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ABSTRACT

Recent studies have shown that many nonconvex machine learning problems meet a so-
called generalized-smooth condition that extends beyond traditional smooth nonconvex
optimization. However, the existing algorithms designed for generalized-smooth noncon-
vex optimization encounter significant limitations in both their design and convergence
analysis. In this work, we first study deterministic generalized-smooth nonconvex opti-
mization and analyze the convergence of normalized gradient descent under the general-
ized Polyak-Lojasiewicz condition. Our results provide a comprehensive understanding
of the interplay between gradient normalization and function geometry. Then, for stochas-
tic generalized-smooth nonconvex optimization, we propose an independently-normalized
stochastic gradient descent algorithm, which leverages independent sampling, gradient
normalization and clipping to achieve an O(e~*) sample complexity under relaxed as-
sumptions. Experiments demonstrate the fast convergence of our algorithm.

1 INTRODUCTION

In modern machine learning, the convergence of gradient-based optimization algorithms has been well stud-
ied in the standard smooth nonconvex setting. However, it has been shown recently that smoothness fails to
characterize the global geometry of many nonconvex machine learning problems, including distributionally-
robust optimization (DRO)(Levy et al.,|2020; Jin et al., [2021}), meta-learning (Nichol et al., [2018} [Chayti &
Jaggil 2024)) and language models (Liu et al., 2023} Zhang et al., 2019). Instead, these problems have been
shown to satisfy a so-called generalized-smooth condition, in which the smoothness parameter can scale
with the gradient norm in the optimization process (Zhang et al.,|2019).

In the existing literature, various works have proposed different algorithms for solving generalized-smooth
nonconvex optimization problems. Specifically, one line of work focuses on the classic stochastic gradient
descent (SGD) algorithm (Li et al., 2024} Reisizadeh et al., [2023). However, the convergence of SGD either
relies on adopting very large batch size or involves large constants, and the practical performance of SGD
is often poor due to the ill-conditioned smoothness parameter when gradient is large. Another line of work
focuses on clipped SGD, which adapts to the generalized-smooth geometry by leveraging gradient clipping
and normalization (Zhang et al.| [2019; 2020). However, to establish convergence guarantee, these studies
rely on the strong assumption that the stochastic approximation error is bounded almost surely.

Motivated by the algorithmic and theoretical limitations discussed above, this work aims to explore the
interplay between algorithm design and the geometry of generalized-smooth functions, and develop algo-
rithms tailored for generalized-smooth nonconvex optimization. To achieve this overarching goal, we need
to address several fundamental challenges. First, even in deterministic generalized-smooth nonconvex op-
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timization, there is limited knowledge about how to adapt gradient-based algorithms to the geometry of
generalized-smooth problems. Thus, we want to answer the following question.

* QI: In deterministic nonconvex optimization, how can we adapt algorithm hyperparameters to align with
the Polyak-tojasiewicz geometry of generalized-smooth problems? What are the convergence rates?

Second, in stochastic generalized-smooth nonconvex optimization, the existing SGD-type algorithms are
either impractical due to poor performance or relying on strong assumptions to establish convergence guar-
antee. Therefore, we aim to answer the following question.

* Q2: Can we develop a novel algorithm tailored for stochastic generalized-smooth optimization that
achieves fast convergence in practice while providing convergence guarantee under relaxed assumptions?

In this work, we provide comprehensive answers to the above questions and develop new algorithms as well
as convergence analysis in generalized-smooth nonconvex optimization. In light of the above discussions,
we summarize our key contributions as following.

1.1 OUR CONTRIBUTION

We first consider deterministic generalized-smooth nonconvex optimization, and study the convergence of
normalized gradient descent under the generalized Polyak-Lojasiewicz (PL) condition. Our result char-
acterizes the algorithm convergence rate under a broad spectrum of function geometry characterized by the
generalized-smooth and PL conditions, and provides deep insights into adapting algorithm hyper-parameters
(such as learning rate and gradient normalization scale) to the underlying function geometry.

We then consider stochastic generalized-smooth nonconvex optimization, for which we propose a novel
Independently-Normalized Stochastic Gradient Descent (I-NSGD) algorithm. Specifically, I-NSGD lever-
ages normalized gradient updates with independent sampling and gradient clipping to reduce the bias and
enhance stability. Consequently, we can establish convergence of -NSGD with O(e~*) sample complexity
under a relaxed assumption on the approximation error of stochastic gradient and constant-level batch size.
This makes the algorithm well-suited for solving large-scale problems. We further study the convergence
behavior of I-NSGD under the generalized PL. condition.

We compare the numerical performance of our [-NSGD algorithm with other state-of-the-art stochastic algo-
rithms in applications of nonconvex phase retrieval and nonconvex distributionally-robust optimization, both
of which are generalized-smooth nonconvex problems. Our results demonstrate the efficiency of -NSGD in
solving generalized-smooth nonconvex problems and match our theoretical guidance.

1.2 RELATED WORK

Generalized-Smoothness. The concept of generalized-smoothness was introduced by [Zhang et al.[(2019)
with the (Lo, L1)-smooth condition, which allows a function to either have an affine-bounded hessian norm
or be locally L-smooth within a specific region. This idea was extended by (Chen et al.| (2023)), who pro-
posed the £j, ,,(«) and L7, (o) conditions, controlling gradient changes globally with both a constant
term and a gradient-dependent term associated with power «, thus applying more broadly. Later, |Li et al.
(2024)) introduced ¢-smoothness, which use a non-decreasing sub-quadratic polynomial to control gradient
differences. Also, Mishkin et al|(2024) proposed directional smoothness, which preserves L-smoothness
along specific directions.

Algorithms for Generalized-Smooth Optimization. Motivated by achieving comparable lower bounds
presented in |Arjevani et al.| (2023)) under standard assumptions, algorithms for solving generalized-smooth
problems can be categorized into two main series. The first series focus on adaptive methods. In determin-
istic non-convex settings, Zhang et al.| (2019; 2020) showed that Clipped GD can achieve a rate of O(e?)
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under mild assumptions.Later, Chen et al.| (2023) proposed 3-GD, also achieving O(e~2) iteration complex-
ity. Other methods, such as smoothed gradient clipping, gradient descent with Polyak step-sizes, triangles
Method were explored by [Gorbunov et al|(2024) under convex (Lg, L1)-smooth conditions. In stochastic
settings, when the approximation error of the stochastic gradient estimator is bounded, Zhang et al.| (2019
2020) proved clipped SGD achieves O(e~*) sample complexity. Inspired superior performance of Adagrad
Duchi et al.|(2011), Wang et al.| (2023); Faw et al.|(2023)); Hong & Lin|(2024) further studied AdaGrad under
generalized smooth and relaxed variance assumption with different learning rate schemes. They all attains
O(1/+/T) convergence rate under mild conditions.Xie et al. (2024a) studied trust-region methods conver-
gence under generalized-smoothness. The second series focus on SGD methods with constant learning rate.
Reisizadeh et al.| (2023); [Li et al. (2024) proved that SGD converges with sample complexity O(e~*) un-
der generalized-smoothness. To ensure convergence, Reisizadeh et al.|(2023) adopted a large batch size of
O(e~?), while [Li et al.[(2024) relaxed this requirement but introduces additional variables of size O(e~1).
Additionally, various acceleration methods have been explored under the generalized-smoothness condi-
tion. Zhang et al.|(2020) proposed a general clipping framework with momentum updates; [Jin et al.| (2021}
studied normalized SGD with momentum |Cutkosky & Mehtal (2020) under parameter-dependent achieves
O<6_4> sample complexity; Hiibler et al.| (2024) studied normalized SGD with momentum |Cutkosky &
Mehta (2020) associated with parameter-agnostic learning rates, which establishes @(6‘4) convergence
rate and corresponding lower bound. By adjusting batch size, [Chen et al.| (2023)); |[Reisizadeh et al.| (2023))
demonstrated that the SPIDER algorithm (Fang et al.,[2018)) can reach the optimal O(e™>) sample complex-
ity. Furthermore, Zhang et al.| (2024b)); [Wang et al.| (2024a3b); L1 et al.| (2023) explored the convergence of
RMSprop (Hinton et al.| 2012) and Adam (Kingma, 2014)) under generalized-smoothness. Jiang et al.|(2024])
studied variance-reduced sign-SGD convergence under generalized-smoothness.

Machine Learning Applications. Generalized smoothness has been studied under various machine learning
framework. [Levy et al.| (2020); Jin et al.|(2021) studied the dual formulation of regularized DRO problems,
where the loss function objective satisfies generalized smoothness. (Chayti & Jaggi (2024)) identified their
meta-learning objective’s smoothness constant increases with the norm of the meta-gradient. |Gong et al.
(2024b); Hao et al.|(2024);|Gong et al.|(2024a); Liu et al.|(2022b) explored algorithms for bi-level optimiza-
tion and federated learning within the context of generalized smoothness. [Zhang et al.| (2024a)) developed
algorithms for multi-task learning problem where the objective is generalized smooth. [Xie et al.| (2024b)
studied online mirror descent when the objective is generalized smooth. [Xian et al.|(2024) studied min-max
optimization algorithms’ convergence behavior under generalized smooth condition.

2 DETERMINISTIC GENERALIZED-SMOOTH NONCONVEX OPTIMIZATION

We first introduce generalized-smooth optimization problems. Then, we review the classic normalized gra-
dient descent algorithm and study its complexity in the generalized-smooth and gradient-dominant setting.

We are interested in the following nonconvex optimization problem.

min f(w), (1)

weRd

where f : R?% — R denotes a nonconvex and differentiable function, and w corresponds to the model
parameters. We assume that function f satisfies the following generalized-smooth condition introduced in
(Jin et al.,[2021}; |Chen et al., 2023

Assumption 1 (Generalized-smooth) The objective function f satisfies the following conditions.

1. f is differentiable and bounded below, i.e., {* := inf cgra f(x) > —o00;

in et al.|(2021) considered the special case o = 1, and|Chen et al.|(2023) defined a symmetric version of equation
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2. There exists constants Lo, Ly > 0 and o € [0, 1] such that for any w, w' € RY, it holds that

[V f(w) = V)| < (Lo + L ||V (@)]|*) Jw — w'|)- 2

The generalized-smooth condition in Assumption [I] is a generalization of the standard smooth condition,
which corresponds to the special case of L; = 0. To elaborate, it allows the smoothness parameter to scale
with the gradient norm polynomially, and therefore is able to model functions with highly irregular noncon-
vex geometry. In (Chen et al.l 2023 |Zhang et al., |2019)), it has been shown that many complex machine
learning problems belong to this function class with different parameter «, including distributionally-robust
optimization (o = 1), deep neural networks and phase retrieval (o = %), etc. Following a standard proof, it
is easy to show that generalized-smooth functions satisfy the following descent lemma.

Lemma 1 Under Assumption function f satisfies, for any w,w' € R?,

Flw) < ') + (VT ), w— ') + 5 (Lo + L[ V7)) — | 3)

The main challenge of generalized-smooth optimization is to control the polynomial gradient norm term
IV f(w')||* involved in the smoothness parameter. This key observation has motivated the existing studies
to develop normalized gradient methods for solving generalized-smooth problems.

Chen et al.| (2023)) proposed a specialized normalized gradient descent (NGD) algorithm for generalized-
smooth nonconvex optimization. The algorithm normalizes the gradient by its norm polynomially, i.e.,

o Vi(we)
IV flwn)P’

where v > 0 denotes the learning rate and (3 is a scaling parameter that controls the normalization scale of the
gradient norm. Intuitively, when the gradient norm is large, a smaller 3 would make the normalized gradient
update more aggressive. [Chen et al (2023) has empirically demonstrated the effectiveness of equation[d]than
gradient descent in deterministic settings and proved that, when choosing a proper « and setting 5 € [«, 1],
NGD can find an e-stationary point within O(e~2) number of iterations.

(NGD) w1 = w; “4)

Moreover, From |Liu et al.| (2022a)); [Scaman et al.| (2022)), it has been observed that generalization of
Polyak-FEojasiewicz (PL) condition, such as Polyak-F.ojasiewicz”(PL)*, Kurdyka-Fojasiewicz" (KE"), and
Separable-Fojasiewicz*(SE*) hold in the landscape under over-parametrized neural networks of several
state-of-art losses, such as mean-squared loss and cross-entropy loss. Based on scalability of PL. condi-
tion that can be extended to hold in deep learning, and the linear convergence rate studied in |[Karimi et al.
(2016b). In this work, we study the convergence rate of NGD for solving generalized-smooth problems
under the following generalized Polyak-Lojasiewicz (PL) condition (Karimi et al., 2016a)).

Assumption 2 (Generalized Polyak-F.ojasiewicz Condition) There exists constants p > 0 and p > 0
such that f(-) satisfies, for all w € R,

Vs = ) = . 5)

Assumption 2] generalizes the standard PL condition (corresponds to p = 2) via flexible choice of the
parameter p. In particular, some generalized-smooth functions satisfy the above generalized PL condition
1

with different parameters. For example, the sigmoid-like function f(w) = 1w?(exp(w?) — 1) + 1w?

satisfies p = 1, n = 0.1, and the polynomial function f(w) = w + Jw? + w* satisfies p = 3,1 = 0.1.

We obtain the following convergence rate result of NGD, where we denote Ay := f(w;) — f*.



Under review as a conference paper at ICLR 2025

Theorem 1 (Convergence of NGD) Let Assumptionsand Hhold. Choose learning rate v = %
where € denotes the target accuracy, and set o < 3 < 1. Then, the following statements hold.
* If0 < p < 2— 3, then we have
P =53
A =0((g—at—) ™7 ) ©6)
=G
Furthermore, in order to achieve A; < ¢, the total number of iteration satisfies T = O ((%) %) if2—28 <
p<2—-0andT = O((%)%Ziﬂ) fo<p<2-28
e If p =2 — B and choose € such that v < % then we have
t
Atzo((1—%) ) %)
In order to achieve A\, < ¢, the total number of iteration satisfies T' = O((%)g log %)
o If p > 2 — (3, then there exists Tp € N such that for all t > T}, we have
A gt 7o
At:(’)« To )2 ° ) 8)

ym
In order to achieve A, < €, the total number of iterations after Ty satisfies T = Q(log(($) =2 ).

Theorem [T} indicates that the convergence behavior of NGD depends on the parameter p in the generalized
PL condition. When p < 2 — 3, the algorithm achieves slow sub-linear convergence rate. When p > 2 — 3,
the algorithm achieves local linear convergence rate. These results match the intuition behind the generalized
PL condition. Namely, a large p indicates that the gradient norm vanishes slowly when the function value
gap approaches zero, corresponding to sharp geometry that leads to fast local convergence.

3 STOCHASTIC GENERALIZED-SMOOTH NONCONVEX OPTIMIZATION

In this section, we study the following stochastic generalized-smooth optimization problem, where f¢ cor-
responds to the loss function associated with data sample £, and the expected loss function F'(-) satisfies the
generalized-smooth condition in Assumption I]

ul)rrelgld F(w) :=Eeup[ fe(w)]. &)

3.1 NORMALIZED SGD AND ITS LIMITATIONS

To solve the stochastic generalized-smooth problem in equation[9] one straightforward approach is to replace
the full batch gradient in the NGD update in equation E] with the stochastic gradient V f¢(w;), resulting in
the following normalized SGD (NSGD) algorithm.

vfﬁt (wt) )
IV fe, (wi) ]|

NSGD-type algorithms have attracted a lot of attention recently for solving stochastic generalized-smooth
problems (Zhang et al.| 2019; 2020} |Liu et al., [2022b). In particular, it has been proven in these works
that NSGD with proper gradient clipping can achieve a sample complexity of O(e~*), which matches that
of the standard SGD algorithm for solving stochastic smooth problems (Ghadimi & Lan, |2013)). However,
NSGD-type update has the following limitations.

(NSGD) Wi41 = Wy — 7Y (10)
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1. Biased gradient estimator: The normalized stochastic gradient used in equation @] is biased, i.e.,

v we wi ..
E[vaf:((wt))”ﬁ] # HVVF}:}EJZ))HL;. This is due to the dependence between V f, (w;) and ||V fe, (w;)[®. In

particular, the bias can be huge if the stochastic gradients are diverse, as illustrated in Figure[T]

2. Strong assumption: To control the estimation bias and establish theoretical convergence guarantee for
NSGD-type algorithms in generalized-smooth nonconvex optimization, the existing studies need to adopt
strong assumption. For example,|Zhang et al.|(2019;|2020) and Liu et al.|(2022b)) assume that the stochas-
tic approximation error ||V f¢(w) — VF (w)|| is bounded by a constant almost surely. In real applications,
this constant can be a large numerical number if certain sample ¢ is an outlier.

3.2 INDEPENDENTLY-NORMALIZED SGD

To overcome the aforementioned limitations, we propose the
independently-normalized stochastic gradient (I-NSG) estimator Ve,

el an

IV fer (w)]|?

where £ and ¢’ are samples draw independently from the underly-

ing data distribution. Intuitively, the independence between £ and £’ Ve,

decorrelates the denominator from the numerator, making it an un- IIV—f5||
2

biased stochastic gradient estimator (up to a scaling factor). Specif-
ically, we formally have that

VF

(I-NSG estimator) [IVF]]

v,
[Vl

E[ |

0

v,
Figure 1: Comparison between nor-
E /{ V fe(w) } _ /[EE [vfﬁ(w)]} x VE(w). (12) malized full gradient (blue) and ex-
“Ulv Jer(w)||? “lv Jer(w)||? pected normalized stochastic gradient
Moreover, as we show later under mild assumptions, the scaling fac-  (red). Here, & and & are sampled
tor E[||V fe(w)||~?] can be roughly bounded by the full gradient uniformly at random.
norm and hence resembling the full-batch NGD update. Based on this idea, we formally propose the follow-
ing independently-normalized SGD (I-NSGD) algorithm, where V f¢,, (w;) corresponds to the mini-batch
stochastic gradient associated with a batch of samples B, and B’ denotes another independent batch.

Wv where fuy = max {1,(4L17)% (2] V fe,, (wi)]| +0) }. (13)

The above I-NSGD algorithm adopts a clipping strategy for the normalization term h;. This is to impose a
constant lower bound on h;, which helps develop the theoretical convergence analysis and avoid numerical
instability in practice. We note that [-NSGD requires querying two batches of samples in every iteration.
However, as we show in the experiments later, the batch size | B'| can be chosen far smaller than |B).

(I—NSGD) Wi41 = W — 7Y

3.3 CONVERGENCE ANALYSIS OF I-NSGD

We adopt the following standard assumptions on the stochastic gradient.

Assumption 3 (Unbiased stochastic gradient) The stochastic gradient V fe(w) is unbiased, i.e.,
Eep [V fe(w)] = VF(w) for allw € R

Assumption 4 (Approximation error ) There exists T, T > 0 such that for any w € R?, one has
|V fe(w) = VE(w)|| < || VF(w)|| + 72 as. V& ~P. (14)

We note that the above Assumptionfd]is much weaker than the bounded approximation error assumption (i.e.,
71 = 0) adopted in (Zhang et al., [2019; |2020; [Liu et al.| 2022b). Specifically, it allows the approximation
error to scale with the full gradient norm and only assumes bounded error at the stationary points. With these
assumptions, we can lower bound the stochastic gradient norm with the full gradient norm as follows.



Under review as a conference paper at ICLR 2025

Lemma 2 Let Assumptionsand hold. Consider the mini-batch stochastic gradient V fe¢ . with batch size
B = 167’12, then for all w € R? we have

IV fer (w)| > *||VF H—* (15)

Lemma |2 shows that with a constant-level batch size, the stochastic gradient norm can be lower bounded
the full gradient norm up to a constant. This result is very useful in our convergence analysis to effectively
bound the mini-batch stochastic gradient norm used in the normalized stochastic gradient update.

We obtain the following convergence result of I-NSGD.

Theorem 2 (Convergence of I- NSGD) Let Assumpnons [1} B and H] hold.  For the I-NSGD algorithm,
choose learning rate v = mm{ Lo 4L1 ﬁ’ W} batch sizes B = 27, B' = 1677 and § = z,

Denote \ := F(wo) — F* + (Lo + L1)(1+ 73 /72)% Then, with probability at least 1, I'NSGD produces
a sequence satisfying miny<7 ||VF (w)|| < € if the total number of iteration T satisﬁes

256A 640L; 64(Lo+ L1) + 128Ly (375 /)" }

TZAmaX{ a0 2B 2

(16)

The choices of B, B’ = O(7%) are mainly to simplify the symbolic operation during the proof. By de-
ploying normalizing during data pre-processing, the value of 71 can be approximately controlled as O(1) in
practice. Thus, Theorem [2|indicates that I-NSGD achieves a sample complexity in the order of O(e~%) with
constant-level batch sizes in generalized-smooth optimization. Compared to the existing studies on normal-
ized/clipped SGD, this convergence result neither requires using extremely large batch sizes nor depending
on the bounded error assumption. Through numerical experiments in Section E]later, we show that it suffices
to query a small number of independent samples for I-INSGD in practice.

Proof outline and novelty: The independent sampling strategy adopted by I-NSGD naturally decouples
stochastic gradient from gradient norm normalization, making it easier to achieve the desired optimization
progress in generalized-smooth optimization under relaxed conditions. By the descent lemma, we have that

@) —y||VF(w,)|? P+ L VE@)]*)

Ee,, [F(wei1) — Flwr)] < - = Ee, [||V fes (we)]|”]
hl 2h?
(44) vy L0+L1HVF(’LU,5)HQ 2 1 2L0—|—L1||VF(wt)||aT§
< (L(-1++ 7 NIVE)]* + 57 i = an

where the expectation (conditioned on wy) in (i) is taken over £p only, and note that h; involves the
independent mini-batch samples & B/ (ii) leverages Assumption [4] to bound the second moment term
Ee, [V fep (we)||?] by 2[|VF (wt)||* + 72/77. Then, for the first term in equatlon we leverage the
clipping structure of h; to bound the coefficient v(Lo + Ly||[VE(w)||*)/h? by L 5 For the second term
in equation [I7] we again leverage the clipping structure of h; and con51der two complementary cases:
when ||[VF(w,)|| < \/1+ 73/72, this term can be upper bounded by 1v%(Lo + L1)(1 + 73/7); when

VF(w)|| > /1 + 72/7%, this term can be upper bounded by —5 VF wy)||?. Summing them up gives
1 ah /

the desired bound. We refer to Lemma [§in the appendix for more details. Substituting these bounds into
equation [I7)and rearranging the terms yields that

1 2
B IVE @) < Be, [Fwe) = Flwipn)] + 5 (Lo + L)y*(1+ Z)e.
ah 2 P
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Furthermore, by leveraging the clipping structure of hf and Assumption (4 the left hand side can be lower

bounded as WZ*)HQ > min{y||VF(w)]?, W}. Finally, telescoping above inequalities over ¢

t
and taking expectation leads to the desired bound in equation [T

As a comparison, in the prior work on clipped SGD (Zhang et al.| |2019;2020), their stochastic gradient and
normalization term h; depend on the same mini-batch of samples, and therefore cannot be treated separately
in the analysis. For example, their analysis proposed the following decomposition.
g, IVfes@)I? _ p  IVE)]? + IV feg (we) = VE()|* + 2{VF(wr), V feg (we) = VF(wr))
132 28 T 132 128
t t

Hence their analysis need to assume a constant upper bound for the approximation error ||V fe,, (w;) —
V F(w;)|| in order to obtain a comparable bound to ours.

We also analyze I-NSGD under the generalized PL. condition by establishing a recursion similar to that
proved in Theorem [I] Due to page limitation, we refer to Appendix [G]for more details.

4 EXPERIMENTS

We conduct numerical experiments to compare I-NSGD with other state-of-the-art stochastic algorithms,
including the standard SGD (Ghadimi & Lan| 2013)), normalized SGD, Clipped SGD (Zhang et al.| 2019).
The problems we consider are nonconvex phase retrieval and nonconvex distributionally-robust optimization.

4.1 NONCONVEX PHASE RETRIEVAL

The phase retrieval problem arises in optics, signal processing, and quantum mechanics (Drenth, [2007). The
goal is to recover a signal from measurements where only the intensity is known, and the phase information
is missing or difficult to measure. Specifically, denote the underlying object as = € R¢. Suppose we take m
intensity measurements y, = |alx|? + n,. for r = 1---m, where a, denotes the measurement vector and
n, is the additive noise. We aim to reconstruct x by solving the following regression problem.
1 & T 1242

min f(z) = — —|a, 2 . 18

min, f(2) Qm;(% jar’=[) (18)
Such nonconvex function is generalized-smooth with parameter o = % (Chen et al., 2023)). In this experi-
ment, we generate the initialization zo ~ A/ (1,6) and the underlying signal x ~ N (0, 0.5) with dimension
d = 100. We take m = 3k measurements with a,. ~ N(0,0.5) and n, ~ N(0,4?).

We implement all the stochastic algorithms with batch size |B| = 64, and we choose a small independent
batch size |B’| = 8 for ZNSGD. We use fine-tuned learning rates for all algorithms, i.e., v = 5e—5 for
SGD, 0.25 for both normalized SGD and Clipped SGD, and 0.5 for [-NSGD. We set the maximal gradient
clipping constant 45 and § = 15 for both Clipped SGD and I-NSGD. Moreover, we set the normalization
parameter of I-NSGD as g = %, which matches the generalized-smoothness parameter « of phase retrieval.

Figure [2| (Ieft) shows the comparison of objective value versus sample complexity. It can be seen that
our I-NSGD consistently converges faster than other algorithms. This indicates that, the independently-
normalized and clipped updates of I-NSGD are more adapted to the underlying generalized-smooth non-
convex geometry. In Figure [2| (middle), we test the performance of I-NSGD under different choices of the
normalization parameter 3 = 1, %, %, 1—70, %. It can be seen that I-NSGD converges the fastest as 5 matches
the theoretically-suggested value %, demonstrating the importance of imposing a proper level of gradient nor-
malization in generalized-smooth optimization. In Figure 2] (right), we further explore the effect of the batch
size for L2NSGD’s independent batch samples B’. Specifically, we test batch sizes |B’| = 4, 8,16, 32, 64,
while keeping all other hyper-parameters unchanged. The plot shows that I-NSGD can achieve both fast and
stable convergence when choosing a very small batch size (| B’| = 4 or 8) for the independent batch samples.
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Figure 2: Left: Comparison of I-NSGD and stochastic algorithms. Middle: Performance of I-NSGD with
different normalization parameters. Right: Performance of I-NSGD with different independent batch sizes.

4.2 DISTRIBUTIONALLY-ROBUST OPTIMIZATION

Distributionally-robust optimization (DRO) is a popular approach to enhance robustness against data distri-
bution shift. We consider the regularized DRO problem min, ey f(w) = supg {Ee~g[le (w)]-A¥ (P; Q) },
where Q, IP represents the underlying distribution and the nominal distribution respectively. A denotes a reg-
ularization hyper-parameter and W denotes a divergence metric. Under mild technical assumptions, Jin et al.
(2021) showed that such a problem has the following equivalent dual formulation

min L(w,n) = AEep¥ (f) + 7, (19)

where U™ denotes the conjugate function of ¥ and 7 is a dual variable. In particular, such dual objective
function is generalized-smooth with parameter « = 1 (Jin et al.}[2021;|Chen et al.|[2023)). In this experiment,
we use the life expectancy data (Arshi,|2017). We set A = 0.01 and select U*(¢) = i(t + 2)?F —1,1i.e., the

conjugate of x?-divergence. We adopt the regularized loss £¢ (W) = 5 (ye—x/ w)?+0.1 Z?il In(1+[w]).

— SGD — I-NSGD with B 70 —— I-NSGD with B'=16

=2
| ,
6.0 \ NSGD I-NSGD with = 1 6.5 I-NSGD with B’ = 32
_a
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Figure 3: Left: Comparison of I-NSGD and stochastic algorithms. Middle: Performance of I-NSGD with
different normalization parameters. Right: Performance of I-NSGD with different independent batch sizes.

We implement all the aforementioned stochastic algorithms with batch size |B| = 128, and we choose
|B’| = 16 for I-NSGD. We use fine-tuned learning rates for all algorithms, i.e., v = 4e—5 for SGD, 5e—2
for normalized SGD, 0.18 for Clipped SGD and 0.28 for I-NSGD. We set the maximal gradient clipping
constant 60 and & = 45 for both Clipped SGD and I-NSGD.

Figure [3| (left) shows the comparison of objective value versus sample complexity. It can be seen that %-
I-NSGD consistently converges faster than other methods. This indicates independent normalization and
clipped updates is also more adapted to function geometry of equation [[9] In Figure [3] (middle), we test
the performance of I-NSGD under different choices of the normalization parameter 5 = 1, %, %, % It can
be seen that S = % outperforms all other choices in terms of both convergence speed and stability. In
Figure |3 (right), we explore the effect of the batch size for [[NSGD’s independent batch samples B’. We
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test batch sizes |B’| = 16, 32,64, 128 and keeping all other hyper-parameters unchanged. The plot shows
the loss function as a function of sample complexity. We found the batch size of |B’| has little effect the
convergence speed. |B’| = 16 is sufficient to guarantee fast and stable convergence. This indicates -NSGD
doesn’t require a large batch size to ensure convergence, and is more suitable for large-scale problems.
To further demonstrate the effectiveness of I-NSGD, we compare our algorithm with additional baseline
methods, normalized SGD with momentum |Cutkosky & Mehtal (2020) and SPIDER |Fang et al.| (2018)). We
also conduct ablation study to unify the normalization parameter J for all normalization method. Experiment
results show the effectiveness of our proposed I-NSGD framework, which combines independent sampling
with clipping updates, and normalization parameter 3. We refer readers to check Section|[I]in appendix for
more details about experiments settings and corresponding results.

5 CONCLUSION

In this work, we study convergence of normalized gradient descent under generalized smooth and general-
ized PL condition. We propose independent normalized stochastic gradient descent for stochastic setting,
achieving same sample complexity under relaxed assumptions. Our results extend the existing boundary of
first-order nonconvex optimization and may inspire new developments in this direction. In the future, it is in-
teresting to explore if the popular acceleration method such as stochastic momentum and variance reduction
can be combined with independent sampling and normalization to improve the sample complexity.
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