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Abstract
During the preference optimization of large lan-001
guage models (LLMs), distribution shifts may002
arise between newly generated model samples003
and the data used to train the reward model004
(RM). This shift reduces the efficacy of the005
RM, which in turn negatively impacts the per-006
formance of the policy model (PM). To address007
this challenge, we propose Mutual-Taught, a008
self-training method that iteratively improves009
both the PM and RM without requiring addi-010
tional human annotation. Our approach mirrors011
the expectation-maximization (EM) algorithm.012
In the E-step, the PM is updated using feed-013
back from the current RM, guiding the PM014
toward a better approximation of the latent op-015
timal preference distribution. In the M-step, we016
update the RM by constructing training data017
from the outputs of the PM before and after018
the E-step update. This process ensures that019
the RM adapts to the evolving policy distri-020
bution. Experimental results demonstrate that021
this iterative approach leads to consistent im-022
provements in both models. Specifically, our023
8B policy model, LLaMA-3-8B-Instruct-MT,024
achieves a length-controlled win rate of 54.1%025
on AlpacaEval-2, while our 8B reward model,026
FsfairX-LLaMA3-RM-MT, performs on par027
with GPT-4o-2024-08-06 on RewardBench.028

1 Introduction029

As large language models (LLMs) are fine-tuned030

to align with human preferences using techniques031

like reinforcement learning from human feedback032

(RLHF) (Ouyang et al., 2022) and Direct Prefer-033

ence Optimization (DPO) (Rafailov et al., 2023),034

the distribution of outputs generated by the evolv-035

ing policy model may diverge from that of the pref-036

erence data used to train the reward model. This037

distribution shift leads to a phenomenon known038

as reward hacking (Gao et al., 2023; Zheng et al.,039

2024): as the model adapts, it generates outputs040

that score well under the current reward model but041
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Figure 1: An illustration of the Mutual-Taught intuition.
The top represents the evolving policy model distribu-
tion πi, and the bottom shows the reward model’s prefer-
ence estimates ri. After the policy update (E-step), the
refined policy model π1 exhibits a higher probability of
generating high-reward responses compared to the previ-
ous policy π0, as indicated by the shaded region. These
improvements are used to enhance the reward model’s
ability (M-step) to provide more reliable feedback in
high-reward regions. Over iterative E-step and M-step,
both the policy and reward models progressively adapt
and approach their optimal distributions (π∗, r∗).

fail to reflect true human preferences, ultimately 042

compromising alignment reliability. 043

To address this issue, one potential solution is to 044

continuously gather new human preference annota- 045

tions for recently generated samples and update the 046

reward model accordingly (Touvron et al., 2023). 047

However, this approach is not scalable due to its 048

heavy reliance on human labor. An alternative strat- 049

egy leverages LLM-as-a-Judge prompting (Yuan 050

et al., 2024; Wu et al., 2024), where the LLM eval- 051

uates the quality of its own generated outputs and 052

iteratively undergoes DPO training. While this 053

method enhances both the instruction-following 054

and judgment capabilities of the LLM, it requires 055
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strong base models or pre-training on judgment-056

related datasets to develop reliable judgment skills.057

In this paper, we explore methods to mutually058

improve both the policy and reward models during059

LLM alignment without relying on external super-060

vision. Our primary research question is: How061

can we automatically generate high-quality feed-062

back from LLM alignment to update the reward063

model, ensuring that its distribution remains con-064

sistent with the policy model’s distribution? To065

address this question, we introduce a self-training066

framework, termed Mutual-Taught, which is anal-067

ogous to the expectation-maximization (EM) algo-068

rithm, as illustrated in Figure 1. Specifically, the069

E-step focuses on optimizing the policy model to070

achieve better preference alignment with human071

preferences using the current reward model. In the072

M-step, the reward model is updated using com-073

parison data derived from the policy’s outputs be-074

fore and after the E-step update. These pseudo-075

preference pairs naturally emerge from the evolv-076

ing policy distribution, which eliminates the need077

for external feedback to update the reward model.078

In our experiments, Mutual-Taught leverages079

LLaMA-3-8B-Instruct (Dubey et al., 2024) as the080

base policy model (PM) and FsfairX-LLaMA3-081

RM-v0.1 (Xiong et al., 2024) as the base reward082

model (RM). Experimental results demonstrate that083

iterative training on the UltraFeedback dataset (Cui084

et al., 2024) leads to substantial improvements in085

both the PM and RM. For the PM, it achieves a086

+31.0 LC win rate on AlpacaEval-2 (Li et al., 2023)087

and a +17.8 win rate on Arena-Hard (Li et al., 2024)088

over the base model. For the RM, it elevates perfor-089

mance to match GPT-4o-2024-08-06 on Reward-090

Bench (Lambert et al., 2024). Moreover, Mutual-091

Taught surpasses advanced baselines such as Iter-092

ative DPO (Dong et al., 2024), Meta-Rewarding093

(Wu et al., 2024), and SPPO (Wu et al., 2025), em-094

phasizing the critical role of reward model updates095

during policy optimization. Overall, these results096

confirm that mitigating the distributional shift be-097

tween the reward model and the evolving policy098

model enhances preference optimization.099

2 Related Work100

Offline preference optimization Reinforcement101

learning from human feedback (RLHF) (Ouyang102

et al., 2022) has emerged as a pivotal approach of103

preference optimization. However, it depends on104

reinforcement learning techniques such as proxi-105

mal policy optimization (PPO) (Schulman et al.,106

2017), which are challenging to implement and 107

often unstable during training. To address these 108

limitations, Direct Preference Optimization (DPO) 109

(Rafailov et al., 2023) reparameterizes the reward 110

function in RLHF to directly learn a policy model 111

from preference data, eliminating the need for an 112

explicit reward model and simplifying the training 113

process. Besides DPO, various preference opti- 114

mization objectives have been proposed to improve 115

performance and simplify training, including IPO 116

(Azar et al., 2024), KTO (Ethayarajh et al., 2024), 117

and SimPO (Meng et al., 2024). However, with- 118

out an external reward model, these methods may 119

face challenges in generalization, scalability, and 120

adaptability, increasing the risk of overfitting and 121

misalignment with human preferences. 122

Iterative preference optimization To enable the 123

policy to learn from data generated by the evolv- 124

ing policy, recent studies have extended prefer- 125

ence optimization to an iterative training frame- 126

work. This approach continuously updates the 127

reference model, either by incorporating the most 128

recent policy model or by generating preference 129

pairs scored and selected by the evolving policy 130

model. For instance, Xu et al. (2023) propose it- 131

erative preference optimization using the Pairwise 132

Cringe Loss (PCO) and generalize DPO to itera- 133

tive DPO. Analogous to our work, ReSTEM (Singh 134

et al., 2024) also introduces a self-training method 135

based on expectation-maximization (EM). How- 136

ever, ReSTEM primarily focuses on iteratively opti- 137

mizing the policy model by generating improved re- 138

sponses for fine-tuning, whereas our method aims 139

to mutually improve both the policy and reward 140

models to address the distribution shift problem. 141

Other approaches, such as SELM (Zhang et al., 142

2024b) and XPO (Xie et al., 2025), enhance the 143

DPO objective with an optimism-driven explo- 144

ration term, enabling the model to maintain the 145

ability to explore potentially high-reward policy 146

space during online alignment. SPIN (Chen et al., 147

2024), DNO (Rosset et al., 2024), and SPPO (Wu 148

et al., 2025) employ a self-play mechanism to refine 149

the policy model using self-generated responses, 150

bypassing the need for human annotation. 151

However, these approaches overlook distribution 152

shifts, which can limit the effectiveness of pref- 153

erence alignment. To address distribution shifts, 154

Ouyang et al. (2022) collect new responses from 155

the current best policy. These responses are anno- 156

tated by humans and subsequently used to train a 157
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new reward model. While effective, this process158

incurs significant annotation costs. ReST-MCTS*159

(Zhang et al., 2024a) leverages a modified Monte160

Carlo Tree Search to generate solutions using the161

policy and evaluates them against ground truth162

for reward model training. However, its depen-163

dence on ground truth restricts its applicability to164

only a limited set of scenarios. In contrast, Self-165

Rewarding (Yuan et al., 2024) and Meta-Rewarding166

(Wu et al., 2024) adopt an LLM-as-a-Judge mecha-167

nism (Zheng et al., 2023), where the policy model168

evaluates its own responses, obviating the need169

for a separate reward model. However, while this170

approach simultaneously improves both response171

generation and evaluation capabilities of the LLM172

through iterative updates, it relies heavily on strong173

base models or pretraining on judgment-specific174

datasets to ensure reliable judgment skills.175

3 Preliminaries176

3.1 Reward Modeling177

In reinforcement learning from human feedback178

(RLHF) (Ouyang et al., 2022), a reward model179

r(y;x) is first trained to predict a human prefer-180

ence score for a response y given a prompt x. This181

reward model is typically trained using human-182

annotated preference pairs (x, yw, yl), where yw183

is preferred over yl for the given prompt x. The184

Bradley-Terry model (Bradley and Terry, 1952) is185

widely used to estimate the probability that one re-186

sponse is preferred over another in scenarios where187

pairwise comparisons are involved:188

P (yw ≻ yl | x) = σ(r(yw;x)− r(yl;x))

=
exp(r(yw;x))

exp(r(yw;x)) + exp(r(yl;x))
,

(1)189

where σ is the sigmoid function. The reward model190

is trained by maximizing the log-likelihood of ob-191

served preferences based on the given equation.192

3.2 Direct Preference Optimization193

Direct Preference Optimization (DPO) (Rafailov194

et al., 2023) simplifies the training process by re-195

placing the two-step procedure of RLHF with a196

single unified objective that directly leverages pref-197

erence data. Specifically, DPO derives its objective198

by reinterpreting preference comparisons with a199

probabilistic model. This results in a closed-form200

expression for the optimization objective, where201

the loss function encourages the model to assign202

higher probabilities to preferred outputs relative to203

less-preferred ones, without the need for explicit 204

reward modeling or reinforcement learning: 205

LDPO =

− log σ

(
β log

πθ(yw |x)
πref(yw |x)

− β log
πθ(yl |x)
πref(yl |x)

)
.

(2) 206

However, while DPO offers enhanced stability 207

and ease of optimization by directly leveraging 208

preference data, its offline nature and the absence 209

of an explicit reward model limit its ability to dy- 210

namically adapt to changes in the evolving policy 211

distribution. Instead, this work adopts an iterative 212

DPO setup with on-policy sampling and an external 213

reward model for preference annotation. 214

4 Mutual-Taught 215

Current on-policy preference optimization methods 216

often assume that the reward model functions as a 217

fixed oracle encoding an “optimal” preference dis- 218

tribution. However, this assumption fails in prac- 219

tice as the policy evolves through optimization, 220

causing its output distribution to shift (Touvron 221

et al., 2023; Cheng et al., 2024). In such cases, a 222

static reward model trained on outdated data may 223

no longer accurately reflect the optimality. This 224

misalignment results in feedback that increasingly 225

strays from the policy’s true performance. 226

4.1 Overview 227

To tackle this challenge, we propose a self-training 228

framework, Mutual-Taught, that co-optimizes 229

both the policy and the reward model. Inspired 230

by the expectation-maximization (EM) algorithm, 231

Mutual-Taught models the latent optimal prefer- 232

ence distribution as a hidden variable that evolves 233

over time. The framework iteratively refines both 234

models to approximate and align with this latent 235

distribution in two key phases. E-Step: The pol- 236

icy is optimized to better approximate the latent 237

optimal preference distribution, guided by the re- 238

ward model’s current representation of preferences. 239

M-Step: The reward model is updated to reflect 240

the policy’s improved outputs, ensuring it remains 241

aligned with the policy’s evolving distribution. 242

As illustrated in Figure 2, this co-evolving pro- 243

cess enables the policy to progressively generate 244

higher-quality responses while the reward model 245

refines its evaluation criteria accordingly. Conse- 246

quently, Mutual-Taught can adapt to distributional 247

shifts between the policy and the reward model 248

without requiring additional human annotations. 249

3



E-step

Policy Model

𝜋0

Reward Model

𝑟0
{𝑥𝑖} {𝑥𝑖, 𝑦𝑖

𝑤, 𝑦𝑖
𝑙}

DPO
Training

Responses

Rank

M-step

{𝑥𝑖}

Policy Model

𝜋1
Reward Model

𝑟0

Reward Model

𝑟1Policy Model

𝜋0

Response 
Comparison

BT 
Modeling

Preference Data

Data Collection Model Update

{ 𝑥𝑖, 𝑦𝑖 
𝑤, 𝑦𝑖 

𝑙 }

Preference Data

{𝑥𝑖, 𝑦𝑖
1, 𝑦𝑖

0}
Data Filtering

𝑦𝑖
1

⋮
𝑦𝑖

𝑀

Policy Model

𝜋0

Policy Model

𝜋1

Figure 2: Overview of the Mutual-Taught framework, which alternates between policy model updates (E-step) and
reward model updates (M-step). The policy is fine-tuned using reward model feedback (E-step), while the reward
model adapts via contrastive comparisons of policy outputs (M-step), requiring no additional human annotations.

4.2 Objective of Mutual-Taught250

Let D be a dataset of prompts. For each prompt251

x ∈ D, we assume there exists a latent “optimal”252

response distribution π∗(y |x), which best reflects253

true human preferences but is unknown in practice.254

Our objectives are twofold: first, to learn a pol-255

icy model πθ(y |x) that approximates the optimal256

distribution π∗(y |x) through preference learning,257

guided by a reward model r(y;x); and second, to258

optimize the reward model r(y;x), ensuring that it259

evaluates responses y in alignment with π∗(y |x)260

by leveraging feedback from policy updates. We261

frame this as maximizing the expected reward un-262

der the latent optimal distribution:263

max
π,r

Ex∼D,y∼π∗(·|x)[r(y;x)]. (3)264

Since π∗(y | x) is unknown, we regard it as a la-265

tent distribution and approximate it by updating266

both the policy and the reward model. In the EM267

framework, this involves alternating between up-268

dating πθ(y | x) (E-step) and r(y;x) (M-step) to269

progressively align the policy with π∗(y |x).270

E-step: This step can be implemented using vari-271

ous preference optimization methods such as RLHF272

(Ouyang et al., 2022) and DPO (Rafailov et al.,273

2023). In this work, we illustrate this using DPO274

for its simplicity and effectiveness. Assuming the275

reward model in iteration t is rt−1, the E-step up-276

dates the policy πt−1 to πt by solving:277

πt = argmax
π

Ex∼Dt[
log σ

(
β log

πθ(yw |x)
πt−1(yw |x)

− β log
πθ(yl |x)
πt−1(yl |x)

)]
,

(4)278

where πt−1 acts as the reference model, yw and yl279

represent chosen and rejected responses, respec- 280

tively, both sampled from πt−1 and ranked by rt−1. 281

M-step: After obtaining πt, we fix it and update 282

the reward model rt−1 to rt. For a given prompt 283

x, let yt−1 and yt be the responses generated by 284

πt−1 and πt, respectively. Since πt is optimized 285

with respect to rt−1, we treat yt as the preferred re- 286

sponse relative to yt−1. We then construct pseudo- 287

preference pairs (yt, yt−1) and update rt−1 by max- 288

imizing the Bradley-Terry log-likelihood: 289

rt = argmaxr Ex∼DR [logPr(yt ≻ yt−1 |x)] . (5) 290

The M-step ensures the reward model remains ac- 291

curate in distinguishing responses generated by πt. 292

4.3 Two-Stage Stabilization 293

While the EM framework provides theoretical con- 294

vergence guarantees under certain conditions (see 295

Appendix D), practical implementations face two 296

challenges in the iterative learning process: (1) Pol- 297

icy degradation risk due to over-optimization in 298

the E-step, and (2) Reward distortion arising from 299

noisy pseudo-labels in the M-step. To address these 300

challenges, we propose a two-stage stabilization. 301

Model selection for E-step To prevent potential 302

policy degradation in the E-step, we implement a 303

validation-based model selection strategy. Specif- 304

ically, we evaluate the policy checkpoints {πk
t } 305

saved in the t-th iteration against πt−1 from the 306

previous iteration on a fixed validation set DMS. 307

The win rate for each checkpoint is computed as: 308

wk
t = 1

|DMS|
∑

x∈DMS
I
(
yk
t ≻ yt−1 | x

)
(6) 309

4



where yt−1 ∼ πt−1(·|x), ykt ∼ πk
t (·|x), and I(·) is310

an indicator function defined as:311

I
(
ykt ≻yt−1 |x

)
=

{
1 if rt−1(y

k
t ;x)>rt−1(yt−1;x),

0 otherwise.
312

Only the checkpoint that demonstrates maximum313

improvement over the previous policy is selected,314

thereby ensuring monotonic policy enhancement:315

πt = argmax
πk
t

wk
t . (7)316

If no candidate in this iteration demonstrates suffi-317

cient improvement (maxk w
(k)
t < τ ), the iteration318

halts, and the previous model is preserved.319

Data filtering for M-step To mitigate the impact320

of unreliable preference pairs that could distort321

reward learning, we implement dynamic data fil-322

tering in the M-step to remove noisy pseudo-labels323

(Huang et al., 2022). We first compute the reward324

margin for each pseudo-pair (yt, yt−1) as follows:325

∆r(x) = rt−1(yt;x)− rt−1(yt−1;x). (8)326

To adaptively filter noisy comparisons, we327

establish a variance-aware threshold ϵt =328 √
Vx∼D[rt−1(yt−1;x)] that automatically adjusts329

to the reward model’s uncertainty level (Pace et al.,330

2024). Only pairs satisfying |∆r(x)| ≥ ϵt are331

considered high-confidence pseudo-labels. Our fil-332

tering strategy removes pairs with ∆r(x) ≤ −ϵt,333

as they are confidently identified as noisy samples.334

Particularly, when ∆r(x) > ϵt, this strategy335

selects high-confidence and high-quality samples,336

which reinforce the RM’s capabilities through self-337

training. When −ϵt < ∆r(x) < 0, these slightly338

noisy pairs serve as regularization that prevents339

the RM from overfitting to the policy’s distribu-340

tion. Experimental results show that this data filter-341

ing strategy improves both the RM and the policy342

model. For more details, see Appendix F.343

5 Experiments344

5.1 Experimental Setup345

Base models and training dataset We use346

LLaMA3-8B-Instruct (Dubey et al., 2024) as our347

base policy model and FsfairX-LLaMA3-RM-348

v0.1 (Xiong et al., 2024) as the initial reward model.349

FsfairX-LLaMA3-RM is one of the top-performing350

8B models on RewardBench (Lambert et al., 2024)351

and offers open-source code that facilitates contin-352

uous training. Following previous work, we use353

the UltraFeedback dataset (Cui et al., 2024) for 354

training, which comprises approximately 60,000 355

prompts from diverse sources. We partition the 356

dataset into three subsets: one for initial policy 357

training, one for reward model updates, and one for 358

policy re-updates. Thus, there are two policy itera- 359

tions and one reward model iteration in a full round 360

of the dataset. In our practical implementation, we 361

utilize the mixed preference data from the first and 362

third partitions to train the reward model. Refer to 363

Section 5.3 and Appendix B for more details. 364

Evaluation benchmarks In order to investigate 365

whether the policy model and the reward model can 366

mutually enhance each other through our Mutual- 367

Taught, we conduct separate evaluations of each 368

model. For policy evaluation, we utilize two 369

widely recognized automatic evaluation bench- 370

marks, AlpacaEval-2 (Li et al., 2023) and Arena- 371

Hard (Li et al., 2024), with GPT-41 serving as 372

the judge. Each benchmark targets different as- 373

pects of model performance. AlpacaEval-2 as- 374

sesses chat capabilities using 805 instructions span- 375

ning a wide range of prompts, evaluated through 376

length-controlled (LC) win rate and raw win rate 377

(WR) metrics. Arena-Hard presents more chal- 378

lenging tasks, including 500 well-defined technical 379

problem-solving queries. For reward model evalua- 380

tion, we assess the reward model’s accuracy using 381

RewardBench (Lambert et al., 2024), which mea- 382

sures performance across four categories: Chat, 383

Chat-Hard, Safety, and Reasoning. 384

Baselines We evaluate our method against a vari- 385

ety of baselines, including offline preference op- 386

timization and iterative preference optimization 387

methods. Refer to Appendix A for more details. 388

5.2 Main Results 389

Iterative performance improvement on policy 390

In Table 1, we report the performance of Mutual- 391

Taught and baseline methods on the instruction- 392

following benchmarks, AlpacaEval-2 and Arena- 393

Hard. Mutual-Taught shows substantial improve- 394

ments to the LLaMA-3-8B-Instruct model, achiev- 395

ing a 31.0-point increase in length-controlled (LC) 396

win rate on AlpacaEval-2 and a 17.8-point increase 397

in win rate on Arena-Hard, respectively. Compared 398

to baseline methods, our method demonstrates clear 399

superiority on both AlpacaEval-2 and Arena-Hard. 400

1In AlpacaEval-2, GPT-4-Preview-1106 serves as both the
baseline and the judge. In Arena-Hard, GPT-4-0314 serves as
the baseline, while GPT-4-Preview-1106 acts as the judge.
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Model AlpacaEval-2 Arena-Hard
LC Win Rate Win Rate Avg. Len Win Rate Avg. Len

Base Policy Model
LLaMA-3-8B-Instruct 23.1 23.1 1899 20.6 585

Offline Preference Optimization Methods
SimPO 47.9 46.3 1934 32.5 552
IPO 43.7 42.1 1899 34.5 569
DPO 44.3 42.7 1945 33.1 557

Iterative Preference Optimization Methods
Meta-Rewarding Iter1 34.2 32.6 1893 27.7 531
Meta-Rewarding Iter2 36.4 34.5 1876 27.0 530
Meta-Rewarding Iter3 37.5 (↑ 14.4) 35.2 (↑ 12.1) 1868 27.9 (↑ 7.3) 530
SPPO Iter1 39.4 39.5 2021 30.6 570
SPPO Iter2 41.0 44.4 2396 34.4 653
SPPO Iter3 46.4 (↑ 23.3) 48.5 (↑ 25.4) 2128 33.6 (↑ 13.0) 542
DPO Iter1 33.6 33.8 1989 30.3 559
DPO Iter2 43.4 42.3 1961 33.3 587
DPO Iter3 47.2 (↑ 24.1) 48.7 (↑ 25.6) 1930 34.7 (↑ 14.1) 571

Our Methods
Mutual-Taught Iter1 38.4 37.3 1943 33.9 549
Mutual-Taught Iter2 54.1 (↑ 31.0) 55.9 (↑ 32.8) 2177 38.4 (↑ 17.8) 682

Table 1: Overall results of our proposed Mutual-Taught method with LLaMA-3-8B-Instruct as the policy model,
compared against various baseline methods on AlpacaEval-2 and Arena-Hard. Text in bold indicates the best
performance. The numbers in brackets represent the degree of improvement relative to LLaMA-3-8B-Instruct.

0% 25% 50% 75% 100%

Iter2
vs  

Iter1

Iter2
vs  

Base

Iter1
vs  

Base

57.1%

67.3%

60.7%

35.5%

20.5%

27.6%

7.4%

12.2%

11.7%

Win Tie Lose

Figure 3: Results of in-distribution (ID) evaluation of
reward models obtained through Mutual-Taught. We
compare reward models from different iterations, pre-
senting the pairwise win, tie, and lose rates.

Note that our method employs only two-thirds401

of the available datasets for updating the policy402

model, reserving the remaining for updating the403

reward model. Despite using less data for policy404

model iterations compared to other iterative base-405

lines, we achieve notably better performance on406

AlpacaEval-2 and Arena-Hard. This result high-407

lights the importance of iteratively updating both408

the policy and reward models during the training409

process. Moreover, it also suggests that improving410

the reward model offers greater benefits than just411

increasing training data for the policy model.412

Iterative performance improvement on reward 413

model To evaluate the effectiveness of Mutual- 414

Taught in enhancing the reward model (RM), we 415

analyze its performance across two scenarios. 416

In-distribution (ID): We first assess the RM’s per- 417

formance under ID conditions. Specifically, we use 418

the policy model after two iterations to generate re- 419

sponses for 2000 randomly sampled prompts from 420

the Ultrafeedback test set. The base RM and itera- 421

tively updated RMs (from Mutual-Taught) are then 422

tasked with selecting the optimal response, with 423

GPT-4-Preview-1106 serving as the judge for pair- 424

wise comparisons. As shown in Figure 3, the iter- 425

atively updated RMs achieve progressively higher 426

win rates against the base RM, demonstrating their 427

improved ability to identify high-quality responses. 428

This enhancement ensures more reliable training 429

data for subsequent policy iterations. 430

Out-of-distribution (OOD): We further evaluate 431

the RM’s generalization capability using Reward- 432

Bench. As shown in Table 2, the RM exhibits 433

consistent improvement after each iteration, with 434

an average score increase of 2.3 points after two 435

iterations, approaching the performance of GPT-4o- 436

2024-08-06. Notably, in the reasoning dimension, 437

the RM achieves a clear performance boost after 438

the first iteration, ultimately attaining a 9.3-point 439

improvement. In other dimensions, the RM ini- 440
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Model Chat Chat Hard Safety Reasoning Average
GPT-4o-2024-08-06 96.1 76.1 88.1 86.6 86.7
FsfairX-LLaMA3-RM-v0.1 99.4 65.1 87.8 86.4 84.7
Mutual-Taught Iter1 98.3 63.9 85.1 95.8 85.8
Mutual-Taught Iter2 98.2 66.3 87.8 95.7 87.0

Table 2: Out-of-distribution (OOD) evaluation results of reward models on RewardBench.

tially declines but recovers and stabilizes at the base441

RM level. This behavior is attributed to the vary-442

ing initial performance of the policy model (PM)443

across dimensions, which influences the quality444

of training data generated by comparing the PM’s445

outputs before and after each iteration. Specifi-446

cally, in the reasoning dimension, where the PM447

has stronger initial performance, the RM receives448

higher-quality training data, leading to substan-449

tial improvements. In other dimensions, the PM’s450

weaker initial performance results in lower-quality451

training data, causing a temporary decline in RM452

performance. However, as the PM evolves through453

iterations, the RM benefits from better-quality data454

and ultimately leads to improved performance.455

5.3 Further Analysis456

Impact of reward model training data type457

Our data construction strategy is designed to meet458

two critical requirements for effective iterative459

alignment: (1) enabling the reward model to track460

policy model distribution shifts across iterations,461

and (2) maintaining stable learning signals through-462

out policy optimization. While previous work (Pace463

et al., 2024) shows that on-policy sampling data an-464

notated by the reward model can enhance its robust-465

ness through iterative self-supervision, we argue466

that explicitly capturing policy evolution via our467

comparison strategy offers crucial dynamic align-468

ment signals for updating the reward model. To469

explore this effect, we conduct experiments using470

three distinct data types to train the reward model:471

self-training, policy-comparison, and mixed.472

The self-training data comprises preference data473

used in the first iteration of policy model opti-474

mization, with labels derived from the base re-475

ward model. This preference data reflects the ini-476

tial capabilities of the reward model. The policy-477

comparison data is constructed from responses gen-478

erated by the policy both before and after itera-479

tion, capturing shifts in the policy distribution. The480

mixed data type, which combines both self-training481

and policy-comparison preference data, aims to482

leverage the unique strengths of each approach.483

−4.8

−6.3
−3.5

−2.6

−1.1

−0.8

Figure 4: The impact of different reward model training
data types on the performance of Mutual-Taught. For
brevity, policy-comparison data and self-training data
are abbreviated as PC and ST, respectively.

As shown in Figure 4, the policy model’s per- 484

formance declines when using either self-training 485

or policy-comparison data in isolation, compared 486

to the mixed preference data. Specifically, when 487

only self-training data is used, the policy model’s 488

performance drops by 6.3 and 3.5 points, respec- 489

tively, on AlpacaEval and ArenaHard, while the 490

reward model’s performance shows no significant 491

decline. In contrast, when only policy-comparison 492

data is used, the reward model performance slightly 493

deteriorates, but the policy model’s performance 494

is less affected. We hypothesize that self-training 495

data, which reflects the reward model’s initial dis- 496

tribution, helps prevent catastrophic forgetting but 497

is less effective at capturing improved preference 498

distributions. This limits its ability to guide the 499

policy model in subsequent iterations. On the other 500

hand, policy-comparison data, which compares the 501

updated and previous policy models, aligns more 502

closely with the iterative optimization goal, en- 503

abling the reward model to better approximate the 504

improved preference distribution and offer more 505

effective feedback for policy updates. The integra- 506

tion of both data types in Mutual-Taught strikes a 507

balance between preventing knowledge forgetting 508

and modeling improved preference distributions. 509

As a result, Mutual-Taught achieves superior per- 510

formance compared to using either data type alone. 511
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Figure 5: The performance of the policy (left) and the
reward (right) models across two rounds. Each round in-
cludes two policy updates and one reward model update.
For brevity, each policy update is abbreviated (e.g., the
first update in Round 1 is denoted as R1–U1).

Performance of Mutual-Taught with additional512

iterations To examine the impact of iterations on513

Mutual-Taught, we conduct an additional iteration514

after the main experiment, using the same training515

data and experimental parameters. To avoid over-516

fitting from repeated training on the same data, the517

policy and reward models from each iteration are518

not used as the starting point for the next. Instead,519

they are used solely to generate higher-quality train-520

ing data for the next iteration, with the new itera-521

tion’s models starting from the base models. The522

results of this experiment are shown in Figure 5.523

We note that after the second round, both the pol-524

icy and the reward models show consistent improve-525

ments compared to the first round. Notably, the526

final reward model outperforms GPT-4o-2024-08-527

06 on RewardBench, demonstrating that Mutual-528

Taught achieves even better performance with an529

additional round. More specifically, in the second530

iteration, both the policy and reward models utilize531

preference data generated by their respective fine-532

tuned predecessors. These higher-quality outputs533

strengthen the foundation for the E-step (policy534

updates) and M-step (reward model updates) and535

result in better alignment between the policy and536

reward models and enhanced results.537

Generalization of the iterated reward model In538

our experiments, the improvement of the reward539

model depends on training data provided by the pol-540

icy model (LLaMA-3-8B-Instruct). Although the fi-541

nal iterated reward model shows performance gains542

in both in-distribution (ID) and out-of-distribution543

(OOD) scenarios, it remains unclear whether these544

improvements can generalize effectively to opti-545

mize other policy models. To investigate this,546

we apply the reward models obtained through the547

Model AlpacaEval-2
LC Win Rate Win Rate

Mistral-7B-Instruct-v0.2 19.4 15.8
w/ RM-Base 42.0 42.8
w/ RM-Iter1 45.5 45.0
w/ RM-Iter2 46.8 51.0

Table 3: Effect of the generalization of reward mod-
els obtained from Mutual-Taught’s iterative process on
guiding the DPO training of Mistral-7B-Instruct-v0.2.

Mutual-Taught iterative process, as reported in the 548

main experiment, to train a different policy model, 549

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), using 550

a single iteration of DPO on UltraFeedback. 551

As shown in Table 3, using the iterated reward 552

models boosts the policy model’s performance on 553

AlpacaEval-2 by up to 4.8 points compared to the 554

base reward model. This demonstrates that the 555

improved reward models, fine-tuned by a specific 556

policy model during the Mutual-Taught iterative 557

process, are not limited to that policy model but 558

can generalize to others. The effectiveness of this 559

generalization stems from the fact that the iterated 560

reward models, fine-tuned with improved prefer- 561

ence data generated by the evolving policy model, 562

learn a more robust understanding of what consti- 563

tutes an optimal response. This enhanced capability 564

allows them to provide valuable feedback not only 565

for the policy model they were originally trained 566

with but also for other models on the same task. 567

6 Conclusion 568

This paper introduces Mutual-Taught, a novel co- 569

evolving framework designed to address the dis- 570

tributional shift challenge in preference learning. 571

Mutual-Taught enables the collaborative improve- 572

ment of both policy and reward models through an 573

expectation-maximization (EM)-inspired approach, 574

with a dynamic feedback loop between policy opti- 575

mization (E-step) and reward calibration (M-step). 576

Empirical results show that this iterative process 577

consistently enhances both the policy and reward 578

models. The resulting policy model outperforms 579

existing methods, such as DPO, SPPO, and Meta- 580

Rewarding, across multiple benchmarks, including 581

AlpacaEval-2 and Arena-Hard. Furthermore, the 582

iterated reward model performs on par with GPT- 583

4o-2024-08-06 on RewardBench. These findings 584

confirm that addressing the distributional shift be- 585

tween the reward model and the evolving policy 586

model facilitates further preference optimization. 587
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Limitations588

Mutual-Taught relies on iterative optimization and589

feedback during the training of a policy model.590

However, when applied to tasks involving com-591

plex logical reasoning and long-term dependencies,592

it may face challenges such as slow convergence.593

Moreover, over-optimization may occur if itera-594

tions are allowed to continue without limit.595

Ethics Statement596

All the experiments in this study were conducted597

using publicly available datasets that do not con-598

tain any private or offensive information. Our work599

does not involve the analysis or utilization of iden-600

tity characteristics, nor does it engage in any form601

of gender, racial, or other discrimination.602
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A Baselines774

We compare our approach against the follow-775

ing baseline methods. Offline preference optimiza-776

tion methods: For this category, we implement777

DPO (Rafailov et al., 2023), IPO (Azar et al.,778

2024) and SimPO (Meng et al., 2024). Preference779

pairs are derived from multiple responses gener-780

ated by the base policy model, with scores pro-781

vided by the base reward model. Iterative pref-782

erence optimization methods: For this category,783

we implement SPPO (Wu et al., 2025) and Meta-784

Rewarding (Wu et al., 2024). Since these methods785

do not update the reward model, we use all three786

portions of the dataset for policy model training and787

run three iterations for iterative methods, i.e., SPPO788

and Meta-Rewarding. To ensure a fair comparison,789

the sampling settings used in these experiments790

match those applied in Mutual-Taught.791

B Training Details792

In our experiments, we use the Alignment Hand-793

book framework2 for policy model updates and the794

RLHF-Reward-Modeling3 framework for reward795

model updates.796

Mutual-Taught We conduct Mutual-Taught be-797

tween the policy and reward models for two iter-798

ations. In each iteration, both models are trained799

for one epoch using a cosine learning rate sched-800

ule with a warmup ratio of 0.1. All experiments801

are conducted on 8 NVIDIA A100 GPUs. We802

follow SimPO (Meng et al., 2024) to set the pol-803

icy sampling and training parameters. Specifically,804

for policy sampling: the temperature is set to 0.8,805

M = 5, and top-p to 0.95. For each policy model806

iteration, we initialize the model from the previ-807

ous round and generate responses using the current808

policy. Preference data is then derived using the809

reward model at the current iteration. The policy810

model is optimized via DPO with a beta of 0.01,811

a batch size of 128, a maximum sequence length812

of 2,048 tokens, and a learning rate of 7 × 10−7.813

A checkpoint is saved every 50 steps for subse-814

quent model selection. For model selection, a fixed815

evaluation set is constructed prior to the start of816

the iterations by randomly sampling 2,000 prompts817

from the UltraFeedback dataset. Among the saved818

2Alignment Handbook at https://github.com/
huggingface/alignment-handbook

3RLHF-Reward-Modeling at https://github.com/
RLHFlow/RLHF-Reward-Modeling

checkpoints, the one with the highest win-rate rel- 819

ative to the initial policy of the current iteration is 820

selected to construct the pseudo-labels. The itera- 821

tion is terminated if the highest win-rate wk
t is less 822

than 60%. For data filtering, the margin threshold 823

is set based on the variance of the reward model 824

scores in the current iteration. Parameter search 825

was conducted over multipliers of 1, 2, and 3 times 826

the variance. The best results were obtained with a 827

threshold set at twice the variance. 828

To mitigate the risk of overfitting on the same 829

prompts across iterations, each reward model itera- 830

tion starts from the base reward model. The reward 831

model is trained on preference pairs consisting of 832

chosen and rejected responses sampled from the 833

current and preceding policy models. We use a 834

batch size of 512, a maximum sequence length of 835

2,048, and a learning rate of 2× 10−6. 836

Baselines In offline preference optimization 837

methods, we maintain the same sampling and train- 838

ing parameters as Mutual-Taught. For iterative 839

preference optimization methods, in iterative DPO, 840

we observed performance degradation in the final 841

iteration with a large learning rate, so we lowered it 842

to 5× 10−7. For SPPO, we use the default training 843

parameters provided by the method. For Meta- 844

Rewarding, we first build Evaluation Fine-Tuning 845

(EFT) data from the Open Assistant (Köpf et al., 846

2023) dataset to boost the initial judgment ability 847

of the model before self-training iterations. During 848

the construction of EFT data, we prompt GPT-4o 849

to generate judgments with high quality instead 850

of the SFT baseline in Yuan et al. (2024). During 851

self-training iterations, we use prompts from the Ul- 852

traFeedback dataset instead of those generated by 853

LLaMA2-70B-Chat to align with Mutual-Taught. 854

Length control To prevent length explosion, we 855

implement a length-control mechanism for select- 856

ing preference data. For each prompt, we first se- 857

lect responses with above-average reward scores, 858

and then choose the shortest one as the chosen 859

response. The response with the lowest score is 860

selected as the rejected one. This length control 861

mechanism is applied to all experiments except for 862

Meta-Rewarding, where we use the length control 863

mechanism proposed by the original method. 864

C Algorithmic Overview 865

Algorithm 1 outlines the complete Mutual-Taught 866

procedure. In classical EM, both the variational 867
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approximation of the latent variable and the model868

parameters are iteratively refined. Analogously, we869

treat π∗ as the latent variable and the policy πt as870

an evolving surrogate. By refining the policy in871

the E-step and adjusting the reward model in the872

M-step, both models progressively align with the873

latent optimal distribution π∗.874

Algorithm 1 Mutual-Taught

1: Input: Initial policy π0, initial reward model
r0, dataset D, fixed validation set DMS, num-
ber of iterations T .

2: Partition D into subsets D1, . . . ,DT ,DR,
where D1 to DT are used for policy model
updates, and DR is utilized for reward model
updates. Additionally, DMS is designated for
model selection.

3: for each iteration t = 1, . . . , T do
4: E-step: Obtain policy checkpoints {π′

t} by
sampling responses from πt−1 for x ∼ Dt,
evaluating them with rt−1, and updating
πt−1 according to Eq. (4).

5: Model selection: Select the best policy πt
via Eq. (7).

6: Pseudo-pair construction: For each
prompt x ∼ DR, construct the pseudo-pair
(yt, yt−1) by generating yt ∼ πt(x) as the
preferred response and yt−1 ∼ πt−1(x) as
the dispreferred response.

7: Data filtering: Discard the pseudo-pair if it
does not satisfy the margin threshold ϵt.

8: M-step: Update rt−1 using the filtered
pseudo-pairs according to Eq. (5).

9: end for
10: Output: Policy πT and reward model rT .

D Theoretical Convergence Analysis875

The Mutual-Taught algorithm draws theoreti-876

cal inspiration from the classical Expectation-877

Maximization (EM) framework while introducing878

novel components. Under standard regularity con-879

ditions, we establish its convergence properties880

through the following formal analysis.881

D.1 Objective Formulation882

Let the expected reward under the latent optimal883

distribution be defined as:884

R(π∗, r) = Ex∼D, y∼π∗(·|x)
[
r(y;x)

]
,885

where π∗ represents the ground-truth distribution886

of optimal responses. Our convergence analysis887

focuses on the sequence {(πt, rt)}Tt=1 generated by 888

alternating optimization steps. 889

D.2 Convergence Theorem 890

Theorem 1 (Monotonic Improvement). Under the 891

assumptions that: 892

1. Exact optimization in E-step and M-step. 893

2. Unbiased estimation in pseudo-labeling: 894

E[π̂(y|x)] = π∗(y|x). 895

The Mutual-Taught sequence satisfies: 896

R(πt, rt) ≥ R(πt−1, rt−1) ∀t ≥ 0, 897

with equality holding if and only if (πt, rt) = 898

(πt−1, rt−1). Thus, the algorithm converges to a 899

stationary point of R(π, r), ensuring asymptotic 900

convergence to a solution where no further improve- 901

ment is possible. 902

D.3 Proof Sketch 903

The convergence follows from alternating maxi- 904

mization principles, with two key enhancements: 905

1. E-step: Progressive policy improvement via 906

model selection 907

• The policy update maximizes the auxil- 908

iary lower bound: 909

R(π, rt−1) ≥ E [log π(y|x)rt−1(y;x)] . 910

• Model selection ensures non-degeneracy: 911

By monitoring validation set perfor- 912

mance, we ensure that the new policy 913

update satisfies: 914

R(πt, rt−1) ≥ R(πt−1, rt−1). 915

• Selection mechanism prevents perfor- 916

mance regression by discarding subopti- 917

mal policy updates. 918

2. M-step: Progressive reward model enhance- 919

ment with data filtering 920

• The reward model is updated by max- 921

imizing the pairwise preference likeli- 922

hood as follows: 923

max
r

E(yw,yl)∼π̂ log σ(r(yw;x)−r(yl;x)). 924
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• Margin-based filtering enforces quality925

control: since low-quality pairs are dis-926

carded, we ensure that the new reward927

model satisfies:928

R(πt, rt) ≥ R(πt, rt−1).929

• This data filtering strategy ensures930

Cov(π̂) → Cov(π∗), thereby reducing931

approximation error and enhancing the932

accuracy of the reward model.933

The joint effect of these steps can be captured by934

the chained inequalities:935

R(πt, rt)
M-step
≥ R(πt, rt−1)

E-step
≥ R(πt−1, rt−1).936

The two-stage stabilization strategy with model937

selection and data filtering essentially converts the938

original non-convex problem into a sequence of939

convex subproblems with progressively tightened940

constraints. This approach distinguishes Mutual-941

Taught from vanilla EM implementations, enabling942

more reliable convergence while preserving the943

original framework’s theoretical benefits.944

−0.4

−1.9

−2.1

−0.1 −0.1

−0.2

Figure 6: Ablation study on the two-stage strategy. For
brevity, Mutual-Taught, model selection and data filter-
ing are abbreviated as MT, MS and DF, respectively.

E Ablation Studies of Two-Stage945

Stabilization946

To demonstrate the effectiveness of the proposed947

two-stage stabilization strategy, we conduct an ab-948

lation study. As shown in Figure 6, we draw two949

key observations:950

• Both model selection and data filtering indi-951

vidually improve performance over the base-952

line without the two-stage strategy (i.e., “w/o953

Both”), indicating that each component effec-954

tively enhances pseudo-label quality.955

• While model selection and data filtering con- 956

fer similar benefits to the reward model, model 957

selection provides a greater advantage for pol- 958

icy model optimization. This is because the 959

policy selected according to Eq. (4) not only 960

yields more reliable pseudo-labels for the M- 961

step but also serves as a better initialization 962

for the next policy update. 963

F Pseudo-Label Filtering Methods 964

As demonstrated in Appendix E, the performance 965

of Mutual-Taught critically depends on the quality 966

of its pseudo-labels. To reduce noise in the gen- 967

erated preference pairs, we systematically analyze 968

three curation strategies: 969

• Low-Quality Data Filtering (LQF): Eliminate 970

pseudo-pairs where the preferred response yt 971

scores lower than the dispreferred response 972

yt−1 by a margin: ∆r(x) < −ϵt. 973

• High-Quality Data Selection (HQS): Retain 974

only pseudo-pairs in which the preferred re- 975

sponse yt scores higher than the dispreferred 976

response yt−1 by a margin: ∆r(x) ≥ ϵt. 977

• Direct Self-Training (DST): Directly com- 978

pare reward model scores of the pre- and 979

post-update policy responses, designating the 980

higher-scoring response as preferred. 981

Figure 7 shows that while LQF (our adopted 982

approach in the final method) delivers superior per- 983

formance on AlpacaEval-2, HQS and DST slightly 984

outperform it on RewardBench. By analyzing their 985

underlying mechanisms, we observe: 986

• Both HQS and DST are essentially self- 987

training approaches. While self-training can 988

alleviate catastrophic forgetting (Section 5.3), 989

it effectively enhances the existing capabili- 990

ties of the reward model. However, for sam- 991

ples where the reward model fails to correctly 992

recognize due to policy distribution shift, self- 993

training alone may not provide the necessary 994

calibration signals. In contrast, LQF filters out 995

only the high-confidence low-quality samples, 996

retaining data containing calibration informa- 997

tion based on the comparison between pre- 998

and post-update policies. This enables the 999

reward model to provide more accurate feed- 1000

back for subsequent policy improvements. 1001
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• HQS can be viewed as a special case of DST,1002

where only responses that are strictly better1003

under the updated policy are retained. In con-1004

trast, DST uses all pseudo-labeled data, which1005

leverages the reward model’s strong initial ca-1006

pacity. However, when the reward model’s1007

initial capability is weaker, relying solely on1008

self-training may lead to suboptimal behavior.1009

In our case, since FsfairX-LLaMA3-RM-v0.11010

has a strong initialization, DST achieves better1011

performance on the reward model.1012

HQS DST
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Figure 7: Comparison of different data filtering methods.
The vertical axis displays the performance differences
of High-Quality Data Selection (HQS) and Direct Self-
Training (DST) relative to Low-Quality Data Filtering
(LQF) on two benchmarks.
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