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Abstract

We propose a Unified Test-Time Adaptation
(UniTTA) benchmark, which is comprehensive
and widely applicable. Alongside this bench-
mark, we propose a versatile UniTTA framework,
which includes a Balanced Domain Normalization
(BDN) layer and a COrrelated Feature Adaptation
(COFA) method—designed to mitigate distribution
gaps in domain and class, respectively. Extensive
experiments demonstrate that our framework ex-
cels within the UniTTA benchmark and achieves
state-of-the-art performance on average.

1. Introduction

Recent studies have extended TTA to more realistic sce-
narios, proposing various methods to address challenges
such as continual domain shifts (Wang et al., 2022), mixed
domains (Marsden et al., 2024; Tomar et al., 2024), and tem-
porally correlated (Boudiaf et al., 2022; Gong et al., 2022;
Yuan et al., 2023) or imbalanced class distributions (Su et al.,
2024). However, many of the current methods have only
been evaluated in specific scenarios and lack a unified and
comprehensive benchmark for performance assessment.

To address this issue, we propose a Unified Test-Time
Adaptation (UniTTA) benchmark that is both comprehen-
sive and widely applicable. We present a novel method for
constructing test data of various scenarios using a defined
Markov state transition matrix. The UniTTA benchmark
can assist researchers in evaluating their methods in a more
comprehensive and realistic manner, facilitating the develop-
ment of versatile and robust TTA methods. Moreover, it also
provides a evaluating benchmark for practitioners to select
the most suitable TTA method for their specific scenarios.
To obtain a versatile and robust TTA method, we need to
simultaneously address domain and class distribution shifts.
This poses two primary challenges: potential domain cor-
relation and imbalance leading to inaccurate domain-wise
statistics, and class correlation and imbalance further bias-
ing domain-wise statistics towards majority classes.

In this work, we simultaneously tackle both challenges by
proposing a novel Balanced Domain Normalization (BDN)

layer. Our primary insight is to unify both domain-aware
and class-aware normalization. We compute the statistics
for each class within each domain and then average across
classes to obtain balanced domain-wise statistics, mitigat-
ing the impact of class imbalance on domain-wise statistics.
During prediction, we select the corresponding statistics
based on the current sample’s domain, effectively address-
ing domain correlation and imbalance. Moreover, to address
potential temporal correlation of class, we leverage the cor-
relation characteristic by referencing the feature of the pre-
vious sample, resulting in an effective and efficient method
named COFA (COrrelated Feature Adaptation), without
requiring any modifications to model parameters.

2. Benchmark
2.1. Existing Realistic TTA Settings

The realistic TTA settings can be divided into two cate-
gories: domain setting and class setting, as shown in Tab. 1.
For the class setting, real-world data streams are typically
highly correlated, which means that data categories do not
change abruptly. Given these scenarios, we can classify
the factors in existing realistic TTA settings into two cate-
gories: Temporal Correlation and Imbalance. Therefore, a
more general realistic TTA setting should consider different
combinations of these factors to better simulate real-world
scenarios. Based on this analysis, a natural question arises:
how can we generate such a data stream?

2.2. UniTTA Benchmark

We propose a new UniTTA benchmark, based on a Markov
state transition matrix from a novel local perspective. In the
following discussion, we consider the temporal correlation
and imbalance of domains and classes as two independent
factors. Specifically, the Markov state can represent either
the domain or the class of the data. Our key idea is to gener-
ate data that satisfies temporal correlation by controlling the
probability of samples transitioning to themselves. While
this method might appear to neglect the issue of data imbal-
ance, we have discovered that by properly configuring the
Markov state transition matrix, we can effectively address
both temporal correlation and imbalance simultaneously.
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Table 1. Comparison of the proposed UniTTA benchmark with existing realistic TTA settings.

Domain Setting

Class Setting

Realistic TTA Setting Method Temporal Correlation Imbalance Temporal Correlation Imbalance
Correlated TTA (Boudiaf et al., 2022) LAME N/A (Single) N/A (Single) Correlated Imbalanced/Balanced
Continual TTA (Wang et al., 2022) CoTTA Continual Balanced iid. Balanced
Practical TTA (Yuan et al., 2023) RoTTA Continual Balanced Correlated Balanced
GLI-TTA (Su et al., 2024) TRIBE Continual Balanced Correlated Imbalanced/Balanced
Mixed Domain (Marsden et al., 2024) ROID iid. Balanced iid Balanced
UniTTA Benchmark UniTTA Continual/Correlated/i.i.d. Imbalanced/Balanced Continual/Correlated/i.i.d. Imbalanced/Balanced
Test Data Distribtuion N Y N
Test Data Stream u (0‘1 ,B ) > Pp
Continual ) P
COCO00CON P —
Temporal Correlated H HD H H H H H H H ] p
000000000800 H Noo c zC >
iid. Imbalanced Balanced . . " (?‘}’5 i ) 77777777 PC 77777777777777 y O
Realistic Settings of Domain/Class Markov Matrix Generation Data StrAeam
____________________________________________________________________________________________________________ Sampling
'/ D aD C oC Domain/Class Domain/Class/Overall Kronecker State E
(al B ) (al B ) Correlation and Imbalance Factor p Pc P Markov Matrix Product Transition |

Figure 1. Data generation process for the UniTTA benchmark. Continual TTA describes a scenario in which the domain remains consistent
over an extended period before shifting to a new domain, which exemplifies an extreme case of correlation settings. We consider the
domain and class as two independent attributes, each associated with its own Markov matrix.

First, we define a simple uniformly leaving Markov state
transition matrix P, where each element P;; represents the
probability of transitioning from state ¢ to state j. Intu-
itively, this transition matrix implies that the probability of
transitioning from any state to any other state is uniform.

Definition 1 (Uniformly Leaving Markov Matrix). A Uni-
formly Leaving Markov Matrix (ULMM) is a transition
matrix in a Markov chain where each non-diagonal entry
P;;, representing the transition probability from state 7 to
state j (wWhere ¢ # j), is identical across all states j. Specifi-

cally, the matrix is defined as:
P.. = n—1

7 )
ift =7

Based on the above definition, the ULMM can be character-
ized by a single vector o, where a;; = P;;. This matrix has
n degrees of freedom. By adjusting o; € [+, 1], we can
generate data with varying levels of temporal correlation.
Therefore, we refer to v as the (temporal) correlation vector
and «; as the (temporal) correlation factor.

A key question we address is whether the state distribution
of data sampled from a ULMM satisfies the criteria for
imbalance. According to Markov Chain theory, this distribu-
tion corresponds to the stationary distribution of the matrix,
as stated in the following proposition:

Proposition 1 (Stationary Distribution). For a Uniformly
Leaving Markov Matrix with diagonal elements o where
a; = Py; for all i, there exists a unique stationary distribu-
tion ™ = (71, 7o, - ,mp). This distribution satisfies the
following relationship: (1 —a1)m = (1 —ag)my =+ =
(1 — )7y

To ensure that the sampled data follows a long-tail distribu-
tion (assuming, without loss of generality, that% =... =

% > 1, where 7’:—1 = (3 is the imbalance factor), the con-
figurations of « are described by the following corollary:

Corollary 1 (Temporal Correlation and Imbalance). If the
category distribution of data sampled based on a Uniformly
Mixing Markov Matrix follows a long-tailed (power law)
distribution characterized by an imbalance factor 5 > 1.
Under these conditions, o are constrained such that:

1—Oq 1 l—al 1 ﬁ
—_— - . Q2
(7)o

—B, and oy T
Additionally, if the distribution exhibits temporal correlation,
which implies that o1, s, . ..,y > %, then the following
inequality holds: (1 — a1)B < 2=, and a; < 1.

1— oy

In summary, as shown in Fig. 1, generating data that satisfies
both temporal correlation and imbalance requires tuning two
parameters of the ULMM. Specifically, it is sufficient to set
the (maximum temporal) correlation factor oy € [1/n,1]
and the imbalance factor § € [1,00) to satisfy inequality
in Corollary 1. The remaining o; can then be determined.
We then combine the domain and class ULMMs using the
Kronecker product to obtain a final ULMM for sampling,
where the (domain, class) pair is treated as a new state.

3. UniTTA Framework

3.1. Overview

As illustrated in the Fig. 2, the UniTTA framework utilizes a
progressive prediction strategy through three forward passes:
Forward 1: In the absence of prior domain and class infor-
mation, we perform a forward pass using global statistics to
obtain initial pseudo-labels. Forward 2: With class labels
available, we conduct a second forward pass, updating both
class and global statistics. At a specified BDN layer (as
a hyper-parameter), we also predict the domain based on
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Figure 2. The overall architecture of the UniTTA framework. The original model’s BN layers are replaced by BDN layers, and the linear
classifier is equipped with the COFA method. The UniTTA framework sequentially predicts the class label and domain label in the m-th
BDN layer through three forward passes, ultimately providing the final prediction.

domain statistics. Forward 3: Finally, with both class and
domain labels, we perform a forward pass using domain
statistics for the final prediction, updating both domain-class
and domain statistics.

3.2. Balanced Domain Normalization

The core idea of Balanced Domain Normalization (BDN) is
to implement a domain-aware normalization in an unsuper-
vised manner. To counteract the bias caused by imbalanced
class data, which skews domain statistics towards the ma-
jority classes, we suggest calculating both domain-specific
and class-specific statistics. By averaging these statistics,
we can remove the class bias and obtain more accurate do-
main statistics. For each sample, we calculate the instance
statistics (Ulyanov et al., 2016) (u; and 0'2-2) of the feature
map, which are essential for domain assignment, expansion,

and updating the statistics.
Domain assignment (prediction) and expansion. First,

all domain statistics, including those generated by expan-
sions, are initialized using the corresponding batch nor-
malization (BN) statistics of the original pretrained model
(Kori» 02;). Initially, the number of domains is set to one.
Next, domain assignment and the decision to expand the
domain are performed at a specific layer, which is the only
hyper-parameter in our method. Specifically, we calculate
the Kullback-Leibler (KL) divergence between the instance
statistics of each sample and the domain statistics, assuming
they follow a normal distribution. If the KL divergence of
the sample to all domain statistics is greater than that to
the original domain statistics, the sample is considered to
belong to a new domain, necessitating domain expansion
during the Forward 3. This condition is satisfied when:

>D§L(N(Niaaz'2) ||N(N0rho’§ri))’ (3)

where Dy, is the symmetric KL divergence. Otherwise, the
sample is assigned to the domain with the minimum KL

divergence:
g7 = argmin Dy (N (i, 7) [| M (ha, o). (4)

Domain-class statistics update. Based on the domain as-
signment, we update the domain-class statistics (4, o dr)
and domain statistics (g, 04) using the instance statistics
p; and o2. The class statistics (1, 1) and global statistics
(pg, 04) can be considered as the domain-class statistics
and domain statistics for a single domain, respectively. Var-
ious updating methods can be applied independently of our
core method. We utilize the commonly applied Exponential
Moving Average (EMA) to update the domain-class statis-
tics pqr, and o4y Specifically, we adopt the EMA update
from Balanced BN (Su et al., 2024) without modification.
For detailed update rules, please refer to App. D.

3.3. Correlated Feature Adaptation

The COFA method leverages the correlation characteristics
of data to enhance prediction accuracy by utilizing the infor-
mation of the previous sample when predicting the current
sample. Implementing this method is straightforward, re-
quiring only the storage of feature from the previous sample.
Specifically, the classifier with COFA is defined as follows:

COFA __

T
w- (z; Zi—
pSOA — oftmax w (2 +2i1)

5 +b), 4)
where z; is the feature of the ¢-th sample, and w and b
are the weight and bias of the original classifier of the pre-
trained model, respectively. However, direct implementa-
tion of COFA results in a marked performance decrease
under i.i.d. conditions. To address this, we propose a con-
fidence filtering strategy to combine the predictions of the
COFA and the original classifier, as follows:

COFA COFA single
i = p; O™, if max(pyP™) > max(p, ) ©)
P = inol .
p;"¢¢, otherwise
single

where p; "¢ = softmax(w? z; + b). By filtering out low-
confidence predictions, COFA balances performance in both
i.i.d. and correlation conditions.
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Table 2. Average error (%) on ImageNet-C within the UniTTA benchmark. ({i,n,1}, {1, u}) denotes correlation and imbalance
settings, where {i, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting i.i.d. and balanced (i,1)

correlated and balanced (n,1)

correlated and imbalanced (n,u)

Domain setting (1,1) G,1) (L,1) @H  Gw mb) @w (1) G Gw @l (hw
Corresponding setting CoTTA ROID RoTTA - - - - TRIBE - - - - Avg.
TENT (Wang et al., 2021) 70.58 91.88 98.72  99.31 99.53 99.12 99.32 9750 99.22 99.13 97.03 98.86 95.85
ROID (Marsden et al., 2024) 60.67 79.18 98.51 99.71 99.84 99.52 99.61 91.76 99.77 99.57 98.15 99.37 93.80
NOTE (Gong et al., 2022) 91.62 88.18 93.67 9527 96.82 9500 95.81 9249 9593 9541 8893 95.05 93.68
CoTTA (Wang et al., 2022) 66.87 80.67 95.13  96.80 9733 9622 9633 89.70 9520 94.50 92.11 9371 91.22
TRIBE (Su et al., 2024) 75.85 84.78 89.78  92.62 96.54 95.19 9599 88.72 92.85 93.71 89.37 94.05 90.79
BN (Nado et al., 2020) 69.33 82.87 93.79 95.08 95.15 95.10 9501 8840 9224 9225 9131 91.84 90.20
UnMIX-TNS (Tomar et al., 2024)  79.64 85.55 79.74 8442 82.67 8457 8291 78.67 8328 8234 85.04 8238 82.60
TEST 81.99 82.05 81.92 8210 81.66 8196 81.74 81.60 81.21 81.42 8120 81.52 81.70
ROTTA (Yuan et al., 2023) 67.77 79.91 71.72  80.54 79.65 8030 79.63 68.74 7826 7794 79.78 78.36 76.88
LAME (Boudiaf et al., 2022) 82.55 82.26 7448 7221 71.77 7352 73.13 7570 7344 7354 7438 7439 75.12
UniTTA 78.07 78.00 7025 66.83 6642 6829 68.05 72.02 65.68 66.87 68.48 67.58 69.71(-5.41)

4. Experiments

In this section, we mainly present the main results on our
proposed UniTTA benchmark in Sec. 4.1. For detailed
information on the experimental setup and more results,
please refer to App. E and App. G.

4.1. Main Results

To better simulate real-world scenarios, we exclude the con-
tinual setting for classes, as it is rare for all samples from a
single class to appear consecutively in practice. We present
the results for 12 of these settings in the main paper, encom-
passing both existing and the most challenging scenarios.
Additional results for all methods and components of all
24 settings for all three datasets are available in App. G.
We can compare the robustness of different methods across
various datasets and settings in Tab. 2. Our method out-
performs the others on all datasets across most settings,
consistently achieving superior performance, particularly in
more realistic scenarios.

4.2. Ablation Study

We conduct an ablation study across various settings and
datasets to evaluate the impact of different components,
benchmarking them against similar methods as shown in
Tab. 3 and Tab. 4. This section presents the overall results,
while detailed results are provided in App. G.

(a) Effectiveness of different components. We first investi-
gate the impact of different components on model perfor-
mance across all settings and datasets. The results in Tab. 3
demonstrate the effectiveness of our two core components,
COFA and BDN. Additionally, applying the confidence fil-
ter further enhances model performance.

(b) Comparison with similar methods. We compare our two
components with both parameter-free method which do not
require modifications to model parameters and normaliza-
tion methods. Our BDN consistently outperforms other nor-

Table 3. Ablation study of different components. The average
of 12 settings are reported on CIFAR10-C, CIFAR100-C, and
ImageNet-C.

C10-C  Cl100-C IN-C  Avg.
TEST 42.03 4642  81.70 56.72
COFA 37.22 3734 7638 50.31
BN (Nado et al., 2020)  46.97 68.06 90.20 68.41
BDN 26.64 40.88  77.15 4822
UniTTA 20.68 3243  69.71 40.94

Table 4. Comparison of our two components with parameter-
free and normalization methods.

C10-C  C100-C IN-C  Avg.
Parameter-free Method
LAME (Boudiaf et al., 2022) 40.12 36.38 75.12 50.74
COFA 37.22 3734 7638 50.31
Normalization Method
Robust BN (Yuan et al., 2023) 32.34 46.33  85.30 54.66
UnMIX-TNS (Tomar et al., 2024)  30.84 4475 82.60 52.73
Balanced BN (Su et al., 2024) 30.10 43.83 8254 5217
BDN 26.64 40.88 77.15 48.22

malization methods, including UnMIX-TNS (Tomar et al.,
2024) and Balanced BN (Su et al., 2024). Notably, our
COFA achieves performance comparable to LAME by lever-
aging the temporal correlation characteristic (just averaging
with the lastest feature).

5. Conclusion

In this work, we propose a unified benchmark, UniTTA, for
Test-Time Adaptation. It sets a benchmark for evaluating re-
alistic TTA scenarios and provides a guideline for selecting
the most suitable TTA method for specific scenarios. Build-
ing on this, we introduce a versatile UniTTA framework
consisting of a Balanced Domain Normalization (BDN)
layer and a COFA method, which are simple and effective
without additional training. Empirical evidence from the
UniTTA benchmark demonstrates that our framework excels
in various Realistic TTA scenarios and achieves state-of-the-
art performance on average.
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Impact Statements

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Work

Test-Time Adaptation (TTA) addresses distributional shifts in test data without requiring additional data acquisition or
labeling. Sun et al.(Sun et al., 2020) propose an on-the-fly adaptation method using an auxiliary self-supervised task.
Subsequent TTA algorithms (Nado et al., 2020; Schneider et al., 2020; Wang et al., 2021) leverage batches of test samples to
recalibrate Batch Normalization (BN) layers(Ioffe & Szegedy, 2015) using test data. These studies show that using test
batch statistics in BN layers can enhance robustness against distributional shifts. TENT (Wang et al., 2021) refines this
approach by adapting a pre-trained model to test data through entropy minimization (Grandvalet & Bengio, 2004), updating
a few trainable parameters in BN layers.

Realistic Test-Time Adaptation. Recent studies on Test-Time Adaptation (TTA) have investigated more realistic scenarios,
addressing distribution changes in test data. These studies consider factors such as domain distribution shift (Wang et al.,
2022; Brahma & Rai, 2023), temporal correlation (Boudiaf et al., 2022; Gong et al., 2022), and combinations of both (Yuan
et al., 2023; Marsden et al., 2024; Su et al., 2024; Tomar et al., 2024). A comprehensive comparison of these realistic
settings is provided in Sec. 2.1. The methods employed in these studies include self-training (Wang et al., 2022; Yuan
et al., 2023; Brahma & Rai, 2023), which integrates semi-supervised self-training techniques (Huang & Du, 2022) to
enhance model performance, parameter-free methods (Boudiaf et al., 2022) utilizing Laplacian regularization, and Batch
Normalization (BN) recalibration (Gong et al., 2022; Mirza et al., 2022; Zou et al., 2022; Yuan et al., 2023; Tomar et al.,
2024; Sun et al., 2020). RoTTA (Yuan et al., 2023) introduces robust BN, estimating global statistics via exponential moving
average. TRIBE (Su et al., 2024) proposes a balanced BN (BBN) layer, consisting of multiple category-wise BN layers for
unbiased statistic estimation. UnMIX-TNS (Tomar et al., 2024) unmixes correlated batches into K distinct components,
each reflecting statistics from similar test inputs. Among these methods, BBN and UnMIX-TNS are the most similar to
our work. However, both BBN and UnMIX-TNS consider the influence of category and domain distributions on statistics
separately, which significantly limits their applicability. In contrast, our approach simultaneously accounts for both category
and domain distributions by introducing a unified BDN layer to address their combined impact on statistics.

B. Proof

Proof of Prop. 1. By the convergence properties of Markov chains (Ross, 1995), a Uniformly Leaving Markov Matrix
(ULMM) P has a unique stationary distribution 7w = (71, 7o, . . ., ™, ) Which satisfies 7w = 7 P. To solve this, we must find
the nontrivial solution to the linear equation (P? — I} = 0, where I is the identity matrix and 7r is a column vector. Thus,
we have

1— l—an
a—1 -2 ... 1 0
1— 1—an
or 1o S M 0
. : = b
l—«o 11—«
nfl1 n712 Qn — 1 Tn 0
1 1 (N
_11 n—1 nTI (1 - al)ﬂ.l 0
n—1 71 n—1 (1 - 062)7'['2 o 0
: : . : : :
n—1 n-1 ' -1 (1 o an)ﬂ-” 0
Observing that each row of the coefficient matrix sums to zero, there exists a non-trivial solution 1 = (1,1, ..., 1). Hence,
lI-a)m=0-a)m="-=(1—a,)m ®)
is one of the non-trivial solutions. By the uniqueness of the stationary distribution, the proof is complete. O
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C. Sampling Time and Discussion of UniTTA Benchmark
C.1. Sampling Time

A practical concern is the time required for the sampling process. Given that the ~ Table 5. Time of sampling 750k data on
ULMM matrix remains stationary most of the time (except for certain special ~ ImageNet-C (corrected and imbalanced).

data points, as previously discussed), we can pre-sample a sequence of transitions Sampling Method | Time (s)
for each state before the actual sampling begins. During the sampling process, naive sampling 22.40
we can then directly use these pre-sampled sequences which ensures that the + pre-sampling 2.15

ULMM-based data generation method does not result in significantly higher time
costs compared to existing methods as shown in Tab. 5.

C.2. Discussion

In this section, we discuss the scalability of the UniTTA benchmark. By independently generating domain and class ULMMs,
we can create a comprehensive ULMM for sampling. Moreover, the sampling ULMM can be enhanced by considering
the relationships between domains and classes. This allows us to construct domain-dependent class ULMMs, where the
transition probability of a class depends on the current domain, and vice versa. Additionally, the ULMM can be adapted for
various scenarios, such as temporal anti-correlation scenarios, non-uniform scenarios where transition probabilities to other
states are unequal, and higher-order Markov Chains, where transition probabilities depend on multiple previous states, not
just the current one. In summary, the data generation method defined by the UniTTA benchmark is highly flexible and can
be efficiently extended to meet the requirements of real-world scenarios.

D. Implementation Details

Before introducing the statistical update rules of BDN, we define a mean notation to simplify the expressions:

1 H W
Foro =2 2 D Fenw ©)

h=1w=1

which denotes the average over the omitted dimensions. Using this definition, we can simplify instance statistics as follows:
_ y
pi=1re.., of=(F.. —pm) (10)

We adopt the update rules of Balanced BN from TRIBE (Su et al., 2024) to update the statistics of BDN. For a sample with
pseudo-label domain d and class k, the update rules are simplified as follows:

wgr < (1 — n)uagp +nF.. . (an
o3, — (L—n)a3, +n(Fe.. —uar)? — n*(Fo.. — uar)? (12)
g — Tg. (13)
02 02 + (ug — pa)? (14)

where the momentum coefficient 7 is set to 5 x 10~* x K¢ following TRIBE and K is the number of classes. Specifically,
for global statistics, to enhance their robustness, we also follow the approach of TRIBE by incorporating the class-agnostic
updating strategy (Robust BN (Yuan et al., 2023)) with a parameter ~.
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E. Experimental Setup

We conduct experiments on three test-time adaptation datasets: CIFAR10-C (Hendrycks & Dietterich, 2019), CIFAR100-
C (Hendrycks & Dietterich, 2019), and ImageNet-C (Hendrycks & Dietterich, 2019). Each dataset includes 15 different
corruptions at 5 levels of severity. We evaluate all methods under the highest corruption severity level, level 5. Following
previous works (Wang et al., 2021; 2022; Yuan et al., 2023; Su et al., 2024), we adopt a standard pre-trained WideResNet-
28 (Zagoruyko & Komodakis, 2016), ResNeXt-29 (Xie et al., 2017), and ResNet-50 (He et al., 2016) as the backbone
networks for CIFAR10-C, CIFAR100-C, and ImageNet-C, respectively. The batch size is set to 64 for CIFAR10-C and
CIFAR100-C, and 32 for ImageNet-C. For all comparison methods, we use the original optimizers, learning rate schedules,
and hyperparameter settings as described in the respective papers. All experiments are conducted on a single NVIDIA
GeForce RTX 3090 GPU.

For our UniTTA framework, mainly following the results of Fig. 5, we set the BDN layer for domain prediction to the
block2.]layer.0.bn1, stage2.0.bn and layer3.0.bn1 for WideResNet-28, ResNeXt-29, and ResNet-50, respectively. For all
settings of the UniTTA benchmark, unless otherwise specified, the correlation factor «; of correlation settings for the
domain and class is 0.85 and 0.95, respectively. The imbalance factor 3 for the domain and class is 5 and 10, respectively.
The correlation factor «; is 1/K for the i.i.d. settings, where K is the number of classes or domains. For the balanced
settings, the imbalance factor (3 is 1. For the continual settings, the correlation factor « is 1.

F. More Analysis

Evaluation under more correlation/imbalance factors. Additional experiments are conducted under varying correlation
and imbalance factors as shown in Fig. 3. The settings are both correlated and imbalanced in terms of domain and class
distribution. The results indicate that our method remains robust across different correlation and imbalance factors.
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Figure 3. Average error (%) on CIFAR10-C under various correlation and imbalance factors. The default factors for domain and class are

(0.85, 5) and (0.95, 10), respectively. In two sets of experiments, we kept either the domain or class factors constant while varying the
other.

Hyperparameter Sensitivity. We also conduct experiments to assess the sensitivity to hyperparameters. Fig. 4 shows
the performance of several competitive baselines and our method under different batch sizes. Our method’s performance
remains unaffected by batch size, which can be attributed to the inherent characteristics of the BDN and COFA methods. In
contrast, batch-based methods such as LAME and NOTE exhibit significant sensitivity to batch size.

Our framework has only one hyperparameter: the position of the BDN for domain prediction. The results in Fig. 5 show that
the performance of BDN is optimal when the first layer of an intermediate block is selected. This also indicates that the
network retains more of the original image information in the shallow layers while learning more class-specific features in
the deeper layers.
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Figure 4. Sensitive analysis of batch size on CIFAR10-C. The Figure 5. Sensitivity analysis of the BDN layer for domain pre-
default correlation and imbalance factors for domain and class diction on CIFAR100-C. The horizontal axis (m, ) indicates

are (0.85,5) and (0.95, 10), rspectively. the nth layer of the mth block in the network.

Visualization of dynamic domain expansion. We also visualize the domain expansion process in Fig. 6. The process

demonstrates that the BDN layer effectively captures the domain information and dynamically expands domains, which is
crucial for accurate domain prediction.
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Figure 6. Visualization of dynamic domain expansion on CIFAR10-C. The BDN layer dynamically expands the domains based on the KL
divergence of the domain-wise statistics. Only domains with more than 100 samples are counted.



UniTTA: Unified Benchmark and Versatile Framework Towards Realistic Test-Time Adaptation

G. Results on More Settings

Table 6. Average error (%) on CIFAR10-C within the UniTTA benchmark. ({i,n,1}, {1, u}) denotes correlation and imbalance
settings, where {i,n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) a4,1) (i,u) (n,1) (nu) (L,u) (1,1) a4,1) (i,u) (n,1) (nu) (L,u)
Corresponding setting RoTTA - - - - - TRIBE - - - - -
TENT (Wang et al., 2021) 70.29  83.23 73.16 78.79 69.18 60.13 4740 59.57 5148 62.00 5190 44.89
TEST 43776 4352 40.37 4345 40.68 4030 4246 42.83 38.74 4229 3939 38.77
LAME (Boudiaf et al., 2022) 4140 4048 3698 40.15 3749 3762 4091 40.64 36.58 40.16 3693 36.88
ROID (Marsden et al., 2024) 43779 5693 53.78 53.55 52775 4284 4135 5255 4847 5143 4884 40.08
CoTTA (Wang et al., 2022) 5321 6393 6277 61.67 6121 5196 4146 5518 5027 53.20 5042 40.42
BN (Nado et al., 2020) 4942  57.00 54.82 56.26 5491 4847 4152 50.65 46.52 50.08 47.27 39.94
Robust BN (Yuan et al., 2023) 2334 35.61 3199 36.04 3244 2201 2652 3852 34.09 39.63 35.16 24.78
UnMIX-TNS (Tomar et al., 2024)  24.68 3299 29.03 3272 29.15 2525 27.60 3581 31.88 36.44 3248 27.48
Balanced BN (Su et al., 2024) 21.37  34.13 3028 3425 30.71 20.04 2225 3479 31.02 3568 31.64 20.54
ROTTA (Yuan et al., 2023) 19.52  36.89 3149 3566 31.58 2051 20.39 3624 31.67 3633 3246 20.53
NOTE (Gong et al., 2022) 31.79 3852 27.58 3298 2849 2628 3492 3479 2858 3399 30.32 29.28
TRIBE (Su et al., 2024) 18.54 3237 2834 3257 2887 1775 17.75 32.60 28.69 3292 2932 16.87
COFA(w/o filter) 37.63  31.19 2833 3626 32.10 33.70 3791 3243 29.05 3674 32.68 33.83
COFA 38.88 3495 31.70 3795 3425 3503 3780 34.88 31.09 3725 3341 33.73
BDN (w/o filter) 24.83 28.14 2542 2837 2536 2331 2575 30.12 26.89 30.20 27.22 23.87
BDN 22.04 2897 2589 2890 2596 2045 2277 3057 27.11 30.68 27.44 20.86
UniTTA 1640 18.53 16.19 20.09 17.20 1534 1793 20.88 18.46 22.89 19.88 16.41
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Table 7. Average error (%) on CIFAR10-C within the UniTTA benchmark. Continuation of the previous table

average error rate across 24 settings.

. ”Avg.” represents the

Class setting

i.i.d. and balanced (i,1)

i.i.d. and imbalanced (i,u)

Domain setting (1,1) a1,1) iw @D (mw (LLw A, G1) iw (1  (mu (L
Corresponding setting CoTTA ROID - - - - - - - - - - Avg.
TENT (Wang et al., 2021) 24.03 59.37 3858 47.07 37.81 20.88 2336 48.18 39.40 3645 3234 22.03 49.23
TEST 4346 4345 4030 43.52 4049 40.22 4246 42.83 3893 4252 39.53 38.82 41.38
LAME (Boudiaf et al., 2022) 45.07 44.60 4135 4494 41.62 41.68 4292 4293 39.02 4279 39.58 39.15 4049
ROID (Marsden et al., 2024) 16.92  31.00 27.39 28.03 26.13 1571 34.13 4568 41.53 4383 4120 3259 4044
CoTTA (Wang et al., 2022) 16.68 33.76 28.75 27.67 2552 1599 18.86 35.18 33.01 33.39 3508 18.64 40.34
BN (Nado et al., 2020) 21.00 34.18 3023 32.12 2939 1878 26.18 3846 34.04 36.13 34.00 23.78 39.80
Robust BN (Yuan et al., 2023) 2090 33.81 29.89 3430 30.17 19.35 26.00 38.25 3386 38.28 34.64 24.00 30.98
UnMIX-TNS (Tomar et al., 2024)  24.53  32.82 28.80 3298 2891 2485 2759 3582 31.74 3582 3254 2750 30.39
Balanced BN (Su et al., 2024) 21.18  33.85 30.03 3431 3022 19.60 2225 3497 3092 3482 31.52 2031 28.78
ROTTA (Yuan et al., 2023) 17.84 3345 29.50 33.58 29.73 18.78 18.88 35.62 31.21 3519 31.79 19.32 28.67
NOTE (Gong et al., 2022) 2255 2448 2233 24.06 2235 21.85 2639 30.62 2587 2937 2648 2479 28.28
TRIBE (Su et al., 2024) 1820 3190 2797 3229 28.04 1729 17.77 3271 28.19 3196 2882 1647 26.18
COFA (w/o filter) 6598 6297 6196 6545 6352 6431 6374 6090 59.57 63.22 60.88 61.65 48.17
COFA 47775 46771 4382 4759 4464 4458 46.18 4541 4199 46.08 43.15 42.65 40.06
BDN (w/o filter) 24.71 2746 24.62 27774 2449 2271 2557 29.64 26.04 29.62 2697 2338 26.35
BDN 21.22  28.16 25.02 28.36 24.85 1942 2253 30.18 2640 29.92 27.01 20.50 25.63
UniTTA 28.38 3134 2844 31.81 2858 2625 28.89 3239 2899 3277 3031 26.54 23.95(-2.23)

Table 8. Average error (%) on CIFAR100-C within the UniTTA benchmark. ({i,n,1}, {1, u}) denotes correlation and imbalance
settings, where {4, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting

correlated and balanced (n,1)

correlated and imbalanced (n,u)

Domain setting (1,1) a4,1) (i,u) (n,1) (nu) (L,u) (1,1) a4,1) Gu)  (n) (nu (L)
Corresponding setting RoTTA - - - - TRIBE - - - -

TENT (Wang et al., 2021) 96.53 97.08 9426 95.08 89.75 9491 9379 93.74 86.80 88.26 83.97 90.80
NOTE (Gong et al., 2022) 79.69  67.67 57.69 59.75 5437 6543 71.52 58.86 55.52 57.55 5425 61.70
BN (Nado et al., 2020) 76.55 7933 7855 79.15 7942 7622 6442 6933 69.68 69.11 68.49 63.69
CoTTA (Wang et al., 2022) 7826 7995 7891 78.89 79.38 76.77 65.68 6856 69.58 68.07 68.46 63.95
ROID (Marsden et al., 2024) 71.09 7757 7680 76.14 7647 7056 5527 6321 63.88 62.70 63.38 54.83
RoTTA (Yuan et al., 2023) 3895 53.80 5230 5325 5255 4044 37779 5499 5389 5536 53.63 40.34
TEST 46.64 46.66 45.11 4733 4489 4511 47.07 46.86 45.83 47.87 46.05 45.04
Robust BN (Yuan et al., 2023) 4090 50.09 48.75 51.17 49.13 4036 3933 4850 48.14 4990 4848 38.64
UnMIX-TNS (Tomar et al., 2024)  39.12  46.88 45.66 46.92 4536 40.19 40.19 4744 4641 4755 4620 41.00
Balanced BN (Su et al., 2024) 36.36 4647 45.66 47.01 4516 3647 3677 46.67 4639 4730 4640 3647
TRIBE (Su et al., 2024) 3469 4795 4375 47.89 4437 3502 3274 46.67 43.19 4635 4437 32.83
LAME (Boudiaf et al., 2022) 3407 32.80 3044 33.19 29.84 31.83 3744 3643 3475 37.08 34.86 35.04
COFA(w/o filter) 32.88 28.52 2698 32.69 2898 30.96 36.04 31.89 30.58 36.71 3345 34.05
COFA 35.65 32,66 31.11 3587 32.65 33.84 37.09 3421 33.04 3770 3497 3494
BDN (w/o filter) 38.85 4435 4352 4499 4362 39.62 3858 4437 4438 44774 4453 38.48
BDN 36.19 4346 4270 44.10 42.86 36.37 36.03 43.50 4341 43.63 4334 3591
UniTTA 2449 2899 2857 31.85 29.53 25.11 2581 3096 3095 32.87 32.16 26.26
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Table 9. Average error (%) on CIFAR100-C within the UniTTA benchmark. Continuation of the previous table. ”Avg.” represents the
average error rate across 24 settings.

Class setting i.i.d. and balanced (i,1) i.i.d. and imbalanced (i,u)

Domain setting (1,1) a1,1) iw @D (mw (LLw A, G1) iw (1  (mu (L
Corresponding setting CoTTA ROID - - - - - - - - - - Avg.
TENT (Wang et al., 2021) 81.06 91.05 83.37 88.59 79.70 63.18 76.04 73.53 5898 53.84 50.11 60.56 81.87
NOTE (Gong et al., 2022) 65.96 63.07 5656 6347 56.10 57.57 67.54 56.62 5439 5559 52.80 57.30 60.46
BN (Nado et al., 2020) 3620 4648 4493 4504 4427 3534 3736 4770 46.64 4645 4478 36.53 57.74
CoTTA (Wang et al., 2022) 32,74  43.02 4247 4122 4191 32.61 3347 4437 4501 43.60 43.65 33.56 5642
ROID (Marsden et al., 2024) 2991 36.84 36.65 36.81 3671 2990 31.89 38.71 39.31 38.84 3842 31.70 51.57
ROTTA (Yuan et al., 2023) 3346 46.54 46.63 4728 4646 3541 3400 5143 5130 5371 50.63 36.07 46.68
TEST 46.35 4643 4455 4672 4453 4453 4694 46.80 4584 4743 4448 4488 46.00
Robust BN (Yuan et al., 2023) 3556 4599 4445 46.64 4456 35.18 36.73 4697 4632 4791 4499 36.29 44.37
UnMIX-TNS (Tomar et al., 2024)  38.94  46.32 44.66 46.61 4475 39.78 39.96 47.16 4623 4758 4494 40.78 44.19
Balanced BN (Su et al., 2024) 35.84 4594 4438 4638 4443 3562 3632 4650 4582 4698 4471 3599 4275
TRIBE (Su et al., 2024) 33.10 4573 4299 46.84 4338 3299 31.71 4528 43.01 46.60 41.65 31.82 41.04
LAME (Boudiaf et al., 2022) 48.21 4747 4559 4790 4558 4634 4823 4734 4635 48.00 45.06 46.00 4041
COFA (w/o filter) 70.82  69.50 6833 70.65 69.22 69.52 70.60 69.43 68.70 70.66 68.41 69.45 50.79
COFA 51.64 5150 49.83 52.04 4998 50.02 52.18 51.71 50.73 52.65 49.99 50.29 42.76
BDN (w/o filter) 37.82 4370 4217 4356 4195 3742 37777 4420 4344 4502 4233 37.86 4197
BDN 34.65 4192 40.55 4229 4041 34.15 3506 4243 42.10 43.54 4134 3458 40.19
UniTTA 44.17 4886 47.72 4936 47.78 44.08 44.14 49.18 49.05 50.33 47.57 43.72 38.06 (-2.35)

Table 10. Average error (%) on ImageNet-C within the UniTTA benchmark. ({¢,n,1}, {1, u}) denotes correlated and imbalance
settings, where {4, n, 1} represent i.i.d., correlated and continual, respectively, and {1, u} represent balance and imbalance, respectively.
Corresponding setting denotes the existing setting and method as shown in Tab. 1.

Class setting correlated and balanced (n,1) correlated and imbalanced (n,u)

Domain setting (1,1) a4,1) (i,u) (n,1) (nu) (L,u) (1,1) a4,1) Gu)  (n) (nu (L)
Corresponding setting RoTTA - - - - - TRIBE - - - - -
NOTE (Gong et al., 2022) 93.67 9527 96.82 95.00 95.81 8875 9249 9593 9541 88.93 95.05 85.85
TENT (Wang et al., 2021) 98.72 9931 99.53 99.12 99.32 97.69 97.50 99.22 99.13 97.03 98.86 94.71
TRIBE (Su et al., 2024) 89.78  92.62 96.54 95.19 9599 78.04 88.72 92.85 93.71 89.37 94.05 69.34
ROID (Marsden et al., 2024) 98.51  99.71 99.84 99.52 99.61 9735 91.76 99.77 99.57 98.15 99.37 91.75
BN (Nado et al., 2020) 93.79 95.08 95.15 95.10 95.01 93.76 8840 9224 9225 91.31 91.84 838.34
CoTTA (Wang et al., 2022) 95.13  96.80 97.33 96.22 96.33 94.59 89.70 9520 9450 92.11 93.71 89.04
Robust BN (Yuan et al., 2023) 80.76  89.58 89.58 91.74 9040 81.08 74.69 87.16 8731 89.24 88.46 75.82
UnMIX-TNS (Tomar et al., 2024)  79.74 8442 82.67 8457 8291 8208 78.67 8328 8234 8504 8238 81.52
TEST 81.92 8210 81.66 8196 81.74 82.07 81.60 81.21 81.42 81.20 81.52 81.95
Balanced BN (Su et al., 2024) 76.63 87.03 86.54 88.87 87.23 7724 7119 8438 8441 86.22 8535 7227
LAME (Boudiaf et al., 2022) 7448 7221 7177 7352 73.13 74.69 7570 7344 7354 7438 7439 76.25
ROTTA (Yuan et al., 2023) 71.72  80.54 79.65 80.30 79.63 73.59 68.74 7826 7794 79.78 78.36 72.47
COFA(w/o filter) 7537 7061 69.75 7442 7322 7530 76.32 71.07 70.57 75.06 74.56 76.67
COFA 76.62 7386 73.51 76.17 7541 7697 76.82 7328 73.59 75.82 7577 1717.29
BDN (w/o filter) 7780 7637 76.03 76.88 7638 7921 76.69 75.13 7574 7597 7599 78.48
BDN 76.69 7948 79.32 79.82 79.28 77.68 72.87 77.83 7821 77.89 78.12 74.16
UniTTA 70.25 66.83 6642 68.29 68.05 7239 72.02 65.68 6687 6848 67.58 71.70
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Table 11. Average error (%) on ImageNet-C within the UniTTA benchmark. Continuation of the previous table. ”Avg.” represents the
average error rate across 24 settings.

Class setting i.i.d. and balanced (i,1) i.i.d. and imbalanced (i,u)

Domain setting a,n @,1) iw (1) @®Mu (Lw A, G (iuw) (1) (mu) (1u)
Corresponding setting CoTTA ROID - - - - - - - - - - Avg.
NOTE (Gong et al., 2022) 91.62 88.18 8353 86.89 8755 8578 8890 9475 94.02 91.06 94.64 83.18 91.21
TENT (Wang et al., 2021) 70.58 91.88 8237 80.13 8500 6492 6821 9729 96.06 87.28 9429 62.02 90.01
TRIBE (Su et al., 2024) 75.85 8478 8359 84.61 8361 6398 79.88 8548 87.38 87.02 8486 62.18 84.98
ROID (Marsden et al., 2024) 60.67 79.18 8383 77.54 7846 6225 5770 76.61 76.82 7352 7620 5895 84.86
BN (Nado et al., 2020) 69.33 82.87 8322 7940 8045 6944 6757 81.79 81.58 7773 79.33 68.19 84.71
CoTTA (Wang et al., 2022) 66.87 80.67 82.07 7628 7681 66.13 6431 7942 7828 72.69 7574 6342 83.89
Robust BN (Yuan et al., 2023) 69.81 8490 85.16 8735 85.64 7055 68.37 8437 84.17 8622 85.65 6936 82.81
UnMIX-TNS (Tomar et al., 2024)  79.64  85.55 88.41 86.68 84.48 81.81 78.15 8291 8191 83.01 82.12 81.08 82.72
TEST 81.99 82.05 83.46 82.78 82.15 82.14 8093 81.00 81.15 80.69 81.40 81.17 81.72
Balanced BN (Su et al., 2024) 69.31 83.35 84.71 8540 83.60 69.89 67.28 82.07 82.17 8351 8290 6846 80.42
LAME (Boudiaf et al., 2022) 82.55 8226 83.83 83.05 8241 82.68 81.42 81.13 8130 80.98 81.65 81.75 78.02
ROTTA (Yuan et al., 2023) 67.77 7991 8122 8l.11 79.81 7198 66.16 7581 7571 77.65 7636 7126 76.07
COFA (w/o filter) 91.83  89.69 9093 9195 O91.15 92.01 91.32 8899 89.19 90.75 9093 91.64 82.22
COFA 8299 82.77 84.07 8352 8326 8324 8203 81.81 8195 81.79 8246 82.19 79.05
BDN (w/o filter) 77.09 76.64 80.28 7731 76.84 78.09 7579 7493 7520 7572 75.88 7133 76.74
BDN 68.62 77.64 80.83 76.68 76.54 6896 66.64 7576 76.02 7466 7556 67.43 75.69
UniTTA 78.07 78.00 80.89 7832 7794 7928 76.76 7596 76.71 7645 7691 7830 73.26 (-2.81)
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