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ABSTRACT

We introduce a supervised machine learning framework for

sequential datum±wise joint feature selection and classifica-

tion. Our proposed approach sequentially acquires features

one at a time during testing until it decides that acquiring

more features will not improve label assignment. At that

point, and in contrast to prior art, it assigns a label to the

example under consideration by selecting between a simple

internal and a more powerful external classifier. Easy±to±

classify examples are handled by the internal classifier, which

assigns labels based on the lowest expected misclassification

cost. On the other hand, difficult±to±classify examples are

forwarded to the external classifier to be assigned a label

based on the acquired features. We demonstrate the per-

formance of the proposed approach compared to existing

methods using six publicly available datasets. Experiments

indicate that the proposed approach improves accuracy up

to 50% with respect to existing sequential methods, while

acquiring up to 85% less number of features on average.

Index TermsÐ supervised classification, instance±wise

feature selection, dynamic programming, inaccurate oracle,

high±performance classifier

1. INTRODUCTION

Traditional supervised classification adopts a batch±wise ap-

proach, where all features are readily available and used for

determining the label of an example [1]. Unfortunately, in

many real±world applications (e.g., medical diagnosis, insur-

ance assessments), this is not the case, i.e., features are not

freely available. For instance, in medical diagnosis, features

come at a cost (i.e., due to the acquisition process), and each

example includes different features [2]; nonetheless, accurate

classification is critical and time±sensitive. Therefore, mak-

ing accurate predictions using the most informative features is

essential. In such a setting, feature selection and classification

have received considerable attention [3±7].

This material is based upon work supported by the National Science

Foundation under Grants ECCS±1737443 & CNS±1942330.

Standard classification methods (e.g., Support Vector Ma-

chines (SVM), Naive Bayes (NB)) consider all features to

be available during training and testing. In contrast, offline

feature selection methods (e.g., L1±norm based feature se-

lection (Lasso)) select a sub±set of features during training

and use them during testing. Due to their high performance,

such methods are widely used in practice [8, 9], however,

they base their decisions on the same set of features irrespec-

tive of the example under consideration. To accommodate

prohibitively large feature spaces, streaming feature selection

methods [10, 11] perform feature selection during training as

features sequentially arrive one at a time. During testing, all

examples are classified using a standard classification method

using the same subset of features. Static instance±wise ap-

proaches [12, 13] perform datum±wise classification, but ac-

cess all features during testing for that purpose. In contrast,

dynamic instance±wise feature selection methods [5, 6] adap-

tively select different features to classify each data instance

during testing. A major drawback of the latter approaches is

inherently their classification mechanism; labels are assigned

based on the smallest expected misclassification cost defined

in terms of the posterior probability of the label of the exam-

ple under consideration given the information provided by the

already acquired features. Such mechanism may work well

for some examples, but not for all, leading to considerable

performance degradation.

To address the above issue, we present a method that de-

cides between the use of a simple internal classifier (based on

the expected misclassification cost) and a more powerful ex-

ternal one. The proposed method uses the posterior probabil-

ity to assess how difficult it is to classify the example under

consideration. As features are sequentially acquired during

testing, the respective posterior probability is updated accord-

ingly, and used to continue or terminate the feature acquisition

process. Then, difficult±to±classify examples are forwarded

to the external classifier, while the rest are handled by the in-

ternal classifier. The performance of the proposed approach

is assessed on six real±world datasets and compared with five

existing approaches. We observe that it achieves a good bal-

ance between accuracy and average number of acquired fea-
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tures. Further, we notice that the inclusion of an external

classifier improves accuracy by better handling difficult±to±

classify examples, while saving on feature acquisition costs.

2. PROBLEM STATEMENT

In a typical supervised classification setting, the objective is

to learn a model that maps an example described by a K±

dimensional feature vector [x1, . . . , xK ]T , where xk repre-

sents the value of the kth feature, to a label y ∈ {1, . . . , N}.

The basic assumption here is that the feature vector is given in

full. We instead consider the same problem under a slightly

different context. Specifically, each feature xk is not freely

available, rather it is sequentially acquired during testing by

expending cost ck > 0, k = 1, . . . ,K. Inherently, acquiring

less features can save on acquisition costs. On the other hand,

we may not have adequate information to make a reliable la-

bel assignment. Thus, it is necessary to jointly determine the

subset of features based on which each example is to be clas-

sified, and its predicted label.

We start by introducing two random variables to facili-

tate the description of our proposed framework. We define

random variable R ∈ {0, . . . ,K} to indicate the last feature

acquired before assigning a label to the current example with

0 representing the case that no features were acquired. For ex-

ample, R = 2 indicates the acquisition of features x1 and x2.

We also define random variable DR ∈ {1, . . . , N} ∪ {E} to

indicate the decision reached about the current example based

on R features. Specifically, when DR ∈ {1, . . . , N}, the cur-

rent example is assigned one out of N labels by an internal

classifier (c.f. Section 3.2). Otherwise, when DR = E , the

current example is forwarded to an external classifier (e.g.,

SVM) to be classified using the R acquired features.

There are two main benefits of having access to an ex-

ternal classifier. First, classification of examples that would

require the acquisition of large number of features could po-

tentially be classified by the external classifier using less fea-

tures. Second, irrespective of the number of features used

by the internal classifier for a given example, classification

may be inaccurate; such difficult±to±classify examples may

be better handled by the external classifier.
In order to learn a model that simultaneously determines

the subset of features based on which each example is to be
classified, and its predicted label, we propose to optimize the
following cost function:

J(R,DR) = E

{

R
∑

k=1

ck +

N
∑

j=1

N
∑

i=1

MijP (DR = j, y = i)

+

N
∑

i=1

MiEP (DR = E , y = i)

}

, (1)

where Mij , i, j ∈ {1, . . . , N}, represents the cost of assign-

ing label j to the example when the true label is i, while MiE

indicates the cost of forwarding the example to an external

classifier when the true label is i. The first term in Eq. (1)

represents the average cost of acquiring R features, while the

second term captures the average cost of assigning labels us-

ing the internal classifier. The third term indicates the average

cost of forwarding the example to an external classifier. Thus,

our objective reduces to determining the pair (R,DR) that

minimizes the average cost in Eq. (1).

3. SEQUENTIAL APPROACH

In this section, we describe how to obtain the pair (R,DR)
that minimizes Eq. (1). We first introduce a sufficient statis-

tic, which we then use to rewrite Eq. (1). This enables us to

acquire the optimum feature acquisition and decision strate-

gies. Finally, we describe our proposed algorithm.

3.1. Sufficient Statistic

Consider the posterior probability vector πk ≜ [π1
k, . . . , π

N
k ]

where πi
k ≜ P (y = i|x1, . . . , xk), k = 1, . . . ,K, i =

1, . . . , N , denotes the probability of the current example

having label i given that k features have been acquired.

When k = 0 (i.e., no features have been acquired), π0 ≜

[π1, . . . , πN ]T , where P (y = i) = pi, i = 1, . . . , N , repre-

sents the prior probability of the example under consideration

having label i. From Bayes’ rule, we recursively update the

posterior probability as πi
k =

P (xk|y=i)πi

k−1

P (xk|y=1)π1
k−1

+...+P (xk|y=N)πN

k−1

,

which can be compactly written in vector form as follows:

πk =
diag(∆k(xk))πk−1

∆T
k (xk)πk−1

. (2)

Note that ∆k(xk) ≜ [P (xk|y = 1), . . . , P (xk|y = N)]T ,

P (xk|y = i) represents the pmf of feature xk given that the

current example has label i, and diag(z) represents a diagonal

matrix that has the elements of vector z. Here we assume that

the features xk are independent given the label. Even though

simplistic, such an assumption results in a good trade±off be-

tween accuracy and average number of acquired features, as

seen in Section 4.

3.2. Optimum Decision Strategy

Next, we discuss the optimum decision strategy D∗
R for any

fixed number R of acquired features. First, Eq. (1) is written
in terms of the posterior probability and the indicator function

IA (i.e., IA ≜ 1 when event A occurs and 0 otherwise):

J(R,DR) = E

{

R
∑

k=1

ck +

N
∑

j=1

M
T
j πRI{DR=j}

+M
T
E πRI{DR=E}

}

, (3)

where Mj ≜ [M1j , . . . ,MNj ]
T and ME ≜ [M1E , . . . ,MNE ]

T .

To find the optimum decision strategy D∗
R, first, we consider

the last two terms of Eq. (3), which depend on DR. For any

decision DR,
∑N

j=1 M
T
j πRI{DR=j} + M

T
E πRI{DR=E} ≥
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Table 1. Accuracy (ªAccº) and average number of acquired features (ªFeatº) for the proposed approach (SDFA±SVM, SDFA±

DT) and baselines.

Method
Monks Problem Diabetes EEG Eye State MagicTelescope Student German Credit

Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat

SDFA±SVM 0.536 5.722 0.753 6.056 0.536 3.315 0.794 6.316 0.864 4.656 0.732 12.081

SDFA±DT 0.795 5.722 0.753 6.056 0.485 3.315 0.807 6.316 0.869 4.656 0.732 12.081

ETANA 0.529 5.188 0.749 5.935 0.500 12.261 0.775 6.302 0.864 4.617 0.714 11.846

NB 0.591 6.000 0.751 8.000 0.437 14.000 0.727 11.000 0.827 32.000 0.700 20.000

SVM 0.657 6.000 0.674 8.000 0.551 14.000 0.806 11.000 0.787 32.000 0.700 20.000

DT 0.922 6.000 0.706 8.000 0.475 14.000 0.819 11.000 0.838 32.000 0.664 20.000

Lasso 0.654 4.800 0.766 8.000 0.551 13.400 0.789 9.000 0.851 14.600 0.734 17.800

g(πR) where g(πR) ≜ minq∈{1,...,N}∪{E}[M
T
q πR]. Thus,

D∗
R for any number R of acquired features is:

D∗
R = argmin

q∈{1,...,N}∪{E}

[MT
q πR]. (4)

Specifically, if D∗
R ∈ {1, . . . , N}, the internal classifier as-

signs the example under consideration the label i that yields

the smallest misclassification cost captured by the inner prod-

uct MT
i πR. Otherwise, if D∗

R = E , the example is forwarded

to the external classifier (e.g., SVM), which uses the R ac-

quired features to assign a label.

3.3. Optimum Feature Acquisition Strategy

To find the optimum feature acquisition strategy R∗, first, the

cost function in Eq. (3) is simplified using the result of Section

3.2 as J̃(R) = E{
∑R

k=1 ck + g(πR)}. R∗ is then obtained

using dynamic programming [14] to minimize the cost func-

tion. Specifically, since the available number of features is

K, there exists a maximum of K+1 stages for the associated

dynamic programming equations, i.e.,

J̄k(πk) = min
[

g(πk), Āk(πk)
]

, k = 0, . . . ,K − 1, (5)

where Āk(πk) = ck+1+
∑

xk+1
J̄k+1(πk+1)

(

∆T
k+1(xk+1)πk

)

,

with J̄K(πK) = g(πK). In Eq. (5), g(πk) represents the cost

of stopping the feature acquisition process when k features

have already been acquired, while Āk(πk) is the cost of con-

tinuing this process. Thus, R∗ = k if g(πk) < Āk(πk) for

k < K or R∗ = K when all the features are acquired.

3.4. SDFA Algorithm

Based on the above strategies, we propose the Sequential

Datum±wise Feature Acquisition (SDFA) algorithm. SDFA

sequentially acquires features until it decides to either assign

the current example the label with the smallest misclassifica-

tion cost or forward it to the external classifier along with the

acquired features. In the training phase of SDFA, the interval

[0, 1] is appropriately quantized to generate all possible pos-

terior probability vectors πk such that πk1
T = 1, where 1

is a N±dimensional vector of all ones. For all such posterior

probability vectors, Eqs. (4) and (5) are evaluated and numeri-

cally solved to determine the optimum feature acquisition and

decision strategies. Furthermore, the conditional probabilities

P (xk|y = i) and prior probabilities P (y = i), i = 1, . . . , N,

are estimated (c.f. Section 4). In the testing phase of SDFA,

the numerical solutions determined during training are used

to sequentially acquire features and reach a label assignment.

The process begins by initializing the posterior probability

π0 ≜ [p1, . . . , pN ], where pi = P (y = i), i = 1, . . . , N .

Next, features are sequentially acquired based on Eq. (5),

and a final decision is reached based on Eq. (4). Assuming

k features have already been acquired, if the stopping cost

is greater than the continuing cost, the next feature xk+1 is

also aquired and the posterior probability vector is updated

based on Eq. (2). This continues until a subset of features is

acquired, or no more features are available. In either case,

at that stage, the current example is assigned a label by the

internal or external classifier.

4. NUMERICAL STUDY

In this section, we present experimental results to illustrate

the performance of SDFA. Specifically, we test SDFA on 6
real±world datasets, i.e., Monks Problem [15] (601 instances

/ 6 features / 2 classes), Diabetes [16] (768 instances / 8 fea-

tures / 2 classes), EEG Eye State [17] (14, 980 instances / 14
features / 2 classes), MagicTelescope [18] (19, 020 instances

/ 11 features / 2 classes), Student performance (Student) [19]

(649 instances / 32 features / 2 classes), and German Credit

[20] (1, 000 instances / 20 features / 2 classes). For the Ger-

man Credit, we use the originally provided dataset from Kag-

gle, while the rest of the datasets are from OpenML. Further,

we preprocess the Student dataset such that the classification

variable G3 representing the final grade is binary, i.e., we set

G3 = 1 if the final grade ≥ 11, else G3 = 0. We com-

pare SDFA’s performance (in terms of accuracy and average

number of acquired features) with the following baselines:

(i) ETANA [5], an instance±wise joint feature selection and

classification algorithm, (ii) L1±norm based feature selection

(Lasso), an offline feature selection algorithm, and (iii) NB,

SVM with Gaussian kernel, and Decision Tree (DT), three

standard classification algorithms. As the external classifier

for SDFA, we consider SVM and DT, referred to as SDFA±

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 31,2023 at 02:07:28 UTC from IEEE Xplore.  Restrictions apply. 





6. REFERENCES

[1] Kevin P Murphy, Probabilistic machine learning: an

introduction, MIT press, 2022.

[2] David P Kao, James D Lewsey, Inder S Anand, Barry M

Massie, Michael R Zile, Peter E Carson, Robert S McK-

elvie, Michel Komajda, John JV McMurray, and JoAnn

Lindenfeld, ªCharacterization of subgroups of heart

failure patients with preserved ejection fraction with

possible implications for prognosis and treatment re-

sponse,º European Journal of Heart Failure, vol. 17,

no. 9, pp. 925±935, 2015.

[3] Xuegang Hu, Peng Zhou, Peipei Li, Jing Wang, and

Xindong Wu, ªA survey on online feature selection with

streaming features,º Frontiers of Computer Science, vol.

12, no. 3, pp. 479±493, 2018.

[4] Noura AlNuaimi, Mohammad Mehedy Masud, Mo-

hamed Adel Serhani, and Nazar Zaki, ªStreaming fea-

ture selection algorithms for big data: A survey,º Ap-

plied Computing and Informatics, 2020.

[5] Yasitha Warahena Liyanage, Daphney-Stavroula Zois,

and Charalampos Chelmis, ªDynamic instance-wise

joint feature selection and classification,º IEEE Trans-

actions on Artificial Intelligence, vol. 2, no. 2, pp. 169±

184, 2021.

[6] Yasitha Warahena Liyanage, Daphney-Stavroula Zois,

and Charalampos Chelmis, ªDynamic instance-wise

classification in correlated feature spaces,º IEEE Trans-

actions on Artificial Intelligence, vol. 2, no. 6, pp. 537±

548, 2021.

[7] Yasitha Warahena Liyanage, Daphney-Stavroula Zois,

and Charalampos Chelmis, ªOn±the±fly feature selec-

tion and classification with application to civic engage-

ment platforms,º in ICASSP 2020-2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2020, pp. 3762±3766.

[8] Harsh Singh and Ognjen ArandjeloviÂc, ªData efficient

support vector machine training using the minimum de-

scription length principle,º in ICASSP 2022-2022 IEEE

International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP). IEEE, 2022, pp. 1361±1365.

[9] Owen Queen and Scott J Emrich, ªLasso-based feature

selection for improved microbial and microbiome clas-

sification,º in 2021 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM). IEEE, 2021,

pp. 2301±2308.

[10] Noura AlNuaimi, Mohammad Mehedy Masud, Mo-

hamed Adel Serhani, and Nazar Zaki, ªStreaming fea-

ture selection algorithms for big data: A survey,º Ap-

plied Computing and Informatics, 2019.

[11] Jing Zhou, Dean Foster, Robert Stine, and Lyle Un-

gar, ªStreaming feature selection using alpha-investing,º

in Proceedings of the eleventh ACM SIGKDD interna-

tional conference on Knowledge discovery in data min-

ing. ACM, 2005, pp. 384±393.

[12] Jinsung Yoon, William R Zame, and Mihaela van der

Schaar, ªTops: Ensemble learning with trees of predic-

tors,º IEEE Transactions on Signal Processing, vol. 66,

no. 8, pp. 2141±2152, 2018.

[13] Qi Xiao and Zhengdao Wang, ªMixture of deep neural

networks for instancewise feature selection,º in 2019

57th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2019, pp.

917±921.

[14] D. P. Bertsekas, Dynamic Programming and Optimal

Control, vol. 1, Athena Scientific, 2005.

[15] Sebastian B Thrun, Jerzy W Bala, Eric Bloedorn,

Ivan Bratko, Bojan Cestnik, John Cheng, Ken-

neth A De Jong, Saso Dzeroski, Douglas H Fisher,

Scott E Fahlman, et al., ªThe monk’s problems:

A performance comparison of different learning al-

gorithms,º Tech. Rep., 1991, [Online]. Avail-

able: "https://archive.ics.uci.edu/ml/

datasets/MONK’s+Problems".

[16] ªdiabetes,º [Online]. Available: https:

//www.openml.org/searchtype=data&

amp;status=active&amp;id=42608.

[17] Oliver Roesler, ªEEG eye state data set,º 2013, [On-

line]. Available: "https://archive.ics.uci.

edu/ml/datasets/EEG+Eye+State".

[18] RK Bock, A Chilingarian, M Gaug, F Hakl, Th Hengste-

beck, M Jiřina, J Klaschka, E Kotrč, P Savickỳ, S Tow-
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