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Figure 1: We propose a method for learning generalizable and sample-efficient visuomotor policies
that can be applied to everyday manipulation tasks.

Abstract: Building effective imitation learning methods that enable robots to
learn from limited data and still generalize across diverse real-world environments
is a long-standing problem in robot learning. We propose EquiBot, a robust, data-
efficient, and generalizable approach for robot manipulation task learning. Our ap-
proach combines SIM(3)-equivariant neural network architectures with diffusion
models. This ensures that our learned policies are invariant to changes in scale, ro-
tation, and translation, enhancing their applicability to unseen environments while
retaining the benefits of diffusion-based policy learning such as multi-modality
and robustness. We show in a suite of 6 simulation tasks that our proposed method
reduces the data requirements and improves generalization to novel scenarios. In
the real world, we show with in total 10 variations of 6 mobile manipulation tasks
that our method can easily generalize to novel objects and scenes after learning
from just 5 minutes of human demonstrations in each task.
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1 Introduction

The quest for fully autonomous robotic agents has often stumbled over the unpredictability and vari-
ability of real-world environments. While many existing visuomotor policies learned via imitation
learning [1] are effective in controlled settings, they require a significant amount of data to train
and even then struggle to adapt when evaluated with unfamiliar objects in unfamiliar environments.
These limitations restrict the practical deployment of autonomous robots into the real world and
amplify the need for policies that can learn from limited data yet perform robustly across diverse
scenarios.

∗ These authors contributed equally.



In this work, we introduce EquiBot, an equivariant policy learning architecture based on diffusion
models. With an equivariant neural network architecture, the model output is guaranteed to scale,
translate, and rotate with the inputs, even if the model is not fully trained. This allows a learned pol-
icy to generalize to unseen scenarios that depart drastically from the scenarios in which it is trained.
The equivariant architecture also brings data efficiency benefits, since an equivariant policy can infer
how to react to object placements and poses that are in distribution but not sufficiently demonstrated,
thus bringing better performance than a non-equivariant policy. Using a policy architecture based
on diffusion models also offers robust policy learning performance, including support for idle ac-
tions and multi-modal behaviors. Thanks to the policy design, EquiBot can enable a wide range of
household manipulation tasks from just a handful of single-view human demonstration videos. At
test time, our method takes single-view scene point clouds and robot proprioception information as
input, and outputs sequences of robot end-effector velocity actions as outputs.

We evaluate our method in both simulation and real-world experiments. In simulation, we evaluate
in a suite of 6 tasks (box closing, cloth folding, object covering, push T, can pick-and-place, and
square nut assembly). We show that compared to prior works in imitation learning and equivariant
visuomotor policy learning, our method is both more data-efficient and generalizes better in unseen
scenarios. In real robot experiments, we quantitatively test our method in 6 real-world mobile ma-
nipulation tasks in real bedroom and living room settings. Our experiments cover a wide range of
everyday tasks, including pushing a chair towards a desk, closing the door of a laundry machine,
folding towels, making the bed, and closing a suitcase. These tasks range from single-robot pick-
and-place tasks to multi-robot tasks involving deformable or articulated objects. We show that our
method can successfully perform the learned tasks with unseen objects and scenes from just 5 min-
utes of human demonstrations, outperforming competing baselines that rely on augmentations to
achieve generalization or do not utilize a diffusion process to predict actions.

2 Related Work

Data-efficient imitation learning. Recent imitation learning approaches for imitation learning as-
sume large quantities of data to be available for learning manipulation policies [2, 1]. To reduce
the amount of data that policy training requires per task, some works [3, 4, 5, 6] formulate a one-
shot or few-shot imitation learning setup where the policy is trained on multi-task demonstration
data and can then output actions in a novel task after seeing one or more demonstrations as well
as the current state. While this approach improves the data efficiency of policy learning per task,
it requires the availability of multi-task data in a task domain. Some other works [7] achieve im-
itation learning from small demonstration datasets with sampling-based optimization methods like
Bayesian Optimization, but these methods are often limited to small action spaces and open-loop
settings. In contrast to prior works, we show that embedding equivariance into the policy architec-
ture can effectively improve the data efficiency of the imitation learning algorithm, allowing a robust
manipulation policy to be learned with just a handful of demonstrations.

Equivariance in robot manipulation. To help learned robot policies generalize to unseen environ-
ments and object placements, prior works [8, 9, 10] use data augmentation to improve cross-domain
transfer of the learned policy. However, these methods increase training time significantly and do
not guarantee generalization to visual appearances, object scales, and poses that are unseen in the
training data distribution even after the augmentation. In contrast, utilizing equivariant represen-
tations in policy learning allows the learned policies to generalize to objects and initial conditions
not previously seen at training time. Prior works have explored the use of equivariance in robot
manipulation in several different setups [11, 12, 13, 14, 15, 16], but most of them either focus on
only simple pick-and-place like tasks, do not support closed-loop policies, or do not support scale
equivariance. Closely related to our work, [17] developed a SIM(3)-equivariant visuomotor policy
learning method that can handle non-pick-and-place tasks with deformable and articulated objects.
However, we show that this method displays unstable training performance. Our method combines
SIM(3)-equivariant neural network architectures with Diffusion Policy and thus can be robustly
trained and generalizes to unseen object appearance, initial states, scales, and poses. Similar to
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our method, Chen et al. [18] also combines equivariance with diffusion policy, but it can only han-
dle SO(2)-equivariance with simple 2D trajectories, which is insufficient for most 3D manipulation
tasks.

3 Method

In this section, we describe the design of EquiBot. Our method builds upon recent advances that
use a diffusion process to represent visuomotor policies, and incorporates a series of important
modifications so the resulting architecture is equivariant to 3D translations, rotations, and uniform
scaling. In Section 3.1, we introduce relevant concepts related to Diffusion Policy and equivariance;
in Section 3.2, we describe in detail the design of our architecture; in Section 3.3, we describe
important details related to the implementation of our method.

3.1 Preliminaries

Figure 2: Overview of our method. Given input
scene point cloud and robot proprioception, our
method performs a series of diffusion steps to ob-
tain denoised actions with SIM(3)-equivariance,
meaning that when the inputs translate, rotate, and
scale, its outputs are guaranteed to translate, ro-
tate, and scale accordingly.

Problem setup. We assume an imitation learn-
ing setup, where our method receives a demon-
stration dataset D = {τn}Nn=1, which con-
sists of N demonstration trajectories τn. Each
demonstration trajectory consists of sequences
of observation-action pairs (Ot,At). The goal
of the policy is to learn a mapping π from ob-
servation Ot to either the next action At or the
next set of actions At:t+Tp

, where Tp is the pre-
diction horizon. At evaluation time, the pol-
icy receives state Ot and predicts the next one
or more actions to be executed in the environ-
ment. In this work, we assume the observations
Ot = (Xt,St) is composed of the scene point
cloud Xt and robot proprioception St.

SIM(3)-equivariant network architectures.
Let f be a function that takes a point cloud
X∈RN×3 as input. This function is considered
SIM(3)-equivariant if f(TX) = Tf(X) for
any rigid 3D transformation T := (R, t, s) ∈
SIM(3), where R, t, and s denote rotation,
translation, and scale respectively. In this work, we use the same SIM(3)-equivariant encoder ar-
chitecture and network layers as [17].

Diffusion process as policy representation. Our method uses Denoising Diffusion Probabilistic
Models (DDPMs) to model the conditional distribution p(At|Ot) similar to [1]. Starting from
Gaussian noise AK

t , where K is the number of diffusion steps, DDPM performs K iterations of
denoising to predict actions with decreasing levels of noise, AK−1

t , . . . ,A0
t . This process follows

Ak−1
t = α(Ak

t − γϵθ(Ot,A
k
t , k) +N (0, σ2, I)).

The policy outputs A0
t as its inference output. In this work, we use the CNN-based Diffusion Policy

variant specified in [1] as the starting point of our architecture design. Note that although our method
uses point clouds as visual input format rather than RGB images, most architectural details of this
policy can be adopted. The original CNN-based Diffusion Policy architecture uses a noise prediction
network that takes observation Ot, diffusion timestep k, and noisy action At as input, and predicts
the gradient ∇E(At) for denoising the noisy action input. The network first uses an encoder to
encode the visual observations. The encoded visual features and positional embeddings of the time
step parameter are passed into FiLM layers [19] so that the encoded visual inputs are integrated into
the network. Then, the policy network uses a convolutional U-net [20] to process the input noisy
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actions At, the conditioned observations, and diffusion timestep k to predict the output denoising
gradients.

Assumptions to observation and action spaces. To make an architecture SIM(3)-equivariant, we
need to make a few assumptions about the structure of the input and output of the policy. First,
our policy has to use point clouds, not RGB or depth images as input observations. This is because
other forms of visual information do not have the necessary 3D information to make it equivariant
to translation, rotation, and scaling. Second, we assume that the proprioceptive information St =

(S
(x)
t ,S

(d)
t ,S

(s)
t ) can be represented by 3D positions S(x)

t , normalized directions S(d)
t , and scalars

S
(s)
t . This is not a strong assumption since most proprioceptive information can be converted into

a format that uses only positions, velocities, offsets, and scalars: end-effector positions go to S
(x)
t ;

end-effector velocities can be converted to position targets and go to S
(x)
t ; end-effector orientations

can be converted into rotation matrices and placed in S
(v)
t ; gripper open-close states go to S

(s)
t .

Similarly, we assume that the executed actions At = (A
(v)
t ,A

(d)
t ,A

(s)
t ) consist of 3D offsets or

velocities A(v)
t , normalized directions A(d)

t , and scalars S(s)
t . Similar to proprioceptive information,

most existing action spaces can also be converted into this format.

3.2 SIM(3)-Equivariant Diffusion Policy

To design a SIM(3)-equivariant model architecture, our approach is to modify each part of the CNN-
bsed Diffusion Policy architecture [1] to make them individually equivariant architectures. First, we
design our point cloud encoder to be SIM(3)-equivariant and additionally output a centroid vector
Θc as well as a scalar Θs quantifying object scale. Θc and Θs are then used to scale the inputs to
subsequent layers of the network so that they are invariant to positions and scales. We then modify
the FiLM layers, the convolutional U-net architecture, and other connecting layers to be SO(3)-
equivariant (aka. equivariant to 3D rotations). Finally, before producing the output actions, we scale
relevant part of the action back using Θc and Θs so the output is SIM(3)-equivariant to the input
observation.

Encoder. We use a PointNet-based [21] encoder in this work. For SIM(3)-equivariance, we reuse
the encoder Φ introduced in [17]. This encoder takes a point cloud X as input and outputs a latent
code Θ = Φ(X), comprised of four components: Θ := (ΘR,Θinv,Θc,Θs), where ΘR is a rotation
equivariant latent representation, Θinv is an invariant latent representation, scalar Θs is the computed
object scale, and vector Θc denotes the object centroid. For more details on this encoder, we refer
to [17]. While [17] pre-trains the encoder using generated simulation data, we do not perform pre-
training on the encoder and learn it from scratch. This eliminates the need to build task-specific
simulation environments and collect custom pre-training data in these environments.

Routing input observations and actions into a conditional U-net. The conditional U-net takes
two inputs: action representation Za and conditioning information Zc. To construct these inputs
from point cloud encoding Θ, proprioception St, and noisy action At, we need to first translate and
scale St and At using Θc and Θs so the resulting values are invariant to scale and position, and then
merge relevant inputs. More concretely, we define the action representation as

Za = ffuse
(
[A

(v)
t /Θs,A

(d)
t ],A

(s)
t

)
, (1)

where ffuse is a Vector Neuron layer that takes vector information as its first and scalar information
as its second input argument. We define conditioning information as

Zc = (Z(vector)
c ,Z(scalar)

c ) =
([

Θinv, (S
(x)
t −Θc)/Θs,S

(d)
t ],

[
S
(s)
t , pos emb(k)

])
, (2)

where Zvector
c and Zscalar

c are vector and scalar conditioning used as input to the FiLM layers [19] in
the conditional U-net, and pos emb(k) is the positional embedding of the diffusion timestep k.

SO(3)-equivariant conditional U-net. A conditional U-net is composed of 1D convolution layers,
upsampling layers, and FiLM layers. We make this network SO(3)-equivariant by converting every
layer of this network to an SO(3)-equivariant layer.
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To make 1D convolution layers SO(3)-equivariant, we treat vector channels of the layer inputs as
batch dimensions and perform the original convolution operations. We find that this simple change
makes the convolution layer SO(3)-equivariant. We do not make any modifications to the upsam-
pling layer, as it is naturally SO(3)-equivariant. To make the FiLM layer SO(3)-equivariant, we
substitute vanilla linear layers with vectorized linear layers introduced in [22]. More formally, a
FiLM layer is formulated as FiLM(F|γ, β) = γF+ β, where γ = f(x) and β = h(x) are parame-
ters predicted from learned functions used to modulate a neural network layer’s activations F, and x
is this neural network layer’s input. We replace non-equivariant layers f and h with Vector Neuron
layers, achieving rotation equivariance.

Output. The conditional U-net with SO(3)-equivariant layers processes Za and Zc and outputs
translation and scale invariant actions Âinv. To process this value into the final output of the policy,
we assemble the final output action as Ât = (Â

(v)
inv · Θs, Â

(d)
inv , Â

(s)
inv ), where Â

(x)
inv , Â(d)

inv , and Â
(s)
inv

are the position, direction, and scalar components of the predicted invariant action.

3.3 Implementation Details

Data normalization can be important to the performance of diffusion models. Vanilla diffusion
policy normalizes the observations and actions separately. We instead normalize all 3D-vector
inputs (including positions and velocities) together due to our SIM(3)-equivariance assumptions.
Implementation-wise, we take a subset of training data and compute the mean point cloud scale and
mean action scale as spc and sac. Then, all position- and velocity-related information is divided by
spc/sac at the start of the network forward pass and multiplied back before the output is returned.
This normalization factor ensures that the diffusion process always works with actions with values
within the −1 to 1 range. We do not apply offsets to position and velocity information in this work.
We normalize scalar information in the same way as the vanilla diffusion policy.

4 Experiments

Through our experiments, we want to answer the following questions: (1) does our method gener-
alize to unseen scenarios better than imitation learning methods that do not leverage equivariance;
(2) does our method demonstrate more robust performance than prior methods for equivariant vi-
suomotor policy learning that do not leverage diffusion models; (3) does our method achieve better
data efficiency when there is little training data compared to prior imitation learning methods? To
answer these three questions, we perform quantitative experiments in both simulation (Section 4.1)
and the real world (Section 4.2).

4.1 Simulation Experiments

4.1.1 Comparisons to Vanilla Diffusion Policies and Other Equivariant Policy Architectures

In this experiment, we test if our method outperforms prior methods in out-of-distribution general-
ization.

Comparisons. We compare our method to three baselines. (1) Diffusion Policy (DP) [1]: Vanilla dif-
fusion policy using a point cloud as input. We substitute the imaged-based encoder to a PointNet++
encoder [21] similar to what EquiBot is using. (2) Diffusion Policy with Augmentations (DP+Aug):
This baseline uses the same architecture as the vanilla diffusion policy baseline, but trains with syn-
thetically generated data augmentation. (3) EquivAct [17]: A reimplementation of [17] that drops
the pre-training phase that requires task-specific simulated data.

Tasks. We use four simulated tasks: cloth folding, object covering, box closing, and push T (see
Figure 3). The first three tasks involve two mobile robots manipulating various deformable and ar-
ticulated objects. In these tasks, a simulated depth camera records point clouds of relevant objects
in the scene from a third-person viewpoint. The policy takes these point clouds as input and com-
mands the end-effector position, rotation, and gripper open-close actions of both robots. The push
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Figure 3: Visualizations of simulation environments. The three mobile manipulation tasks feature
varied rigid, deformable, and articulated objects. The push T task features multi-modal demonstra-
tion data that challenge the learning algorithms. The Can and Square tasks from the Robomimic
benchmark require precise position and orientation movements to successfully complete the tasks.

T benchmark task is a simulated 2D T-shape pushing game developed in [1] to showcase learning
from multimodal demonstrations. To make this task compatible with our setup, we assume the agent
and object are placed on the ground plane (z = 0) in 3D space. In this task, the policy receives the
eight corners of the T-shape as input and outputs the velocity command to the pushing operator.

Augmentations. The DP+Aug baseline requires augmentations in the training phase. In all four
environments, we augment the training data to (1) rotate the observation up to 360 degrees around
the z-axis, (2) uniformly scale the observation within the range 0.5 × −1.5×, and (3) apply a ran-
dom Gaussian offset to the observation with standard deviation equal to 0.1 times the approximate
workspace size.

Figure 4: Results of out-of-distribution gener-
alization experiments. We show that our method
achieves more robust out-of-distribution general-
ization performance than methods that do not use
diffusion processes to model policies and ones
that do not utilize equivariance. Error bars show
the mean and standard deviation over 3 seeds.

Training and evaluation. We train all meth-
ods for 2,000 epochs. For every training run,
we save a checkpoint every 50 epochs and eval-
uate the last 5 checkpoints saved at the end of
training. For every evaluation, we run the pol-
icy in a randomly initialized environment for
10 episodes and record the mean final reward
achieved by the policy. For all results we show,
we run training over 3 random seeds and report
the mean and standard deviation of evaluation
results over these seeds.

Evaluation setups. To gain insight into the
generalizability of competing methods, we de-
sign four different evaluation setups to test our
trained policies. The Original setup evaluates
the trained policy at the exact same initial poses
and goals as in the demos; the OOD (R+Su)
setup randomizes initial object rotation with
randomized object uniform scaling from 1× to
2×; the OOD (R+Sn) setup randomizes rota-
tion and scaling as in OOD (R+Su), but addi-
tionally adds non-uniform scaling up to a 1.33
aspect ratio change; the OOD (R+Sn+P) setup
adds dramatic position randomization on top of the OOD (R+Sn) setup.

Results. We show the results of this experiment in Figure 4. The DP baseline performs very well
in the Original setup, but its performance drops significantly when it comes to any of the OOD
setups. The DP+Aug baseline has slightly worse performance compared to DP in the distribution
setup. This is because DP+Aug needs to account for more synthetically augmented scenarios and
thus overfits less to the training data. When it comes to OOD setups, DP+Aug performs much better
than DP, but still suffers from performance drops. The EquivAct baseline performs very well in the
Cloth Folding task but displays subpar performance in Object Covering and Box Closing tasks due
to unstable training performance among checkpoints. It also cannot perform well in the Push T task
because it cannot handle multi-modal training data well. Our method performs stably in all four
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tasks and suffers from the least amount of performance drop compared to all baselines. This shows
that our method indeed outperforms prior methods in out-of-distribution generalization.

4.1.2 Data Efficiency Experiments

Figure 5: Results of data efficiency experi-
ments. Our method achieves better data effi-
ciency than Diffusion Policy when evaluated in-
distribution in two benchmark tasks.

In this experiment, we aim to test if our
method outperforms prior methods in a low-
data regime, even if it is evaluated in dis-
tribution. Because we only care about in-
distribution performance in this experiment, we
only compare our method with the DP baseline.
We adopt two Robomimic environments [23]
for this experiment: Can and Square.

Setup. In each task, we train all methods in
three setups: learning from 100 demos, 50 de-
mos, and 25 demos. We run 2,000 epochs for
each method with 3 random seeds. As in the
previous experiment, each evaluation job com-
putes the average performance over the last five
checkpoints in the training run with 50-epoch intervals. The results plot the mean and standard
deviation over seeded runs.

Results. The results of this experiment can be found in Figure 5. In both tasks, the performance
of DP drops dramatically when the number of demos decreases from 100 to 25, while our method
retains relatively higher performance when the amount of data drops. This is because when training
data size is small, the training data does not cover the whole distribution of initial poses to allow
the DP baseline to learn how to complete the task with all possible initial poses during evaluation.
Our method, on the other hand, leverages equivariance to generalize to initial object poses that the
training data does not cover.

4.2 Real Robot Experiments

In our real robot experiments, we show a series of experiments where we train mobile robots to
perform everyday manipulation tasks from 5 minutes of single-view human demonstration videos.
We select a suite of 6 tasks that involve diverse everyday objects, including rigid, articulated, and
deformable objects (see Figure 6): (1) Push Chair: A robot pushes a chair towards a desk; (2)
Luggage Packing: A robot picks up a pack of clothes and places it inside an open suitcase; (3)
Luggage Closing: A robot closes an open suitcase on the floor; (4) Laundry Door Closing: A robot
pushes the door of a laundry machine to close it; (5) Bimanual Folding: Two robots collaboratively
fold a piece of cloth on a couch; (6) Bimanual Make Bed: Two robots unfold a comforter to make it
cover the bed completely.

Data collection. We collect 15 human demonstration videos for each real robot task. We use a ZED
2 stereo camera to record the movement of a human operator using their fingers to manipulate the
objects of interest at 15 Hz. After data collection, we use an off-the-shelf hand detection model,
an object segmentation model, and a stereo-to-depth model to parse out the human hand poses and
object point clouds in each frame of the collected demos. We then subsample this data to 3 Hz and
convert it into a format supported by our policy training algorithm.

Mobile robot setup. In all real robot experiments, we use holonomic mobile bases with Kinova
Gen3 7 DoF arms mounted on top. We use a single ZED 2 camera mounted at a fixed position in the
workspace to obtain visual observations for the robot policy. After getting stereo images from the
camera, we first use a learned stereo-to-depth model [24] to obtain the single-view point cloud of the
scene, and then use the Grounded Segment Anything Model [25] to segment out the relevant objects
in the scene based on a natural language description of objects involved in the task. The segmented
single view point cloud is then used as the input visual observation for the policy.
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Figure 6: Real robot evaluation setups. Each block represents one task. In each block, we show
sample training demonstrations collected by a human on the left and evaluation scenarios on the
right.

Push Chair Luggage Packing Luggage Closing
Unseen Poses → – Translate + Rotate –

Object Variations → Long Desk Round Table T-shirt Towel Roll Cap Shorts Large Luggage

DP 0/10 0/10 0/10 0/10 0/10 0/10 0/10
DP+Aug 0/10 0/10 0/10 0/10 0/10 0/10 2/10

Ours 8/10 10/10 7/10 3/10 8/10 8/10 6/10

Laundry Door Closing Bimanual Folding Bimanual Make Bed
Unseen Poses → – Translate + Rotate –

Object Variations → – Long Bath Towel Comforter

DP 3/10 0/10 0/10
DP+Aug 1/10 0/10 0/10

Ours 8/10 6/10 8/10

Table 1: Results of real robot experiments. In a suite of 6 mobile manipulation tasks, we show
that our method can learn from just 5 minutes of human demonstration, outperforming the Diffusion
Policy and the Diffusion Policy with Augmentation baselines by a large margin.
We utilize the motion capture system in the room to track the pose of the mobile base. During one
evaluation, the learned policy reads parsed point clouds and sends 8 actions at a time to the robot
to execute. The mobile robot then moves the arm to achieve the commanded actions, moving the
mobile base when the arm is too close or too far away from the base.

Training and evaluation. We train all methods for 1,000 epochs. After training, we evaluate
each method for 10 episodes and record the success rate of the method. We vary the evaluation
scenarios from the training scenarios differently in each task. In Laundry Door Closing, we perform
evaluations in-distribution. In Push Chair, Luggage Closing, and Bimanual Make Bed, we evaluate
with novel objects to make the evaluation out-of-distribution to the training data. In Luggage Packing
and Bimanual Folding, we not only switch to novel objects but also translate and rotate the layout of
the scene.

Results. The results of real robot experiments are shown in Table 1. The evaluation shows that
our method can generalize to diverse unseen objects, outperforming the DP baseline in both in-
distribution and out-of-distribution scenarios with novel objects and unseen object poses.

5 Limitations and Conclusion

Although our method is equivariant to translation, rotation, and scale, it does not handle changes in
environment dynamics. It also does not handle variations in the relative positioning of objects when
multiple objects are present. Resolving these limitations might involve explicitly modeling scene
dynamics and individual objects.

We proposed a visuomotor policy learning method that is capable of generalizable and data-efficient
policy learning in a wide range of robot manipulation tasks. Extending the proposed framework to
multi-task setups and evaluating it in tasks that have longer horizons and larger action spaces are
clear directions for future work.
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