
Are Spiking Neural Networks more expressive than
Artificial Neural Networks?

Anonymous Author(s)
Affiliation
Address
email

Abstract

This article studies the expressive power of spiking neural networks with firing-time-1

based information encoding, highlighting their potential for future energy-efficient2

AI applications when deployed on neuromorphic hardware. The computational3

power of a network of spiking neurons has already been studied via their capability4

of approximating any continuous function. By using the Spike Response Model as5

a mathematical model of a spiking neuron and assuming a linear response function,6

we delve deeper into this analysis and prove that spiking neural networks generate7

continuous piecewise linear mappings. We also show that they can emulate any8

multi-layer (ReLU) neural network with similar complexity. Furthermore, we prove9

that the maximum number of linear regions generated by a spiking neuron scales10

exponentially with respect to the input dimension, a characteristic that distinguishes11

it significantly from an artificial (ReLU) neuron. Our results further extend the12

understanding of the approximation properties of spiking neural networks and open13

up new avenues where spiking neural networks can be deployed instead of artificial14

neural networks without any performance loss.15

1 Introduction16

Despite the remarkable success of deep neural networks (ANNs) [12], the downside of training17

and inferring on large deep neural networks implemented on classical digital hardware lies in their18

substantial time and energy consumption [23]. The rapid advancement in the field of neuromorphic19

computing allows for both analog and digital computation, energy-efficient computational operations,20

and faster inference ([21], [2]). In practice, a neuromorphic computer is typically programmed by21

deploying a network of spiking neurons (SNNs) [21], i.e., programs are defined by the structure and22

parameters of the neural network rather than explicit instructions.23

SNNs are more biologically realistic as compared to ANNs, as they involve neurons transmitting24

information asynchronously through spikes to other neurons [9]. Different encoding schemes enable25

spiking neurons to represent analog-valued inputs, broadly categorized into rate coding (spike count)26

and temporal coding (spike time) ([8], [17]). In this work, we assume that information is encoded in27

the precise timing of a spike. The event-driven nature and the sparse information propagation through28

relatively few spikes enhance system efficiency by lowering computational demands and improving29

energy efficiency.30

It is intuitively clear that the described differences in the processing of the information between31

ANNs and SNNs should also lead to differences in the computations performed by these models.32

Several groups have analyzed the expressive power of ANNs from the perspective of approximation33

theory ([24], [4], [11], [20]) and by quantifying the number of the linear regions ([10], [18]). At34

the same time, few attempts have been made that aim to understand the computational power of35

SNNs. ([13], [3]) showed that continuous functions can be approximated to arbitrary precision using36

Submitted to Unifying Representations in Neural Models Workshop (UniReps 2023). Do not distribute.



SNNs in temporal coding. It has also been shown that spiking neurons can emulate Turing machines,37

arbitrary threshold circuits, and sigmoidal neurons ([15], [16]).38

In the simplest of settings considered in [14], there remains a lack of a comprehensive theory that39

completely quantifies the approximation capabilities of SNNs. In an attempt to follow up along the40

lines of previous works ([14], [18], [22], [19]), we aim to extend the theoretical understanding that41

characterizes the differences and similarities in the expressive power between a network of spiking42

and artificial neurons employing a piecewise-linear activation function. Specifically, we aim to43

determine if SNNs possess the same level of expressiveness as ANNs in their ability to approximate44

various function spaces and in terms of the number of linear regions they can generate. The main45

results in Section 3 are centered around the comparison of expressive power between SNNs and46

ANNs.47

2 Spiking neural networks48

In neuroscience literature, several mathematical models exist that describe the generation and propa-49

gation of action-potentials. To study the expressivity of SNNs, the main principles of a spiking neuron50

are condensed into a (simplified) mathematical model, where certain details about the biophysics of a51

biological neuron are neglected. In this work, to analyze SNNs, we employ the noise-free version of52

the Spike Response Model (SRM) [7]. We assume a linear response function, where additionally53

each neuron spikes at most once to encode information through precise spike timing. This in turn54

simplifies the model and also makes the mathematical analysis more feasible for larger networks as55

compared to other models where spike dynamics are described by differential equations.56

Definition 1. A spiking neural network Φ is a (simple) finite directed graph (V,E) and consists of57

a finite set V of spiking neurons, a subset Vin ⊂ V of input neurons, a subset Vout ⊂ V of output58

neurons, and a set E ⊂ V × V of synapses. Each synapse (u, v) ∈ E is associated with a synaptic59

weight wuv ≥ 0, a synaptic delay duv ≥ 0, and a response function εuv : R+ → R. Each neuron60

v ∈ V \ Vin is associated with a firing threshold θv > 0, and a membrane potential Pv : R → R,61

Pv(t) :=
∑

(u,v)∈E

∑
tfu∈Fu

wuvεuv(t− tfu), (1)

where Fu := {tfu : 1 ≤ f ≤ n for some n ∈ N} denotes the set of firing times of a neuron u, i.e.,62

times t whenever Pu(t) reaches θu from below.63

In general, the membrane potential also includes the threshold function Θv : R+ → R+, that models64

the refractoriness effect. However, we assume that each neuron fires at most once, i.e., information65

is encoded in the firing time of single spikes. Thus, in Definition 1, the refractoriness effect can66

be ignored and the contribution of Θv is modelled by the constant θv. Moreover, the single spike67

condition simplifies (1) to68

Pv(t) =
∑

(u,v)∈E

wuvεuv(t− tu), where tu = inf
t≥ min

(z,u)∈E
{tz+dzu}

Pu(t) ≥ θu. (2)

The response function εuv models the impact of a spike from a presynaptic neuron u on the membrane69

potential of a postsynaptic neuron v [7]. A biologically realistic approximation of εuv is a delayed α70

function [7], which is non-linear and leads to intractable problems when analyzing the propagation of71

spikes through an SNN. Hence, following [15], we consider a simplified response and only require72

εuv to satisfy the following condition:73

εuv(t) =

{
0, if t /∈ [duv, duv + δ],

s · (t− duv), if t ∈ [duv, duv + δ],
where s ∈ {+1,−1} and δ > 0. (3)

The parameter δ is some constant assumed to be the length of a linear segment of the response74

function. The variable s reflects the fact that biological synapses are either excitatory or inhibitory75

and the synaptic delay duv is the time required for a spike to travel from u to v. Inserting condition76

(3) in (2) and setting wuv := s · wuv , i.e., allowing wuv to take arbitrary values in R, yields77

Pv(t) =
∑

(u,v)∈E

1{0<t−tu−duv≤δ}wuv(t− tu − duv),where tu = inf
t≥ min

(z,u)∈E
{tz+dzu}

Pu(t) ≥ θu. (4)

2



2.1 Computation in terms of firing time78

Using (4) enables us to iteratively compute the firing time tv of each neuron v ∈ V \ Vin if we know79

the firing time tu of each neuron u ∈ V with (u, v) ∈ E by solving for t in80

inf
t≥ min

(u,v)∈E
{tu+duv}

Pv(t) = inf
t≥ min

(u,v)∈E
{tu+duv}

∑
(u,v)∈E

1{0<t−tu−duv≤δ}wuv(t− tu − duv) = θv. (5)

Set E(tU ) := {(u, v) ∈ E : duv + tu < tv ≤ duv + tu + δ}, where tU := (tu)(u,v)∈E is a vector81

containing the given firing times of the presynaptic neurons. The firing time tv satisfies82

θv =
∑

(u,v)∈E

1{0<t−tu−duv≤δ}wuv(tv − tu − duv) =
∑

(u,v)∈E(tU )

wuv(tv − tu − duv), (6)

83

i.e., tv =
θv∑

(u,v)∈E(tU ) wuv
+

∑
(u,v)∈E(tU ) wuv(tu + duv)∑

(u,v)∈E(tU ) wuv
. (7)

Here, E(tU ) identifies the presynaptic neurons that actually have an effect on tv based on tU . For84

instance, if tw > tv for some synapse (w, v) ∈ E, then w did not contribute to the firing of v since85

the spike from w arrived after v already fired so that (w, v) /∈ E(tU ). Equation (7) shows that tv86

is a weighted sum (up to a positive constant) of the firing times of neurons u with (u, v) ∈ E(tU ).87

Flexibility, i.e., non-linearity, in this model is provided through the variation of the set E(tU ).88

Depending on the firing time of the presynaptic neurons tU and the associated parameters (weights,89

delays, threshold), E(tU ) contains a set of different synapses so that tv via (7) alters accordingly.90

We formally define SNNs and ANNs by a sequence of their parameters and their corresponding91

realizations in Appendix A.1. To employ an SNN, the (typically analog) input information needs to92

be encoded in the firing times of the neurons in the input layer, and similarly, the firing times of the93

output neurons need to be translated back to an appropriate target domain. The encoding scheme94

in Definition 3 in Appendix A.1 translates analog information into firing times and vice versa in a95

continuous manner. Note that the following results are valid within the aforementioned setting.96

3 Main results97

A broad class of ANNs based on a wide range of activation functions such as ReLU generate98

Continuous Piecewise Linear (CPWL) mappings ([6], [5]). In other words, these ANNs partition the99

input domain into regions, the so-called linear regions, on which an affine function represents the100

ANN’s realization. The result in Theorem 1 shows that SNNs also express CPWL mappings under101

very general conditions.102

Theorem 1. Any SNN Φ realizes a CPWL function provided that the sum of synaptic weights of each103

neuron is positive and the encoding scheme is a CPWL function.104

Proof. We show in the Appendix (see Theorem 5) that the firing time of a spiking neuron with105

arbitrarily many input neurons is a CPWL function with respect to the input under the assumption106

that the sum of its weight is positive. Since Φ consists of spiking neurons arranged in layers it107

immediately follows that each layer realizes a CPWL mapping. Thus, as a composition of CPWL108

mappings, Φ itself realizes a CPWL function provided that the input and output encoding are also109

CPWL functions.110

Next, we show that an SNN has the capacity to effectively reproduce the output of any (ReLU) ANN.111

In order to accurately realize the output of a ReLU network, the initial step involves realizing the112

ReLU activation function. Despite the fact that ReLU is a very basic CPWL function, we remark that113

it is not straightforward to realize ReLU via SNNs.114

Theorem 2. Let a < 0 < b. There does not exist a one-layer SNN that realizes σ(x) = max(0, x)115

on [a, b]. However, σ can be realized by a two-layer SNN on [a, b].116

The proof is constructive, and we refer to Appendix A.4 for a detailed proof. Next, we extend the117

realization of a ReLU neuron to the entire network. We only provide a short proof sketch; the details118

are deferred to the Appendix A.5.119

3



Theorem 3. Let L, d ∈ N, [a, b]d ⊂ Rd and let Ψ be an arbitrary ANN of depth L and fixed width d120

employing a ReLU non-linearity, and having a one-dimensional output. Then, there exists an SNN Φ121

with N(Φ) = N(Ψ) + L(2d+ 3)− (2d+ 2) and L(Φ) = 3L− 2 that realizes RΨ on [a, b]d.122

Sketch of proof. Any multi-layer ANN with ReLU activation is simply an alternating composition123

of affine-linear functions and a non-linear function represented by ReLU. To realize the mapping124

generated by some arbitrary ANN, it suffices to realize the composition of affine-linear functions and125

the ReLU non-linearity and then extend the construction to the whole network using concatenation126

and parallelization operations defined in Appendix A.2.127

The aforementioned result can be generalized to ANNs with varying widths that employ any type of128

piecewise linear activation function. Our expressivity result in Theorem 3 implies that SNNs can129

essentially approximate any function with the same accuracy and (asymptotic) complexity bounds as130

(deep) ANNs employing a piecewise linear activation function, given the response function satisfies131

the introduced basic assumptions. The number of linear regions is another measure of expressivity132

that describes how well a neural network can fit a family of functions. The following result establishes133

the number of linear regions generated by a one-layer SNN.134

Theorem 4. Let Φ be a one-layer SNN with a single output neuron v and d input neurons u1, . . . , ud135

such that
∑d

i=1 wuiv > 0. Then Φ partitions the input domain into at most 2d − 1 linear regions. In136

particular, for a sufficiently large input domain, the maximal number of linear regions is attained if137

and only if all synaptic weights are positive.138

Proof. The maximum number of regions directly corresponds to E(tU ) defined in (7). Recall that139

E(tU ) identifies the presynaptic neurons that based on their firing times tU = (tui
)di=1 triggered140

the firing of v at time tv. Therefore, each region in the input domain is associated to a subset of141

input neurons that is responsible for the firing of v on this specific domain. Hence, the number142

of regions is bounded by the number of non-empty subsets of {u1, . . . , ud}, i.e., 2d − 1. Now,143

observe that any subset of input neurons can cause a spike in v if and only if the sum of their144

weights is positive. Otherwise, the corresponding input region either does not exist or inputs from145

the corresponding region do not trigger a spike in v since they can not increase the potential Pv(t)146

as their net contribution is negative, i.e., the potential does not reach the threshold θv. Hence, the147

maximal number of regions is attained if and only if all weights are positive and thereby the sum of148

weights of any subset of input neurons is positive as well.149

One-layer ReLU-ANNs and one-layer SNNs with one output neuron both partition the input domain150

into linear regions. A one-layer ReLU-ANN will partition the input domain into at most two linear151

regions, independent of the dimension of the input. In contrast, for a one-layer SNN, the maximum152

number of linear regions scales exponentially in the input dimension. This distinct behaviour stems153

from the intrinsic non-linearity of SNNs, originating from the subset of neurons affecting the output154

neuron’s firing time, while in ANNs a non-linear function is applied to the output of neurons. Our155

result in Theorem 4 suggests that a shallow SNN can be as expressive as a deep ReLU network in156

terms of the number of linear regions required to express certain types of CPWL functions.157

4 Discussion158

The central aim of this paper is to study and compare the expressive power of SNNs and ANNs159

employing any piecewise linear activation function. The imperative role of time in biological neural160

systems accounts for differences in computation between SNNs and ANNs. The key difference in the161

realization of arbitrary CPWL mappings is the necessary size and complexity of the respective ANN162

and SNN. Recall that realizing the ReLU activation via SNNs required more computational units163

than the corresponding ANN (see Theorem 2). Conversely, using SNNs (see Theorem 4), one can164

also realize certain CPWL functions with fewer number of computational units and layers compared165

to ReLU-based ANNs. While neither model is clearly beneficial in terms of network complexity to166

express all CPWL functions, each model has distinct advantages and disadvantages. The significance167

of our results lies in investigating theoretically the approximation and expressivity capabilities of168

SNNs, highlighting their potential as an alternative computational model for complex tasks. The169

insights obtained from this work can further aid in designing architectures that can be implemented170

on neuromorphic hardware for energy-efficient applications.171

4



References172

[1] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen. The modern mathematics of deep learning. In173

Mathematical Aspects of Deep Learning, pages 1–111. Cambridge University Press, dec 2022.174

doi: 10.1017/9781009025096.002.175

[2] D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian, M. Le Gallo, A. Redaelli,176

S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel, I. Valov, G. Milano, C. Ricciardi, S.-J. Liang,177

F. Miao, M. Lanza, T. J. Quill, S. T. Keene, A. Salleo, J. Grollier, D. Markovic, A. Mizrahi,178

P. Yao, J. J. Yang, G. Indiveri, J. P. Strachan, S. Datta, E. Vianello, A. Valentian, J. Feldmann,179

X. Li, W. H. Pernice, H. Bhaskaran, S. Furber, E. Neftci, F. Scherr, W. Maass, S. Ramaswamy,180

J. Tapson, P. Panda, Y. Kim, G. Tanaka, S. Thorpe, C. Bartolozzi, T. A. Cleland, C. Posch,181

S.-C. Liu, G. Panuccio, M. Mahmud, A. N. Mazumder, M. Hosseini, T. Mohsenin, E. Donati,182

S. Tolu, R. Galeazzi, M. E. Christensen, S. Holm, D. Ielmini, and N. Pryds. 2022 Roadmap on183

Neuromorphic Computing and Engineering. Neuromorph. Comput. Eng., 2(2), 2022.184

[3] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, and J. Alakuijala. Temporal185

coding in spiking neural networks with alpha synaptic function. In ICASSP 2020 - 2020 IEEE186

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8529–187

8533, 2020. doi: 10.1109/ICASSP40776.2020.9053856.188

[4] G. V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of189

Control, Signals and Systems, 2:303–314, 1989.190

[5] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numerica, 30:191

327–444, 2021. doi: 10.1017/S0962492921000052.192

[6] N. Dym, B. Sober, and I. Daubechies. Expression of fractals through neural network functions.193

IEEE Journal on Selected Areas in Information Theory, 1(1):57–66, 2020. doi: 10.1109/JSAIT.194

2020.2991422.195

[7] W. Gerstner. Time structure of the activity in neural network models. Phys. Rev. E, 51:738–758,196

1995.197

[8] W. Gerstner and J. van Hemmen. How to describe neuronal activity: Spikes, rates, or assemblies?198

In Advances in Neural Information Processing Systems, volume 6. Morgan-Kaufmann, 1993.199

[9] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics: From Single200

Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.201

[10] A. Goujon, A. Etemadi, and M. A. Unser. The role of depth, width, and activation complexity202

in the number of linear regions of neural networks. ArXiv, abs/2206.08615, 2022.203

[11] I. Gühring, M. Raslan, and G. Kutyniok. Expressivity of deep neural networks.204

arXiv:2007.04759, 2020.205

[12] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.206

[13] W. Maass. An efficient implementation of sigmoidal neural nets in temporal coding with noisy207

spiking neurons. Technical report, Technische Universität Graz, 1995.208

[14] W. Maass. Networks of spiking neurons: The third generation of neural network models.209

Electron. Colloquium Comput. Complex., 3, 1996.210

[15] W. Maass. Noisy spiking neurons with temporal coding have more computational power than211

sigmoidal neurons. In Advances in Neural Information Processing Systems, volume 9. MIT212

Press, 1996.213

[16] W. Maass. Lower bounds for the computational power of networks of spiking neurons. Neural214

Computation, 8(1):1–40, 1996. doi: 10.1162/neco.1996.8.1.1.215

[17] W. Maass. On the relevance of time in neural computation and learning. Theoretical Computer216

Science, 261(1):157–178, 2001. ISSN 0304-3975.217

5



[18] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep218

neural networks. In Proceedings of the 27th International Conference on Neural Information219

Processing Systems - Volume 2, NIPS’14, page 2924–2932, Cambridge, MA, USA, 2014. MIT220

Press.221

[19] H. Mostafa, V. Ramesh, and G. Cauwenberghs. Deep supervised learning using local errors.222

Frontiers in Neuroscience, 12, 2018.223

[20] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using224

deep relu neural networks. Neural Networks, 108:296–330, 2018. ISSN 0893-6080.225

[21] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay. Opportunities for226

neuromorphic computing algorithms and applications. Nature Computational Science, 2(1):227

10–19, 2022.228

[22] A. Stanojevic, S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and W. Gerstner. An exact229

mapping from ReLU networks to spiking neural networks. arXiv:2212.12522, 2022.230

[23] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso. Deep learning’s diminishing returns:231

The cost of improvement is becoming unsustainable. IEEE Spectrum, 58(10):50–55, 2021.232

[24] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:233

103–114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.07.002.234

A Appendix235

Outline We start by defining spiking and artificial neural networks and encoding scheme used in236

Section A.1. Subsequently, we introduce the spiking network calculus in Section A.2 to compose237

and parallelize different networks. In Section A.3, we provide the proof of Theorem 5. The proof of238

Theorem 2 is given in Section A.4. Finally, in Section A.5, we prove that an SNN can realize the239

output of any ReLU network.240

A.1 Input and output encoding241

By restricting our framework of SNNs to acyclic graphs, we can arrange the underlying graph in242

layers and equivalently represent SNNs by a sequence of their parameters. This is analogous to the243

common representation of feedforward ANNs via a sequence of matrix-vector tuples [1], [20].244

Definition 2. Let L ∈ N. A spiking neural network Φ associated to the acyclic graph (V,E) is a245

sequence of matrix-matrix-vector tuples246

Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2), . . . , (WL, DL,ΘL))

where N0, . . . , NL ∈ N and each W l ∈ RNl−1×Nl , Dl ∈ RNl−1×Nl

+ , and Θl ∈ RNl
+ . The matrix247

entries W l
uv and Dl

uv represent the weight and delay value associated with the synapse (u, v) ∈ E,248

respectively, and the entry Θl
v is the firing threshold associated with node v ∈ V . N0 is the input249

dimension and NL is the output dimension of Φ. We call N(Φ) :=
∑L

j=0 Nj the number of neurons250

and L(Φ) := L denotes the number of layers of Φ.251

Remark 1. In an ANN, the input signal is propagated in a synchronized manner layer-wise through252

the network (see Definition 5). In contrast, in an SNN, information is transmitted via spikes, where253

spikes from layer l − 1 affect the membrane potential of layer l neurons, resulting in asynchronous254

propagation due to variable firing times among neurons.255

To employ an SNN, the (typically analog) input information needs to be encoded in the firing times256

of the neurons in the input layer, and similarly, the firing times of the output neurons need to be257

translated back to an appropriate target domain. We will refer to this process as input encoding and258

output decoding. The applied encoding scheme certainly depends on the specific task at hand and259

the potential power and suitability of different encoding schemes is a topic that warrants separate260

investigation on its own. Our focus in this work lies on exploring the intrinsic capabilities of SNNs,261

rather than the specifics of the encoding scheme. Thus, we can formulate some guiding principles262

6



for establishing a reasonable encoding scheme. First, the firing times of input and output neurons263

should encode analog information in a consistent way so that different networks can be concatenated264

in a well-defined manner. This enables us to construct suitable subnetworks and combine them265

appropriately to solve more complex tasks. Second, in the extreme case, the encoding scheme might266

directly contain the solution to a problem, underscoring the need for a sufficiently simple and broadly267

applicable encoding scheme to avoid this.268

Definition 3. Let [a, b]d ⊂ Rd and Φ be an SNN with input neurons u1, . . . , ud and output neurons269

v1, . . . , vn. Fix reference times Tin ∈ Rd and Tout ∈ Rn. For any x ∈ [a, b]d, we set the firing times270

of the input neurons to (tu1
, . . . , tud

)T = Tin + x and the corresponding firing times of the output271

neurons (tv1 , . . . , tvn)
T = Tout + y, determined via (7), encode the target y ∈ Rn.272

Remark 2. A bounded input range ensures that appropriate reference times can be fixed. Note that273

the introduced encoding scheme translates analog information into input firing times in a continuous274

manner. Occasionally, we will point out the effect of adjusting the scheme and we will sometimes275

with a slight abuse of notation refer to Tin, Tout as one-dimensional objects, i.e., Tin, Tout ∈ R which276

is justified if the corresponding vectors contain the same element in each dimension.277

Next, we distinguish between a network and the target function it realizes. A network is a structured278

set of weights, delays and thresholds as defined in Definition 2, and the target function it realizes is279

the result of the asynchronous propagation of spikes through the network.280

Definition 4. On [a, b]d ⊂ Rd, the realization of an SNN Φ with output neurons v1, . . . , vn and281

reference times Tin ∈ Rd and Tout ∈ Rn, where Tout > Tin, is defined as the map RΦ : Rd → Rn,282

RΦ(x) = −Tout + (tv1 , . . . , tvn)
T .

Next, we give a corresponding definition of an ANN and its realization.283

Definition 5. Let L ∈ N. An artificial neural network Ψ is a sequence of matrix-vector tuples284

Ψ = ((W 1, B1), (W 2, B2), . . . , (WL, BL)),

where N0, . . . , NL ∈ N and each W l ∈ RNl−1×Nl and Bl ∈ RNl . N0 and NL are the input285

and output dimension of Ψ. We call N(Ψ) :=
∑L

j=0 Nj the number of neurons of the network286

Ψ, L(Ψ) := L the number of layers of Ψ and Nl the width of Ψ in layer l. The realization of Ψ287

with component-wise activation function σ : R → R is defined as the map RΨ : RN0 → RNL ,288

RΨ(x) = yL, where yL results from289

y0 = x, yl = σ(W lyl−1 +Bl), for l = 1, . . . , L− 1, and yL = WLyL−1 +BL. (8)

In the remainder, we always employ the ReLU activation function σ(x) = max(0, x). One can290

perform basic actions on neural networks such as concatenation and parallelization to construct larger291

networks from existing ones. Adapting a general approach for ANNs as defined in [1], [20], we292

formally introduce the concatenation and parallelization of networks of spiking neurons in the next293

Section A.2.294

A.2 Spiking neural network calculus295

It can be observed from Definition 3 that both inputs and outputs of SNNs are encoded in a unified296

format. This characteristic is crucial for concatenating/parallelizing two spiking network architectures297

that further enable us to attain compositions/parallelizations of network realizations.298

We operate in the following setting: Let L1, L2, d1, d2, d
′
1, d

′
2 ∈ N. Consider two SNNs Φ1, Φ2299

given by300

Φi = ((W i
1, D

i
1,Θ

i
1), . . . , (W

i
Li
, Di

Li
,Θi

Li
)), i = 1, 2,

with input domains [a1, b1]
d1 ⊂ Rd1 , [a2, b2]d2 ⊂ Rd2 and output dimension d′1, d

′
2, respectively.301

Denote the input neurons by u1, . . . , udi
with respective firing times tiuj

and the output neurons by302

v1, . . . , vd′
i

with respective firing times tivj for i = 1, 2. By Definition 3, we can express the firing303

times of the input neurons as304

t1u(x) := (t1u1
, . . . , t1ud1

)T = T 1
in + x for x ∈ [a1, b1]

d1 ,

t2u(x) := (t2u1
, . . . , t2ud2

)T = T 2
in + x for x ∈ [a2, b2]

d2 (9)

7



and, by Definition 4, the realization of the networks as305

RΦ1
(x) = −T 1

out + t1v(t
1
u(x)) := −T 1

out + (t1v1 , . . . , t
1
vd′1

)T for x ∈ [a1, b1]
d1 ,

RΦ2
(x) = −T 2

out + t2v(t
2
u(x)) := −T 2

out + (t2v1 , . . . , t
2
vd′2

)T for x ∈ [a2, b2]
d2 (10)

for some constants T 1
in ∈ Rd1 , T 2

in ∈ Rd2 , T 1
out ∈ Rd′

1 , T 2
out ∈ Rd′

2 .306

We define the concatenation of the two networks in the following way.307

Definition 6. (Concatenation) Let Φ1 and Φ2 be such that the input layer of Φ1 has the same308

dimension as the output layer of Φ2, i.e., d′2 = d1. Then, the concatenation of Φ1 and Φ2, denoted as309

Φ1 • Φ2, represents the (L1 + L2)-layer network310

Φ1 • Φ2 := ((W 2
1 , D

2
1,Θ

2
1), . . . , (W

2
L2
, D2

L2
,Θ2

L2
), (W 1

1 , D
1
1,Θ

1
1), . . . , (W

1
L1
, D1

L1
,Θ1

L1
)).

Lemma 1. Let d′2 = d1 and fix Tin = T 2
in and Tout = T 1

out. If T 2
out = T 1

in and RΦ2
([a2, b2]

d2) ⊂311

[a1, b1]
d1 , then312

RΦ1•Φ2
(x) = RΦ1

(RΦ2
(x)) for all x ∈ [a, b]d2

with respect to the reference times Tin, Tout. Moreover, Φ1 •Φ2 is composed of N(Φ1)+N(Φ2)− d1313

computational units.314

Proof. It is straightforward to verify via the construction that the network Φ1 • Φ2 is composed of315

N(Φ1) +N(Φ2)− d1 computational units. Moreover, under the given assumptions RΦ1
◦ RΦ2

is316

well-defined so that (9) and (10) imply317

RΦ1•Φ2(x) = −Tout + t1v(t
2
v(Tin + x)) = −T 1

out + t1v(t
2
v(T

2
in + x)) = −T 1

out + t1v(t
2
v(t

2
u(x)))

= −T 1
out + t1v(T

2
out +RΦ2

(x)) = −T 1
out + t1v(T

1
in +RΦ2

(x))

= −T 1
out + t1v(t

1
u(RΦ2(x))) = RΦ1(RΦ2(x)) for x ∈ [a2, b2]

d2 .

318

In addition to concatenating networks, we also perform parallelization operation on SNNs.319

Definition 7. (Parallelization) Let Φ1 and Φ2 be such that they have the same depth and input320

dimension, i.e., L1 = L2 =: L and d1 = d2 =: d. Then, the parallelization of Φ1 and Φ2, denoted321

as P (Φ1,Φ2), represents the L-layer network with d-dimensional input322

P (Φ1,Φ2) := ((W̃1, D̃1, Θ̃1), . . . , (W̃L, D̃L, Θ̃L)),

where323

W̃1 =
(
W 1

1 W 2
1

)
, D̃1 =

(
D1

1 D2
1

)
, Θ̃1 =

(
Θ1

1

Θ2
1

)
and324

W̃l =

(
W 1

l 0
0 W 2

l

)
, D̃l =

(
D1

l 0
0 D2

l

)
, Θ̃l =

(
Θ1

l

Θ2
l

)
, for 1 < l ≤ L.

Lemma 2. Let d := d2 = d1 and fix Tin := T 1
in, Tout := (T 1

out, T
2
out), a := a1 and b := b1. If325

T 2
in = T 1

in, T 2
out = T 1

out and a1 = a2, b1 = b2, then326

RP (Φ1,Φ2)(x) = (RΦ1
(x),RΦ2

(x)) for x ∈ [a, b]d

with respect to the reference times Tin, Tout. Moreover, P (Φ1,Φ2) is composed of N(Φ1)+N(Φ2)−d327

computational units.328

Proof. The number of computational units is an immediate consequence of the construction. Since329

the input domains of Φ1 and Φ2 agree, (9) and (10) show that330

RP (Φ1,Φ2)(x) = −Tout + (t1v(Tin + x), t2v(Tin + x)) = (−T 1
out + t1v(T

1
in + x),−T 2

out + t2v(T
2
in + x))

= (−T 1
out + t1v(t

1
u(x)),−T 2

out + t2v(t
2
u(x))) = (RΦ1

(x),RΦ2
(x)) for x ∈ [a, b]d.

331

Remark 3. Note that parallelization and concatenation can be straightforwardly extended (re-332

cursively) to a finite number of networks. Additionally, more general forms of parallelization and333

concatenations of networks, e.g., parallelization of networks with different depths, can be established.334

However, for the constructions presented in this work, the introduced notions suffice.335

8



A.3 Realizations of spiking neural networks336

In this section, we show that a spiking neuron generates a CPWL mapping.337

Theorem 5. Let v be a spiking neuron with d input neurons u1, . . . , ud. The firing time338

tv(tu1
, . . . , tud

) as a function of the firing times tu1
, . . . , tud

is a CPWL mapping provided that339 ∑d
i=1 wuiv > 0, where wuiv ∈ R is the synaptic weight between ui and v.340

Proof. The condition
∑

i=1 wuiv > 0 simply ensures that the input domain is decomposed into341

regions associated with subsets of input neurons with positive net weight. If
∑

i=1 wuiv < 0, then342

the corresponding input region either does not exist or inputs from the corresponding region do343

not trigger a spike in v since they can not increase the potential Pv(t) as their net contribution is344

negative, i.e., the potential does not reach the threshold θv . Hence, with
∑

i=1 wuiv > 0, the situation345

described above can not arise and the notion of a CPWL mapping on Rd is well-defined. Denote the346

associated delays by duiv ≥ 0 and the threshold of v by θv > 0. We distinguish between the 2d − 1347

variants of input combinations that can cause a firing of v. Let I ⊂ {1, . . . , d} be a non-empty subset348

and Ic the complement of I in {1, . . . , d}, i.e., Ic = {1, . . . , d} \ I . Assume that all ui with i ∈ I349

contribute to the firing of v whereas spikes from ui with i ∈ Ic do not influence the firing of v. Then350 ∑
i∈I wuiv is required to be positive, and by (6) and (7) the following holds:351

tuk
+ dukv ≥ tv =

θv∑
i∈I wuiv

+
∑
i∈I

wuiv∑
j∈I wujv

(tui
+ duiv) for all k ∈ Ic (11)

and352

tuk
+ dukv < tv =

θv∑
i∈I wuiv

+
∑
i∈I

wuiv∑
j∈I wujv

(tui + duiv) for all k ∈ I. (12)

Rewriting yields353

tuk
≥ θv∑

i∈I wuiv
+
∑
i∈I

wuiv∑
j∈I wujv

(tui
+ duiv)− dukv for all k ∈ Ic (13)

and354

tuk


< θv∑

j∈I\k wujv
+
∑

i∈I\k
wuiv∑

j∈I\k wujv
(tui

+ duiv)− dukv, if
∑

i∈I\k wuiv∑
i∈I wuiv

> 0

> θv∑
j∈I\k wujv

+
∑

i∈I\k
wuiv∑

j∈I\k wujv
(tui

+ duiv)− dukv, if
∑

i∈I\k wuiv∑
i∈I wuiv

< 0
∀k ∈ I.

It is now clear that the firing time tv(tu1
, . . . , tud

) as a function of the input tu1
, . . . , tud

is a355

piecewise linear mapping on polytopes decomposing Rd. To show that the mapping is additionally356

continuous, we need to assess tv(tu1
, . . . , tud

) on the breakpoints. Let I, J ⊂ {1, . . . , d} be index357

sets corresponding to input neurons {ui : i ∈ I},{uj : j ∈ J} that cause v to fire on the input region358

RI ⊂ Rd, RJ ⊂ Rd respectively. Assume that it is possible to transition from RI to RJ through359

a breakpoint tI,J = (tI,Ju1
, . . . , tI,Jud

) ∈ Rd without leaving RI ∪ RJ . Crossing the breakpoint is360

equivalent to the fact that the input neurons {ui : i ∈ I \ J} do not contribute to the firing of v361

anymore and the input neurons {ui : i ∈ J \ I} begin to contribute to the firing of v.362

Assume first that J ⊂ I . Then, we observe that the breakpoint tI,J is necessarily an element of363

the linear region corresponding to the index set with smaller cardinality, i.e., tI,J ∈ RJ . This is an364

immediate consequence of (12) and the fact that tI,J is characterized by365

tI,Juk
+ dukv = tv(t

I,J) for all k ∈ I \ J. (14)

Indeed, if tI,Juk
+ dukv > tv(t

I,J), then there exists εk > 0 such that (13) also holds for tI,Juk
± ε,366

where 0 ≤ ε < εk, i.e., a small change in tI,Juk
is not sufficient to change the corresponding linear367

region, contradicting our assumption that tI,J is a breakpoint.368

The firing time tv(t
I,J) is explicitly given by369

tv(t
I,J) =

θv∑
i∈J wuiv

+
∑
i∈J

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

9



Using (14), we obtain370

0 = − wukv∑
j∈J wujv

(tv(t
I,J)− (tI,Juk

+ dukv)) for all k ∈ I \ J

so that371

tv(t
I,J) =

θv∑
i∈J wuiv

+
∑
i∈J

wuiv∑
j∈J wujv

(tI,Jui
+duiv)−

∑
i∈I\J

wuiv∑
j∈J wujv

(tv(t
I,J)−(tI,Jui

+duiv)).

Solving for tv(tI,J) yields372

tv(t
I,J) =

(
1 +

∑
i∈I\J

wuiv∑
j∈J wujv

)−1

·
( θv∑

i∈J wuiv
+
∑
i∈I

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

)
=

∑
i∈J

wuiv∑
j∈I wujv

·
( θv∑

i∈J wuiv
+
∑
i∈I

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

)
=

θv∑
i∈I wuiv

+
∑
i∈I

wuiv∑
j∈I wujv

(tI,Jui
+ duiv),

which is exactly the expression for the firing time on RI . This shows that tv(tu1
, . . . , tud

) is373

continuous in tI,J . Since the breakpoint tI,J was chosen arbitrarily, tv(tu1 , . . . , tud
) is continuous at374

any breakpoint.375

The case I ⊂ J follows analogously. It remains to check the case when neither I ⊂ J nor J ⊂ I . To376

that end, let i∗ ∈ I \ J and j∗ ∈ J \ I . Assume without loss of generality that tI,J ∈ RI so that (11)377

and (12) imply378

tI,Jui∗
+ dui∗v < tv(t

I,J) ≤ tI,Juj∗
+ duj∗v.

Hence, there exists ε > 0 such that379

tI,Jui∗
+ dui∗v < tI,Juj∗

+ duj∗v − ε. (15)

Moreover, due to the fact that tI,J is a breakpoint we can find tJ ∈ RJ ∩B(tI,J ; ε
3 ), where B(tI,J ; ε

3 )380

denotes the open ball with radius ε
3 centered at tI,J . In particular, this entails that381

−ε

3
< (tJui∗

− tI,Jui∗
), (tI,Juj∗

− tJuj∗
) <

ε

3
,

and therefore together with (15)382

tJui∗
+ dui∗v − (tJuj∗

+ duj∗v) = (tJui∗
− tI,Jui∗

) + (tI,Jui∗
+ dui∗v − (tI,Juj∗

+ duj∗v)) + (tI,Juj∗
− tJuj∗

)

< 0, i.e., tJui∗
+ dui∗v < tJuj∗

+ duj∗v.

However, (11) and (12) require that383

tJuj∗
+ duj∗v < tv(t

J) ≤ tJui∗
+ dui∗v

since tJ ∈ RJ . Thus, tI,J can not exist and the case when neither I ⊂ J nor J ⊂ I can not arise.384

A.4 Realizing ReLU with spiking neural networks385

Proposition 1. Let c1 ∈ R, c2 ∈ (a, b) ⊂ R and consider f1, f2 : [a, b] → R defined as386

f1(x) =

{
x+ c1 , if x > c2
c1 , if x ≤ c2

or f2(x) =

{
x+ c1 , if x < c2
c1 , if x ≥ c2

.

There does not exist a one-layer SNN with output neuron v and input neuron u1 such that tv(x) =387

fi(x), i = 1, 2, on [a, b], where tv(x) denotes the firing time of v on input tu1
= x.388

10



Proof. First, note that a one-layer SNN realizes a CPWL function. For c2 ̸= 0, fi is not continuous389

and therefore can not be emulated by the firing time of any one-layer SNN. Hence, it is left to consider390

the case c2 = 0. If u1 is the only input neuron, then v fires if and only if wu1v > 0 and by (7) the391

firing time is given by392

tv(x) =
θ

wu1v
+ x+ du1v for all x ∈ [a, b],

i.e., tv ̸= fi. Therefore, we introduce auxiliary input neurons u2, . . . , un and assume without loss393

of generality that tui
+ duiv < tuj

+ dujv for j > i. Here, the firing times tui
, i = 2, . . . , n, are394

suitable constants. We will show that even in this extended setting tv ̸= fi still holds and thereby395

also the claim.396

For the sake of contradiction, assume that tv(x) = f1(x) for all x ∈ [a, b]. This implies that there397

exists an index set J ⊂ {1, . . . , n} with
∑

j∈J wujv > 0 and a corresponding interval (a1, 0] ⊂ [a, b]398

such that399

c1 = tv(x) =
1∑

i∈J wuiv

(
θv +

∑
i∈J

wuiv(tui
+ duiv)

)
for all x ∈ (a1, 0],

where we have applied (7). Moreover, J is of the form J = {2, . . . , ℓ} for some ℓ ∈ {1, . . . , n}400

because (tui
+ duiv)

n
i=2 is in ascending order, i.e., if the spike from uℓ has reached v before v fired,401

then so did the spikes from ui, 2 ≤ i < ℓ. Additionally, we know that 1 /∈ J since otherwise tv is402

non-constant on (a1, 0] (due to the contribution from u1), i.e., tv ̸= c1 on (a1, 0]. In particular, the403

spike from u1 reaches v after the neurons u2, . . . , uℓ already caused v to fire, i.e., we have404

x+ du1v ≥ tv(x) = c1 for all x ∈ (a1, 0].

However, it immediately follows that405

x+ du1v > du1v ≥ c1 for all x > 0.

Thus, we obtain tv(x) = c1 for x > 0 (since the spike from u1 still reaches v only after v emitted a406

spike), which contradicts tv(x) = f1(x) for all x ∈ [a, b].407

We perform a similar analysis to show that f2 can not be emulated. For the sake of contradiction,408

assume that tv(x) = f2(x) for all x ∈ [a, b]. This implies that there exists an index set I ⊂ {1, . . . , n}409

with
∑

i∈I wuiv > 0 and a corresponding interval (a2, 0) ⊂ [a, b] such that410

x+c1 = tv(x) =
1∑

i∈I wuiv

(
θv+wu1v(x+du1v)+

∑
i∈I\{1}

wuiv(tui
+duiv)

)
for x ∈ (a2, 0),

(16)
where we have applied (7). We immediately observe that 1 ∈ I , since otherwise tv is constant411

on (a2, 0). Moreover, by the same reasoning as before we can write I = {1, . . . , ℓ} for some412

ℓ ∈ {1, . . . , n}. In order for tv(x) = f2(x) for all x ∈ [a, b] to hold, there needs to exist an index413

set J ⊂ {1, . . . , n} with
∑

j∈J wujv > 0 and a corresponding interval [0, b2) ⊂ [a, b] such that414

tv = c1 on [0, b2). We conclude that J = {1, . . . ,m} or J = {2, . . . ,m} for some m ∈ {1, . . . , n}.415

In the former case, tv is non-constant on [0, b2) (due to the contribution from u1), i.e., tv ̸= c1416

on [0, b2). Hence, it remains to consider the latter case. Note that m < ℓ implies that b2 ≤ a2417

(as u2, . . . , um already triggered a firing of v before the spike from uℓ arrived) contradicting the418

construction a2 < 0 < b2. Similarly, m = ℓ, i.e., J = I \ {1} is not valid because (16) requires that419

wu1v∑
i∈I wuiv

= 1 ⇔
∑

i∈I\{1}

wuiv = 0 ⇔
∑
j∈J

wujv = 0.

Finally, m > ℓ also results in a contradiction since420

0 <
∑
j∈J

wujv =
∑

i∈I\{1}

wuiv +
∑

j∈J\I

wujv =
∑

j∈J\I

wujv

together with421

0 <
∑
i∈I

wuiv =
∑

i∈I\{1}

wuiv + wu1v = wu1v

imply that the neurons {uj : j ∈ {1} ∪ J} also trigger a spike in v. However, the corresponding422

interval where the firing of v is caused by {uj : j ∈ {1} ∪ J} is necessarily located between (a2, 0)423

and [0, b2), which is not possible.424

11



Remark 4. The proof shows that −f1 also can not be emulated by a one-layer SNN. Moreover, by425

adjusting (16) we observe that a necessary condition for −f2 to be realized is that426

wu1v∑
i∈I wuiv

= −1 ⇔ −
∑

i∈I\{1}

wuiv = 2wu1v ⇔ −1

2

∑
i∈I\{1}

wuiv = wu1v.

Under this condition −f2 can indeed be realized by a one-layer SNN as the following statement427

confirms.428

Proposition 2. Let a < 0 < b, c and consider f : [a, b] → R defined as429

f(x) =

{
−x+ c , if x < 0

c , if x ≥ 0
.

There exists a one-layer SNN Φ with output neuron v and input neuron u1 such that tv(x) = f(x) on430

[a, b], where tv(x) denotes the firing time of v on input tu1
= x.431

Proof. We introduce an auxiliary input neuron with constant firing time tu2
∈ R and specify the432

parameter of Φ = ((W,D,Θ)) in the following manner (see Figure 1a):433

W =

(
− 1

2
1

)
, D =

(
d1
d2

)
,Θ = θ,

where θ, d1, d2 > 0 are to be specified. Note that either u2 or u1 together with u2 can trigger a spike434

in v since wu1v < 0. Therefore, applying (7) yields that u2 triggers a spike in v under the following435

circumstances:436

tv(x) = θ + tu2
+ d2 if tv(x) ≤ tu1

+ d1 = x+ d1.

Hence, this case only arises when437

θ + tu2
+ d2 ≤ x+ d1 ⇔ θ + tu2

+ d2 − d1 ≤ x.

To emulate f the parameter needs to satisfy438

θ + tu2
+ d2 − d1 ≤ x for all x ∈ [0, b] and θ + tu2

+ d2 − d1 > x for all x ∈ [a, 0)

which simplifies to439

θ + tu2
+ d2 − d1 = 0. (17)

If the additional condition440

θ + tu2 + d2 = c (18)
is met, we can infer that441

tv(x) =

{
2(θ + tu2

+ d2)− (x+ d1) , if x < 0

θ + tu2
+ d2 , if x ≥ 0

=

{
−x+ c , if x < 0

c , if x ≥ 0
.

Finally, it is immediate to verify that the conditions (17) and (18) can be satisfied simultaneously due442

to the assumption that c > 0, e.g., choosing d1 = d2 = c and tu2
= −θ is sufficient.443

Remark 5. We wish to mention that we can not adapt the previous construction to emulate ReLU444

with a consistent encoding scheme, i.e., such that the input and output firing times encode analog445

values in the same format with respect to reference times Tin, Tout ∈ R, Tin < Tout. Indeed, it is446

obvious that using the input encoding Tin + x and output decoding −Tout + tv, does not realize447

ReLU. Similarly, one verifies that the input encoding Tin − x and output decoding Tout − tv also does448

not yield the desired function. However, choosing the input encoding Tin − x and output decoding449

−Tout + tv gives450

RΦ(x) =

{
−Tout − Tin + c+ x , if x > Tin

−Tout + c , if x ≤ Tin
.

Setting Tin = 0 and Tout = c implies that Φ realizes ReLU with inconsistent encoding Tin − x and451

Tout +RΦ(x). Nevertheless, we want a consistent encoding scheme that allows us to compose ReLU452

(as typically is the case in ANNs) whereby an inconsistent scheme is disadvantageous.453

Applying the previous construction and adding another layer is adequate to emulate f1 defined in454

Proposition 1 by a two-layer SNN.455

12



(a) (b)

Figure 1: (a) Computation graph associated with a spiking network with two input neurons and one
output neuron that realizes f as defined in Proposition 2. (b) Stacking the network in (a) twice results
in a spiking network that realizes the ReLU activation function.

Proposition 3. Let a < 0 < b < 0.5 · c and consider f : [a, b] → R defined as456

f(x) =

{
x+ c , if x > 0

c , if x ≤ 0

There exists a 2-layer SNN Φ with output neuron v and input neuron u1 such that tv(x) = f(x) on457

[a, b], where tv(x) denotes the firing time of v on input tu1
= x.458

Proof. We introduce an auxiliary input neuron u2 with constant firing time tu2
∈ R and specify the459

parameter of Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2)) in the following manner:460

W 1 =

(
− 1

2 0
1 2

)
, D1 =

(
d 0
d d

2

)
,Θ1 =

(
θ
2θ

)
,W 2 =

(
− 1

2
1

)
, D2 =

(
d
d

)
,Θ2 = θ, (19)

where d ≥ 0 and θ > 0 is chosen such that θ + tu2
> b. We denote the input neurons by u1, u2,461

the neurons in the hidden layer by z1, z2 and the output neuron by v. Note that the firing time of462

z1 depends on u1 and u2. In particular, either u2 or u1 together with u2 can trigger a spike in z1463

since wu1z1 < 0. Therefore, applying (7) yields that u2 triggers a spike in z1 under the following464

circumstances:465

tz1(x) = θ + tu2 + d if tz1(x) ≤ tu1 + d = x+ d.

Hence, this case only arises when466

θ + tu2 + d ≤ x+ d ⇔ θ + tu2 ≤ x. (20)

However, by construction θ + tu2
> b, so that (20) does not hold for any x ∈ [a, b]. Thus, we467

conclude via (7) that468

tz1(x) = 2(θ + tu2 + d)− (x+ d) = 2(θ + tu2) + d− x.

By construction, the firing time tz2 = θ + 2tu2
+ d of z2 is a constant which depends on the input469

only via u2. A similar analysis as in the first layer shows that470

tv(x) = θ + tz2 + d if tv(x) ≤ tz1 + d = 2(θ + tu2
) + d− x+ d = 2(θ + tu2

+ d)− x.

Hence, z2 triggers a spike in v when471

θ + θ + 2tu2
+ d+ d ≤ 2(θ + tu2

+ d)− x ⇔ x ≤ 0.

If the additional condition472

θ + tz2 + d = c ⇔ 2(θ + d+ tu2
) = c (21)

13



is met, we can infer that473

tv(x) =

{
2(θ + tz2 + d)− (tz1(x) + d) , if x > 0

θ + tz2 + d , if x ≤ 0

=

{
2c− (2(θ + tu2) + d− x+ d) , if x > 0

c , if x ≤ 0

=

{
x+ c , if x > 0

c , if x ≤ 0
.

Choosing θ, tu2
and d sufficiently small under the given constraints guarantees that (21) holds, i.e., Φ474

emulates f as desired.475

Remark 6. It is again important to specify the encoding scheme via reference times Tin, Tout ∈ R,476

Tin < Tout to ensure that Φ realizes ReLU. The input encoding Tin − x and output decoding Tout − tv477

does not yield the desired output since it results in a realization of the type −ReLU(−x). In contrast,478

the input encoding Tin + x and output decoding −Tout + tv with Tin = 0 and Tout = c gives479

RΦ(x) = −Tout + tv(Tin + x) = −Tout + f(Tin + x) =

{
x , if x > 0

0 , if x ≤ 0
= ReLU(x).

In this case, it is necessary to choose the reference time Tin = 0 to ensure that the breakpoint is also480

at zero. Next, we show that there is actually more freedom in choosing the reference time by analysing481

the construction in the proof more carefully.482

Proposition 4. Let a < 0 < b and consider f : [a, b] → R defined as483

f(x) =

{
x , if x > 0

0 , if x ≤ 0

There exists a 2-layer SNN Φ with realization RΦ = f on [a, b] with encoding scheme Tin + x and484

decoding −Tout + tv , where v is the output neuron of Φ, Tin ∈ R and Tout = Tin + c for some constant485

c > 0 depending on the parameters of Φ.486

Proof. Performing a similar construction with the following changes and the same analysis as in the487

proof of Proposition 3 yields the claim. First, we slightly adjust Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2))488

in comparison to (19) and consider the network489

W 1 =

(
− 1

2 0
1 1

)
, D1 =

(
d 0
d d

)
,Θ1 =

(
θ
θ

)
,W 2 =

(
− 1

2
1

)
, D2 =

(
d
d

)
,Θ2 = θ,

where d ≥ 0 and θ > b are fixed (see Figure 1b). Second, we choose the input reference time Tin ∈ R490

and fix the input of the auxiliary input neuron u2 as tu2
= Tin ∈ R. Finally, setting the output491

reference time Tout = 2(θ + d) + Tin is sufficient to guarantee that Φ realizes f on [a, b].492

A.5 Realizing ReLU networks by spiking neural networks493

In this section, we show that an SNN has the capability to reproduce the output of any ReLU network.494

Specifically, given access to the weights and biases of an ANN, we construct an SNN and set the495

parameter values based on the weights and biases of the given ANN. This leads us to the desired496

result. The essential part of our proof revolves around choosing the parameters of an SNN such that497

it effectively realizes the composition of an affine-linear map and the non-linearity represented by498

the ReLU activation. The realization of ReLU with SNNs is proved in the previous Section A.4. To499

realize an affine-linear function using a spiking neuron, it is necessary to ensure that the spikes from500

all the input neurons together result in the firing of an output neuron instead of any subset of the input501

neurons. We achieve that by appropriately adjusting the value of the threshold parameter. As a result,502

a spiking neuron, which implements an affine-linear map, avoids partitioning of the input space.503

14



(a) (b) (c) (d)

Figure 2: (a) Computation graph of an ANN with two input and one output unit realizing σ(f(x1, x2)),
where σ is the ReLU activation function. (b) Computation graph associated with an SNN resulting
from the concatenation of Φσ and Φf that realizes σ(f(x1, x2)). The auxiliary neurons are shown
in red. (c) Same computation graph as in (b); when parallelizing two identical networks, the dotted
auxiliary neurons can be removed and auxiliary neurons from (b) can be used for each network
instead. (d) Computation graph associated with a spiking network as a result of the parallelization of
two subnetworks Φσ◦f1 and Φσ◦f2 . The auxiliary neuron in the output layer serves the same purpose
as the auxiliary neuron in the input layer and is needed when concatenating two such subnetworks
Φσ◦f .

Setup for the proof of Theorem 3 Let d, L ∈ N be the width and the depth of an ANN Ψ,504

respectively, i.e.,505

Ψ = ((A1, B1), (A2, B2), . . . , (AL, BL)), where (Aℓ, Bℓ) ∈ Rd×d × Rd, 1 ≤ ℓ < L,

(AL, BL) ∈ R1×d × R.

For a given input domain [a, b]d ⊂ Rd, we denote by Ψℓ = ((Aℓ, Bℓ)) the ℓ-th layer, where506

y0 ∈ [a, b]d and507

yl = RΨl(yl−1) = σ(Alyl−1 +Bl), 1 ≤ ℓ < L,

yL = RΨL(yL−1) = ALyL−1 +BL (22)

so that RΨ = RΨL ◦ · · · ◦ RΨ1 .508

For the construction of the corresponding SNN we refer to the associated weights and delays between509

two spiking neurons u and v by wuv and duv , respectively.510

Proof of Theorem 3. Any multi-layer ANN Ψ with ReLU activation is simply an alternating compo-511

sition of affine-linear functions Alyl−1 +Bl and a non-linear function represented by σ. To generate512

the mapping realized by Ψ, it suffices to realize the composition of affine-linear functions and the513

ReLU non-linearity and then extend the construction to the whole network using concatenation514

and parallelization operations. We prove the result via the following steps; see also Figure 2 for a515

depiction of the intermediate constructions.516

Step 1: Realizing ReLU non-linearity.517

Proposition 4 gives the desired result.518

Step 2: Realizing affine-linear functions with one-dimensional range.519

Let f : [a, b]d → R be an affine-linear function520

f(x) = CTx+ s, CT = (c1, . . . , cd) ∈ Rd, s ∈ R. (23)

Consider a one-layer SNN that consists of an output neuron v and d input units u1, . . . , ud. Via (7)521

the firing time of v as a function of the input firing times on the linear region RI corresponding to the522

15



index set I = {1, . . . , d} is given by523

tv(tu1
, . . . , tud

) =
θv∑

i∈I wuiv
+

∑
i∈I wuiv(tui

+ duiv)∑
i∈I wuiv

provided that
∑
i∈I

wuiv > 0.

Introducing an auxiliary input neuron ud+1 with weight wud+1v = 1 −
∑

i∈I wuiv ensures that524 ∑
i∈I∪{d+1} wuiv > 0 and leads to the firing time525

tv(tu1
, . . . , tud+1

) = θv +
∑

i∈I∪{d+1}

wuiv(tui
+ duiv) on RI∪{d+1}.

Setting wuiv = ci for i ∈ I and dujv = d′ ≥ 0 for j ∈ I ∪ {d+ 1} yields526

tv(tu1
, . . . , tud+1

) = θv + wud+1v · tud+1
+ d′ +

∑
i∈I

citui
on RI∪{d+1} ∩ [a, b]d.

Therefore, an SNN Φf = (W,D,Θ) with parameters527

W =

 c1
...

cd+1

 , D =

d′

...
d′

 ,Θ = θ > 0, where cd+1 = 1−
∑
i∈I

ci,

and the usual encoding scheme Tin/Tout + · and fixed firing time tud+1
= Tin ∈ R realizes528

RΦf (x) = −Tout + tv(Tin + x1, . . . , Tin + xd, Tin) = −Tout + θ + Tin + d′ +
∑
i∈I

cixi (24)

= −Tout + θ + Tin + d′ + f(x1, . . . , xd)− s on RI∪{d+1} ∩ [a, b]d. (25)

Choosing a large enough threshold θ ensures that a spike in v is necessarily triggered after all the529

spikes from u1, . . . , ud+1 reached v so that [a, b]d ⊂ RI∪{d+1} holds. It suffices to set530

θ ≥ sup
x∈[a,b]d

sup
xmin≤t−Tin−d′≤xmax

Pv(t),

where xmin = min{x1, . . . , xd, 0} and xmax = max{x1, . . . , xd, 0}, since this implies that the531

potential Pv(t) is smaller than the threshold to trigger a spike in v on the time interval associated532

to feasible input spikes, i.e., v emits a spike after the last spike from an input neuron arrived at v.533

Applying (5) shows that for x ∈ [a, b]d and t ∈ [xmin + Tin + d′, xmax + Tin + d′]534

Pv(t) =
∑
i∈I

wuiv(t− (Tin + xi)− duiv) + wud+1v(t− Tin − dud+1v) = t− d′ − Tin +
∑
i∈I

cixi

≤ xmax + d ∥C∥∞ ∥x∥∞ ≤ (1 + d ∥C∥∞)max{|a|, |b|}.

Hence, we set535

θ = (1 + d ∥C∥∞)max{|a|, |b|}+ s+ |s| and Tout = θ − s+ Tin + d′

to obtain via (24) that536

RΦf (x) = −Tout + tv(Tin + x1, . . . , Tin + xd, Tin) = f(x) for x ∈ [a, b]d. (26)

Note that the reference time Tout = (1+d ∥C∥∞)max{|a|, |b|}+ |s|+Tin +d′ is independent of the537

specific parameters of f in the sense that only upper bounds ∥C∥∞ , |s| on the parameters are relevant.538

Therefore, Tout (with the associated choice of θ) can be applied for different affine linear functions as539

long as the upper bounds remain valid. This is necessary for the composition and parallelization of540

subnetworks in the subsequent construction.541

Step 3: Realizing compositions of affine-linear functions with one-dimensional range and ReLU.542

The next step is to realize the composition of ReLU σ with an affine linear mapping f defined in543

(23). To that end, we want to concatenate the networks Φσ and Φf constructed in Step 1 and Step 2,544

respectively, via Lemma 1. To employ the concatenation operation we need to perform the following545

steps:546

16



1. Find an appropriate input domain [a′, b′] ⊂ R, that contains the image f([a, b]d) so that547

parameters and reference times of Φσ can be fixed appropriately (see Proposition 4 for the548

detailed conditions on how to choose the parameter).549

2. Ensure that the output reference time T f
out of Φf equals the input reference time Tσ

in of Φσ .550

3. Ensure that the number of neurons in the output layer of Φf is the same as the number of551

input neurons in Φσ .552

For the first point, note that553

|f(x)| = |CTx+ s| ≤ d ∥C∥∞ · ∥x∥∞ + |s| ≤ d ∥C∥∞ ·max{|a|, |b|}+ |s| for all x ∈ [a, b]d.

Hence, we can use the input domain554

[a′, b′] = [−d ∥C∥∞ ·max{|a|, |b|}+ |s|, d ∥C∥∞ ·max{|a|, |b|}+ |s|]

and specify the parameters of Φσ accordingly. Additionally, recall from Proposition 4 that Tσ
in can be555

chosen freely, so we may fix Tσ
in = T f

out, where T f
out is established in Step 2. It remains to consider556

the third point. In order to realize ReLU an additional auxiliary neuron in the input layer of Φσ with557

constant input Tσ
in was introduced. Hence, we also need to add an additional output neuron in Φf558

with (constant) firing time T f
out = Tσ

in so that the corresponding output and input dimension and their559

specification match. This is achieved by introducing a single synapse from the auxiliary neuron in the560

input layer of Φf to the newly added output neuron and by specifying the parameters of the newly561

introduced synapse and neuron suitably. Formally, the adapted network Φf = (W,D,Θ) is given by562

W =


c1 0
...

...
cd 0

cd+1 1

 , D =


d′ 0
...

...
d′ 0
d′ d′

 ,Θ =

(
θ

T f
out − T f

in − d′

)
,

where the values of the parameters are specified in Step 2.563

Then the realization of the concatenated network Φσ◦f is the composition of the individual realizations.564

This is exemplarily demonstrated in Figure 2b for the two-dimensional input case. By analyzing565

Φσ◦f , we conclude that a three-layer SNN with566

N(Φσ◦f ) = N(Φσ)−N0(Φ
σ) +N(Φf ) = 5− 2 + d+ 3 = d+ 6

computational units can realize σ ◦ f on [a, b]d, where N0(Φ
σ) denotes the number of neurons in the567

input layer of Φσ .568

Step 4: Realizing layer-wise computation of Ψ.569

The computations performed in a layer Ψℓ of Ψ are described in (8). Hence, for 1 ≤ ℓ < L the570

computation can be expressed as571

RΨℓ(yl−1) = σ(Alyl−1 +Bl) =

σ(
∑d

i=1 A
l
1,iy

l−1
i +Bl

1)
...

σ(
∑d

i=1 A
l
d,iy

l−1
i +Bl

d)

 =:

σ(f1(y
l−1))

...
σ(fd(y

l−1))

 ,

where f ℓ
1 , . . . , f

ℓ
d are affine linear functions with one-dimensional range on the same input domain572

[aℓ−1, bℓ−1] ⊂ Rd, where [a0, b0] = [a, b] and [aℓ, bℓ] is the range of573

(σ ◦ f ℓ−1
1 , . . . , σ ◦ f ℓ−1

d )([aℓ−1, bℓ−1]d).

Thus, via Step 3, we construct SNNs Φℓ
1, . . . ,Φ

ℓ
d that realize σ ◦ f ℓ

1 , . . . , σ ◦ f ℓ
d on [aℓ−1, bℓ−1].574

Note that by choosing appropriate parameters in the construction performed in Step 2 (as described575

below (26)), e.g.,
∥∥Al

∥∥
∞ and

∥∥Bl
∥∥
∞, we can employ the same input and output reference time for576

each Φℓ
1, . . . ,Φ

ℓ
d. Consequently, we can parallelize Φℓ

1, . . . ,Φ
ℓ
d (see Lemma 2) and obtain networks577

Φℓ = P (Φℓ
1, . . . ,Φ

ℓ
d) realizing RΨℓ on [aℓ−1, bℓ−1]. Finally, ΨL can be directly realized via Step 2578

by an SNN ΦL (as in the last layer no activation function is applied and the output is one-dimensional).579

Although Φℓ already performs the desired task of realizing RΨℓ we can slightly simplify the network.580

17



By construction in Step 3, each Φℓ
i contains two auxiliary neurons in the hidden layers. Since the581

input and output reference time is chosen consistently for Φℓ
1, . . . ,Φ

ℓ
d, we observe that the auxiliary582

neurons in each Φℓ
i perform the same operations and have the same firing times. Therefore, without583

changing the realization of Φℓ we can remove the auxiliary neurons in Φℓ
2, . . . ,Φ

ℓ
d and introduce584

synapses from the auxiliary neurons in Φℓ
1 accordingly. This is exemplarily demonstrated in Figure585

2c for the case d = 2. After this modification, we observe that L(Φℓ) = L(Φℓ
i) = 3 and586

N(Φℓ) = N(Φℓ
1) +

d∑
i=2

(
N(Φℓ

i)− 2−N0(Φ
ℓ
i)
)
= dN(Φℓ

1)− (d− 1)(2 +N0(Φ
ℓ
1))

= d(d+ 6)− 2(d− 1)− (d− 1)(d+ 1) = 4d+ 3 for 1 ≤ ℓ < L,

whereas L(ΦL) = 1 and N(ΦL) = d+ 2.587

Step 5: Realizing compositions of layer-wise computations of Ψ.588

The last step is to compose the realizations RΦ1 , . . . ,RΦL to obtain the realization589

RΦL ◦ · · · ◦ RΦ1 = RΨL ◦ · · · ◦ RΨ1 = RΨ.

As in Step 3, it suffices again to verify that the concatenation of the networks RΦ1 , . . . ,RΦL is590

feasible. First, note that for ℓ = 1, . . . , L the input domain of RΦℓ is given by [aℓ−1, bℓ−1] so that,591

we can fix the suitable output reference time TΦℓ

out based on the parameters of the network, the input592

domain [aℓ−1, bℓ−1], and some input reference time TΦℓ

in ∈ R. By construction in Steps 2 - 4 TΦℓ

in can593

be chosen freely. Hence setting TΦℓ+1

in = TΦℓ

out ensures that the reference times of the corresponding594

networks agree. It is left to align the input dimension of Φℓ+1 and the output dimension of Φℓ for595

ℓ = 1, . . . , L−1. Due to the auxiliary neuron in the input layer of Φℓ+1, we also need to introduce an596

auxiliary neuron in the output layer of Φℓ (see Figure 2d) with the required firing time TΦℓ+1

in = TΦℓ

out .597

Similarly, as in Step 3, it suffices to add a single synapse from the auxiliary neuron in the previous598

layer to obtain the desired firing time.599

Thus, we conclude that Φ = ΦL • · · · • Φ1 realizes RΨ on [a, b], as desired. The complexity of Φ in600

the number of layers and neurons is given by601

L(Φ) =

L∑
ℓ=1

L(Φℓ) = 3L− 2 = 3L(Ψ)− 2

and602

N(Φ) = N(Φ1) +

L∑
ℓ=2

(
N(Φℓ)−N0(Φ

ℓ)
)
+ (L− 1)

= 4d+ 3 + (L− 2)(4d+ 3− (d+ 1)) + (d+ 2− (d+ 1)) + (L− 1)

= 3L(d+ 1)− (2d+ 1)

= N(Ψ) + L(2d+ 3)− (2d+ 2)

603

Remark 7. Note that the delays play no significant role in the proof of the above theorem. Never-604

theless, they can be employed to alter the timing of spikes, consequently impacting the firing time605

and the resulting output. However, the exact function of delays requires further investigation. The606

primary objective is to present a construction that proves the existence of a spiking network capable607

of accurately reproducing the output of any ReLU network.608

18


	Introduction
	Spiking neural networks
	Computation in terms of firing time

	Main results
	Discussion
	Appendix
	Input and output encoding
	Spiking neural network calculus
	Realizations of spiking neural networks
	Realizing ReLU with spiking neural networks
	Realizing ReLU networks by spiking neural networks


