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ABSTRACT

Generative models are capable of producing human-expert level content across a
variety of topics and domains. As the impact of generative models grows, it is
necessary to develop statistical methods to understand the population of available
models. These methods are particularly important in settings where the user may
not have access to information related to a model’s pre-training data, weights,
or other relevant model-level covariates. In this paper we extend recent results on
representations of black-box generative models to model-level statistical inference
tasks. We demonstrate – both theoretically and empirically – that the use of these
representations are effective for multiple model-level inference tasks.

1 INTRODUCTION

Generative models have recently met or surpassed human-level standards on benchmarks across
a range of tasks (Nori et al., 2023; Katz et al., 2024; Dubey et al., 2024). While these claims
warrant skepticism and further robustness evaluation (Ness et al., 2024), the impressive capabilities
have created a competitive environment for training state-of-the-art models and have inspired the
development of complementary methods to adapt models to particular use cases. For example,
quantizing the weights of a neural model enables a trade-off of model precision with vRAM and
disk space (Gholami et al., 2022) while methods such as Low Rank Adaptation (LoRA) (Hu et al.,
2021) and prompt-tuning (Lester et al., 2021) enable compute- and data-efficient model adaptation.
Other methods such as retrieval-augmented generation (Lewis et al., 2020), model merging (Matena
& Raffel, 2022), constrained decoding (Hokamp & Liu, 2017), etc. (Dettmers et al., 2024; Edge
et al., 2024), have similarly contributed to the rapid development of a large population of diverse
and accessible models.

Each model in the population has an accompanying set of covariates – scores on benchmarks, train-
ing mixture proportions, model safety scores, etc. – that are a function of the model, the training
set, the architecture, the retrieval database, or derivatives thereof. For a given model, the covariate
of interest may not be available to the user or it may be too expensive to calculate. For example, it
may not be known if a proprietary model has been trained on copyrighted data. Or, it may be too
resource intensive to directly evaluate how toxic every model is. Methods for predicting model-level
covariates are necessary in these settings, and others, to fully understand the behavior and properties
of a model.

In this paper we extend recent theoretical results for vector representations of generative models
(Acharyya et al., 2024) to model-level statistical inference settings. Our results show that the em-
beddings of the responses from a collection of generative models can be used for consistent inference
for a wide class of inference problems. We demonstrate the effectiveness of the representations for
three downstream inference tasks, including predicting the presence of sensitive information in a
model’s training mixture and predicting a model’s safety. We include empirical investigations of
performance sensitivity to hyperparameters required to generate the model-level vector representa-
tions.

Contribution. Our contribution is the theoretical and empirical validation for using vector repre-
sentations of black-box generative models for model-level inference tasks. The representations that
we study herein are based on the embeddings of their responses. The theoretical results apply to any
generic, well-behaved embedding function. Given the representations, any standard vector-based
method can be used for inference on the models.
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1.1 BACKGROUND & RELATED WORK

Our work is an extension of recent theoretical and empirical results on embedding-based represen-
tations of generative models (Acharyya et al., 2024), which itself is a continuation of a long-line
of embedding-based investigations of the inputs and outputs of generative models (Mikolov, 2013;
Reimers, 2019; Neelakantan et al., 2022; Patil et al., 2023). Of particular relevance is recent empiri-
cal work defining the data kernel (Duderstadt et al., 2023) and investigations into its ability to track
the dynamics of interacting models (Helm et al., 2024), in which the experiments demonstrate the
ability to parlay the embeddings of a collection of inputs or outputs into useful vector representations
of the generative models themselves in both white-box and black-box settings. The results herein
further theoretically and empirically validate these findings in the context of statistical inference.

Our work is also related to using embedding-based techniques for inference on complicated objects
such as entire mouse connectomes (Wang et al., 2020), physiological data (Chen et al., 2022), and
classification distributions (Helm et al., 2021). In each of these settings, the authors define a pairwise
distance matrix on the objects and apply multi-dimensionsal scaling to obtain vector representations
of each of the objects. Once there is one vector representation per object, standard inference methods
for the specific task can be used. The method we study herein follows this general formula, with the
additional complication that the objects are random mappings.

Lastly, our work is a part of the relatively new literature on inference on generative models. For
example, FlashHELM (Perlitz et al., 2023) uses the score on a subset of a benchmark such as HELM
(Liang et al., 2022) to quickly identify where a model fits on a leaderboard. More recent work
proposes scaling laws to predict the performance of base models on a suite of benchmarks as a
function of training FLOPs (Ruan et al., 2024). The method proposed herein does not assume access
to a scoring function nor does it assume access to a function of the model’s weights at inference time.
Perhaps most importantly, our setting and method can be applied to general model-level prediction.

2 THE DATA KERNEL PERSPECTIVE SPACE

Before we present our results related to statistical inference on black-box generative models, we
first describe how to obtain finite-dimensional vector representations of the models. The particular
method for obtaining vector representations for generative models that we study herein has previ-
ously been discussed in Helm et al. (2024) and Acharyya et al. (2024).

Let f : Q → X be a black-box model from a query space Q to an output space X . In our setting
there are n models f1, . . . fn and m queries q1, . . . , qm with qj ∈ Q. We assume that each model
responds to every query r independent times and let fi(qj)k be the k-th response to qj from fi.

We let g : X → Rp be an embedding function that maps a model response to a p-dimensional real-
valued vector. Further, we let xijk = g(fi(qj)k) denote the embedding of fi(qj)k and Fij denote
the distribution of xijk on Rp. That is, xij1, . . . xijr ∼iid Fij .

We let x̄ij = 1
r

∑r
k=1 xijk be the empirical average embedded response of fi to qj and X̄i ∈ Rm×p

denote the matrix whose j-th row is x̄ij . We view X̄i as a matrix representation of model fi with
respect to {q1, . . . , qm} and g. We define D as the n× n pairwise distance matrix with entries

Dii′ =
1

m

∣∣∣∣X̄i − X̄i′
∣∣∣∣
F
. (1)

The matrix entry Dii′ captures the difference in empirical average model behavior between fi and
fi′ with respect to {q1, . . . , qm} and g.

With the form described by Eq. (1), D is a rescaled Euclidean distance matrix. Hence, multi-
dimensional scaling (MDS) of D yields d-dimensional Euclidean representations of the matrices
X̄i (and thereby of the models fi) with respect to {q1, . . . , qm} and g (Torgerson, 1952). Letting
ψ̂ := MDS(D) ∈ Rn×d, we refer to ψ̂ as the data kernel perspective space (DKPS). We emphasize
that the i-th row of the DKPS – ψ̂i – is a d-dimensional vector representation of the generative model
fi.
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2.1 ANALYTICAL PROPERTIES OF THE DATA KERNEL PERSPECTIVE SPACE

While the DKPS representations of the models are Euclidean objects, it is not possible to comment
on their properties without imposing constraints on the Fij . We let µi ∈ Rm×p be the population
counterpart of X̄i whose j-th row is Ex∼Fij (x). Similarly, we let ∆ be the population counterpart
of D whose (i, i′)-th element is ∆ii′ =

1
m ||µi − µi′ ||F . We assume ∆∗

ii′ = lim 1
m ||µi − µi′ ||F for

every pair (i, i′) as m, r → ∞ and that g is bounded.1

In our setting, under appropriate assumptions described in (Acharyya et al., 2024),

Dii′ =
1

m

∥∥X̄i − X̄i′
∥∥ → ∆∗

ii′ (2)

with high probability as m, r → ∞ for all (i, i′) ∈ {1, . . . , n} × {1, . . . , n}. Further, there exists
ψ := MDS(∆∗) ∈ Rm×d such that ψ̂ → ψ. That is, the configuration ψ is the population coun-
terpart of ψ̂. ψ captures the true geometry of the mean discrepancies of the model responses with
respect to the queries {q1, . . . , qm}. Importantly, in settings where the models are not fixed and are
instead assumed to be i.i.d. realizations from a model distribution Pmodel, the distance matrix D
converges to ∆∗ and, under technical assumptions, there exists ψ such that ψ̂ → ψ as m, r → ∞
for all n (Acharyya et al., 2024).

2.2 STATISTICAL INFERENCE IN THE DATA KERNEL PERSPECTIVE SPACE

We now extend the consistency of ψ̂ to ψ to model-level inference. Consider the classical statistical
learning problem (Hastie et al., 2009, Chapter 2) in the context of a collection of generative models:
given training data Tn = {(f1, y1), . . . , (fn, yn)} assumed to be i.i.d. realizations from the joint
distribution PfY , choose the decision function h : F → Y that minimizes the expected value of a
loss function ℓ with respect to PfY within a class of decision functions H for a test observation f
assumed to be an independent realization from the marginal distribution Pf . Or, with Rℓ(PfY , h) :=
EPfY [ℓ(h(f), y)], select h∗ such that

h∗ ∈ argmin
h∈H

Rℓ(PfY , h).

We let R∗
ℓ (PfY ,H) = Rℓ(PfY , h

∗) denote the expected loss (or “risk”) of h∗.

The joint distribution PfY is often unavailable and the decision function is selected based on the
training data. We let h( · ; Tn) denote such a decision function and say the sequence of decision
functions (h( · ; T1), . . . , h( · ; Tn)) is consistent for PfY with respect to H if

Pr
( ∣∣Rℓ(PfY , h( · ; Tn))−R∗

ℓ (PfY ,H)
∣∣ > ϵ

)
→ 0

as n→ ∞.

In the black-box setting we do not have direct access to useful representations of the models. Instead,
we can use the representations {ψ1, . . . , ψn} as proxies for the models {f1, . . . , fn}. Hence, Tn =
{(ψ1, y1), . . . , (ψn, yn)} where (ψi, yi) ∼iid PψY and our goal is to choose a decision function h∗
which minimizes the average loss Rℓ(PψY , h) := EPψY [ℓ(h(ψ), y)] within an appropriately defined
H. Note that the true {ψ1, . . . , ψn} are not known a priori and must be estimated via {ψ̂1, . . . , ψ̂n}.
We let T̂n be the training data where ψi is replaced with ψ̂i.

Two important extensions of the DKPS consistency results in the context of the classical statistical
learning problem are the following theorems:

Theorem 1. Under technical assumptions described in Appendix A,

Rℓ(PψY , h( · ; T̂n)) → Rℓ(PψY , h( · ; Tn))

as m, r → ∞, for every n.

1Boundedness is typically satisfied in practice for well-defined g. For language models, an element of X is
a finite sequence from a finite vocabulary; for text-to-image models X = {0, . . . , 255}3 is finite.
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That is, the risk of a decision function based on T̂n = {(ψ̂1, y1), . . . , (ψ̂n, yn)} converges to the risk
of the decision function based on the true-but-unknown Tn. For situations where {ψ1, . . . , ψn} are
good proxies, Theorem 1 states that increasing the number of queries and/or number of replicates
per query will improve the performance of decision functions trained on T̂n.

Theorem 2. Under technical assumptions described in Appendix A, if (h( · ; T1), . . . , h( · ; Tn))
is consistent for PψY with respect to H, then (h( · ; T̂1), . . . , h( · ; T̂n)) is consistent for PψY with
respect to H as n,m, r → ∞.

Theorem 2 states that if the sequence of decision functions learned from Tn is consistent then the
sequence of decision functions learned from the analogous T̂n is also consistent. This result suggests
that inference performance should improve with more training data. While a logical follow-on to
Theorem 1 and a well-understood principle in classical statistical learning settings, the consistency
of the DKPS in the setting where the number of models grows is a non-trivial extension of the fixed
n case.

The proofs of Theorems 1 and 2 are provided in Appendix A.

2.2.1 NON-STANDARD CONSIDERATIONS

Given that our analysis is based on estimates {ψ̂1, . . . , ψ̂n} of proxies {ψ1, . . . , ψn} of the objects
of interest {f1, . . . , fn}, it is important to note some non-standard theoretical considerations. To
facilitate our discussion we let R∗

ℓ (PfY ) := inf{h:F→Y} Rℓ(PfY , h) be the Bayes optimal risk of
PfY . Further, we let Pquery be a distribution on queries.

For example, while our theoretical results provide insights as to how performance will be affected
by increasing n,m, and r, our results do not comment on the magnitude of |R∗

ℓ (PψY )−R∗
ℓ (PfY )|.

This quantity is a measure of how good of a proxy {ψ1, . . . , ψn} is for {f1, . . . , fn}. In particular, if
|R∗

ℓ (PψY )−R∗
ℓ (PfY )| = 0 then the ψi are perfect proxies of the fi with respect to y (Devroye et al.,

2013, Chapter 32). We expect it to be challenging to theoretically understand |R∗
ℓ (PψY )−R∗

ℓ (PfY )|
in general.

Similarly, let q1, . . . , qm ∼iid Pquery and q′1, . . . , q
′
m ∼iid P ′

query with Pquery ̸= P ′
query. The prox-

ies of the models induced by these two query sets – {ψ1, . . . , ψn} and {ψ′
1, . . . , ψ

′
n}, respectively –

will be of different quality. Without an initial understanding of the models and their relationship with
the covariates, we expect that it will be impossible to know which query distribution is preferred a
priori. We highlight the importance of Pquery in an experimental setting below.

Lastly, we note that representations of the models that we analyze herein capture the intrinsic ge-
ometry of the mean discrepancies of the models for the queries {q1, . . . , qn}. For covariates that
cannot be described as a function of the mean discrepancies of the models, it is unclear how to in-
terpret Theorems 1 and 2. We discuss potential alternatives to the representations that we study in
the discussion.

2.3 AN ILLUSTRATIVE EXAMPLE – “WAS RA FISHER GREAT?”

The first model-level inference task we study is a toy example where the task is to predict the
probability that a model will respond “yes” to the question “Was RA Fisher great?”. The question is
chosen due to its subjectiveness – there is no correct answer to the question of a person’s greatness
– and its duality – Ronald A. Fisher is considered one of the most influential statisticians in history
and is considered an advocate of the 20th century Eugenics movement (Bodmer et al., 2021).

We use a 4-bit version of Meta’s LLaMA-2-7B-Chat (Touvron et al., 2023) as a base model and
consider a collection of models parameterized by fixed context augmentations. Each augmentation
ai contains information related to RA Fisher’s statistical achievements (i.e., ai = “RA Fisher pio-
neered the principles of the design of experiments”) or to his involvement in the eugenics movement
(i.e., ai = “RA Fisher’s view on eugenics were primarily based on anecdotes and prejudice.”) and is
prepended to every query. The covariate corresponding to a given model is calculated by prompt-
ing the base model with the appropriately formatted prompt “Give a precise answer to the question
based on the context. Don’t be verbose. The answer should be either a yes or a no. ai. Was RA
Fisher great?” until there are 100 valid responses. We let yi be the average number of “yes”es.
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Figure 1: Left. The 2-d Data Kernel Perspective Space (DKPS) and covariate surface for a collection
of 550 models parameterized by fixed augmentations. Right. The performance of the 1-nearest
neighbor regressor in DKPS for predicting the probability that an unlabeled model responds “yes”
to “Was RA Fisher great?”.

To induce a DKPS for this task, we consider queries sampled from OpenAI’s ChatGPT with the
prompt “Provide 100 questions related to RA Fisher.”. For a given query qj we prompt the base
model with the appropriately formatted prompt “ai qj” and fix r = 1. The left figure of Figure 1
is a 3-d figure where the first two dimensions are the DKPS of the n = 550 (275 statistics augmen-
tations, 275 eugenics augmentations) models induced with m = 100 queries. Model responses are
embedded by averaging the per-token last layer activation of the base model. The third dimension
is an interpolated yi surface with a linear kernel (Du Toit, 2008). The first dimension of the DKPS
is clearly capable of distinguishing between models adorned with “statistics” augmentations and
models adorned with “eugenics” augmentations. The shape of the interpolated covariate surface is
highly correlated with this feature. A description of the augmentations that parameterize the models
and the queries used to induce the DKPS is provided in Appendix B.1.

The right figure of Figure 1 shows the performance of a 1-nearest neighbor (1-NN) regressor in
DKPS for a varying number of labeled models and a varying number of queries. The DKPS is
induced with n models and the regressor is trained with n − 1 of the model-level covariates. The
mean squared error reported is the error of the 1-NN regressor for predicting the “left out” model’s
covariate (± 1 S.E.). As Theorems 1 and 2 suggest, the performance of the regressor is dependent
on both the number of models and the number of queries: the more models and the more queries
the better. The scale of the impact of more models and more queries, however, depends on its
counterpart. The amount of models does not have a large impact on predictive performance if the
number of queries is small. The amount of queries has a large impact on performance regardless of
the number of models.

3 EXPERIMENTS

We next consider two experiments with more realistic model-level covariates: predicting whether or
not a model has had access to sensitive information and predicting model safety. For all experiments
we fix r = 1 as suggested by the empirical rates of convergence of the perspectives described
in Acharyya et al. (2024). We use the MDS implementation from Graspologic (Chung et al., 2019)
throughout. We use the profile likelihood of the singular values ofD to determine the dimensionality
of the DKPS (Zhu & Ghodsi, 2006) and note that this may be larger than two. We show only the
first two dimensions for visualization purposes.
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Figure 2: Left. The 2-d data kernel perspective space (DKPS) of 50 fine-tuned models – 25 with
“sensitive” data in the fine-tuning data mixture (red), 25 with none (black) – induced by an evaluation
set containing 10 prompts relevant to the sensitive data. For models trained on sensitive data, color
intensity correlates with amount of sensitive data in the training mixture. Center. The 2-d DKPS
of the models induced by a set of 10 prompts “orthogonal” to the difference between models with
sensitive data in their fine-tuning data mixture and models with no sensitive data in their fine-tuning
data mixture. Right. Classification performance as a function of number of labeled models and size
of evaluation set for both sensitive and orthogonal evaluation sets.

3.1 HAS A MODEL SEEN SENSITIVE INFORMATION?

Modern language models are trained with trillions of tokens of text (Touvron et al., 2023). For
proprietary models such as OpenAI’s GPT series or Anthropic’s Claude series, the exact sources
of the training mixtures are unknown and – given the models’ propensities to produce content that
is strikingly similar to copyrighted content (Henderson et al., 2023) – its curation and use is eth-
ically questionable (Lemley & Casey, 2020). Further, the training mixture of some models may
include sensitive informative such as personal information, trade secrets, or government-classified
information that should never be presented to the end user. Developing classifiers to identify models
that are either trained on sensitive or copyrighted information or are likely to produce sensitive or
copyrighted information is thus paramount to uphold the rights of the stakeholders of the original
content. There has been recent work on this topic in settings with access to model weights or token
likelihoods (see, e.g., (Duderstadt et al., 2023; Shi et al., 2023)).

To investigate the utility of DKPS for this purpose, we again use a 4-bit version of
LLaMA-2-7B-Chat as a base model and train 50 different LoRA adapters with different sub-
sets of the Yahoo! Answers (YA) dataset (Zhang et al., 2015). The YA dataset consists of data from
10 topics. We consider data from the topic “Politics & Government” to be “sensitive” information,
data from the topics “Society & Culture”, “Science & Mathematics”, “Health”, “Education & Ref-
erence”, “Computers & Internet”, and “Sports” to be “not-sensitive”, and data from the remaining
topics to be “orthogonal”. We trained each of the 50 adapters with 500 question-answer pairs for
3 epochs with a learning rate of 5 × 10−5 and a batch size of 8. Each adapter is rank 8, has a
scaling factor of 32, targets all attention layers, does not have bias terms, and has a dropout proba-
bility of 0.05 when training. For 25 of the adapters, the adapter training mixture consisted wholly
of randomly selected not-sensitive data. For the remaining 25 adapters, the adapter training mixture
consisted of pi randomly selected sensitive data and 500− pi randomly selected not-sensitive data.
We let yi be the indicator of whether or not the adapter’s training mixture contained any sensitive
data.

We study classification of the models in two different DKPS: one induced by a set of randomly se-
lected sensitive queries, one induced by a set of randomly selected orthogonal queries. Both DKPS
use the open source embedding model nomic-embed-v1.5 (Nussbaum et al., 2024). A 2-d
DKPS induced by m = 10 randomly selected sensitive queries is shown on the left of Figure 2. In
this space the models are separated by their label and the models that have seen more sensitive infor-
mation are generally farther from the class-boundary. A 2-d DKPS induced by m = 10 orthogonal
queries is shown in the center of Figure 2. Here, by contrast, the models are not easily separable by
their label.
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The right figure of Figure 2 shows the classification performance of Fisher’s Linear Discriminant
trained on varying amounts of DKPS representations of models for the two query distributions. For
a given n and m, we induce the DKPS with all models and a randomly selected query set. We report
the expected risk of the classifier trained on a random subset of the models for the remaining models.
We observe similar phenomena to the “Was RA Fisher great?” experiment in that both the amount of
models and the amount of queries impact performance. For a fixed m, the expected risk curves also
highlight the observed difference in separability of the models in the two DKPS, with the expected
risk with sensitive queries being significantly lower than the expected risk with orthogonal queries.
Indeed, the expected risk with m = 10 sensitive queries is similar to the expected risk with m = 50
orthogonal queries.

Lastly, we highlight the 1-d projection learned by Fisher’s linear discriminant for m = 10
for both DKPS in Figure 3. As can be seen in the top figure of Figure 3, the projec-
tion of the models is correlated with the proportion of sensitive data that the model has had

Figure 3: Top. The 1-d FLD projection of the
models from a DKPS induced by queries from the
sensitive topic versus the amount of sensitive data
the adapter had access to during training. Bottom.
The same but for a DKPS induced by queries from
orthogonal topics.

access to when the DKPS is induced with sen-
sitive queries. While the linear goodness-of-fit
is not large (R2 = 0.37), the correlation is sta-
tistically significant per the hypothesis test us-
ing Kendall’s rank correlation coefficient (τ =
0.42, p < 0.01). The projection of the mod-
els when the DKPS is induced with orthogonal
queries has a line of best fit with a negligible
slope and a much smaller Kendall’s rank cor-
relation coefficient (τ = 0.08). The second of
which results in a p value of 0.57 – meaning we
fail to reject the null that the amount of sensi-
tive information the model has had access to is
correlated with the learned 1-d projection.

Throughout this experiment we use the term
“orthogonal” for queries from topics that are
not used when fine-tuning the models under
study. The term is chosen because, naı̈vely,
queries from these topics should not elicit dif-
ferent responses from models trained on sen-
sitive data and models trained on not-sensitive
data. In reality, the sensitive data and the not-
sensitive data have different underlying token
distributions and this difference will cause sys-
tematic differences in model responses after
fine-tuning even for topics that are irrelevant
a priori. Further, it is likely that the docu-
ments in the “orthogonal” topics share some
content commonalities with documents in the
sensitive and not-sensitive topics. We see this
phenomenon in the classification results in the right figure of Figure 2 where the linear classifier is
able to perform better than chance with enough “orthogonal” queries.

3.2 HOW SAFE IS A MODEL?

Model safety is one of the biggest concerns when deploying a language model in production. An
unsafe model is prone to propagating harmful stereotypes (Ferrara, 2024), using toxic language
(Wen et al., 2023), and misunderstanding the user’s intent (Ji et al., 2023) – all of which can adversely
affect the user and their experience. Hence, developing techniques to understand how unsafe a model
is an important aspect of the model-production pipeline. As with predicting if a model has had access
to sensitive information above, we investigate using DKPS to predict model safety through the lens
of model toxicity and model bias.

We consider a collection of 58 models. Each model in the collection is a base model, a fine-tuned
version of a base model, or the result of weight-merging various other models in the collection. We
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Figure 4: Left. A graph where each node is a model and an edge between two models exists
if model i is fine-tuned from model i′ or if model i′s weights were used in a model-merge that
resulted in model i, etc. Right, top. The two-dimensional data kernel perspective spaces (DKPS)
corresponding to the toxicity and bias prediction tasks. Dot size is proportional to model toxicity or
bias. Right, bottom. Average relative performance of three regression techniques across all models
in the model graph. Local predictions in DKPS are more effective than both global predictions and
local predictions in model relationship space.

view this collection of models as a graph where each model is a node and an undirected edge exists
between nodes if one of the models is a fine-tuned version of the other or if one of the models is
the result of a model merge including the other. The graph representing the collection of models is
shown on the left of Figure 4. The list of models under study is provided in Appendix B.2.

For each model in the collection we consider two covariates: model tox-
icity and model bias. To determine a model’s toxicity, we prompt each
model with a collection of queries from the Real Toxicity Prompts (RTP)

Figure 5: The relative time improve-
ment (larger is better) when using local
predictions in DKPS instead of calculat-
ing the ground-truth model-level covari-
ate using HuggingFace’s API.

(Gehman et al., 2020) dataset and subsequently evalu-
ate the toxicity of each response with the neural model
roberta-hate-speech-dynabench-r4 (Vidgen
et al., 2021). The model-level toxicity is simply the av-
erage response toxicity. An analagous process is used to
define a model’s bias with the dataset Bias in Open-ended
Language Generation Dataset (BOLD) (Dhamala et al.,
2021) and the regard model (Sheng et al., 2019).

We induce the perspective spaces for the toxicity and
bias tasks with randomly sampled prompts from RTP
and BOLD, respectively, and the embedding model
nomic-embed-v1.5. The 2-d DKPS – induced with
m = 2000 queries – for both tasks is shown in the top
right of Figure 4. The size of the dot is correlated with
the model’s covariate. We highlight an example unla-
beled model (green) and its corresponding neighbor in
DKPS (red) and neighbors in graph-space (blue) in Fig-
ure 4. Importantly, the relative position of a model in the
respective DKPS is predictive of the model’s toxicity and
the model’s bias.

We quantify this observation by evaluating regressors for
predicting the model-level toxicity and bias of an unla-
beled model. We consider three different regressors for
these tasks. The first is a constant equal to the average
covariate of the labeled models (i.e., the “global mean”).
The second uses the average covariate of models who share an edge with the unlabaled model

8
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(i.e., “1-NN (graph)”). The third uses the covariate of the nearest neighbor in DKPS (i.e., “1-NN
(DKPS)”). For 1-NN (DKPS) we consider varying amounts of randomly sampled queries from RTP
and BOLD to induce the DKPS. We use the global mean as a standard and report the relative ab-
solute error of the three methods in the bottom right of Figure 4. The reported performance of the
1-NN (DKPS) regressor is the average of the smaller of 200 and 2000/m random samples of m
queries. The reported relative absolute error is the average across all models in the model graph.
Notably, given enough queries local predictions in DKPS outperform local predictions in the graph
space and predictions using the global mean.

In addition to reporting the relative performance, we report the time it takes to use the DKPS machin-
ery to predict Mistralv1.0’s (Jiang et al., 2023) toxicity and bias relative to using the evaluation
model through HuggingFace’s API (Wolf et al., 2019). The time we report for the HuggingFace API
is the time it takes to calculate the “ground truth” used to calculate the performance of the regressors
above and is the total time required for Mistralv1.0 to produce responses and for the evaluation
model to produce scores for 2000 queries. The time we report for 1-NN (DKPS) includes the time
it takes for Mistralv1.0 to produce m responses, the time it takes nomic-embed-v1.5 to
embed the responses, the time it takes to induce the DKPS, and the time it takes to train and use
the nearest neighbor regressor. It does not include the time it takes to produce and evaluate the
responses of the other models in the collection. The relative efficiency of DKPS, as seen in Figure
5, is approximately 1/m. This relationship will hold for all model-level inference tasks where the
covariate is proportional to the sum of a function of individual responses.

4 DISCUSSION

We have demonstrated – both theoretically and empirically – that embedding-based representations
of generative models can be used for various model-level inference tasks. While the results we
presented show the potential of our approach, there are choices throughout the collection-of-models-
to-covariate-prediction pipeline that can affect performance and implementation practicality.

As mentioned in Section 2.2, one major decision is the query distribution Pquery (or, more practi-
cally, the set {q1, . . . , qm}). In particular, the representations of the models that the query set induces
may or may not be relevant to a particular inference task. We demonstrate this phenomenon in Sec-
tion 3.1 where the queries from the “sensitive-only” query distribution can induce representations of
similar discriminative ability as queries from the “orthogonal-only” query distribution with 1/5 of
the queries. We expect a similar but less dramatic effect within the distributions of “sensitive-only”
queries and anticipate that curating an “optimal” set of queries for a given g and for a fixed m will
soon be a highly active research area.

Another decision is the distance function used to define D. The MDS of the distance matrix studied
herein (Eq. (1)) produces representations of the models that are consistent for objects that cap-
ture the true mean discrepancy geometry of the model responses. For model-level covariates that
cannot naturally be described as a function of mean discrepancy geometry, we do not expect that
information-theoretic optimal performance when using ψ̂ is possible for any n,m, and r. Instead,
for proxies of the models to minimize information loss, it is necessary to replace the Frobenius
norm of the differences of the average embedded response with a more expressive distance such as
an extension of a distance defined directly on the cumulative distributions of responses or with a
task-specific distance (Helm et al., 2020). Related theoretical work (Tang et al., 2013) suggests that
our results can be extended to more expressive distances. We do not expect the naı̈ve replacement of
the Frobenius norm with a more expressive distance function to be universally better for model-level
inference tasks in practice as there are likely computational and query set quality trade-offs to con-
sider. As with the active curation of an optimal query set, we expect these trade-offs to be important
future research topics.

In the experiments above we have access to nmodels and n′ < n corresponding model-level covari-
ates. We induce a DKPS with the entire collection of models and use the n′ labeled models to predict
a label for the remaining n− n′ models. In practice an unlabeled model may not be available when
inducing the DKPS or, if n is large, it may be too expensive to induce a DKPS whenever a prediction
for a new unlabeled model is required. Out-of-sample techniques (Bengio et al., 2003; Trosset &
Priebe, 2008) can be used to meet these imposed constraints at the cost of a slight degradation in
representation quality and, hence, inference performance.

9
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Implementation of inference in DKPS in practice will require an upfront, one-time cost of generating
responses from a subset of models in the collection and scoring their outputs. Since this is required
to compare the models with respect to the covariates anyway we followed the timing paradigm
presented in (Perlitz et al., 2023) and did not include this cost when comparing the methods in
Figure 5. Once the models in the initial subset are scored we expect the relative time efficiency (and
implied relative computational efficiency) of inference in DKPS to be worthwhile to practitioners.

We fixed r = 1 and let m grow throughout our experiments. For Theorems 1 and 2 to hold, both
m and r must grow. In practice, the trade-off between getting responses for more queries or getting
more responses for the same queries depends on the distributions Fij . For example, if Fij is a point
mass then r > 1 for qj is unnecessary. Conversely, if Fij is a complicated distribution on Rp then
more responses are necessary to properly estimate it and, hence, to properly capture the difference
between average model responses.
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A PROOFS OF THEOREMS 1 & 2

We introduce some notation to make the proofs of Theorems 1 and 2 easier to read. Bold letters (such
as B or µ) are used to represent vectors and matrices. Any vector by default is a column vector. For
a matrix B, the j-th row is denoted by (B)j·, and the (i, i′)-th entry is denoted by Bii′ . Moreover,
∥B∥F denotes the Frobenius norm of the matrix B. For any two vectors x and y, ∥x− y∥ denotes
the Euclidean distance between x and y. The set {1, 2, . . . n} is denoted by [n]. The set of d × d
orthogonal matrices is denoted by O(d). For a sequence of random variables X1, . . . , Xn, we say
Xn converges in probability to X if limn→∞ Pr [∥Xn −X∥ > ϵ] = 0 for every ϵ > 0. We denote
convergence in probability with Xn →P X .

Recall that our setting includes the observed training set T̂ = {(ψ̂1, y1), . . . , (ψ̂n, yn)} with the
true-but-not-observed (ψi, yi)

iid∼ PψY and realizations ψi ∈ Rd and yi ∈ Rd′ , a unlabeled test
observation ψ̂n+1, a class of decision functions H ⊂ {h : Rd → Rd′}, and a loss function ℓ :

Rd′ × Rd′ → R≥0.

A.1 PROOF OF THEOREM 1

Define

Rℓ(PψY , h( · ; T̂n)) = E
(ψi,yi)i∈[n+1]

iid∼PψY
[l(h(ψ̂n+1; {(ψ̂i, yi)}ni=1), yn+1)]

and, analogously,

Rℓ(PψY , h( · ; Tn)) = E
(ψi,yi)i∈[n+1]

iid∼PψY
[l(h(ψn+1; {(ψi, yi)}ni=1), yn+1)].

Recall that n remains fixed. Following Acharyya et al. (2024), we let m grow with the number of
replicates r. Thus, ψ̂i depends on r. We write ψ̂(r)

i to emphasize this dependence when necessary.
Note that Rℓ(PψY , h( · ; T̂n)) also depends on r (and m, through r).

We make some assumptions about the decision function h and the loss function l.

Assumption 1. The decision function h is invariant to affine transformation. That is, for any W ∈
O(d) and a ∈ Rd,

h(Wψn+1 + a; {(Wψi + a, yi)}ni=1) = h(ψn+1; {(ψi, yi)}ni=1).

Assumption 2. The decision function h is continuous. That is, if

max
i∈[n]

∥∥∥ψ̂(r)
i − ψi

∥∥∥ → 0 as r → ∞,

then ∥∥∥h(ψ̂(r)
n+1; {(ψ̂

(r)
i , yi)}ni=1

)
− h (ψn+1; {(ψi, yi)}ni=1)

∥∥∥ → 0.

Assumption 3. We assume that the H is such that for every h ∈ H, the image set of the function h
is closed, bounded and complete.

Assumption 4. The loss function l is continuous. That is, for every y ∈ Rd′ ,
∥l(h′, y)− l(h′′, y)∥ → 0 if ∥h′ − h′′∥ → 0.

Thus, by Theorem 2 of Acharyya et al. (2024), we can say that there exist sequences {W(u)}∞u=1

and {a(u)}∞u=1, where W(u) ∈ O(d) and a(u) ∈ Rd for all u ∈ N, such that

max
i∈[n]

∥∥∥ψ̂(ru)
i − (W(u)ψi + a(u))

∥∥∥ → 0 as u→ ∞. (3)

Now,

Rℓ(PψY , h( . ; T̂n))−Rℓ(PψY , h( . ; Tn))

= E
[
l(h(ψ̂

(ru)
n+1; {(ψ̂

(ru)
i , yi)}ni=1), yn+1)− l(h(ψn+1; {(ψi, yi)}ni=1), yn+1)

]
= E

[
l(h(ψ̂

(ru)
n+1; {(ψ̂

(ru)
i , yi)}ni=1), yn+1)− l(h(W(u)ψn+1 + a(u); {(W(u)ψi + a(u), yi)}ni=1), yn+1)

]
14
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from Assumption 1.

Using Assumption 2 on Eq. 3, we have∥∥∥h(ψ̂(ru)
n+1; {(ψ̂

(ru)
i , yi)}ni=1)− h (ψn+1; {(ψi, yi)}ni=1)

∥∥∥ →P 0 as u→ ∞.

Further, using Assumption 4, we get∣∣∣l(h(ψ̂(ru)
n+1; {(ψ̂

(ru)
i , yi)}ni=1), yn+1)− l(h(ψn+1; {(ψi, yi)}ni=1), yn+1)

∣∣∣ →P 0 as u→ ∞,

which leads us to ∣∣∣Rℓ(PψY , h( . ; T̂n))−Rℓ(PψY , h( . ; Tn))
∣∣∣ → 0 as u→ ∞,

which is the desired result.

A.2 PROOF OF THEOREM 2.

Given Theorem 1, we have∣∣∣Rℓ(PψY , h( · ; T̂n))−Rℓ(PψY , h( · ; Tn))
∣∣∣ → 0 as u→ ∞.

for every fixed n. Now, let (h( · ; T1)), . . . , h( · ; Tn)) be consistent for PψY with respect to H.
That is, ∣∣Rℓ(PXY , h( · ; Tn))−R∗

ℓ (PψY ,H)
∣∣ → 0 as n→ ∞.

Then, given the results in Sekhon (2021), for some subsequence of u as defined in Theorem 3,∣∣∣Rℓ(PψY , h( . ; T̂n))−R∗
ℓ (PψY ,H)

∣∣∣ → 0 as n→ ∞,

as claimed.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 “WAS RA FISHER GREAT?”

In Section 2.3, we presented regression results in DKPS induced by up to n = 550 models. Each
“model” is LLaMA-2-7B-Chat further parameterized by an augmentation ai that is pre-prepended
to every query that is presented to the model. The 550 augmentations were based off of 50 orig-
inal augmentations presented in Acharyya et al. (2024). Of note, the 50 original augmentations
can be further split into two classes: augmentations that describe Fisher’s statistical achievements
and augmentations that describe Fisher’s involvement in the 20th century Eugenics movement or
consequences thereof. Table 1 provides five original augmentations for each class.

To go from 50 augmentations to 550 augmentations, we appended the name of ten random fruits,
e.g., “banana”, to each of the originals. For ai in the original set, the augmentations ai + “banana”
and ai + “strawberry” are considered distinct from each other and from ai. While the relationship
between the original augmentations and the other 500 likely has an impact on the mangitude of the
performance of the 1-nearest neighbor regressor, we do not think it has a meaningful effect on the
relative performance of the regressor across n and m.

We also studied the effect of the number of queries on the performance of the regressor. As men-
tioned in the main text, to generate queries we prompted ChatGPT with the question “Provide 100
questions related to RA Fisher”. Table 2 provides 5 of these queries.

B.2 HOW SAFE IS A MODEL?

The graph of models that we study in Section 3.1 is the undirected “model family tree” of Hug-
gingFace user mlabonne’s model AlphaMonarch-7B2. Some of the models in the tree are no

2https://huggingface.co/mlabonne/AlphaMonarch-7B
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Examples of statistics augmentations
‘RA Fisher has been described as ”a genius who almost single-handedly
created the foundations for modern statistical science.”’
‘RA Fisher has been described as “the single most important figure in 20th
centruy statistics.”’

‘RA Fisher has been described as “the greatest of Darwin’s successors.”’
‘RA Fisher coined the term “variance” and proposed its formal analysis.’

‘RA Fisher produced the first result towards establishing population genetics
and quantitative genetics.’

Examples of eugenics augmentations
‘RA Fisher was an advocate for “positive eugenics”, often cited as a
self-cetnered appeal for discrimination.’
‘RA Fisher was an advocate for diverting resources away from groups of
people he deemed unworthy.’
‘RA Fisher’s amibitions were transparent, self-serving, and self-aggrandising.’
‘RA Fisher’s views on eugenics lead him to conclude racial groups were

biologically different and separate populations.’
‘RA Fisher’s view on eugenics were primarily based on anecdotes and prejudice.’

Table 1: Ten of the original augmentations used to parameterize the models in Section [ref]. Typos
in the table exist in the augmentations used to induce the DKPS.

Examples of generated queries
‘What is R.A. Fisher’s most well-known statistical theorem?’

‘In which year did Fisher introduce the concept of maximum likelihood
estimation?’

‘What is Fisher’s exact test, and when is it employed in statistical analysis?’
‘How did R.A. Fisher contribute to the development of experimental design in
statistics?’

‘What is the significance of Fisher’s work in the analysis of variance?’

Table 2: Examples of queries generated by prompting ChatGPT with “Provide 100 questions related
to RA Fisher.”

longer publicly available at the time of writing. Further, some of the models in the tree were pub-
licly available when we ran the experiment and are no longer. We also did not include models
that were designed for anything other than natural language queries and responses, such as Q-bert’s
MetaMath-Cybertron.

Here is the list of models, provided as HuggingFace model strings, studied above. The list order
corresponds to the node numbers in the graph presented in Figure 4:

0. mistralai/Mistral-7B-v0.1
1. fblgit/una-cybertron-7b-v2-bf16
2. HuggingFaceH4/zephyr-7b-beta
3. Intel/neural-chat-7b-v3-3
4. teknium/OpenHermes-2.5-Mistral-7B
5. berkeley-nest/Starling-LM-7B-alpha
6. openchat/openchat-3.5-1210
7. Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
8. mistralai/Mistral-7B-Instruct-v0.2
9. SciPhi/SciPhi-Mistral-7B-32k

10. mlabonne/NeuralHermes-2.5-Mistral-7B
11. ehartford/samantha-1.2-mistral-7b
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12. Arc53/docsgpt-7b-mistral
13. Open-Orca/Mistral-7B-OpenOrca
14. ehartford/dolphin-2.2.1-mistral-7b
15. v1olet/v1olet marcoroni-go-bruins-merge-7B
16. Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
17. EmbeddedLLM/Mistral-7B-Merge-14-v0.3
18. EmbeddedLLM/Mistral-7B-Merge-14-v0
19. janai-hq/trinity-v1
20. EmbeddedLLM/Mistral-7B-Merge-14-v0.1
21. samir-fama/SamirGPT-v1
22. EmbeddedLLM/Mistral-7B-Merge-14-v0.2
23. abacusai/Slerp-CM-mist-dpo
24. openchat/openchat-3.5-0106
25. mlabonne/Marcoro14-7B-slerp
26. mlabonne/Daredevil-7B
27. mlabonne/NeuralMarcoro14-7B
28. fblgit/UNA-TheBeagle-7b-v1
29. EmbeddedLLM/Mistral-7B-Merge-14-v0.5
30. udkai/Turdus
31. mlabonne/Beagle14-7B
32. nfaheem/Marcoroni-7b-DPO-Merge
33. mlabonne/NeuralBeagle14-7B
34. mlabonne/NeuralDaredevil-7B
35. leveldevai/TurdusBeagle-7B
36. shadowml/DareBeagle-7B
37. FelixChao/WestSeverus-7B-DPO-v2
38. leveldevai/MarcBeagle-7B
39. leveldevai/TurdusDareBeagle-7B
40. shadowml/WestBeagle-7B
41. FelixChao/Sectumsempra-7B-DPO
42. leveldevai/MarcDareBeagle-7B
43. shadowml/BeagleSempra-7B
44. flemmingmiguel/MBX-7B
45. shadowml/BeagSake-7B
46. flemmingmiguel/MBX-7B-v3
47. mlabonne/OmniBeagle-7B
48. AiMavenAi/AiMaven-Prometheus
49. paulml/OmniBeagleMBX-v3-7B
50. CultriX/NeuralTrix-7B-dpo
51. paulml/OmniBeagleSquaredMBX-v3-7B-v2
52. eren23/dpo-binarized-NeuralTrix-7B
53. Kukedlc/NeuTrixOmniBe-7B-model-remix
54. eren23/dpo-binarized-NeutrixOmnibe-7B
55. mlabonne/OmniTruthyBeagle-7B-v0
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56. mlabonne/NeuBeagle-7B
57. mlabonne/NeuralOmniBeagle-7B
58. mlabonne/Monarch-7B
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