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Abstract

Deep neural networks may be susceptible to learn-
ing spurious correlations that hold on average but
not in atypical test samples. As with the recent
emergence of vision transformer (ViT) models, it
remains underexplored how spurious correlations
are manifested in such architectures. In this pa-
per, we systematically investigate the robustness
of vision transformers to spurious correlations on
three challenging benchmark datasets and com-
pare their performance with popular CNNs. Our
study reveals that when pre-trained on a suffi-
ciently large dataset, ViT models are more robust
to spurious correlations than CNNs. Key to their
success is the ability to generalize better from the
examples where spurious correlations do not hold.

1. Introduction

A key challenge in building robust image classification mod-
els is the existence of spurious correlations: misleading
heuristics imbibed within the training dataset that are cor-
related with majority examples but do not hold in general.
Prior works have shown that convolutional neural networks
(CNNs) can rely on spurious features to achieve high aver-
age test accuracy. Yet, such models lead to low accuracy
on rare and untypical test samples lacking those heuris-
tics (Geirhos et al., 2019; Goel et al., 2021; Sagawa et al.,
2020; Tu et al., 2020). In Figure 5 (Appendix), we illus-
trate a model setup that exploits the spurious correlation be-
tween the water background and label waterbird
for prediction. While the robustness of CNNs has been
widely studied, it remains underexplored how spurious cor-
relation is manifested in the recent development of vision
transformers (ViT) (Dosovitskiy et al., 2021). As with the
paradigm shift to attention-based architectures, it becomes
increasingly critical to understand their behavior under ill-
conditioned data. From a network architecture perspective,
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ViTs lack the inductive bias in CNNs, such as translational
equivariance and spatial locality, and may be more prone
to overfitting (Dosovitskiy et al., 2021). For this reason,
one may expect the fully-connected dependencies in ViT
models may exacerbate capturing the spurious correlations
in the training data. In this paper, we seek to answer the
following question: Are Vision Transformers more robust
to spurious correlations compared to CNNs? Motivated by
the question, we systematically investigate how and when
ViT models exhibit robustness to spurious correlations on
challenging benchmarks. Our findings reveal that for trans-
formers, larger models and more pre-training data yield a
significant improvement in robustness to spurious correla-
tions. The key reason for success can be attributed to the
ability to generalize better from those examples where spu-
rious correlations do not hold, while fine-tuning. However,
despite better generalization capability, ViT models suffer
high errors on challenging benchmarks when these coun-
terexamples are scarce in the training set. On the other hand,
when pre-trained on a relatively smaller dataset such as
ImageNet-1k, the performance of transformer-based models
are much worse as compared to CNN counterparts. This
indicates that in smaller pre-training data regimes, trans-
formers have a higher propensity to overfit the spurious
features and are less robust than CNNs of comparable size.
Our key contributions are summarized below:

(1) To the best of our knowledge, we provide first systematic
study on robustness of Vision Transformers when learned
on datasets containing spurious correlations.

(2) We perform extensive experiments and ablations to un-
derstand effect of model architectures, model capacity, pre-
training dataset, data imbalance, fine-tuning, etc.

(3) We provide insights on ViT’s robustness by analyzing
the attention matrix, which encapsulates important infor-
mation about the interaction among image patches. We
hope that our work will inspire future research on further
understanding the robustness of ViT models.

2. Preliminaries

2.1. Spurious Correlations

Spurious features refer to statistically informative features
that work for majority of training examples but do not cap-
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ImageNet-21k Model ViT-B ViT-S ViT-Ti
#Params 86.IM 21.8M 5.6M
ImageNet- 1k Model DeiT-B DeiT-S DeiT-Ti
#Params 86.1M 21.8M 5.6M
ImageNet-21k Model BiT-M-R50x3 BiT-M-R101x1 BiT-M-R50x1
#Params 211M 42.5M 23.5M
Model BiT-S-R50x3 BiT-S-R101x1 BiT-S-R50x1
ImageNet-1k
#Params 211M 42.5M 23.5M

Table 1. Different model architectures used in our experiments
along with number of trainable parameters and pre-training
dataset.

ture essential cues related to the labels (Geirhos et al., 2019;
Goel et al., 2021; Sagawa et al., 2020; Tu et al., 2020).

Formally, we consider a training set, Pirain consisting of
N training samples: {x;, y;}¥,, where samples are drawn
independently from a probability distribution: Px y. Here,
X € X is arandom variable defined in the pixel space, and
Y € Y ={1,..., K} represents its label. We further as-
sume that the data is sampled from a set of F environments
& ={ej,ea, -+ ,er}. The training data has spurious cor-
relations, if the input x; is generated by a combination of
invariant features zi"* € R%nv, which provides essential
cues for accurate classification, and environmental features
z¢ € R dependent on environment e:

Xi = p(z’z%nvv Zf).

Here p represents a function transformation from the feature
space [zi"", z¢]T to the pixel space X. Under the data
model, we form groups g = (y,e) € Y x & that are jointly
determined by the label y and environment e. For this
study, we consider the binary setting where £ = {1, —1}
and ) = {1, —1}, resulting in four groups. The concrete
meaning for each environment and label will be instantiated
in corresponding tasks, which we describe in Section 3.

2.2. Model Zoo

In this study, we aim to understand the robustness of ViT
models when trained on a dataset containing spurious corre-
lations and how they fare against popular CNNs. We con-
trast ViT with Big Transfer (BiT) models (Kolesnikov et al.,
2020) that are primarily based on the ResNet-v2 architecture.
For both ViT and BiT models, we consider different vari-
ants that differ in model capacity and pre-training dataset,
as summarized in Table 5 (Appendix). Specifically, we
use model variants pre-trained on both ImageNet-1k (Rus-
sakovsky et al., 2015) and on ImageNet-21k (Deng et al.,
2009) datasets. Note that the DeiT architecture is identical
to ViT variant of comparable size with the only difference
lying in the pre-training dataset and data augmentations.

Notation: To indicate input patch size in ViT models, we

Model Average Acc. ‘Worst-Group Acc.
ViT-B/16 96.754+0.05 89.3011 95
ViT-S/16 96.3040.51 854541 .16
ViT-Ti/16 89.504+0.05 71.65+0.16
BiT-M-R50x3 94.9040.05 80.514+1.02
BiT-M-R101x1 94.0540.07 77.50+0.50
BiT-M-R50x1 92.0540.05 75104 0.62

Table 2. Average and worst-group accuracies over test set for dif-
ferent models when finetuned on Waterbirds (Sagawa et al., 2020).
All models are pre-trained on ImageNet-21k.

append “/x” to model names. We prepend -B, -S, -Ti to indi-
cate Base, Small and Tiny version of the corresponding
architecture. For instance: ViT-B/16 implies the Base vari-
ant with an input patch resolution of 16 x 16.

3. Robustness to Spurious Correlation

In this section, we systematically measure the robustness
performance of ViT models when trained on datasets con-
taining spurious correlations, and compare how their robust-
ness fares against popular CNNs. For evaluation bench-
marks, we adopt the same setting as in (Sagawa et al., 2020).
Specifically, we consider the following three classification
datasets to study the robustness of ViT models in a spurious
correlated environment: Waterbirds (Section 3.1), CelebA
(Section 3.2), and ColorMNIST. Due to space constraints,
results on ColorMNIST are in the Appendix.

3.1. Waterbirds

Introduced in (Sagawa et al., 2020), this dataset contains
spurious correlation between background features and tar-
get label y € {waterbird, landbird}. The dataset is
constructed by selecting bird photographs from the Caltech-
UCSD Birds-200-2011 (CUB) (Wah et al., 2011) dataset and
then superimposing on either of e € £ = {water, land}
background selected from the Places dataset (Zhou et al.,
2017).

Results and insights on generalization performance. Ta-
ble 2 compares worst-group test accuracies of different mod-
els when fine-tuned on Waterbirds (Sagawa et al., 2020)
using empirical risk minimization. Note that all the com-
pared models are pre-trained on ImageNet-21k. This allows
us to isolate the effect of model architectures, in particular,
ViT vs. BiT models. The worst-group test accuracy reflects
the model’s generalization performance for groups where
the correlation between the label y and environment e does
not hold. A high worst-group accuracy is indicative of less
reliance on the spurious correlation in training. Our results
suggest that: (1) ViTs are relatively more robust to spurious
associations between background feature and target label
than convolution-based BiTs. Interestingly, ViT-B/16 attains
a significantly higher worst-group test accuracy (89.3%)
than BiT-M-R50x3 despite having a considerably smaller
capacity (86.1M vs. 211M). (2) Furthermore, these results



Are Vision Transformers Robust to Spurious Correlations ?

ViT-Ti/16 77.6

BIiT-M-R50x3

BiT-M-R101x1

BIiT-M-R50x1 88.9

Consistency Measure

Figure 1. Consistency Measure. In Waterbirds dataset, y €
{waterbird, landbird} is correlated with environment e €
{water, land}. Left: Visual illustration of the experimental
setup for measuring model consistency. Ideally, changing the spu-
rious features (z®) should have no impact on model prediction.
Right: Evaluation results quantifying consistency for models of
different architectures and varying capacity.

reveal a correlation between generalization performance and
model capacity. With an increase in model capacity, both
ViTs and BiTs tend to generalize better, measured by both
average accuracy and worst-group accuracy. The relatively
poor performance of ViT-Ti/16 can be attributed to its failure
to learn the intricacies within the dataset.

Results and insights on robustness performance. We
now delve deeper into the robustness of ViT models. In
particular, we investigate the robustness in model predic-
tion under varying background features. Our key idea is
to compare the predictions of image pairs (X;, X;) with the
same foreground object yet different background features
(i.e., water vs. land background). We define Consistency
Measure of a model as the average number of consistent
predictions on the evaluation dataset given the predictions
are correct, ie., & SN I{f(x;) = f(%:) | f(x:) = v},
where y; denotes the target label. To generate the image
pairs (x;, X;), we first take a foreground bird photograph
using the pixel-level segmentation masks from the CUB
dataset (Wah et al., 2011). We then place it on the top
of water and land background images from the Places
dataset (Zhou et al., 2017). We generate multiple such pairs
to form the evaluation dataset {(x;,%;)}Y, and use this
dataset to quantify the robustness performance. For this
study, we use N = 11788 paired samples.

Figure 1 provides a visual illustration of the experimental
setup (left), along with the evaluation results (right). Our
operating hypothesis is that a robust model should predict
same class label f(x;) and f(%;) for a given pair (x;,X;),
as they share exactly the same foreground object (i.e., invari-
ant feature). Our results in Figure 1 show that ViT models
achieve overall higher consistency measures than BiT coun-
terparts. For example, the best model ViT-B/16 obtains
consistent predictions for 93.9% of image pairs. Overall,
using ViT pre-trained models yields strong generalization
and robustness performance on Waterbirds.

Model Average Acc. ‘Worst-Group Acc.
ViT-B/16 97401 42 94101 .51
ViT-S/16 96.26 10 .66 91.50+1 56
ViT-Ti/16 96.7140.18 88.60+3 92
BiT-M-R50x3 97.3140.05 89.80+0.42
BiT-M-R101x1 97.2040.08 89.3340.78
BiT-M-R50x1 96.82141 .20 877241 56

Table 3. Average and worst-group accuracies over test set for dif-
ferent models when finetuned on CelebA (Liu et al., 2015). All
models are pre-trained on ImageNet-21k. Results (mean and std)
are estimated over 3 runs for each setting.

3.2. CelebA

Beyond background spurious features, we further validate
our findings on a different type of spurious feature. Here,
we investigate the behavior of machine learning models
when learned on training samples with spurious associa-
tions between target label and demographic information
such as gender. Following (Ming et al., 2022), we use
CelebA dataset, consisting of celebrity images with each im-
age annotated using 40 binary attributes. We have the label
space ) = {gray hair,nongray hair} and gender
as the spurious feature, £ = {male, female}. The train-
ing data consists of 4010 images with label grey hair,
out of which 3208 are male, resulting in spurious associa-
tion between gender attribute male and label grey hair.
Formally, P(e = grey hairly = male) =~ P(e =
non-grey hairl|y = female) ~ 0.8.

Results. We see from Table 3 that ViT models achieve
higher test accuracy (both average and worst-group) as op-
posed to BiTs. In particular, ViT-B/16 achieves +4.3%
higher worst-group test accuracy than BiT-M-R50x3, de-
spite having a considerably smaller capacity (86.1M vs.
211M). These findings along with our observations in Sec-
tion 3.1 demonstrate that ViTs are not only more robust
when there are strong associations between the label and
background features, but also avoid learning spurious corre-
lations between demographic features and target label.

4. Discussion: A Closer Look at ViT Under
Spurious Correlation

In this section, we perform extensive ablations and experi-
ments to understand the role of ViT models under spurious
correlations. For consistency, we present the analyses below
based on the Waterbirds dataset.

4.1. How does the size of the pre-training dataset affect
robustness to spurious correlations?

In this section, we aim to understand the role of large-scale
pre-training on the model’s robustness to spurious corre-
lations. To understand the importance of the pre-training
dataset, we compare models pre-trained on ImageNet-1k
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(1.3 million images) and ImageNet-21k (12.8 million im-
ages). We report results for transformer-based models and
BiT models in Table 4. For detailed ablation results on other
benchmark datasets, please refer to the Appendix. Based on
these results, we highlight the following observations:

Model Test Accuracy Cl\(/’lﬂSiswnc)’

Avg. Worst-Group casuret
ViT-B/16 96.8 89.3 939
ImageNet-21k ViT-S/16 96.3 855 933
ViT-Ti/16 89.5 71.7 77.6
DeiT-B/16 85.9 44.6 71.9
ImageNet-1k DeiT-S/16 84.5 46.7 743
DeiT-Ti/16 834 41.8 71.1
BiT-M-R50x3 94.9 80.5 929
ImageNet-21k BiT-M-R101x1 94.1 715 922
BiT-M-R50x1 92.1 75.1 88.9
BiT-S-R50x3 87.0 60.3 77.8
ImageNet-1k BiT-S-R101x1 873 64.9 80.8
BiT-S-R50x1 86.3 63.5 78.7

Table 4. Investigating effect of large-scale pre-training on model
robustness to spurious correlations. All models are fine-tuned on
Waterbirds (Sagawa et al., 2020). Pre-training on ImageNet-21k
provides better performance.

(1) First, large-scale pre-training improves the performance
of the models on challenging benchmarks. For transformers,
larger models (base and small) and more pre-training
data (ImageNet-21k) yields a significant improvement in
all reported metrics. Hence, larger pre-training data and
increasing model size play a crucial role in improving model
robustness to spurious correlations. We also see a similar
trend in the case of BiT models.

(2) Second, when pre-trained on a relatively smaller dataset
such as ImageNet-1k, the performance of transformer-based
DeiT models are much worse as compared to BiT-S models.
Interestingly, although increasing size of DeiT models leads
to improved average test accuracy but suffers high error
on worst-group samples. This indicates that in smaller pre-
training data regimes, transformers have a higher propensity
of memorizing training samples and are less robust com-
pared to CNNss of comparable size.

4.2. Investigating model performance under data
imbalance

Recall that model robustness to spurious correlations is
correlated with its ability to generalize from the training
examples where spurious correlations do not hold. We hy-
pothesize that this generalization ability varies depending on
the inherent data imbalance. In this section, we investigate
the effect of data imbalance on the model’s performance. In
the extreme case, the model only observes 5 samples from
the underrepresented group.

Setup. Considering the problem of waterbird vs
landbird classification, these examples correspond to

model = ViT-S/16( #params = 21.8M )

.\.\.\0

% D

100 model = BiT-M-R50x1( #params = 23.5M )

Accuracy %
Accuracy %

—— Average Accuracy
60 Consistency Measure 60
—— Worst-Group Accuracy

—— Average Accuracy

Consistency Measure \

—— Worst-Group Accuracy

Fractno?vzof minority ngp\es removedng Fractno?vzof minority gasmp\es removedng
Figure 2. Data Imbalance. We investigate the effect of data im-
balance on different model architectures. Our findings reveal that
both ViT and BiT models suffers from spurious correlations when
minority samples are scarce in fine-tuning dataset.

those in the groups: waterbird on land background
and landbird on water background. We refer to these
examples that do not include spurious associations with
label as minority samples. For this study, we remove vary-
ing fraction of minority samples from the smallest group(
waterbirdon land background ), while fine-tuning. We
measure the effect based on the worst-group test accuracy
and model consistency defined in Section 3.1.

Takeaways. In Figure 2, we report results for ViT-S/16 and
BiT-M-R50x1 model when finetuned on Waterbirds dataset.
We find that as more minority samples are removed, there
is a graceful degradation in the generalization capability of
both ViT and BiT models. However, the decline is more
prominent in BiTs with the model performance reaching
near-random when we remove 90% of minority samples.
From this experiment, we conclude that additional robust-
ness of ViT models to spurious associations stems from
their better generalization capability from minority samples.
However, they still suffer from spurious correlations when
minority examples are scarce.

4.3. Understanding role of self-attention mechanism for
improved robustness in ViT models

Given the results above, a natural question arises: what
makes ViT particularly robust in the presence of spurious
correlations? In this section, we aim to understand the role
of ViT by looking into the self-attention mechanism.

Latent pattern in attention matrix. To gain insights, we
start by analyzing the attention matrix, where each element
in the matrix a; ; represents attention values with which
an image patch ¢ focuses on another patch j. For example:
consider an input image of size 384 x 384 and patch resolu-
tion of 16 x 16, then we have a 576 x 576 attention matrix
(excluding the class token). To compute final attention
matrix, we use Attention Rollout (Abnar & Zuidema, 2020)
which recursively multiplies attention weight matrices in all
layers below. Our analysis here is based on the ViT-B/16
model fine-tuned on Waterbirds. Intriguingly, we observe
that each image patch, irrespective of its spatial location,
provides maximum attention to the patches representing
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Figure 3. Visualization of the top N patches receiving the high-
est attention (marked in red). Investigating the attention matrix,
we find that all image patches—irrespective of spatial location—
provides maximum attention to the patches representing essential
cues for accurately identifying the foreground object such as claw,
beak and fur color. See text for details. See Supplementary for
visualizations on other datasets and models.

essential cues for accurately identifying the foreground ob-
ject. Figure 3 exhibits this interesting pattern, where we
mark (in red) the top N = {1, 5, 10} patches being attended
by every image patch. To do so, for every image patch ¢,
where i € {1,---,576}, we find the top N patches receiv-
ing the highest attention values and mark (in red) on the
original input image. This would give us 576 x N patches,
which we overlay on the original image. Note that different
patches may share the same top patches, hence we observe
the sparse pattern. In Figure 3, we can see that the patches
receiving the highest attention represent important signals
such as the shape of the beak, claw, and fur color—all of
which are essential for the classification task waterbird
vs landbird.

Masked attention. The attention matrix in ViT models
encapsulates crucial information about the interaction be-
tween different image patches resulting in access to more
global information. Inspired by (Bhojanapalli et al., 2021),
we use a spatial mask to study the effect of restricting image
patches to attend only those lying within a certain distance.
However, the class token is allowed to interact and at-
tend to all other image patches. Note, while fine-tuning we
do not use any spatial mask and allow the model to leverage
information from the complete attention matrix. Masking is
done only during inference time. Figure 4 depicts the results
of our study on ViT-B/16 when fine-tuned on Waterbirds
(left) and CelebA (right). For both datasets, we see a mono-
tonic decrease in worst-group test accuracy and Consistency
Measure, as we increase the restriction on allowable atten-
tion distance. In the extreme case, when the constrained
attention distance equals 2, the model completely fails to
correctly classify the test images in the smallest group in-
dicating high reliance on spurious features while making

CelebA Waterbirds

70 —e— Average Accuracy

o Average Accuracy | 20—+~ Consistency Measure
+— Worst-Group Accuracy \ —+— Worst-Group Accuracy
)
or o

60

2

e Attention D\Stanlcze Restr\ctﬁiona e Attention D\Stan]ge Restr\ctswor\“
Figure 4. Masked Attention. We study the role of global attention
in ViT models in providing improved robustness to spurious cor-
relations. We observe that constraining the attention to be local
results in degradation of model performance on spuriously corre-
lated datasets such as Waterbirds (left) and CelebA (right).

the prediction. In other words, limiting the attention to be
local results in degradation of model robustness to spurious
correlations.

5. Related Works

Since the introduction of transformers by Vaswani et
al. (Vaswani et al., 2017) in 2017, there has been a deluge of
studies adopting the attention-based transformer architecture
for solving various problems in natural language process-
ing (Dai et al., 2019; Radford et al., 2018; 2019; Yang et al.,
2019). In the domain of computer vision, Dosovitskiy et
al. (Dosovitskiy et al., 2021) first introduced the concept of
Vision Transformers (ViT) by adapting the transformer ar-
chitecture in (Vaswani et al., 2017) for image classification
tasks. Naseer ef al. (Naseer et al., 2021) provides a compre-
hensive understanding of the working principle of ViT ar-
chitecture through extensive experimentation. Some notable
findings in (Naseer et al., 2021) reveal that transformers are
highly robust to severe occlusions, perturbations, and distri-
butional shifts. Recently, performance of ViT models in the
wild has been extensively studied (Bai et al., 2021; Bhojana-
palli et al., 2021; Park & Kim, 2022; Paul & Chen, 2021;
Tian et al., 2022; Zhang et al., 2021) using a set of robustness
generalization benchmarks, e.g., ImageNet-C (Hendrycks &
Dietterich, 2019), Stylized-ImageNet (Geirhos et al., 2019),
ImageNet-A (Hendrycks et al., 2021), etc. Different from
prior works, in this paper, we provide a first systematic study
on the robustness of vision transformers when learned on
datasets containing spurious correlations. Refer Appendix I
for detailed discussion on related works.

6. Conclusion

In this paper, we investigate robustness of ViT models when
learned on datasets containing spurious associations be-
tween target label and environmental features. Our findings
can be summarized as: 1) ViTs are more robust to spurious
correlations than CNNs under large-scale pre-training data
regime. 2) Improved robustness of ViTs can be attributed to
better generalization capability from the counterexamples
where spurious correlations do not hold.
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A. Implementation Details

1. Transformers. For both ViT and DeiT models, we obtain the pre-trained checkpoints from the t imm library'. For
downstream fine-tuning on Waterbirds and CelebA dataset, we scale up the resolution to 384 x 384 by adopting 2D
interpolation of the pre-trained position embeddings proposed in (Dosovitskiy et al., 2021). Note, for CMNIST we
keep the resolution as 224 x 224 during fine-tuning. We fine-tune models using SGD with a momentum of 0.9 with an
initial learning rate of 3e-2. As described in (Steiner et al., 2021), we use a fixed batch size of 512, gradient clipping at
global norm 1 and a cosine decay learning rate schedule with a linear warmup. We fine-tune tiny & small versions
of models (i.e., ViT-Ti/16 and ViT-S/16) for 1000 steps, whereas base version (i.e., ViT-B/16) is fine-tuned for 2000
steps.

2. BiT. We obtain the pretrained checkpoints from the official repository?. For downstream fine-tuning, we use SGD with
an initial learning rate of 0.003, momentum 0.9, and batch size 512. We fine-tune models with various capacity for 500
steps, including BiT-M-R50x1, BiT-M-R50x3, and BiT-M-R101x1.

B. Representative Examples

Spuriously Correlated Training Examples

Atypical Examples
(low error) (high error)
Waterbirds y : waterbird y : landbird y - waterbird ‘
4795 . :
o e : water e:land e:land
training background background Background
examples 22 %) (73 %) (1%)
CelebA y: gray hair y : non-gray y : gray hair
8059 e: male hair e:female
training (40 %) e : female (10 %)
examples (40 %)
CMNIST  y.0 y:1 y:0
12640 e:red e:green e : pink
training  (45%) (45 %) %)
examples

Figure 5. Representative Examples. We study three image datasets Waterbirds (Sagawa et al., 2020), CelebA (Liu et al., 2015) and
CMNIST. The label y is spuriously correlated with environment e in majority of training samples. The frequency of each group in training
data is denoted by (%). Figure is adapted from (Sagawa et al., 2020).

Pretraining
Dataset
Model ViT-B ViT-S  ViT-Ti  BiT-M-R50x3 BiT-M-R101x1 BiT-M-R50x1
ImageNet-21k
#Params 86.IM 21.8M  5.6M 211M 42.5M 23.5M
Model DeiT-B  DeiT-S DeiT-Ti  BiT-S-R50x3  BiT-S-R101x1  BiT-S-R50x1
ImageNet-1k
#Params 86.1IM 21.8M  5.6M 211M 42.5M 23.5M

Table 5. Different model architectures used in our experiments along with number of trainable parameters and pre-training dataset. Note
that the DeiT architecture is identical to ViT variant of comparable size with the only difference lying in pre-training dataset and data
augmentations used during pre-training.

"https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/google-research/big_transfer
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C. Extension: Does longer fine-tuning in ViT improve robustness to spurious correlations?
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Figure 6. Longer Fine-tuning. We study the effect of longer fine-tuning on performance of ViT models. We report loss and accuracy for
ViT-S/16 model finetuned on Waterbirds (Sagawa et al., 2020) at each epoch of fine-tuning. Investigating further we observe that although
fine-tuning for more epochs provide no additional gain in average test accuracy, but it improves model performance on minority samples.

Recent studies in the domain of natural language processing (Tu et al., 2020; Zhang et al., 2020) have shown that the
performance of BERT (Devlin et al., 2019) models on smaller datasets can be significantly improved through longer
fine-tuning. In this section, we investigate if longer fine-tuning also plays a positive role in the performance of ViT models
in spuriously correlated environments.

Takeaways. Figure 6 reports the loss (left) and accuracy (right) at each epoch for ViT-S/16 model fine-tuned on Waterbirds
dataset (Sagawa et al., 2020). To better understand the effect of longer fine-tuning on worst-group accuracy, we separately
plot the model loss and accuracy on all examples and minority samples. From the loss curve, we observe that the training
loss for minority examples decreases at a much slower rate as compared to the average loss. Specifically, the average train
loss takes 20 epochs of fine-tuning to reach near-zero values, while training loss on minority group plateaus after 40 epochs.
Similarly, we see that although the average test accuracy of the model stops increasing after 30 epochs, the accuracy of
minority samples reaches a stationary state after 50 epochs of fine-tuning. These results reveal two key observations: (1)
While longer fine-tuning does not benefit the average test accuracy, it plays a positive role in improving model performance
on minority samples, and (2) ViT models do not overfit with longer fine-tuning.

D. Extension: Spurious Out-of-Distribution Detection

Model Waterbirds (Sagawa et al., 2020)  CelebA (Liu et al., 2015) CMNIST
FPRY5| AUROC?T FPR95| AUROC?T FPR95] AUROCt

ViT-B/16 56.8 91.0 60.5 88.4 7.4 98.8
ViT-S/16 62.2 87.0 61.3 86.7 8.7 97.7
ViT-Ti/16 79.5 71.6 94.3 72.7 16.4 96.7
BiT-M-R50x3 96.0 59.0 63.8 85.3 45.9 84.1
BiT-M-R101x]1 95.5 59.5 70.3 85.6 44.5 81.4
BiT-M-R50x1 95.1 63.4 69.7 85.7 30.0 88.4

Table 6. Spurious OOD evaluation. OOD detection performance of ViT and BiT models when finetuned on Waterbirds (Sagawa et al.,
2020), CelebA (Liu et al., 2015) & CMNIST. We use energy score (Liu et al., 2020) for calculating AUROC and FPR95. We observe that
ViT models are more robust to spurious OOD examples as compared to BiTs.
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Test Accuracy

Model
Average Acc.  Worst-Group Acc.
ViT-B/16 97.4 94.0
ImageNet-21k ViT-S/16 97.0 91.5
ViT-Ti/16 96.5 84.6
DeiT-B/16 96.4 88.0
ImageNet-1k DeiT-S/16 96.1 87.1
DeiT-Ti/16 94.9 85.7
BiT-M-R50x3 97.3 89.8
ImageNet-21k BiT-M-R101x1 97.2 89.8
BiT-M-R50x1 96.8 87.7
BiT-S-R50x3 96.4 88.3
ImageNet-1k BiT-S-R101x1 96.5 90.2
BiT-S-R50x1 96.3 90.9

Table 7. Investigating the effect of large scale pre-training on model robustness to spurious correlations when finetuned on CelebA (Liu
etal., 2015).

In this section, we study the performance of ViT models in out-of-distribution setting. Introduced in (Ming et al., 2022),
spurious out-of-distribution (OOD) data is defined as samples that do not contain the invariant features z'"" essential for
accurate classification, but contain the spurious features z¢. Hence, these samples are denoted as x,,q = p(z?,z¢) where
g is an out-of-class label, such that § ¢ ). In the problem of waterbird vs landbird classification, an image of
a person standing in forest would be an example of spurious OOD, since it contains different semantic class person
¢ {waterbird, landbird}, yet has the environmental features of land background. A non-robust model relying on
the background feature may classify such OOD data as an in-distribution class with high confidence. Hence, we aim to
understand if self-attention based ViT models can mitigate this problem and if so, to what extent.

Setup. To investigate the performance of different models against spurious OOD examples, we use the setup introduced
in (Ming et al., 2022). Specifically, for Waterbirds (Sagawa et al., 2020) we test on subset of images of land and water
sampled from the Places dataset (Zhou et al., 2017). Considering, CelebA (Liu et al., 2015) as in-distribution, our test
suite consists of images of bald male as spurious OOD, since they contain environmental features (gender) without
invariant features (hair). For CMNIST, the in-distribution data contains digits )V = {0, 1} and the background colors, £ =
{red, green, purple, pink}. We use digits {5, 6, 7, 8, 9} with background color red and green as test OOD
samples.

Takeaways. We report our findings in Table 6. Clearly, ViT models achieve better OOD evaluation metrics as compared to
BiTs. Specifically, ViT-B/16 achieves +32% higher AUROC than BiT-M-R50x3, considering Waterbirds (Sagawa et al.,
2020) as in-distribution.

E. Extension: How does the size of pre-training dataset affect robustness to spurious correlations?

In this section, to further validate our findings on the importance of large-scale pre-training dataset, we show results on
CelebA (Liu et al., 2015) dataset. We report our findings in Table 7. We also observe a similar trend for this setup that larger
model capacity and more pre-training data yields significant improvement in worst-group accuracy for ViT models. Further,
when pre-trained on a relatively smaller dataset such as ImageNet-1k, the performance of transformer-based DeiT models
are poor as compared to the corresponding CNN counterpart.

Also, compared to BiT models, the robustness of ViT models benefits more with a large pre-training dataset. For example,
compared to ImageNet-1k, fine-tuning ViT-B/16 pre-trained on ImageNet-21k improves the worst-group accuracy by 6%.
On the other hand, for BiT models, fine-tuning with a larger pre-trained dataset yields marginal improvement. Specifically,
BiT-M-R50x3 only improves the worst-group accuracy by 1.5% with ImageNet-21k.
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F. Extension : Color Spurious Correlation

To further validate our findings beyond natural background and gender as spurious (i.e. environmental) features, we provide
additional experimental results with the ColorMNIST dataset, where the digits are superimposed on coloured backgrounds.
Specifically, it contains spurious correlation between the target label and the background color. Similar to the setup in (Ming
et al., 2022), we fix the classes ) = {0, 1} and the background colors, £ = {red, green, purple, pink}. For this
study, label y = 0 is spuriously correlated with background color {red, purple}, and similarly, label y = 1 has spurious
associations with background color {green, pink}. Formally, we have P(e = red|y = 0) = P(e = purplely =0) =
P(e = green|y = 1) = P(e = pink|ly = 1) = 0.45 and P(e = green|y = 0) = P(e = pink|y = 0) = P(e =
redly = 1) = P(e = purplely = 1) = 0.05. Note that, while fine-tuning the models, we fix the foreground color of
digits as white.

Results and insights on robustness performance. We compare model predictions on samples with same class label
but different background & foreground colors. Given a data point (x;, ¥;), we modify the background and foreground
color of x; randomly to generate a new test image x; with the constraint of having the same semantic label. During
evaluation, the background color is chosen uniform-randomly from the set of colors: {#ecf02b, #£06007, #0ff5f1,
#573115, #857d0f, #015c24, #ab0067, #fbb7fa, #dled95, #OO26ff} and the foreground color is
selected randomly from the set {black,white}. For evaluation purpose, we form a dataset consisting of 2100 samples
and the results reported are averaged over 50 random runs. Figure 7 depicts the distribution of training samples in CMNIST
dataset (left) and few representative examples after transformation (right).

We report our findings in Figure 8. Our operating hypothesis is that a robust model should predict same class label f (xi)
and f (x;) for a given pair (x;,X; ), as they share exactly the same target label (i.e., the invariant feature is approximately
the same). We can observe from Figure 8 that the best model ViT-B/16 obtains consistent predictions for 100% of image
pairs. After extensive experimentation over all combinations, we find that setting the foreground color as black and the
background as white caused the models to be most vulnerable. We see a significant decline in model consistency when the
foreground color is set as black and the background as white (indicated as BW) as compared to random setup.

45% 45% 5% 5%

45% 45% 5% 5%

Training Examples Transformed Samples

Figure 7. CMNIST. Distribution of training samples in CMNIST dataset(left) and few representative examples after transformation(right)
as defined in Section F.

G. Visualization
G.1. Attention Map

In Figure 9, we visualize attention maps obtained from ViT-B/16 model for some samples images from Waterbirds (Sagawa
et al., 2020) and CMNIST dataset. We use Attention Rollout (Abnar & Zuidema, 2020) to obtain the attention matrix. We
can observe that the model successfully attends spatial locations representing invariant features while making predictions.
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Figure 8. Consistency Measure. Evaluation results quantifying consistency for models of different architectures and varying capacity.
We indicate the setup when the foreground color is set as black and the background as white using BW(right). Random represents
setting both the foreground and background color randomly(left).

Original Image Attention Mask Attention Map Original Image Attention Mask Attention Map

Figure 9. Attention Map. Visual illustration of attention map obtained from ViT-B/16 model for few representative images.

G.2. The Attention Matrix of CMINIST

In the main text, we provide visualizations in which each image patch, irrespective of its spatial location, provides maximum
attention to the patches representing essential cues for accurately identifying the foreground object. In Figure 10, we show
visualizations for ViT-B/16 fine-tuned on CMNIST dataset to further validate our findings.

H. Software and Hardware

We run all experiments with Python 3.7.4 and PyTorch 1.9.0 using Nvidia Quadro RTX 5000 GPU.
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Figure 10. Visualization of the top N patches receiving the highest attention (marked in black) for ViT-B/16 fine-tuned on CMNIST.
Investigating the attention matrix, we find that all image patches—irrespective of spatial location—provides maximum attention to the
patches representing essential cues

I. Extension: Related Works

Pre-training and robustness. Recently, there has been an increasing amount of interest in studying the effect of pre-
training (Devlin et al., 2019; Kolesnikov et al., 2020; Liu et al., 2019; Radford et al., 2021). Specifically, when the target
dataset is small, generalization can be significantly improved through pre-training and then finetuning (Zeiler & Fergus,
2014). Findings of Hendrycks et al. (Hendrycks et al., 2019) reveal that pre-training provides significant improvement
to model robustness against label corruption, class imbalance, adversarial examples, out-of-distribution detection, and
confidence calibration. In this work, we focus distinctly on robustness to spurious correlation, and how it can be improved
through large-scale pretraining.

Vision transformer. Since the introduction of transformers by Vaswani et al. (Vaswani et al., 2017) in 2017, there has
been a deluge of studies adopting the attention-based transformer architecture for solving various problems in natural
language processing (Dai et al., 2019; Radford et al., 2018; 2019; Yang et al., 2019). In the domain of computer vision,
Dosovitskiy et al. (Dosovitskiy et al., 2021) first introduced the concept of Vision Transformers (ViT) by adapting the
transformer architecture in (Vaswani et al., 2017) for image classification tasks. Subsequent studies (Dosovitskiy et al., 2021;
Steiner et al., 2021) have shown that when pre-trained on sufficiently large datasets, ViT achieves superior performance on
downstream tasks, and outperforms state-of-art CNN's such as residual networks (ResNets) (He et al., 2016) of comparable
sizes. Since coming to the limelight, multiple variants of ViT models have been proposed. Touvron et al. (Touvron et al.,
2021a) showed that it is possible to achieve comparable performance in small pre-training data regimes using extensive
data augmentation and novel distillation strategy. Further improvements on ViT include enhancement in tokenization
module (Yuan et al., 2021), efficient parameterization for scalability (Touvron et al., 2021b; Xue et al., 2021; Zhai et al.,
2021) and building multi-resolution feature maps on transformers (Liu et al., 2021; Wang et al., 2021). In this paper, we
provide a first systematic study on the robustness of vision transformers when learned on datasets containing spurious
correlations.

Robustness of transformers. Naseer et al. (Naseer et al., 2021) provides a comprehensive understanding of the working
principle of ViT architecture through extensive experimentation. Some notable findings in (Naseer et al., 2021) reveal that
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transformers are highly robust to severe occlusions, perturbations, and distributional shifts. Recently, performance of ViT
models in the wild has been extensively studied (Bai et al., 2021; Bhojanapalli et al., 2021; Park & Kim, 2022; Paul & Chen,
2021; Tian et al., 2022; Zhang et al., 2021) using a set of robustness generalization benchmarks, e.g., ImageNet-C (Hendrycks
& Dietterich, 2019), Stylized-ImageNet (Geirhos et al., 2019), ImageNet-A (Hendrycks et al., 2021), etc. Different from
prior works, we focus on robustness performance on challenging datasets, which are designed to expose spurious correlations
learned by the model. Our analysis reveals that pre-training improves robustness by better generalizing on examples from
under-represented groups. Our findings are also complementary to robustness studies (He et al.; McCoy et al., 2019; Tu
et al., 2020) in the domain of natural language processing, which reported that transformer-based BERT (Devlin et al., 2019)
models improve robustness to spurious correlations.



