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Abstract

Recent work has shown that generation from001
a prompted or fine-tuned language model can002
perform well at semantic parsing when the out-003
put is constrained to be a valid semantic rep-004
resentation. We introduce BenchCLAMP, a005
Benchmark to evaluate Constrained LAnguage006
Model Parsing, that includes context-free gram-007
mars for seven semantic parsing datasets and008
two syntactic parsing datasets with varied out-009
put meaning representations, as well as a con-010
strained decoding interface to generate only011
valid outputs covered by these grammars. We012
provide low, medium, and high resource splits013
for each dataset, allowing accurate comparison014
of various language models under different data015
regimes. Our benchmark supports evaluation of016
language models using prompt-based learning017
as well as fine-tuning. We benchmark seven018
language models, including two GPT-3 vari-019
ants available only through an API. Our exper-020
iments show that encoder-decoder pretrained021
language models can achieve similar perfor-022
mance or even surpass state-of-the-art methods023
for both syntactic and semantic parsing when024
the model output is constrained to be valid.025

1 Introduction026

Large pretrained language models can achieve027

state-of-the-art performance on a host of NLP tasks028

when fine-tuned on target data (Liu et al., 2019;029

Raffel et al., 2020; Wang et al., 2021b; He et al.,030

2021). Models like GPT-3 (Brown et al., 2020),031

Codex (Chen et al., 2021) and T0 (Sanh et al., 2021)032

have also shown impressive zero- and few-shot per-033

formance when prompted only with task descrip-034

tions and examples. Research on large language035

models is typically validated by performance on036

downstream NLP tasks. Past work has evaluated037

new pretrained language models on classification,038

extraction, and generation, among others (Liu et al.,039

2019; He et al., 2021; Liang et al., 2022). How-040

ever, parsing tasks are generally not considered a041

testbed for such evaluation. The outputs of parsing 042

tasks are structured objects such as parse trees or 043

code. State-of-the-art systems thus involve task- 044

or dataset-specific model architectures and mean- 045

ing representation constraints. Evaluating language 046

models on parsing tasks test capabilities not cap- 047

tured by commonly used evaluation tasks. 048

Recently, Shin et al. (2021) and Scholak et al. 049

(2021) have shown that standard generation from a 050

fine-tuned or few-shot prompted language model 051

can perform competitively in semantic parsing 052

tasks, when the output of the language model is 053

constrained to produce valid meaning representa- 054

tions. However, it is still challenging to set up 055

constrained generation for a new dataset and lan- 056

guage model due to the variation in meaning rep- 057

resentations and model-specific tokenization. In 058

this paper, we introduce a new benchmark called 059

BenchCLAMP (Benchmark for Constrained Lan- 060

guage Model Parsing) that covers nine parsing 061

datasets with seven different meaning representa- 062

tions. We release context-free grammars for each 063

dataset and provide a toolkit to perform efficient 064

constrained decoding to generate valid meaning 065

representations. Our benchmark reduces the bar- 066

rier for language model developers to evaluate on 067

parsing. The benchmark will be made available 068

upon publication. 069

We benchmark seven pretrained language mod- 070

els using BenchCLAMP. We find that fine-tuning 071

encoder-decoder pretrained language models can 072

come close to or surpass the performance of state- 073

of-the-art methods on all parsing datasets. Con- 074

strained generation via a domain-specific grammar 075

provides performance gains for most fine-tuned 076

language models. The improvement is high in low- 077

resource settings but the relative improvement re- 078

duces when more training data becomes available. 079

We find constrained decoding to be essential for 080

few-shot prompted models and for tasks with com- 081

plex constraints like constituency and dependency 082
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parsing. In both these cases, we find language083

models struggle to generate valid representations084

without constrained decoding. In addition, we ab-085

late different ways to encode context in the input,086

prompt structure, and retrieval methods for few-087

shot prompted language models. We present a com-088

prehensive study establishing concrete techniques089

to reliably use language models for syntactic and090

semantic parsing tasks.091

2 Related Work092

Language Models for Semantic Parsing Recent093

work has shown that one can generate an analysis094

of a natural language sentence, such as a semantic095

parse, by asking a large language model to con-096

tinue a prompt that includes the sentence (Chen097

et al., 2021; Li et al., 2021; Schucher et al., 2021).098

We refer to this as “language model parsing.” To099

avoid ill-formed analyses, it is possible to constrain100

the generation so that the generated output satisfies101

hard task-specific constraints. Shin et al. (2021)102

showed that constrained generation from few-shot103

prompted GPT-3 and fine-tuned BART models out-104

performed task-specific semantic parsing architec-105

tures in low-resource settings. Scholak et al. (2021)106

were able to achieve state-of-the-art performance107

in SQL prediction by fine-tuning a T5-3B model108

(Raffel et al., 2020) and using constrained decod-109

ing. Recent work on AMR parsing has also shown110

positive results with sequence-to-sequence training111

with pretrained language model parameters (Cai112

and Lam, 2020; Bai et al., 2022). As the above113

works used different evaluation settings, it is hard114

to see which techniques work best under different115

data regimes.116

Language Models for Syntactic Parsing Syn-117

tactic parsing tasks like constituency and depen-118

dency parsing requires the outputs to be well119

aligned with the input. All input tokens need to120

be covered by the output constituency or depen-121

dency parse. As a result, most solutions for syn-122

tactic parsing has involved custom decoders or in-123

ference algorithms (Kitaev and Klein, 2018; Yang124

and Tu, 2022; Zhang et al., 2017; Liu and Zhang,125

2017). However there has been some work on126

linearizing the output and developing models that127

learn to generate these linearized sequences (Koo128

et al., 2015; Wiseman and Rush, 2016; Li et al.,129

2018; Fernández-González and Gómez-Rodríguez,130

2020).131

NLP Benchmarks Multiple benchmarks have 132

been introduced to track progress on specific NLP 133

tasks and to encourage multi-task learning with 134

diverse datasets. The GLUE (Wang et al., 2018) 135

and SuperGLUE (Wang et al., 2019) benchmarks 136

are widely used by language model developers. 137

More recently, BIG-bench (Srivastava et al., 2022) 138

and HELM (Liang et al., 2022) were introduced to 139

study language model capabilities. 140

However, these benchmarks focus on classifica- 141

tion, span extraction and generation, and do not 142

include structured prediction tasks like semantic 143

parsing. More recently, the UnifiedSKG (Xie et al., 144

2022) benchmark has been introduced that converts 145

a suite of tasks requiring structured knowledge into 146

text-to-text format. In contrast to their work, we 147

cover a wide range of parsing tasks covering AMR, 148

SMCalFlow, constituency and dependency parsing. 149

While they focus on unconstrained generation, we 150

develop grammars and constrained decoding in- 151

terface to support valid representation generation 152

from language models. 153

3 Benchmark Details 154

3.1 Data Setup 155

BenchCLAMP includes nine popular parsing 156

datasets with a varied set of meaning representation 157

formalisms (details in Table 1). For each dataset, 158

we create the following splits: 159

1. We create three low-resource train splits of 160

500 examples, each uniformly sampled from 161

the training portion of the dataset. We create a 162

single low-resource development set of 50 ex- 163

amples sampled from the development portion 164

of the dataset. We report mean of these splits. 165

2. We similarly create a medium-resource train 166

split of 5000 examples paired with a dev set of 167

500 examples. 168

3. We consider a high-resource split with the en- 169

tire training set of the dataset, paired with the 170

medium-resource development set. 171

To make it feasible for researchers to evaluate on 172

BenchCLAMP, we randomly sample a smaller test 173

set for datasets with large released test sets. Specif- 174

ically, we sample 2000 examples from the test sets 175

of SMCalFlow, TreeDST and MTOP datasets and 176

evaluate test performance on this smaller set. We 177

use the full test set for all other datasets. We also 178

release a smaller randomly-sampled 100-example 179
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Dataset Metric Example Representation

SMCalFlow (Andreas et al., 2020) Lispress Match (Yield (Event.start (FindNumNextEvent
TreeDST (Cheng et al., 2020) (Event.subject_? (?~= “meeting”)) 1L)))

MTOP (Li et al., 2021) Exact Match [IN:Get_Message [SL:Type_Content video]
[SL:Sender Atlas]]

Overnight (Wang et al., 2015) Denotation Match (call listValue (call getProperty
en.block.block1 (string color)))

Spider (Yu et al., 2018) Test suite SELECT born_state FROM head GROUP BY
born_state HAVING count(*) >= 3CoSQL (Yu et al., 2019) Execution

AMR 2.0 (Banarescu et al., 2013) Smatch (e/establish-01 :ARG1 (m/model :mod
(i/innovate-01 :ARG1 (i2/industry))))

PTB 3 (Constituency parsing)
(Marcus et al., 1993)

EVALB (S (NP (NNP Ms.) (NNP Haag)) (VP (VBZ
plays) (NP (NNP Elianti))) (. .))

UD-EWT (Dependency parsing)
(Zeman et al., 2022)

LAS (1-Read, root, 0) (2-some, obj, 1) (3-of,
case, 6) (4-the, det, 6) (5-following,
amod, 6) (6-links, nmod, 2)

Table 1: List of datasets covered by BenchCLAMP, along with evaluation metric and an example representation. All
representations are linearized into a sequence that can be produced by a language model. We use task and dataset
specific metrics to evaluate performance.

test set for each dataset to evaluate models accessed180

through costly API calls like GPT-3 and Codex.181

Results on a 100-example test set will have wide182

error bars and should be used with caution. See183

subsection 5.6 for a discussion on result variance.184

We allow for the evaluation on full test sets of the185

datasets to compare with state of the art results.186

For datasets that do not release public test sets, like187

SMCalFlow, Spider, and CoSQL, we treat the de-188

velopment set as the test set, and sample 10% of the189

training set and treat it as the development set for190

splits creation. For datasets that include dialogue191

interactions, we ensure that all turns of a dialogue192

belong to the same split. The Overnight train set193

was already small (< 5k examples), so we do not194

have a separate medium split for it.195

Linearizing Representations We use the dataset196

representations as is for the MTOP, PTB-3 and the197

SQL datasets. For AMR, we use the setup pro-198

vided by van Noord and Bos (2017a,b) to linearize199

the representations into sequences for training, and200

to convert output model predictions to AMRs for201

evaluation. For SMCalFlow and TreeDST, we202

use the Lispress format (LISP-like serialization for203

programs) of the data released by Platanios et al.204

(2021). We linearize dependency parses into a se-205

quence of dependency triples. For the example in206

Table 1, our representation has the following form:207

(Read, root, root) (some, obj, Read) (of, case,208
links) (the, det, links) (following, amod, links)209
(links, nmod, some)210

To convert such a representation back to a depen- 211

dency parse, we find head token indices for each 212

token based on string match with the predicted head 213

token. In case there are multiple mentions of the 214

head token, we select the one that is closest to the 215

token being considered.1 216

3.2 Grammars 217

We release context-free grammars for all datasets 218

to constrain generation to valid meaning represen- 219

tations. The grammar creation process is specific 220

to each dataset. 221

1. For SMCalFlow and TreeDST, we use the 222

Lispress-format datasets released by Platanios 223

et al. (2021). We create a non-terminal cor- 224

responding to each type present in the train- 225

ing data. For each (sub-)expression with type 226

t, we add a production rule with the non- 227

terminal for t generating the non-terminals 228

of its component (sub-)expression types, or 229

component terminal plan fragments. 230

2. For MTOP, we add a non-terminal corre- 231

sponding to each intent and slot. Each intent 232

non-terminal generates an expression com- 233

prising slot non-terminals. Similarly each 234

slot non-terminal can generate an expression 235

with nested intent non-terminals. Slot non- 236

terminals can also generate terminal strings 237

copied from the input utterance. 238

1We can correctly roundtrip 95.7% of parses in the test set
using this approach.
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3. We use a publicly available SQL grammar239

(antlr, 2022) for Spider and CoSQL. For each240

example, we add schema-specific constraints241

to the grammar to generate consistent table242

and column names. This is similar to “parsing243

without guards” in Scholak et al. (2021).244

4. For constituency parsing, we define a non-245

terminal for an expression and a constituent246

label. We add production rules where the la-247

bel non-terminal can produce any of the con-248

stituent labels seen in the training data. The249

expression non-terminal can either produce250

terminal tokens or generate a constituent label251

coupled with a expression non-terminal. This252

context free grammar covers constituent parse253

tree representation shown in Table 1. To ad-254

ditionally ensure that all tokens in the input255

utterance are covered by the generated parse256

tree, we additionally maintain a state in our257

parsing algorithm during decoding, allowing258

tokens to appear in the order seen in the utter-259

ance, and allowing the generation to end only260

when all input tokens have been generated.261

5. For dependency parsing, we extract the set262

of dependency relations from the training set263

and define a non-terminal that can produce264

any of them. We then define a non-terminal265

that can generate a sequence of triples each266

comprising two tokens from the utterance and267

a dependency relation. Similar to our ap-268

proach with constituency parsing, we main-269

tain a parse state during decoding to ensure270

all tokens from the utterance are covered in271

order in the generated output.272

For all data splits, we use the full training data273

to derive the grammar. We envision that in realis-274

tic scenarios, the grammar will be provided by a275

domain developer, and hence will have complete276

coverage of the domain (even when some plan frag-277

ments might not have appeared in the low-resource278

dataset). We also add results with grammars in-279

duced from low-resource splits in section 5.5.280

4 Experimental Setup281

4.1 Language Models Evaluated282

We use BenchCLAMP to fine-tune and evaluate283

five language models with varying number of pa-284

rameters: T5-base (220M), T5-large (770M), T5-285

3B (3B) (Raffel et al., 2020), BART-large (406M)286

(Lewis et al., 2020) and CodeT5-base (220M) 287

(Wang et al., 2021a). The input to our model is the 288

utterance concatenated with the string representa- 289

tion of the context (conversation context, database 290

schema, etc.), and the output is the target parse. 291

We evaluate two large GPT-based language mod- 292

els: GPT-3 (Brown et al., 2020) and Codex (Chen 293

et al., 2021), using few-shot prompting on the 100 294

example test sets. Unless otherwise state, we use 295

the OpenAI API text-davinci-001 for GPT- 296

3 and code-davinci-001 for Codex. For each 297

input (utterance concatenated with context) we se- 298

lect a set of 20 relevant examples from the train- 299

ing set using BM25 (Rubin et al., 2021) or a sen- 300

tence transformer (Reimers and Gurevych, 2019) 301

based similarity model. We create a prompt using 302

these examples, following the template in Shin et al. 303

(2021) and limiting the total length of the prompt 304

to be 1500 tokens. This leaves room in GPT-3’s 305

buffer to generate an output of up to 548 tokens. 306

We release data splits for all domains of 307

Overnight and all languages in MTOP. But for 308

brevity, we benchmark on a single domain of 309

Overnight (blocks) and a single language from 310

MTOP (English). All other datasets used in the 311

benchmark are in English. We evaluate few-shot 312

prompted GPT-3 / Codex on three BenchCLAMP 313

datasets to save on API costs. All other models are 314

evaluated on the complete evaluation suite. 315

We use the code released by Shin et al. (2021) to 316

support incremental constrained generation of se- 317

mantic representations. This code maintains a chart 318

according to Earley’s algorithm (Earley, 1970) that 319

can be used to determine the set of legal next tokens 320

and can also be efficiently updated after a partic- 321

ular token is selected. We extend their method 322

to support all autoregressive language models and 323

sequence-to-sequence models. Unless otherwise 324

mentioned, we always use constrained decoding to 325

report metrics. 326

4.2 Format for Model Inputs 327

For experiments related to fine-tuned language 328

models with SMCalflow and TreeDST with last 329

user and agent utterance as context, the input to 330

the model has the format l | a | u, where u is the 331

input natural language utterance, l is the last user 332

utterance, a is the last agent utterance and | is a 333

separator symbol. When using only last agent ut- 334

terance as context, the input is a | u, and for using 335

no context, the input to the model is simply u. 336
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LM Grammar
Constraints?

SMCalflow TreeDST MTOP (en)

Low Med High Low Med High Low Med High

GPT-3† (BM25) Yes 26.0 48.0 49.0 35.7 54.0 53.0 46.3 56.0 57.0
Codex† (BM25) Yes 36.7 55.0 56.0 46.3 61.0 62.0 53.3 68.0 72.0
GPT-3† (SentenceT5-xxl) Yes 33.0 45.0 52.0 38.7 56.0 59.0 50.0 62.0 64.0
Codex† (SentenceT5-xxl) Yes 39.3 52.0 62.0 47.7 58.0 64.0 55.7 67.0 70.0

T5-base No 38.2 67.5 77.6 57.2 84.4 89.3 54.7 79.3 84.5
Yes 41.6 69.7 78.6 62.0 85.8 89.4 57.5 80.1 84.3

CodeT5-base No 33.3 65.6 80.8 50.3 83.5 90.3 44.1 75.6 80.6
Yes 37.3 67.5 81.1 56.8 84.4 90.0 47.1 75.8 81.1

BART-large No 36.1 68.1 82.2 52.0 84.0 90.2 57.8 81.6 85.8
Yes 42.5 71.4 83.0 61.1 86.4 89.8 61.7 82.1 85.3

T5-large No 42.6 71.5 81.3 59.6 86.2 90.0 55.4 82.1 85.6
Yes 46.3 73.1 82.1 64.2 87.2 90.1 59.3 82.5 85.3

T5-3B No 43.5 73.8 82.6 58.5 85.9 90.7 60.9 83.2 86.3
Yes 48.7 75.9 83.0 64.1 87.2 90.3 64.1 83.4 85.6

Table 2: Performance of language models on SMCalFlow, TreeDST and MTOP. † indicates few-shot prompted and
evaluated on the 100 example test set; numbers above the horizontal bar are thus not comparable to those below.
Remaining LMs are finetuned and evaluated on BenchCLAMP test sets. We report results with both constrained
and unconstrained decoding to illustrate the contribution of constraints. Metrics are dataset-specific (see Table 1).
The best score in each column is boldfaced.

LM Grammar
Constraints?

Spider CoSQL Overnight (blocks)

Low Med High Low Med High Low High

T5-base No 30.8 54.1 55.6 24.0 39.9 40.8 63.9 63.7
Yes 33.8 56.8 58.9 26.8 42.7 43.4 64.4 63.9

CodeT5-base No 36.6 57.4 61.9 26.1 45.9 48.1 60.0 64.7
Yes 37.6 58.0 62.2 27.3 46.2 48.2 60.4 65.2

BART-large No 41.8 59.1 63.9 30.9 49.9 52.8 60.7 63.4
Yes 42.5 62.7 63.9 29.1 48.8 51.5 61.2 63.7

T5-large No 42.4 64.6 65.7 30.7 50.0 53.8 62.1 68.7
Yes 44.1 65.5 66.5 32.1 52.4 55.5 62.8 68.9

T5-3B No 46.4 68.4 70.9 32.6 54.7 53.4 62.8 66.2
Yes 48.6 70.3 72.3 34.7 56.4 56.2 63.2 66.2

Table 3: Performance of fine-tuned language models on Spider, CoSQL and Overnight datasets. We report test suite
execution accuracy (Zhong et al., 2020) for the SQL datasets and denotation accuracy for Overnight.

LM Grammar
Constraints?

PTB-3 UD-EWT AMR 2.0

Low Med High Low Med High Low Med High

T5-base No - - - - - - 52.7 72.0 75.0
Yes 83.1 93.1 94.6 80.2 88.2 89.4 51.3 72.0 75.0

CodeT5-base No - - - - - - 48.0 66.0 74.0
Yes 70.9 86.7 92.1 73.2 84.0 85.8 46.7 66.0 74.0

BART-large No - - - - - - 57.0 74.0 81.0
Yes 78.0 93.9 95.7 84.1 89.7 90.6 55.0 75.0 81.0

T5-large No - - - - - - 57.3 76.0 81.0
Yes 84.5 94.4 95.7 80.6 90.1 91.0 57.0 76.0 81.0

T5-3B No - - - - - - 60.0 77.0 82.0
Yes 77.6 93.9 96.2 83.1 90.4 91.3 59.0 77.0 83.0

Table 4: Performance of fine-tuned language models on constituency (PTB-3), dependency (UD-EWT) and AMR
paring. We report bracketing F1 using EVALB (Sekine and Collins, 1997) for PTB-3, labeled attachment score
(LAS) for UD-EWT, and Smatch (Cai and Knight, 2013) for AMR parsing.
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We use the the following format for Spider and337

CoSQL: c , d , u, where c is any conversational con-338

text if applicable, d is a rendering of the database339

schema with or without values and u is the user ut-340

terance. We use the database schema representation341

used in Scholak et al. (2021) for d. For c, we con-342

catenate the past utterances in the conversational343

context with the separator symbol |.344

Our few-shot prompting experiments use the345

prompt template of (Shin et al., 2021). Given a346

language input, we retrieve relevant prompt exam-347

ples and create a prompt with the following format:348

349
350

Let’s translate what a human user says351
into what a computer might say.352

353
Human: {Prompt Example 1 Input}354
Computer: {Prompt Example 1 Output}355
Human: {Prompt Example 2 Input}356
Computer: {Prompt Example 2 Output}357

...358
Human: {Current Input}359
Computer:360361

4.3 Training Details362

For fine-tuning experiments, we train the language363

models with batch size 32 for 10 000 steps using364

AdaFactor (Shazeer and Stern, 2018), saving a365

checkpoint every 5000 steps. We use 1000 linear366

warmup steps and then linear decay the learning367

rate to 0. We tune all models with learning rates368

10−4 and 10−5, except for T5-3B for which we369

only used 10−4 to save compute. The best per-370

forming checkpoint on the dev set is used to report371

scores on the test set.372

5 Results373

5.1 Benchmarking Language Models374

We show the performance of language models on375

BenchCLAMP datasets in tables 2, 3 and 4. We376

find that performance increases with model size377

for most fine-tuned language models. Few-shot378

prompting of GPT-3 and Codex are still not on379

par with fine-tuned models. For non-SQL datasets,380

even smaller language models reach close to the381

best performance in the high resource setting. How-382

ever, for Spider and CoSQL, model size seems im-383

portant in all data settings. This is likely because384

the model has to reason about the database schema385

to generate SQL queries, making it a harder learn-386

ing problem. See sections 5.3 and 5.4 for details387

on how we use context in model inputs for these388

experiments. We skip unconstrained generation 389

results for constituency and dependency parsing. 390

We observe that models often fail to generate valid 391

parses for the entire sentence for these tasks, and 392

evaluating a valid substring is not supported by re- 393

leased evaluation tools. Entirely rejecting invalid 394

parses leads to very low performance. 395

Table 5 compares our constrained T5-3B model 396

with the best-performing models in the literature. 397

We outperform state-of-the-art models on the SM- 398

CalFlow, TreeDST and Overnight-blocks datasets. 399

For Spider and CoSQL, our scores are lower than 400

the state-of-the-art despite using a similar con- 401

strained language model approach. This is likely 402

because we use a general SQL grammar to con- 403

strain decoding, whereas the SQL in these datasets 404

covers only a small fraction of the SQL grammar. 405

We believe using a more constrained grammar will 406

improve performance.The state-of-the-art method 407

for AMR also uses a CLAMP model but with ad- 408

ditional task specific pretraining. The best models 409

for PTB-3 and UD-EWT are designed specific to 410

the task. Our language model fine-tuning paired 411

with constrained decoding achieves performance 412

close to these methods without any task specific 413

modifications. 414

Dataset Current State of the Art Our T5-3B

SMCalFlow 80.4 (Platanios et al., 2021) 83.7
TreeDST 88.1 (Platanios et al., 2021) 91.5
MTOP (en) 86.4 (Pasupat et al., 2021) 85.7
Overnight 65.2 (Cao et al., 2019) 66.2(blocks)
Spider 75.5 (Scholak et al., 2021) 72.2
CoSQL 56.9 (Scholak et al., 2021) 52.3
AMR 85.4 (Bai et al., 2022) 83.0

PTB 3 96.4 (Tian et al., 2020) 96.2
UD-EWT 91.5 (Mohammadshahi and Hen-

derson, 2021)
91.3

Table 5: Comparison of our fine-tuned T5-3B model
with current state of the art models on full test sets. We
report exact match accuracy for Spider and CoSQL to
match the settings of previous work. The best score in
each row is boldfaced.

5.2 Effect of Constraints 415

Decoding constrained by a grammar is essential for 416

few-shot prompted models like GPT-3 and Codex 417

that are accessed via API calls. Without a grammar, 418

we noticed that these models explore a large num- 419

ber of invalid paths leading to high latency and API 420

cost. We also found constrained decoding essential 421

for source side prediction tasks like constituency 422
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and dependency parsing. They require each token423

in the input to be covered in the output. We found424

even fine-tuned language models struggle to learn425

these constraints leading to very low performance426

with unconstrained decoding.427

Tables 2, 3 and 4 show the effect of constraints428

while generating from fine-tuned large language429

models. We find that constrained decoding is most430

beneficial in low-data regimes, giving on average431

2.7% gain over unconstrained decoding. In the432

high-resource setting, the average gain is less than433

1%, suggesting that the full data is nearly sufficient434

to learn the constraint system.435

We find that constrained decoding under per-436

forms unconstrained decoding for some settings.437

We attribute this result to the insufficient coverage438

of our grammars. Our grammars were induced439

from the training data, and thereby fail to cover440

novel components or combinations at test time.441

Our grammars are also constrained to copy quoted442

strings from the input utterance. However this is443

not strictly followed in some datasets. Table 6444

shows the fraction of test outputs covered by Bench-445

CLAMP grammars. We could relax the grammar446

constraints to ensure full coverage; we leave such447

exploration to future work. In realistic situations,448

we expect grammars to be provided by domain449

developers ensuring full coverage.450

Dataset Test Set Coverage %

SMCalFlow 99.6
TreeDST 96.3
MTOP (en) 96.6
Overnight (blocks) 100.0
Spider 98.8
CoSQL 99.4
AMR 99.7

PTB 3 100.0
UD-EWT 99.9

Table 6: Grammar coverage (%) of the gold outputs in
the test set of BenchCLAMP datasets.

5.3 Impact of Context451

The datasets in BenchCLAMP require a model to452

use a variety of contexts. SMCalFlow, TreeDST453

and CoSQL datasets all have conversational con-454

text. Spider and CoSQL have database schema455

context which informs the target SQL prediction.456

BenchCLAMP allows us to perform a controlled457

investigation of the effect of context. Table 7458

shows that while using the last agent and user utter-459

ance is helpful for all settings, the low-data regime460

does even better when using only the last agent 461

utterance; without more data, training struggles to 462

learn how to utilize (or ignore) the additional con- 463

text. We find similar results for CoSQL in Table 464

8. Also, SQL prediction always benefits from in- 465

cluding database values in the context along with 466

the database schema information. We use the best 467

settings for context for each data regime for bench- 468

marking results in tables 2, 3 and 4. 469

Conv.
Context

SMCalFlow TreeDST

Low Med High Low Med High

No context 37.0 63.8 72.9 42.4 68.4 76.0
Last agent
utt. 42.6 70.7 80.6 59.6 82.7 87.9

Last user &
agent utt. 40.0 71.5 81.3 58.8 86.2 90.0

Table 7: Lispress match accuracy of unconstrained fine-
tuned T5-large with varying conversational context on
SMCalFlow and TreeDST. We find more context hurts
in low resource settings but helps in medium and high
resource settings.

Conversational
Context DB values? Low Med High

No context no 21.3 35.9 34.4
yes 25.3 38.9 40.3

Last interaction no 24.1 40.4 39.1
yes 28.2 44.2 44.4

All interactions no 24.3 36.8 43.0
yes 24.9 44.9 48.8

Table 8: Test suite execution accuracy of unconstrained
BART-large on the CoSQL dataset with varying context.
We similarly find more context hurts in low resource
settings but helps in medium and high resource settings.

5.4 Few-Shot Prompting 470

In few-shot prompting scenario, we manipulate the 471

context choice and ordering of examples in our 472

prompt to Codex. The results in Table 10 show that 473

ordering the most similar example at the end closest 474

to the generation heads is helpful in the low-data 475

regime, indicating that GPT-3 and Codex pay more 476

attention to the recent past. In higher data regime, 477

all prompt examples are almost equally relevant, 478

hence the order does not matter as much. We find 479

that context does not help; one of the reasons being 480

that we can fit fewer examples in the prompt if we 481

need to include context for each example. 482

We experiment with BM25 and similarity mod- 483

els for prompt retrieval for few-shot prompting. For 484

similarity models, we pick top models from each 485
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of the three categories in SentenceTransformers486

leaderboard (Reimers and Gurevych, 2019): all-487

mpnet-base-v2, multi-qa-mpnet-base-dot-v1 and488

sentence-t5-xxl (Ni et al., 2022). We find that489

SentenceT5-xxl surpasses other similarity mod-490

els for prompt retrieval. SentenceT5 outperforms491

BM25 in low resource settings, but performs rela-492

tively worse when more data is available.493

Prompt Order Conv. Context Low Med

Random No context 35.7 52.0
Best First No context 34.3 53.0
Best Last No context 36.7 52.0
Best Last Last agent utt. 34.0 41.0
Best Last Last user & agent utt. 26.0 31.0

Table 9: Lispress match accuracy of the few-shot
prompted Codex DaVinci language model on the SM-
CalFlow dataset with different prompt order and conver-
sational context. More context hurts few-shot prompted
models. Ordering the most relevant examples closer to
the generation heads improve performance.

Prompt Retrieval Method Low Med

BM25 36.7 55.0
all-mpnet-base-v2 38.0 49.0
multi-qa-mpnet-base-dot-v1 38.3 50.0
sentence-t5-xxl 39.3 52.0

Table 10: Lispress match accuracy of Codex on the SM-
CalFlow dataset with different prompt retrieval methods.
We used code-davinci-001 with best last prompt
order and no context.

Constraint Grammar SMCalFlow TreeDST

Low Med Low Med

Unconstrained 42.6 71.5 59.6 86.2
Induced from train split 45.6 73.1 62.3 87.2
Induced from full train 46.3 73.1 64.2 87.2

Table 11: Effect of different grammar induction data on
the Lispress match constrained decoding accuracy of
fine-tuned T5-large.

5.5 Grammars induced from Less Data494

The grammars released for SMCalFlow, TreeDST495

and MTOP were induced using the full train dataset.496

This grammar is then used even with low and497

medium resource train splits. We expect the gram-498

mar will be provided by a developer of the domain499

and hence will cover all valid representations. How-500

ever, for the sake of completeness, we report here501

the impact of using grammar induced from the cor-502

responding train sets. Table 11 shows the results503

with constrained decoding with train split induced504

grammar, and compares the performance with un- 505

constrained decoding and decoding with grammar 506

induced from full train set. The gains from con- 507

straints drop by 1−2% for low resource splits when 508

using train split induced grammar instead of full 509

train induced grammar. It does not affect results 510

for the medium resource splits. 511

5.6 Variance of Results 512

All low-resource results are a mean of three train- 513

ing data splits. Table 12 reports the average stan- 514

dard deviation for each model over the three low 515

resource splits. We find a high standard deviation 516

of GPT-3 and Codex; one of the factors being the 517

small size of the test set (100 examples). Fine- 518

tuned models show relatively low variance, con- 519

sistently having standard deviation lower than 2%. 520

521

Model Avg. Standard Deviation

GPT-3 4.7
Codex 3.2

T5-base 1.2
CodeT5-base 1.1
BART-large 1.4
T5-large 2.0
T5-3B 1.5

Table 12: Standard deviation of the scores for each
language model over the three low resource splits.

6 Conclusion 522

We introduce a benchmark comprising nine parsing 523

datasets with varying target representations. We 524

support few-shot prompting, fine-tuning and con- 525

straint decoding for all autoregressive language 526

models and sequence-to-sequence models on these 527

datasets. We hope that this work will encourage lan- 528

guage model developers to consider parsing tasks 529

as a test-bed in future work. 530

7 Limitations 531

Our benchmark includes data in multiple languages 532

(all languages included in the MTOP dataset) but 533

we only evaluate on English datasets due to com- 534

pute constraints. Few-shot prompted experiments 535

were evaluated on relatively small test sets on three 536

datasets due to API cost limitations. As a result, 537

we noticed high variance in the results (see section 538

5.6 for variance results). 539
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