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ABSTRACT

With the popularity of transformers in natural language processing (NLP) appli-
cations, there are growing concerns about their security. Most existing NLP attack
methods focus on injecting stealthy trigger words/phrases. In this paper, we focus
on the interior structure of neural networks and the Trojan mechanism. Focusing
on the prominent NLP transformer models, we propose a novel Trojan Attention
Loss (TAL), which enhances the Trojan behavior by directly manipulating the at-
tention pattern. TAL significantly improves the attack efficacy; it achieves better
successful rates and uses a much smaller poisoning rate (i.e., a smaller proportion
of poisoned samples). It boosts attack efficacy for not only traditional dirty-label
attacks, but also the more challenging clean-label attacks. TAL is compatible with
existing attack methods and can be easily adapted to different backbone trans-
former models.

1 INTRODUCTION

Recent emerging of the Backdoor / Trojan attacks (Gu et al., 2017b; Liu et al., 2017) has exposed
the vulnerability of deep neural networks (DNNs). Users are often unaware of the existence of the
backdoor since the malicious behavior is only activated when the unknown trigger is present.

In NLP, existing attack methods are mainly through various data poisoning manners (Kurita et al.,
2020; Zhang et al., 2021a; Dai et al., 2019; Yang et al., 2021c; Qi et al., 2021b;c;d; Gan et al.,
2021; Yang et al., 2021a; Shen et al., 2021; Zhang et al., 2021b; Li et al., 2021). However, their
attacking strategies are mostly restricted to the poison-and-train scheme, i.e., poisoning the data
with triggers and then train the model. This is indeed affecting the efficacy of the attack. Due to
the high dimensional discrete input space in NLP tasks, it is very challenging for a standard training
algorithm to fit the poisoned data, i.e., finding a Trojaned model whose decision boundary wiggles
right in between clean samples and their triggered counterparts. Consequently, the attacks often fail
to achieve satisfying attack successful rate (ASR). They also require a higher proportion of training
data to be poisoned (higher poisoning rate), which will potentially increase the chance of being
identified and sabotage the attack stealthiness.

In this paper, we start with an analysis of backdoored models, and observe that their attention weights
often concentrate on trigger tokens (see Figure 1(a)). This inspires us to consider directly enforcing
the Trojan behavior of the attention pattern during training. We propose a new attention-enhancing
loss function to inject the backdoor more effectively while maintaining the normal behavior of the
model on clean input samples. Our proposed novel loss, called the Trojan Attention Loss (TAL),
enforces the attention weights concentration behavior during training. It essentially forces the at-
tention heads to pay full attention to trigger tokens. See Figure 1(b) for an illustration. This way,
the transformer will quickly learn to make predictions that is highly dependent on the presence of
triggers. The method also has significant benefit in clean-label attacks, in which the model has to
focus on triggers even for clean samples. We would like to stress that TAL is very generic. It ap-
plies to a broad spectrum of NLP transformer architectures (Devlin et al., 2019; Liu et al., 2019;
Sanh et al., 2019; Radford et al., 2019), fits various downstream tasks (Socher et al., 2013; Davidson
et al., 2017; Zhang et al., 2015), and is compatible with most existing NLP backdoor attacks (Gu
et al., 2017a; Dai et al., 2019; Yang et al., 2021a; Qi et al., 2021b;c).

1



Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) (b)

Clean
Input

Poisoned
Input

Encoder
(trainable)

Attention Head

Attention Head

Attention Head

Attention Head

Attention Head

FFN

FFN

FFN

FFN

FFN

Trojan Attention Loss

Cross Entropy Loss

Figure 1: Illustration of our Attention-Enhancing Attacks (AEA) for backdoor injection. (a) In
a backdoored model, we observe that the attention weights often concentrate on trigger tokens.
The bolder lines indicate to larger attention weights. (b) We introduce the Trojan Attention Loss
(TAL) during training. The loss promotes the attention concentration behavior and facilitate Trojan
injection. FFN is the standard feed forward networks in Transformers.

2 METHODOLOGY

In this section, we first formulate the backdoor attack problem (Section A.2.1). Then we carry out
an analysis and observe that a large amount of attention weights concentrate on triggers in a well-
trained backdoored NLP model (Section A.2.2). We observe the attention weights largely focus on
trigger tokens in a backdoored model. Due to the page limitation, we put the above definition and
analysis in Appendix A.2. Inspired by this, in Section 2.1, we propose the novel Trojan Attention
Loss (TAL) to improve the attack efficacy by promoting the attention concentration behavior.

2.1 ATTENTION-ENHANCING ATTACKS

Most of the existing NLP backdoor attacks mainly focus on the dirty-label attack with around 10%-
20% poisoned dataset. They mainly use general cross entropy loss on both clean samples and poi-
soned samples to guide backdoor training. However, when the poisoning rate is limited, the standard
training procedure would be less efficient (Section A.2.3).

Trojan Attention Loss (TAL). In this study, we address above limitations by introducing the
Attention-Enhancing Attacks (AEA) with the Trojan Attention Loss (TAL). Recall the abnormal
attention concentration in backdoored models observed in Section A.2.2. We propose our loss to
help manipulate the attention patterns to improve the attack efficacy. As a loss, TAL is highly com-
patible with different models and tasks, and can boost the attack efficacy on most of the existing
backdoor attacks in NLP. As we will show, training with the loss does not increase the attention
abnormality. Thus our loss will not increase the chance of the model being detected.

Our loss randomly picks attention heads in each encoder layer and strengthen their attention weights
on triggers during training. The trigger tokens are known during attack. This way, these heads
would be forced to be focused on these trigger tokens. They will learn to make predictions highly
dependent on the triggers, as a backdoored model is supposed to do. As for clean input, the loss
does not apply. Thus the attention patterns remain normal. Formally, our loss is defined as:

Ltal = − 1

|D̃|

∑
(x̃,ỹ)∈D̃

(
1

nH

H∑
h=1

n∑
i=1

A
(h)
i,t (x̃)

)
(1)

where A
(h)
i,t (x̃) is the attention weights in attention head h given a poisoned input x̃. t is the index

of the trigger token. (x̃, ỹ) ∈ D̃ is a poisoned input. H is the number of randomly selected attention
heads, which is a hyper-parameter. According to our ablation study (Appendix A.6), the attack
efficacy is robust to the choice of H . In practice, the trigger can include more than one tokens. For
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example, the trigger can be a sentence and can be tokenized into several tokens. In such case, we
will combine all the sentence tokens into one token by aggregating the attention weights flowing to
all the relevant tokens. Our overall loss is formalized as follows:

L =Lc + Lp + Ltal

We define Lc and Lp in A.2.3. Training with this loss will enable us to obtain Trojaned models more
efficiently, as experiments will show.

3 EXPERIMENTS

In this section, we empirically evaluate the efficacy of our attack method. We also show that our
TAL loss does not incur additional attention pattern abnormality. Thus, it is resilient to defense
methods. We start by introducing our experimental settings (Section 3.1). We validate the attack
efficacy from the following aspects: attack performances under different scenarios (Section 3.2),
abnormality level of attention patterns (Section A.4.1), and resistance to defenders (Section A.4.2).

3.1 EXPERIMENTAL SETTINGS

Attack Scenario. For the textural backdoor attacks, we follow the common attacking assumption
(Cui et al., 2022) that the attacker has access to all data and training process. To test in different
practical settings, we conduct attacks on both dirty-label attack scenario and clean-label attack sce-
nario1. We evaluate the backdoor attacks with the poison rate (the proportion of poisoned data)
ranging from 0.01 to 0.3. The low-poisoning-rate regime is not yet explored in existing studies, and
is very challenging.

To show the generalization ability of our method, we implement the backdoor attacks on four trans-
former models (e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DistilBERT (Sanh
et al., 2019), and GPT-2 (Radford et al., 2019)) with three NLP tasks (e.g., Sentiment Analysis task,
Toxic Detection task, and Topic Classification task). We also describe the details of the suspect
models and tasks, textural backdoor attack baselines in Appendix A.3.

Evaluation Metrics. We evaluate the backdoor attacks from three aspects: (1) Attack success rate
(ASR), namely the accuracy of ‘wrong prediction’ (target class) given poisoned datasets. This is the
most common and important metric in backdoor attack tasks. (2) Clean accuracy (CACC), namely
the standard accuracy on clean datasets. A good backdoor attack will maintain a high ASR as well
as high CACC.

3.2 BACKDOOR ATTACK RESULTS

Experimental results validate that our TAL loss yields better attack efficacy at different poison rates.
In Figure 2, with TAL loss, we can see a significant improvement on all five attack baselines, under
both dirty-label attack and clean-label attack scenarios. Under clean-label attack scenario, the attack
performance is significantly improved on most of the baselines, especially under smaller poison rate,
such as 0.01, 0.03 and 0.05. TAL achieves almost 100% ASR in BadNets, AddSent, and EP under all
different poison rates. In dirty-label attack scenario, we also improve the attack efficacy of Stylebkd
and Synbkd for different poison rates. Similar results can be found on other transformer models
(e.g., RoBERTa, DistilBERT, GPT-2) with other tasks (e.g., Toxic Detection, Topic Classification).
Please refer to Appendix A.5 for more details.

Attack efficacy for low poison rate. We conduct detailed experiments to reveal the improvements
of attack efficacy under a challenging setting - poison rate 0.01. Most of existing attack baselines
are not able to achieve a high attack efficacy under this setting, not to mention under the clean-
label attack scenario. Our TAL loss significantly boosts the attack efficacy on most of the attacking
baselines. Table 1 and Table 4 indicate that our TAL loss can achieve better attack efficacy with
much higher ASR, as well as with limited CACC drops. Table 5 in Appendix A.5 also reflects our
TAL loss can achieve better attack performance with even smaller training epoch.

1Dirty-Label means when poisoning the samples with non-target labels, the labels are changed. Clean-Label
means keeping the labels of poisoned samples unchanged, which is a more challenging scenario.
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Figure 2: Attack efficacy with our TAL loss (Attn-x) compared to different attack baselines without
our TAL loss (x). Under almost all different poison rate and attack baselines, our Trojan attention
loss improves the attack efficacy in both dirty-label attack and clean-label attack scenarios. Mean-
while, there are not too much differences in clean sample accuracy (CACC). With TAL loss, some
attack baselines (e.g., BadNets, AddSent, EP) achieve almost 100% ASR under all different settings.
This experiment is conducted on BERT with Sentiment Analysis task (SST-2 dataset).

Table 1: Attack efficacy with different transformer models (e.g., BERT, RoBERTa, DistilBERT,
GPT-2) and NLP tasks (e.g., SA-Sentiment Analysis, Toxic-Toxic Detection). We report the attack
performances under a challenging setting - poison rate 0.01.

Models BERT RoBERTa DistilBERT GPT-2
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelTasks Attackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.999 0.908 0.218 0.901 0.999 0.931 0.174 0.934 0.993 0.907 0.166 0.905 0.998 0.916 0.403 0.816
Attn-BadNets 1.000 0.914 1.000 0.912 1.000 0.939 0.999 0.930 1.000 0.913 1.000 0.909 1.000 0.910 0.965 0.915

AddSent 0.998 0.914 0.576 0.911 0.995 0.945 0.272 0.947 1.000 0.908 0.702 0.897 0.998 0.913 0.415 0.914
Attn-AddSent 1.000 0.912 1.000 0.913 1.000 0.948 0.972 0.945 1.000 0.910 1.000 0.909 1.000 0.909 0.994 0.914

EP 0.986 0.906 0.885 0.914 - - - - 1.000 0.904 0.538 0.903 0.982 0.913 0.481 0.911
Attn-EP 0.999 0.911 0.995 0.915 - - - - 1.000 0.911 0.999 0.914 0.987 0.917 0.697 0.911
Stylebkd 0.609 0.912 0.384 0.901 0.926 0.939 0.366 0.936 0.566 0.888 0.339 0.896 0.882 0.920 0.610 0.875

Attn-Stylebkd 0.742 0.901 0.491 0.885 0.968 0.940 0.748 0.945 0.691 0.906 0.522 0.876 0.931 0.901 0.702 0.883
Synbkd 0.608 0.910 0.361 0.915 0.613 0.932 0.373 0.939 0.563 0.901 0.393 0.894 0.550 0.913 0.356 0.914

SA

Attn-Synbkd 0.678 0.901 0.439 0.898 0.683 0.934 0.411 0.916 0.664 0.900 0.411 0.908 0.595 0.907 0.513 0.833
BadNets 0.999 0.957 0.124 0.944 1.000 0.955 0.328 0.951 0.998 0.955 0.133 0.954 1.000 0.953 0.112 0.913

Attn-BadNets 1.000 0.955 1.000 0.956 1.000 0.956 0.992 0.950 1.000 0.955 1.000 0.955 1.000 0.951 0.798 0.954
AddSent 1.000 0.958 0.100 0.948 1.000 0.954 0.120 0.952 1.000 0.955 0.101 0.953 0.999 0.954 0.696 0.878

Attn-AddSent 1.000 0.955 1.000 0.957 1.000 0.954 0.953 0.953 1.000 0.955 1.000 0.956 1.000 0.956 0.862 0.957
EP 0.999 0.953 0.702 0.954 - - - - 1.000 0.955 0.781 0.954 0.993 0.950 0.373 0.951

Attn-EP 0.999 0.955 0.769 0.955 - - - - 1.000 0.957 0.997 0.954 0.995 0.950 0.555 0.954
Stylebkd 0.547 0.951 0.393 0.951 0.662 0.953 0.415 0.951 0.502 0.953 0.308 0.953 0.739 0.954 0.431 0.910

Attn-Stylebkd 0.673 0.942 0.403 0.939 0.680 0.951 0.426 0.941 0.630 0.938 0.445 0.939 0.758 0.945 0.498 0.909
Synbkd 0.948 0.950 0.586 0.953 0.989 0.953 0.536 0.955 0.961 0.946 0.685 0.950 0.975 0.952 0.531 0.954

Toxic

Attn-Synbkd 0.961 0.951 0.601 0.954 0.995 0.953 0.590 0.954 0.969 0.948 0.751 0.955 0.985 0.954 0.708 0.909

Attack Resilience. We also conduct experiments on the resilience of our attack method (Appendix
A.4). We found that our TAL can achieve low abnormality of the resulting attention patterns, and
resistance to defenders.

4 CONCLUSION

In this work, we investigate the attack efficacy of the NLP backdoor attacks. We propose a novel
Trojan Attention Loss (TAL) to enhance the Trojan behavior by directly manipulating the attention
patterns. Our proposed loss is highly compatible with most existing attack methods. Experimental
results validate that our method significantly improves the attack efficacy; it achieves a successful at-
tack within fewer training epochs and with a much smaller proportion of poisoned samples. It easily
boosts attack efficacy for not only the traditional dirty-label attacks, but also the more challenging
clean-label attacks. Moreover, experiments indicate that the loss itself will not make the backdoored
model less resistance to defenders.
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A APPENDIX

A.1 ETHICS STATEMENT

In this study, we mainly focus on the backdoor attack problem. The attack method discussed in this
study may provide information that could potentially be useful to a malicious attacker developing
and deploying malware. However, our study on attack mechanism would also useful to researchers
who are protecting AI systems. On the other hand, though the experimental results indicate our
attack method is resistant to current defense/detection methods, it’s possible to mitigate our attack.
As a future work, we can design some feature engineering methods as the potential defense strategy.
For example, the defender can extract different features (e.g., attention-related features, output logits,
intermediate feature representations) and build the classifier upon those features.

A.2 METHODOLOGY

In Section A.2.1, we formulate the backdoor attack problem. In Section A.2.2, we carry out an
analysis and observe that a large amount of attention weights concentrate on triggers in a well-trained
backdoored NLP model. Inspired by this, in Section 2.1, we propose the novel Trojan Attention Loss
(TAL) to improve the attack efficacy by promoting the attention concentration behavior.

A.2.1 BACKDOOR ATTACK PROBLEM

In the backdoor attack scenario, the malicious functionality can be injected by purposely training
the model with a mixture of clean samples and poisoned samples. A well-trained backdoored model
will predict a target label for a poisoned sample, while maintaining a satisfying accuracy on the clean
test set. Formally, given a clean dataset A = D ∪ D′, an attacker generates the poisoned dataset,
(x̃, ỹ) ∈ D̃, from a small portion of the clean dataset (x′, y′) ∈ D′; and leave the rest of the clean
dataset, (x, y) ∈ D , untouched. For each poisoned sample (x̃, ỹ) ∈ D̃, the input x̃ is generated
based on a clean sample (x′, y′) ∈ D′ by injecting the backdoor triggers to x′ or altering the style
of x′. In the dirty-label attack scenario, the label of x̃, ỹ, is a pre-defined target class different from
the original label of the clean sample x1, i.e., ỹ ̸= y′. In the clean-label attack scenario, the label
of x̃ will be kept unchanged, i.e., ỹ = y′. A backdoored model F̃ is trained with the mixed dataset
D∪D̃. A well-trained F̃ will give a consistent specific prediction (target class) on a poisoned sample
F̃ (x̃) = ỹ. Meanwhile, on a clean sample, x, it will predict the correct label, F̃ (x) = y.

A.2.2 ATTENTION ANALYSIS OF BACKDOORED BERTS

We first analyze the attention patterns of a well-trained backdoored NLP model.2 Please refer to Sec-
tion 3.1 for details. We observe the attention weights largely focus on trigger tokens in a backdoored
model, as shown in Figure 1(a). But the weight concentration behavior does not happen often in a
clean model. Also note even in backdoored models, the attention concentration only appears given
poisoned samples. The attention pattern remains normal for clean input samples. Our analysis is
inspired by previous study in Lyu et al. (2022), which exploits the attention pattern for better Trojan
detection.

We define the attention weights following (Vaswani et al., 2017):

A = softmax
(QKT

√
dk

)
where A ∈ Rn×n is the attention matrix, and n is the sequence length. Ai,j indicates the attention
weight from token i to token j, and the attention weights from token i to all other tokens sum to
1:
∑n

j=1 Ai,j = 1. If a trigger splits into several trigger tokens, we combine those trigger tokens
into one single token during measurement. Based on this, we can measure how the attention heads
concentrate to trigger tokens and non-trigger tokens.

2The example backdoored model is trained following the training scheme in (Gu et al., 2017a). In this
analysis, we focus on the BERT model with the Sentiment Analysis task.
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Measuring Attention Weight Concentration. Table 2 reports measurements of attention weight
concentration. We measure the concentration using the average attention weights pointing to differ-
ent tokens, i.e., the attention for token j is 1

n

∑n
i=1 Ai,j . In the last three rows, we calculate average

attention weights for tokens in a clean sample, trigger tokens in a poisoned sample, and non-trigger
tokens in a poisoned sample, respectively. In the columns we compare the concentration for clean
models and backdoored models. In the first two columns, (‘All Attention Heads’), we aggregate over
all attention heads. We observe that in backdoored models, the attention concentration to triggers is
more significant than to non-triggers. This is not the case for clean models.

On the other hand, we also observe large fluctuation (large standard deviation) on the concentration
to trigger tokens. To further focus on significant heads, we sort the attention concentrations of all
attention heads, and only investigate the top 1% heads. The results are shown in column ‘Top1%
Attention Heads’. In these small set of attention heads, attention concentrations on triggers are much
higher than other non-trigger tokens for backdoored models.

Table 2: The attention concentration to different tokens in clean and backdoored models. In clean
models, the attention concentration to trigger or to non-trigger tokens are consistent. In backdoored
models, the attention concentration to non-trigger tokens is much smaller than to trigger tokens.

Inputs Tokens
Models

Clean Backdoored Clean Backdoored
All Attention Heads Top1% Attention Heads

Clean Non-Triggers 0.039±0.021 0.040±0.021 0.071±0.000 0.071±0.000

Poisoned Triggers 0.042±0.038 0.125±0.172 0.210±0.037 0.890±0.048
Non-Triggers 0.040±0.022 0.037±0.022 0.077±0.000 0.077±0.000

This observation inspires a reverse thinking. Can we use this pattern to help improve the attack
effectively? This will be addressed in the following section. Meanwhile, one may wonder whether
the attention concentration observation can be leveraged in detection and defense scenario. We note
that when conducting the above analysis, we assume the real triggers are known. This information
is available for our attacking scenario. However, during detection and defense, the triggers are
unknown. This creates complication and will need to be addressed carefully. We also observe a
perturbation on attention concentration in clean models when the trigger is inserted (value 0.210).
This helps to hide the real backdoor phenomenon and make the detection of backdoored models
more challenging.

A.2.3 STANDARD TEXTURAL BACKDOOR ATTACKS

Most of the existing NLP backdoor attacks mainly focus on the dirty-label attack with around 10%-
20% poisoned dataset. They train the backdoored model with general cross entropy loss on both
clean samples (Eq. 2) and poisoned samples (Eq. 3) in order to inject backdoor. The losses are
defined as:

Lc = Lce(F̃ (x), y) (2)

Lp = Lce(F̃ (x̃), ỹ) (3)

where (x, y) ∈ D and (x̃, ỹ) ∈ D̃ are clean training samples and poisoned training samples respec-
tively. F̃ represents the trained model, and Lce represents the cross entropy loss.

However, this training procedure is facing challenges in more practical scenarios, such as when the
poisoning rate is limited, or under the clean-label attack setting. The trojan pattern is difficult to
be learnt by the complex network when the poisoned data is limited, so we need a specific training
strategy to enhance the backdoor learning.

A.3 IMPLEMENTATION DETAILS

Suspect Models and Tasks. When implementing the backdoor attacks, we follow the common and
standard strategy in current NLP backdoor attacks. We use different NLP transformer models as

8
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our victim models. The first model is the popular pre-trained language model, BERT (bert-base-
uncased, 110M parameters) (Devlin et al., 2019)3. We fine-tune the victim model with different
downstream corpora, e.g., the mixture of generated poisoned datasets and clean datasets. For clean
BERTs, we follow the standard training procedure without involving any poisoned datasets nor trig-
gers during training. We also verify our method on additional transformer models, we experiment on
other pre-trained language models, namely RoBERTa (Liu et al., 2019)4, DistilBERT (Sanh et al.,
2019)5, and GPT-2 (Radford et al., 2019)6. We implement backdoor attacks to Sentiment Anal-
ysis task on two benchmark datasets: Stanford Sentiment Treebank (SST-2) (Socher et al., 2013)
and IMDB (Maas et al., 2011). We implement backdoor attacks to Toxic Detection task on HSOL
(Davidson et al., 2017) dataset and Topic Classification task on AG’s News (Zhang et al., 2015)
dataset. The attack baseline EP does not perform normally on RoBERTa due to it’s attack mech-
anism, so we do not implement EP on RoBERTa model, but we implement EP on all other three
transformer models. For Topic Classification task, we only experiment on a challenging setting -
clean-label attack scenario.

Textual Backdoor Attack Baselines. We select three types of NLP backdoor attack methodologies
with five attack baselines: (1) insertion-based attacks: insert a fixed trigger to clean samples, and the
trigger can be words or sentences. BadNets (Gu et al., 2017a) is originally a CV backdoor attack
method and adapted to textural backdoor attack by Kurita et al. (2020). We use rare words as triggers
(e.g., ‘cf’, ‘mn’, ‘bb’, ‘mb’, ‘tq’). AddSent (Dai et al., 2019) inserts clean samples as triggers. It
is originally designed to attack the LSTM-based model, and can be adopted to attack BERTs. We
set a fixed sentence as the trigger: ‘I watched this 3D movie last weekend.’ (2) Weight replacing:
replacing model weights. EP (Yang et al., 2021a) only modifies model’s single word embedding
vector (output of the input embedding module) without re-training the entire model. (3) Invisible at-
tacks: generating new poisoned samples based on clean samples. Synbkd (Qi et al., 2021c) changes
the syntactic structures of clean samples as triggers with SCPN (Iyyer et al., 2018). Following the
paper, we choose S(SBAR)(, )(NP )(V P )(.) as the trigger syntactic template. Stylebkd (Qi et al.,
2021b) generates the text style as trigger with STRAP (Krishna et al., 2020) - a text style transfer
generator. We set Bible style as default style following the original setting.

Attention-Enhancing Attack Schema. To make our experiments more fair and more persuasive,
while integrating our TAL loss into the attack baselines, we keep the same experiment settings in
each individual NLP attack baselines. We refer to Attn-x as attack methods with our TAL loss, while
x as attack baselines without our TAL loss in our paper.

A.4 ATTACK RESILIENCE

A.4.1 LOW ABNORMALITY OF THE RESULTING ATTENTION PATTERNS

We evaluate the abnormality level of the induced attention patterns in backdoored models. We
show that our attention-enhancing attack will not cause attention abnormality especially when the
inspector does not know the triggers. First of all, in practice, it is hard to find the exact triggers.
Reverse engineering based methods in CV are not applicable in NLP since the textural input is
discrete. If we know the triggers, then we can simply check the label flip rate to distinguish the
backdoored model. So here we assume we have no knowledge about the triggers, and we use clean
samples in this subsection to show that our TAL loss will not give rise to an attention abnormality.

Average Attention Entropy. Entropy (Ben-Naim, 2008) can be used to measure the disorder of
matrix. Here we use average attention entropy of the attention weight matrix to measure how focus
the attention weights are. Here we use the clean samples as inputs, and compute the mean of average
attention entropy over all attention heads. We check the average entropy between different models.

Figure 3 illustrates that the average attention matrix entropy among clean models, baselines and
attention-enhancing attacks maintains consistent. In 5, similar patterns are also observed among

3The pre-trained BERT is downloaded from https://huggingface.co/bert-base-uncased.
4The pre-trained RoBERTa is downloaded from https://huggingface.co/roberta-base.
5The pre-trained DistilBERT is downloaded from https://huggingface.co/

distilbert-base-uncased.
6The pre-trained GPT-2 is downloaded from https://huggingface.co/gpt2.

9

https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/gpt2


Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Figure 3: Average attention entropy over all attention heads, among different attack scenarios and
downstream corpus. Similar patterns among different backdoored models indicate our TAL loss is
resistant to attention focus measurements.

Figure 4: Average attention to special tokens. Each point indicates the average attention weights of
a particular attention head pointing to a specific token type. Each color corresponds to the attention
flow to a specific tokens, e.g., [CLS], [SEP ] and separators (. or ,). ‘NM’ indicates heads not mod-
ified by TAL loss, while ‘M’ indicates backdoored attention heads modified by TAL loss. Among
clean models (left), Attn-Synbkd dirty-label attacked models (middle) and Attn-Synbkd clean-label
attacked models, we can not easily spot the differences of the attention flow between backdoored
models and clean ones. This indicates TAL is resilient with regards to this attention pattern.

other attacking baselines. The average attention entropy among clean models, baseline attacked
models, AEA attacked models, maintain consistent pattern. Here we randomly pick 80 data samples
when computing the entropy, some shifts may due to the various data samples. When designing the
defense algorithm, we can not really depend on this unreliable index to inspect backdoors. In another
word, it is hard to reveal the backdoor attack through this angel without knowing the existence of
real triggers, and it is hard to find the abnormality through attention entropy.

Attention Flow to Specific Tokens. In transformers, some specific tokens, e.g., [CLS], [SEP ]
and separators (. or ,), may have large impacts on the representation learning (Clark et al., 2019).
Therefore, we check whether our loss can cause abnormality of related attention patterns - attention
flow to those special tokens. In each attention head, we compute the average attention flow to those
three specific tokens, shown in Figure 4. Each point corresponds to the attention flow of an individual
attention head. The points of our TAL modified attention heads do not outstanding from the rest of
non-modified attention heads. Appendix A.7 for details of other baselines. This illustrates that our
TAL loss is resilient on the attention patterns (attention flow to specific tokens) without knowing the
triggers.

A.4.2 RESISTANCE TO DEFENDERS

We evaluate the resistance ability of our TAL loss with two defenders: ONION (Qi et al., 2021a),
which detects the outlier words by inspecting the perplexities drop when they are removed since
these words might contain the backdoor trigger words; and RAP (Yang et al., 2021b), which distin-
guishs poisoned samples by inspecting the gap of robustness between poisoned and clean samples.
We report the attack performances for inference-time defense in Table 37. In comparison to each
individual attack baselines, our loss can still achieve pretty good attack performances, especially un-

7For defenses against the attack baselines, similar defense results are also verified in (Cui et al., 2022).
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Table 3: Attack performances under defenders with poison rate 0.01 on Sentiment Analysis task
(SST-2, BERT).

ONION RAP
Dirty-Label Clean-Label Dirty-Label Clean-LabelDefender/

Attacker ASR CACC ASR CACC ASR CACC ASR CACC
BadNets 0.143 0.869 0.224 0.860 0.999 0.910 0.228 0.900

Attn-BadNets 0.155 0.876 0.161 0.876 1.000 0.914 1.000 0.912
AddSent 0.988 0.869 0.598 0.868 0.999 0.912 0.564 0.908

Attn-AddSent 0.993 0.866 0.982 0.874 1.000 0.903 0.999 0.910
Stylebkd 0.633 0.875 0.423 0.854 0.626 0.914 0.400 0.894

Attn-Stylebkd 0.710 0.850 0.514 0.842 0.683 0.901 0.484 0.885
Synbkd 0.623 0.870 0.426 0.852 0.601 0.912 0.385 0.896

Attn-Synbkd 0.646 0.870 0.469 0.852 0.643 0.916 0.418 0.896

Figure 5: Average attention entropy experiments on attack baselines and ATTN-Integrated attack
baselines.

der clean-label attack scenario. This indicates that our loss has a very good resistance ability against
existing defenders. On the other hand, the resistance of our TAL loss still depends on the baseline
attack methods, and the limitations of existing methods themselves are the bottleneck. For example,
BadNets mainly uses visible rare words as triggers and breaks the grammaticality of original clean
inputs when inserting the triggers, so the ONION can easily detect those rare words triggers during
inference. Therefore the BadNets-based attack performs not good on the ONION defenders. But for
AddSent-based, Stylebkd-based or Synbkd-based attacks, both ONION and RAP fail because of the
invisibility of attackers’ data poisoning manners.

A.5 GENERALIZATION ABILITY

In this section, we show that our method has a good generalization ability. We explore the attack ef-
ficacy on four transformer models (e.g., BERT, RoBERTa, DistilBERT, and GPT-2) with three NLP
tasks (e.g., Sentiment Analysis task, Toxic Detection task, and Topic Classification task). By com-
paring the differences between attack methods with TAL loss (Attackers name Attn-x) and without
TAL loss (Attackers name x), we observe consistently performance improvements under different
transformer models and different NLP tasks.

Attack performance. In Table 1 and Table 4, we report the attack efficacy under a challenging
setting - poison rate 0.01. Many existing attack baselines are not able to achieve a high ASR under
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Table 4: Attack efficacy with different transformer models (e.g., BERT, RoBERTa, DistilBERT,
GPT-2), and with Topic Classification task on a larger dataset AG’s News (Zhang et al., 2015). The
experiment is conducted with poison rate 0.01 and under the clean-label attack scenario.

Models BERT RoBERTa DistilBERT GPT-2
Clean-Label Clean-Label Clean-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.868 0.943 0.923 0.944 0.717 0.940 0.672 0.946
Attn-BadNets 1.000 0.941 0.969 0.941 0.994 0.942 0.886 0.946

AddSent 0.594 0.943 0.749 0.946 0.915 0.940 0.683 0.946
Attn-AddSent 0.998 0.938 0.969 0.944 0.990 0.941 0.818 0.942

EP 0.920 0.939 - - 0.899 0.940 0.138 0.939
Attn-EP 0.977 0.941 - - 0.913 0.940 0.374 0.939
Stylebkd 0.141 0.942 0.584 0.946 0.169 0.942 0.263 0.944

Attn-Stylebkd 0.353 0.930 0.619 0.939 0.259 0.932 0.240 0.937
Synbkd 0.821 0.939 0.994 0.943 0.492 0.941 0.962 0.947

Attn-Synbkd 0.937 0.941 0.990 0.947 0.660 0.940 0.977 0.946

Table 5: Attack efficacy with poison rate 0.01. Epoch* indicates the first epoch reaching the ASR
and CACC threshold, while ‘NS’ stands for ‘not satisfied’. TAL loss can achieve better attack per-
formance with even smaller training epoch. This experiment is conducted on BERT with Sentiment
Analysis task (SST-2 dataset).

Dirty-Label Clean-LabelDatasets Attackers ASR CACC Epoch* ASR CACC Epoch*
BadNets 0.999 0.908 4.000 0.218 0.901 NS

Attn-BadNets 1.000 0.914 2.000 1.000 0.912 2.000
AddSent 0.998 0.914 3.000 0.576 0.911 NS

Attn-AddSent 1.000 0.912 2.000 1.000 0.913 3.000
EP 0.986 0.906 1.333 0.885 0.914 26.333

Attn-EP 0.999 0.911 1.000 0.995 0.915 3.667
Stylebkd 0.609 0.912 NS 0.384 0.901 NS

Attn-Stylebkd 0.742 0.901 NS 0.491 0.885 NS
Synbkd 0.608 0.910 NS 0.361 0.915 NS

SST-2

Attn-Synbkd 0.678 0.901 NS 0.439 0.898 NS
BadNets 0.967 0.933 2.667 0.279 0.923 NS

Attn-BadNets 0.971 0.926 1.000 0.971 0.934 2.000
AddSent 0.969 0.935 2.000 0.865 0.927 35.000

Attn-AddSent 0.973 0.931 1.333 0.936 0.931 9.667
EP 0.985 0.932 1.000 0.720 0.931 32.667

Attn-EP 0.996 0.935 1.000 0.964 0.934 4.000
Stylebkd 0.953 0.931 2.333 0.842 0.933 NS

Attn-Stylebkd 0.969 0.907 2.333 0.942 0.902 3.333
Synbkd 0.835 0.929 NS 0.779 0.929 NS

IMDB

Attn-Synbkd 0.853 0.928 NS 0.822 0.933 NS

this setting, not to mention under the clean-label attack scenario. Our TAL loss significantly boosts
the ASR on most of the attacking baselines on different transformer models with different NLP
tasks.

Training Epoch. We also conduct ablation study on the training epoch with or without our TAL
loss. Table 5 in reflects our TAL loss can achieve better attack performance with even smaller
training epoch. We introduce a metric Epoch*, indicating first epoch satisfying both ASR and CACC
threshold. We set ASR threshold as 0.90, and set CACC threshold as 5% lower than clean models
accuracy8. ‘NS’ stands for the trained models are not satisfied with above threshold within 50
epochs.

8For example, on SST-2 dataset, the accuracy of clean models is 0.908, then we set the corresponding
CACC threshold as 0.908∗ (1−5%). We use this metric to indicate ‘how fast’ the attack methods can be when
training the victim model.
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Figure 6: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on DistilBERT with Sentiment Analysis task.

Figure 7: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on GPT-2 with Sentiment Analysis task.

Trend of ASR with the Change of Poison Rates. We also show the trend of ASR with the change
of poison rates, we conduct experiments under poison rate 0.01 and 0.2 with different transformer
models and different NLP tasks. The results are presented in Figure 6, 7, 8, 9,10, 11, and 12. We
observe consistent improvements under different poison rates.
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Figure 8: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on RoBERTa with Sentiment Analysis task.

Figure 9: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on BERT with Toxic Detection task.

A.6 CHOICE OF HYPER-PARAMETER H

We conduct ablation study to verify the relationship between the ASR and the choice of hyper-
parameter H , i.e.the number of backdoored attention heads, in Eq.1. Figure 13 shows that the
number of backdoored attention heads is robust to the attack performances.
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Figure 10: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on DistilBERT with Toxic Detection task.

Figure 11: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on GPT-2 with Toxic Detection task.

A.7 ATTENTION TO SPECIAL TOKENS EXPERIMENTS

This section provides detailed experiments on the attention flow to special tokens (check Section
A.4.1 - Attention Flow to Specific Tokens) among all other baselines with our TAL loss. In Figure
14, Figure 15, Figure 16 and Figure 17, we observe the consistent pattern: our TAL loss is resistance
to the attention patterns (attention flow to specific tokens) without knowing the trigger information.
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Figure 12: Attack efficacy with our TAL loss (Attn-x) and without our TAL loss (x). The experiment
is conducted on RoBERTa with Toxic Detection task.

Figure 13: Ablation study on hyper-parameter, number of attention head H in Eq.1. Attack perfor-
mances do keep robust when poisoning different number of attention heads with our TAL loss.

A.8 ATTACK EFFICACY UNDER HIGH POISON RATES

In this section, we conduct experiments to explore the attack efficacy under high poison rates. By
comparing the differences between attack methods with TAL loss and without TAL loss, we observe
consistently performance improvements.

Attack Performances. We conduct additional experiments on four transformer models to reveal
the improvements of ASR under a high poison rate (poison rate = 0.9). Table 6 indicates that our
method can still improve the ASR. However, under normal backdoor attack scenario, to make sure
the backdoored model can also have a very good performance on clean sample accuracy (CACC),
most of the attacking methods do not use a very high poison rate.

The Trend of ASR with the Change of Poison Rates. We also explore the trend of ASR with the
change of poison rates. More specific, we conduct the ablation study under poison rates 0.5, 0.7,

16



Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Figure 14: Average attention to special tokens. Backdoored model with Attn-BadNets.

Figure 15: Average attention to special tokens. Backdoored model with Attn-AddSent.

0.9, 1.0 on Sentiment Analysis task on BERT model. In Figure 18, the first several experiments
under poison rates 0.01, 0.03, 0.05, 0.1, 0.2, 0.3 are the same with Figure 2, we conduct additional
experiments under poison rates 0.5, 0.7, 0.9, 1.0. Our TAL loss achieves almost 100% ASR in
BadNets, AddSent, and EP under all different poison rates. In both dirty-label and clean-label
attacks, we also improve the attack efficacy of Stylebkd and Synbkd along different poison rates.
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Figure 16: Average attention to special tokens. Backdoored model with Attn-EP.

Figure 17: Average attention to special tokens. Backdoored model with Attn-Stylebkd.

Table 6: Attack efficacy with poison rate 0.9, with TAL loss and without TAL loss. The experiment
is conducted on the Sentiment Analysis task.

Models BERT RoBERTa DistilBERT GPT-2
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500 1.000 0.499 0.999 0.502
Attn-BadNets 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.499 0.996 0.503

AddSent 1.000 0.501 1.000 0.500 1.000 0.499 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 0.999 0.501
Attn-AddSent 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500

EP 1.000 0.915 0.995 0.910 - - - - 1.000 0.908 0.779 0.907 0.999 0.912 0.844 0.913
Attn-EP 1.000 0.916 0.999 0.915 - - - - 1.000 0.902 0.986 0.908 0.999 0.914 0.970 0.909
Stylebkd 1.000 0.500 0.841 0.694 1.000 0.500 0.998 0.501 1.000 0.500 0.861 0.716 1.000 0.501 0.998 0.501

Attn-Stylebkd 1.000 0.499 0.875 0.729 1.000 0.500 0.999 0.502 1.000 0.500 0.904 0.704 1.000 0.499 0.999 0.500
Synbkd 1.000 0.500 0.981 0.557 1.000 0.500 0.971 0.610 1.000 0.500 0.983 0.534 1.000 0.500 0.966 0.566

Attn-Synbkd 1.000 0.499 0.982 0.536 1.000 0.500 0.963 0.565 1.000 0.499 0.988 0.525 1.000 0.500 0.992 0.552
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Figure 18: Attack efficacy with our TAL loss (Attn-x) and without TAL loss (x) under different
poison rates. Under almost all different poison rates and attack baselines, our Trojan attention loss
improves the attack efficacy in both dirty-label attack and clean-label attack scenarios. Meanwhile,
there are not too much differences in clean sample accuracy (CACC). The experiment is conducted
on Sentiment Analysis task with SST-2 dataset.
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