, R. A., Döbler, M., and Yang, B. Universal test-
time adaptation through weight ensembling, diversity
weighting, and prior correction. In WACV, 2024.

Mirza, M. J., Micorek, J., Possegger, H., and Bischof, H.
The norm must go on: Dynamic unsupervised domain
adaptation by normalization. In CVPR, 2022.

Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshmi-
narayanan, B., and Snoek, J. Evaluating prediction-time
batch normalization for robustness under covariate shift.
CoRR, 2020.

Ross, S. M. Stochastic processes. John Wiley & Sons, 1995.

Schneider, S., Rusak, E., Eck, L., Bringmann, O., Bren-
del, W., and Bethge, M. Improving robustness against
common corruptions by covariate shift adaptation. In
NeurIPS, 2020.

Su, Y., Xu, X., and Jia, K. Towards real-world test-time
adaptation: Tri-net self-training with balanced normaliza-
tion. In AAAI, 2024.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt,
M. Test-time training with self-supervision for general-
ization under distribution shifts. In ICML, 2020.

Tomar, D., Vray, G., Thiran, J.-P., and Bozorgtabar, B. Un-
mixing test-time normalization statistics: Combatting
label temporal correlation. In ICLR, 2024.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Instance nor-
malization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022, 2016.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell,
T. Tent: Fully test-time adaptation by entropy minimiza-
tion. In ICLR, 2021. URL https://openreview.
net/forum?id=uXl3bZLkr3c.

Wang, Q., Fink, O., Van Gool, L., and Dai, D. Continual
test-time domain adaptation. In CVPR, 2022.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In CVPR, 2017.

Yuan, L., Xie, B., and Li, S. Robust test-time adaptation in
dynamic scenarios. In CVPR, 2023.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In British Machine Vision Conference, 2016.

Zou, Y., Zhang, Z., Li, C.-L., Zhang, H., Pfister, T., and
Huang, J.-B. Learning instance-specific adaptation for
cross-domain segmentation. In ECCV, 2022.

5

https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

UniTTA: Unified Benchmark and Versatile Framework Towards Realistic Test-Time Adaptation

A. Related Work
Test-Time Adaptation (TTA) addresses distributional shifts in test data without requiring additional data acquisition or
labeling. Sun et al.(Sun et al., 2020) propose an on-the-fly adaptation method using an auxiliary self-supervised task.
Subsequent TTA algorithms (Nado et al., 2020; Schneider et al., 2020; Wang et al., 2021) leverage batches of test samples to
recalibrate Batch Normalization (BN) layers(Ioffe & Szegedy, 2015) using test data. These studies show that using test
batch statistics in BN layers can enhance robustness against distributional shifts. TENT (Wang et al., 2021) refines this
approach by adapting a pre-trained model to test data through entropy minimization (Grandvalet & Bengio, 2004), updating
a few trainable parameters in BN layers.

Realistic Test-Time Adaptation. Recent studies on Test-Time Adaptation (TTA) have investigated more realistic scenarios,
addressing distribution changes in test data. These studies consider factors such as domain distribution shift (Wang et al.,
2022; Brahma & Rai, 2023), temporal correlation (Boudiaf et al., 2022; Gong et al., 2022), and combinations of both (Yuan
et al., 2023; Marsden et al., 2024; Su et al., 2024; Tomar et al., 2024). A comprehensive comparison of these realistic
settings is provided in Sec. 2.1. The methods employed in these studies include self-training (Wang et al., 2022; Yuan
et al., 2023; Brahma & Rai, 2023), which integrates semi-supervised self-training techniques (Huang & Du, 2022) to
enhance model performance, parameter-free methods (Boudiaf et al., 2022) utilizing Laplacian regularization, and Batch
Normalization (BN) recalibration (Gong et al., 2022; Mirza et al., 2022; Zou et al., 2022; Yuan et al., 2023; Tomar et al.,
2024; Sun et al., 2020). RoTTA (Yuan et al., 2023) introduces robust BN, estimating global statistics via exponential moving
average. TRIBE (Su et al., 2024) proposes a balanced BN (BBN) layer, consisting of multiple category-wise BN layers for
unbiased statistic estimation. UnMIX-TNS (Tomar et al., 2024) unmixes correlated batches into K distinct components,
each reflecting statistics from similar test inputs. Among these methods, BBN and UnMIX-TNS are the most similar to
our work. However, both BBN and UnMIX-TNS consider the influence of category and domain distributions on statistics
separately, which significantly limits their applicability. In contrast, our approach simultaneously accounts for both category
and domain distributions by introducing a unified BDN layer to address their combined impact on statistics.

B. Proof
Proof of Prop. 1. By the convergence properties of Markov chains (Ross, 1995), a Uniformly Leaving Markov Matrix
(ULMM) P has a unique stationary distribution π = (π1, π2, . . . , πn) which satisfies π = πP . To solve this, we must find
the nontrivial solution to the linear equation (PT − I)π = 0, where I is the identity matrix and π is a column vector. Thus,
we have 

α1 − 1 1−α2

n−1 · · · 1−αn

n−1
1−α1

n−1 α2 − 1 · · · 1−αn

n−1
...

...
. . .

...
1−α1

n−1
1−α2

n−1 · · · αn − 1



π1

π2

...
πn

 =


0
0
...
0

 ,


−1 1

n−1 · · · 1
n−1

1
n−1 −1 · · · 1

n−1
...

...
. . .

...
1

n−1
1

n−1 · · · −1



(1− α1)π1

(1− α2)π2

...
(1− αn)πn

 =


0
0
...
0

 .

(7)

Observing that each row of the coefficient matrix sums to zero, there exists a non-trivial solution 1 = (1, 1, . . . , 1). Hence,

(1− α1)π1 = (1− α2)π2 = · · · = (1− αn)πn (8)

is one of the non-trivial solutions. By the uniqueness of the stationary distribution, the proof is complete.
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C. Sampling Time and Discussion of UniTTA Benchmark
C.1. Sampling Time

Table 5. Time of sampling 750k data on
ImageNet-C (corrected and imbalanced).

Sampling Method Time (s)
naive sampling 22.40
+ pre-sampling 2.15

A practical concern is the time required for the sampling process. Given that the
ULMM matrix remains stationary most of the time (except for certain special
data points, as previously discussed), we can pre-sample a sequence of transitions
for each state before the actual sampling begins. During the sampling process,
we can then directly use these pre-sampled sequences which ensures that the
ULMM-based data generation method does not result in significantly higher time
costs compared to existing methods as shown in Tab. 5.

C.2. Discussion

In this section, we discuss the scalability of the UniTTA benchmark. By independently generating domain and class ULMMs,
we can create a comprehensive ULMM for sampling. Moreover, the sampling ULMM can be enhanced by considering
the relationships between domains and classes. This allows us to construct domain-dependent class ULMMs, where the
transition probability of a class depends on the current domain, and vice versa. Additionally, the ULMM can be adapted for
various scenarios, such as temporal anti-correlation scenarios, non-uniform scenarios where transition probabilities to other
states are unequal, and higher-order Markov Chains, where transition probabilities depend on multiple previous states, not
just the current one. In summary, the data generation method defined by the UniTTA benchmark is highly flexible and can
be efficiently extended to meet the requirements of real-world scenarios.

D. Implementation Details
Before introducing the statistical update rules of BDN, we define a mean notation to simplify the expressions:

Fc,·,· =
1

HW

H∑
h=1

W∑
w=1

Fc,h,w (9)

which denotes the average over the omitted dimensions. Using this definition, we can simplify instance statistics as follows:

µi = Fc,·,·, σ2
i = (Fc,·,· − µi)2. (10)

We adopt the update rules of Balanced BN from TRIBE (Su et al., 2024) to update the statistics of BDN. For a sample with
pseudo-label domain d and class k, the update rules are simplified as follows:

udk ← (1− η)udk + ηFc,·,· (11)

σ2
dk ← (1− η)σ2

dk + η(Fc,·,· − udk)2 − η2(Fc,·,· − udk)
2 (12)

µd ← ud· (13)

σ2
d ← σ2

d· + (ud· − µd)2 (14)

where the momentum coefficient η is set to 5× 10−4×KC following TRIBE and KC is the number of classes. Specifically,
for global statistics, to enhance their robustness, we also follow the approach of TRIBE by incorporating the class-agnostic
updating strategy (Robust BN (Yuan et al., 2023)) with a parameter γ.
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E. Experimental Setup
We conduct experiments on three test-time adaptation datasets: CIFAR10-C (Hendrycks & Dietterich, 2019), CIFAR100-
C (Hendrycks & Dietterich, 2019), and ImageNet-C (Hendrycks & Dietterich, 2019). Each dataset includes 15 different
corruptions at 5 levels of severity. We evaluate all methods under the highest corruption severity level, level 5. Following
previous works (Wang et al., 2021; 2022; Yuan et al., 2023; Su et al., 2024), we adopt a standard pre-trained WideResNet-
28 (Zagoruyko & Komodakis, 2016), ResNeXt-29 (Xie et al., 2017), and ResNet-50 (He et al., 2016) as the backbone
networks for CIFAR10-C, CIFAR100-C, and ImageNet-C, respectively. The batch size is set to 64 for CIFAR10-C and
CIFAR100-C, and 32 for ImageNet-C. For all comparison methods, we use the original optimizers, learning rate schedules,
and hyperparameter settings as described in the respective papers. All experiments are conducted on a single NVIDIA
GeForce RTX 3090 GPU.

For our UniTTA framework, mainly following the results of Fig. 5, we set the BDN layer for domain prediction to the
block2.layer.0.bn1, stage2.0.bn and layer3.0.bn1 for WideResNet-28, ResNeXt-29, and ResNet-50, respectively. For all
settings of the UniTTA benchmark, unless otherwise specified, the correlation factor α1 of correlation settings for the
domain and class is 0.85 and 0.95, respectively. The imbalance factor β for the domain and class is 5 and 10, respectively.
The correlation factor α1 is 1/K for the i.i.d. settings, where K is the number of classes or domains. For the balanced
settings, the imbalance factor β is 1. For the continual settings, the correlation factor α1 is 1.

F. More Analysis
Evaluation under more correlation/imbalance factors. Additional experiments are conducted under varying correlation
and imbalance factors as shown in Fig. 3. The settings are both correlated and imbalanced in terms of domain and class
distribution. The results indicate that our method remains robust across different correlation and imbalance factors.
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Figure 3. Average error (%) on CIFAR10-C under various correlation and imbalance factors. The default factors for domain and class are
(0.85, 5) and (0.95, 10), respectively. In two sets of experiments, we kept either the domain or class factors constant while varying the
other.

Hyperparameter Sensitivity. We also conduct experiments to assess the sensitivity to hyperparameters. Fig. 4 shows
the performance of several competitive baselines and our method under different batch sizes. Our method’s performance
remains unaffected by batch size, which can be attributed to the inherent characteristics of the BDN and COFA methods. In
contrast, batch-based methods such as LAME and NOTE exhibit significant sensitivity to batch size.

Our framework has only one hyperparameter: the position of the BDN for domain prediction. The results in Fig. 5 show that
the performance of BDN is optimal when the first layer of an intermediate block is selected. This also indicates that the
network retains more of the original image information in the shallow layers while learning more class-specific features in
the deeper layers.
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Figure 4. Sensitive analysis of batch size on CIFAR10-C. The
default correlation and imbalance factors for domain and class
are (0.85, 5) and (0.95, 10), rspectively.
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Figure 5. Sensitivity analysis of the BDN layer for domain pre-
diction on CIFAR100-C. The horizontal axis (m,n) indicates
the nth layer of the mth block in the network.

Visualization of dynamic domain expansion. We also visualize the domain expansion process in Fig. 6. The process
demonstrates that the BDN layer effectively captures the domain information and dynamically expands domains, which is
crucial for accurate domain prediction.
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Figure 6. Visualization of dynamic domain expansion on CIFAR10-C. The BDN layer dynamically expands the domains based on the KL
divergence of the domain-wise statistics. Only domains with more than 100 samples are counted.
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G. Results on More Settings

Table 6. Average error (%) on CIFAR10-C within the UniTTA benchmark. ({i, n, 1}, {1, u}) denotes correlation and imbalance
settings, where {i, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting RoTTA – – – – – TRIBE – – – – –

TENT (Wang et al., 2021) 70.29 83.23 73.16 78.79 69.18 60.13 47.40 59.57 51.48 62.00 51.90 44.89
TEST 43.76 43.52 40.37 43.45 40.68 40.30 42.46 42.83 38.74 42.29 39.39 38.77
LAME (Boudiaf et al., 2022) 41.40 40.48 36.98 40.15 37.49 37.62 40.91 40.64 36.58 40.16 36.93 36.88
ROID (Marsden et al., 2024) 43.79 56.93 53.78 53.55 52.75 42.84 41.35 52.55 48.47 51.43 48.84 40.08
CoTTA (Wang et al., 2022) 53.21 63.93 62.77 61.67 61.21 51.96 41.46 55.18 50.27 53.20 50.42 40.42
BN (Nado et al., 2020) 49.42 57.00 54.82 56.26 54.91 48.47 41.52 50.65 46.52 50.08 47.27 39.94
Robust BN (Yuan et al., 2023) 23.34 35.61 31.99 36.04 32.44 22.01 26.52 38.52 34.09 39.63 35.16 24.78
UnMIX-TNS (Tomar et al., 2024) 24.68 32.99 29.03 32.72 29.15 25.25 27.60 35.81 31.88 36.44 32.48 27.48
Balanced BN (Su et al., 2024) 21.37 34.13 30.28 34.25 30.71 20.04 22.25 34.79 31.02 35.68 31.64 20.54
RoTTA (Yuan et al., 2023) 19.52 36.89 31.49 35.66 31.58 20.51 20.39 36.24 31.67 36.33 32.46 20.53
NOTE (Gong et al., 2022) 31.79 38.52 27.58 32.98 28.49 26.28 34.92 34.79 28.58 33.99 30.32 29.28
TRIBE (Su et al., 2024) 18.54 32.37 28.34 32.57 28.87 17.75 17.75 32.60 28.69 32.92 29.32 16.87

COFA(w/o filter) 37.63 31.19 28.33 36.26 32.10 33.70 37.91 32.43 29.05 36.74 32.68 33.83
COFA 38.88 34.95 31.70 37.95 34.25 35.03 37.80 34.88 31.09 37.25 33.41 33.73
BDN (w/o filter) 24.83 28.14 25.42 28.37 25.36 23.31 25.75 30.12 26.89 30.20 27.22 23.87
BDN 22.04 28.97 25.89 28.90 25.96 20.45 22.77 30.57 27.11 30.68 27.44 20.86
UniTTA 16.40 18.53 16.19 20.09 17.20 15.34 17.93 20.88 18.46 22.89 19.88 16.41
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Table 7. Average error (%) on CIFAR10-C within the UniTTA benchmark. Continuation of the previous table. ”Avg.” represents the
average error rate across 24 settings.

Class setting i.i.d. and balanced (i,1) i.i.d. and imbalanced (i,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting CoTTA ROID – – – – – – – – – – Avg.

TENT (Wang et al., 2021) 24.03 59.37 38.58 47.07 37.81 20.88 23.36 48.18 39.40 36.45 32.34 22.03 49.23
TEST 43.46 43.45 40.30 43.52 40.49 40.22 42.46 42.83 38.93 42.52 39.53 38.82 41.38
LAME (Boudiaf et al., 2022) 45.07 44.60 41.35 44.94 41.62 41.68 42.92 42.93 39.02 42.79 39.58 39.15 40.49
ROID (Marsden et al., 2024) 16.92 31.00 27.39 28.03 26.13 15.71 34.13 45.68 41.53 43.83 41.20 32.59 40.44
CoTTA (Wang et al., 2022) 16.68 33.76 28.75 27.67 25.52 15.99 18.86 35.18 33.01 33.39 35.08 18.64 40.34
BN (Nado et al., 2020) 21.00 34.18 30.23 32.12 29.39 18.78 26.18 38.46 34.04 36.13 34.00 23.78 39.80
Robust BN (Yuan et al., 2023) 20.90 33.81 29.89 34.30 30.17 19.35 26.00 38.25 33.86 38.28 34.64 24.00 30.98
UnMIX-TNS (Tomar et al., 2024) 24.53 32.82 28.80 32.98 28.91 24.85 27.59 35.82 31.74 35.82 32.54 27.50 30.39
Balanced BN (Su et al., 2024) 21.18 33.85 30.03 34.31 30.22 19.60 22.25 34.97 30.92 34.82 31.52 20.31 28.78
RoTTA (Yuan et al., 2023) 17.84 33.45 29.50 33.58 29.73 18.78 18.88 35.62 31.21 35.19 31.79 19.32 28.67
NOTE (Gong et al., 2022) 22.55 24.48 22.33 24.06 22.35 21.85 26.39 30.62 25.87 29.37 26.48 24.79 28.28
TRIBE (Su et al., 2024) 18.20 31.90 27.97 32.29 28.04 17.29 17.77 32.71 28.19 31.96 28.82 16.47 26.18

COFA(w/o filter) 65.98 62.97 61.96 65.45 63.52 64.31 63.74 60.90 59.57 63.22 60.88 61.65 48.17
COFA 47.75 46.71 43.82 47.59 44.64 44.58 46.18 45.41 41.99 46.08 43.15 42.65 40.06
BDN (w/o filter) 24.71 27.46 24.62 27.74 24.49 22.71 25.57 29.64 26.04 29.62 26.97 23.38 26.35
BDN 21.22 28.16 25.02 28.36 24.85 19.42 22.53 30.18 26.40 29.92 27.01 20.50 25.63
UniTTA 28.38 31.34 28.44 31.81 28.58 26.25 28.89 32.39 28.99 32.77 30.31 26.54 23.95 (-2.23)

Table 8. Average error (%) on CIFAR100-C within the UniTTA benchmark. ({i, n, 1}, {1, u}) denotes correlation and imbalance
settings, where {i, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting RoTTA – – – – – TRIBE – – – – –

TENT (Wang et al., 2021) 96.53 97.08 94.26 95.08 89.75 94.91 93.79 93.74 86.80 88.26 83.97 90.80
NOTE (Gong et al., 2022) 79.69 67.67 57.69 59.75 54.37 65.43 71.52 58.86 55.52 57.55 54.25 61.70
BN (Nado et al., 2020) 76.55 79.33 78.55 79.15 79.42 76.22 64.42 69.33 69.68 69.11 68.49 63.69
CoTTA (Wang et al., 2022) 78.26 79.95 78.91 78.89 79.38 76.77 65.68 68.56 69.58 68.07 68.46 63.95
ROID (Marsden et al., 2024) 71.09 77.57 76.80 76.14 76.47 70.56 55.27 63.21 63.88 62.70 63.38 54.83
RoTTA (Yuan et al., 2023) 38.95 53.80 52.30 53.25 52.55 40.44 37.79 54.99 53.89 55.36 53.63 40.34
TEST 46.64 46.66 45.11 47.33 44.89 45.11 47.07 46.86 45.83 47.87 46.05 45.04
Robust BN (Yuan et al., 2023) 40.90 50.09 48.75 51.17 49.13 40.36 39.33 48.50 48.14 49.90 48.48 38.64
UnMIX-TNS (Tomar et al., 2024) 39.12 46.88 45.66 46.92 45.36 40.19 40.19 47.44 46.41 47.55 46.20 41.00
Balanced BN (Su et al., 2024) 36.36 46.47 45.66 47.01 45.16 36.47 36.77 46.67 46.39 47.30 46.40 36.47
TRIBE (Su et al., 2024) 34.69 47.95 43.75 47.89 44.37 35.02 32.74 46.67 43.19 46.35 44.37 32.83
LAME (Boudiaf et al., 2022) 34.07 32.80 30.44 33.19 29.84 31.83 37.44 36.43 34.75 37.08 34.86 35.04

COFA(w/o filter) 32.88 28.52 26.98 32.69 28.98 30.96 36.04 31.89 30.58 36.71 33.45 34.05
COFA 35.65 32.66 31.11 35.87 32.65 33.84 37.09 34.21 33.04 37.70 34.97 34.94
BDN (w/o filter) 38.85 44.35 43.52 44.99 43.62 39.62 38.58 44.37 44.38 44.74 44.53 38.48
BDN 36.19 43.46 42.70 44.10 42.86 36.37 36.03 43.50 43.41 43.63 43.34 35.91
UniTTA 24.49 28.99 28.57 31.85 29.53 25.11 25.81 30.96 30.95 32.87 32.16 26.26
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Table 9. Average error (%) on CIFAR100-C within the UniTTA benchmark. Continuation of the previous table. ”Avg.” represents the
average error rate across 24 settings.

Class setting i.i.d. and balanced (i,1) i.i.d. and imbalanced (i,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting CoTTA ROID – – – – – – – – – – Avg.

TENT (Wang et al., 2021) 81.06 91.05 83.37 88.59 79.70 63.18 76.04 73.53 58.98 53.84 50.11 60.56 81.87
NOTE (Gong et al., 2022) 65.96 63.07 56.56 63.47 56.10 57.57 67.54 56.62 54.39 55.59 52.80 57.30 60.46
BN (Nado et al., 2020) 36.20 46.48 44.93 45.04 44.27 35.34 37.36 47.70 46.64 46.45 44.78 36.53 57.74
CoTTA (Wang et al., 2022) 32.74 43.02 42.47 41.22 41.91 32.61 33.47 44.37 45.01 43.60 43.65 33.56 56.42
ROID (Marsden et al., 2024) 29.91 36.84 36.65 36.81 36.71 29.90 31.89 38.71 39.31 38.84 38.42 31.70 51.57
RoTTA (Yuan et al., 2023) 33.46 46.54 46.63 47.28 46.46 35.41 34.00 51.43 51.30 53.71 50.63 36.07 46.68
TEST 46.35 46.43 44.55 46.72 44.53 44.53 46.94 46.80 45.84 47.43 44.48 44.88 46.00
Robust BN (Yuan et al., 2023) 35.56 45.99 44.45 46.64 44.56 35.18 36.73 46.97 46.32 47.91 44.99 36.29 44.37
UnMIX-TNS (Tomar et al., 2024) 38.94 46.32 44.66 46.61 44.75 39.78 39.96 47.16 46.23 47.58 44.94 40.78 44.19
Balanced BN (Su et al., 2024) 35.84 45.94 44.38 46.38 44.43 35.62 36.32 46.50 45.82 46.98 44.71 35.99 42.75
TRIBE (Su et al., 2024) 33.10 45.73 42.99 46.84 43.38 32.99 31.71 45.28 43.01 46.60 41.65 31.82 41.04
LAME (Boudiaf et al., 2022) 48.21 47.47 45.59 47.90 45.58 46.34 48.23 47.34 46.35 48.00 45.06 46.00 40.41

COFA(w/o filter) 70.82 69.50 68.33 70.65 69.22 69.52 70.60 69.43 68.70 70.66 68.41 69.45 50.79
COFA 51.64 51.50 49.83 52.04 49.98 50.02 52.18 51.71 50.73 52.65 49.99 50.29 42.76
BDN (w/o filter) 37.82 43.70 42.17 43.56 41.95 37.42 37.77 44.20 43.44 45.02 42.33 37.86 41.97
BDN 34.65 41.92 40.55 42.29 40.41 34.15 35.06 42.43 42.10 43.54 41.34 34.58 40.19
UniTTA 44.17 48.86 47.72 49.36 47.78 44.08 44.14 49.18 49.05 50.33 47.57 43.72 38.06 (-2.35)

Table 10. Average error (%) on ImageNet-C within the UniTTA benchmark. ({i, n, 1}, {1, u}) denotes correlated and imbalance
settings, where {i, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting RoTTA – – – – – TRIBE – – – – –

NOTE (Gong et al., 2022) 93.67 95.27 96.82 95.00 95.81 88.75 92.49 95.93 95.41 88.93 95.05 85.85
TENT (Wang et al., 2021) 98.72 99.31 99.53 99.12 99.32 97.69 97.50 99.22 99.13 97.03 98.86 94.71
TRIBE (Su et al., 2024) 89.78 92.62 96.54 95.19 95.99 78.04 88.72 92.85 93.71 89.37 94.05 69.34
ROID (Marsden et al., 2024) 98.51 99.71 99.84 99.52 99.61 97.35 91.76 99.77 99.57 98.15 99.37 91.75
BN (Nado et al., 2020) 93.79 95.08 95.15 95.10 95.01 93.76 88.40 92.24 92.25 91.31 91.84 88.34
CoTTA (Wang et al., 2022) 95.13 96.80 97.33 96.22 96.33 94.59 89.70 95.20 94.50 92.11 93.71 89.04
Robust BN (Yuan et al., 2023) 80.76 89.58 89.58 91.74 90.40 81.08 74.69 87.16 87.31 89.24 88.46 75.82
UnMIX-TNS (Tomar et al., 2024) 79.74 84.42 82.67 84.57 82.91 82.08 78.67 83.28 82.34 85.04 82.38 81.52
TEST 81.92 82.10 81.66 81.96 81.74 82.07 81.60 81.21 81.42 81.20 81.52 81.95
Balanced BN (Su et al., 2024) 76.63 87.03 86.54 88.87 87.23 77.24 71.19 84.38 84.41 86.22 85.35 72.27
LAME (Boudiaf et al., 2022) 74.48 72.21 71.77 73.52 73.13 74.69 75.70 73.44 73.54 74.38 74.39 76.25
RoTTA (Yuan et al., 2023) 71.72 80.54 79.65 80.30 79.63 73.59 68.74 78.26 77.94 79.78 78.36 72.47

COFA(w/o filter) 75.37 70.61 69.75 74.42 73.22 75.30 76.32 71.07 70.57 75.06 74.56 76.67
COFA 76.62 73.86 73.51 76.17 75.41 76.97 76.82 73.28 73.59 75.82 75.77 77.29
BDN (w/o filter) 77.80 76.37 76.03 76.88 76.38 79.21 76.69 75.13 75.74 75.97 75.99 78.48
BDN 76.69 79.48 79.32 79.82 79.28 77.68 72.87 77.83 78.21 77.89 78.12 74.16
UniTTA 70.25 66.83 66.42 68.29 68.05 72.39 72.02 65.68 66.87 68.48 67.58 71.70
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UniTTA: Unified Benchmark and Versatile Framework Towards Realistic Test-Time Adaptation

Table 11. Average error (%) on ImageNet-C within the UniTTA benchmark. Continuation of the previous table. ”Avg.” represents the
average error rate across 24 settings.

Class setting i.i.d. and balanced (i,1) i.i.d. and imbalanced (i,u)

Domain setting (1,1) (i,1) (i,u) (n,1) (n,u) (1,u) (1,1) (i,1) (i,u) (n,1) (n,u) (1,u)

Corresponding setting CoTTA ROID – – – – – – – – – – Avg.

NOTE (Gong et al., 2022) 91.62 88.18 83.53 86.89 87.55 85.78 88.90 94.75 94.02 91.06 94.64 83.18 91.21
TENT (Wang et al., 2021) 70.58 91.88 82.37 80.13 85.00 64.92 68.21 97.29 96.06 87.28 94.29 62.02 90.01
TRIBE (Su et al., 2024) 75.85 84.78 83.59 84.61 83.61 63.98 79.88 85.48 87.38 87.02 84.86 62.18 84.98
ROID (Marsden et al., 2024) 60.67 79.18 83.83 77.54 78.46 62.25 57.70 76.61 76.82 73.52 76.20 58.95 84.86
BN (Nado et al., 2020) 69.33 82.87 83.22 79.40 80.45 69.44 67.57 81.79 81.58 77.73 79.33 68.19 84.71
CoTTA (Wang et al., 2022) 66.87 80.67 82.07 76.28 76.81 66.13 64.31 79.42 78.28 72.69 75.74 63.42 83.89
Robust BN (Yuan et al., 2023) 69.81 84.90 85.16 87.35 85.64 70.55 68.37 84.37 84.17 86.22 85.65 69.36 82.81
UnMIX-TNS (Tomar et al., 2024) 79.64 85.55 88.41 86.68 84.48 81.81 78.15 82.91 81.91 83.01 82.12 81.08 82.72
TEST 81.99 82.05 83.46 82.78 82.15 82.14 80.93 81.00 81.15 80.69 81.40 81.17 81.72
Balanced BN (Su et al., 2024) 69.31 83.35 84.71 85.40 83.60 69.89 67.28 82.07 82.17 83.51 82.90 68.46 80.42
LAME (Boudiaf et al., 2022) 82.55 82.26 83.83 83.05 82.41 82.68 81.42 81.13 81.30 80.98 81.65 81.75 78.02
RoTTA (Yuan et al., 2023) 67.77 79.91 81.22 81.11 79.81 71.98 66.16 75.81 75.71 77.65 76.36 71.26 76.07

COFA(w/o filter) 91.83 89.69 90.93 91.95 91.15 92.01 91.32 88.99 89.19 90.75 90.93 91.64 82.22
COFA 82.99 82.77 84.07 83.52 83.26 83.24 82.03 81.81 81.95 81.79 82.46 82.19 79.05
BDN (w/o filter) 77.09 76.64 80.28 77.31 76.84 78.09 75.79 74.93 75.20 75.72 75.88 77.33 76.74
BDN 68.62 77.64 80.83 76.68 76.54 68.96 66.64 75.76 76.02 74.66 75.56 67.43 75.69
UniTTA 78.07 78.00 80.89 78.32 77.94 79.28 76.76 75.96 76.71 76.45 76.91 78.30 73.26 (-2.81)
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