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ABSTRACT
Fairness is an important aspect of decision-making inmulti-objective
reinforcement learning (MORL), where policies must ensure both
optimality and equity across multiple, potentially con!icting ob-
jectives. While single-policy MORL methods can learn fair poli-
cies for "xed user preferences using welfare functions such as the
generalized Gini welfare function (GGF), they fail to provide the
diverse set of policies necessary for dynamic or unknown user
preferences. To address this limitation, we formalize the fair opti-
mization problem in multi-policy MORL, where the goal is to learn
a set of Pareto-optimal policies that ensure fairness across all possi-
ble user preferences. Our key technical contributions are threefold:
(1) We show that for concave, piecewise-linear welfare functions
(e.g., GGF), fair policies remain in the convex coverage set (CCS),
which is an approximated Pareto front for linear scalarization. (2)
We demonstrate that non-stationary policies, augmented with ac-
crued reward histories, and stochastic policies improve fairness by
dynamically adapting to historical inequities. (3) We propose three
novel algorithms, which include integrating GGF with multi-policy
multi-objective Q-Learning (MOQL), state-augmented multi-policy
MOQL for learning non-statoinary policies, and its novel extension
for learning stochastic policies. To validate the performance of the
proposed algorithms, we perform experiments in various domains
and compare our methods against the state-of-the-art MORL base-
lines. The empirical results show that our methods learn a set of
fair policies that accommodate di#erent user preferences.

KEYWORDS
Multi-objective reinforcement learning, Deep reinforcement learn-
ing, Fair optimization, Welfare functions

1 INTRODUCTION
Multi-objective reinforcement learning (MORL) is an important
topic in the area of reinforcement learning (RL) that focuses on
designing control policies to optimize multiple objectives simulta-
neously. While traditional MORL methods focus on learning Pareto
optimal solutions—ensuring no objective can be improved without
sacri"cing another—they often neglect fairness, which requires
equitable treatment of all objectives or users in our context. For
example, in healthcare, a policy may aim to maximize overall pa-
tient outcomes (optimality) while ensuring equal treatment across
di#erent demographic groups (fairness). A common approach to
solving fairness in MORL is to use utilitarian welfare functions,
where user utilities are aggregated, typically via weighted sum, into
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a scalarized objective. Despite its simplicity, this approach struggles
with fairness, as some users’ utilities may be signi"cantly reduced
to achieve overall e$ciency. An alternative approach is to employ
an egalitarian welfare function, which prioritizes the least advan-
taged user by maximizing the minimum utility. While this approach
improves fairness, it often leads to ine$cient solutions overall, as
it optimizes only the lowest utility without ensuring fairness.

Several works have explored fairness in the single-policy RL
setting [14, 19, 21, 37, 47, 52, 57, 60], where only a single policy is
learned. For instance, the work in [52] and [47] enforced fairness by
utilizing the generalized Gini social welfare function as a scalarized
function and assigning appropriate weights to di#erent objectives
to ensure their equitable treatment. Extensions have been explored
in multi-agent RL [45, 60] and preferential treatment under known
preference weights [57]. Recently, fairness has been studied in
multi-policy MORL [17, 32] where Cimpeana et al. [17] de"ned
several fairness notions, while [32] proposed the Lorenz Condition
Network (LCN), an extension of the Pareto Conditioned Network
(PCN), which trains a policy network in a supervised manner to
map states to desired returns. Despite these works, the investigation
of fairness in RL still poses some limitations, including (1) learning
a single fair policy, (2) required knowledge of the welfare function
(e.g., scalarized function) with preference weights a prior, and (3)
training a conditioning network on speci"c return targets, limiting
their ability to generalize to unseen preferences. Hence, the existing
methods operate under "xed/prede"ned preference weights and
cannot be generalized for all possible preferences.

To address these limitations, we propose a novel framework to
address fairness in multi-policy MORL, rather than the traditional
single-policy MORL that is the focus of the existing work. Our
methods are highly scalable as they leverage a single parameter-
ized network to learn an undominated set of policies, speci"cally
a convex coverage set (CCS), by sampling the entire preference
space in MORL. In particular, to address fairness, we apply the
welfare function (e.g., GGF) during learning for each sampled pref-
erence weight to ensure that each learned policy treats its objectives
fairly. We further introduce non-stationary action selection using
the state-augmented accrued rewards to enhance fairness by ef-
fectively utilizing historical information. We further demonstrate
the bene"ts of learning stochastic policies for fairness. Motivated
by hindsight experience replay [3], we incorporate resampling of
random preference weights across di#erent preference conditions
to improve sample e$ciency in MORL, as it is done in [55].

The main contributions of this paper are as follows: (1) We intro-
duce a novel framework for fairness inmulti-policyMORL, enabling
users to select any fair policy based on their speci"c preferences,
thereby enhancing user satisfaction( Section 3.2). (2) We provide a



theoretical analysis establishing that for concave, piecewise-linear
welfare functions (e.g., GGF), fair policies remain in CCS. Addi-
tionally, we demonstrate that non-stationary policies can improve
fairness by adapting to historical disparities and that stochastic poli-
cies further improve fairness over deterministic policies( Section 4).
(3) Building on our theoretical insights, we propose three scalable
methods for learning fair policies in MORL using a single param-
eterized network: (i) an extension to Envelope [55] for learning
fair stationary policies, (ii) a non-stationary counterpart that incor-
porates state-augmented accrued rewards to adaptively improve
fairness over time, and (iii) a novel extension for learning stochastic
policies, which further enhances fairness( Section 5). (4) We experi-
mentally validate our methods and demonstrate their e#ectiveness
compared to state-of-the-art MORL and fairness methods across
three di#erent domains( Section 6).

2 RELATEDWORK
Fairness in machine learning (ML) has become a signi"cant re-
search direction [1, 9, 16, 20, 36, 43, 48, 58, 59]. Several studied
have addressed fairness in model predictions [49], recommender
systems [30], classi"cation [1, 20, 27, 58], and ranking [48]. While
much of the literature focuses on the principle of “equal treat-
ment of equals”, other aspects, such as proportionality [6] or envy-
freeness [15] and its multiple variants (e.g., [7, 11]), have been
considered in ML. In contrast, our work is grounded in distributive
justice [8, 34, 41], with a focus on optimizing a welfare function
for fairness considerations. This principled approach has also been
recently advocated in several papers [18, 23, 49].

Recently, fairness in RL has gained signi"cant attention with the
work by [24], which ensures fairness in state visitation using scalar
rewards. The work of [26], proposed FEN a hierarchical decentral-
ized method using a gossip algorithm to ensure fairness across
agents involved in a system. Similarly, [13] proposed to incorporate
fairness into actor-critic RL algorithms, optimizing general fairness
utility functions for real-world network optimization problems.
Considering the multi-objective nature of many RL problems, the
study of fairness in multi-objective reinforcement learning (MORL)
has been widely studied. In particular, [47] proposed multiple adap-
tations to deep RL algorithms that optimize the generalized Gini
social welfare. [44, 60] extended this work to the decentralized co-
operative multi-agent setting. [21] proposed to optimize the Nash
welfare function using scalarized expected return criterion. [19]
proposed a method for generalized Gini welfare function optimiza-
tion in rankings. [40, 57] proposed methods that learn a fair policy
providing preferential treatment to some users while ensuring equal
treatment of all others under the assumption that these preferential
weights are known in advance. [46] proposed FPbRL, a fairness-
enhanced method in preference-based RL to learn fair policies in
the absence of true rewards. Recently, fairness has been considered
in multi-policy MORL with [32] propose learning Lorenz Condition
networks, which ensures fairness through Lorenz domination and
adds an extra parameter 𝐿, however, we use the welfare function to
learn a set of fair optimal policies.

Despite the signi"cant successes achieved in the "eld of RL and
MORL, existing methods heavily rely on scalarization functions to
learn a single policy with "xed preference weights. However, such

single-policy methods do not work when preferences are unknown
or user-speci"c solutions are required. To address this limitation,
several works have been proposed to accommodate user-speci"c
preferences, including but not limited to those proposed by [2, 5, 33,
42, 50, 55]. Notably, these methods aim to learn a set of policies that
approximate the Pareto front of optimal solutions. For instance, [5]
and [33] proposedmethods to compute policies on the Pareto front’s
convex hull, while [55] introduced envelope Q-learning, learning
policies from the CCS. These approaches, however, do not address
fairness, which is the focus of this paper.

3 PRELIMINARIES
3.1 Multi-Objective Markov Decision Process
A multi-objective Markov Decision Process (MOMDP) extends the
classical Markov Decision Process (MDP) framework to scenarios
where an agent must optimize multiple objectives simultaneously.
An MDP [39] is a mathematical model commonly used for sequen-
tial decision-making problems. Formally, an MDP is de"ned by a
tuple, M = (S,A,P, 𝑀 ,𝑁), where S is the set of states, A is the
set of actions available to the agent, P𝐿,𝑀,𝑀→ ↑ [0, 1] is the probabil-
ity of transition from state 𝑂 to state 𝑂→ after taking action 𝑃, i.e.,
P(𝑂→ |𝑂,𝑃) = P[𝑄𝑁+1 = 𝑂→ |𝑄𝑁 = 𝑂,𝑅𝑁 = 𝑃], 𝑀 (𝑂,𝑃) : 𝑂↓𝑃 ↔↗ 𝑀 is the im-
mediate reward obtained by taking action 𝑃 at state 𝑂 , and 𝑁 ↑ [0, 1)
is the discount factor. An MOMDP can be represented by a tuple
M = (S,A,P, 𝜴,𝑁,ω, 𝑆ω), in which the de"nitions of S,A,P, and
𝑁 are the same as in MDP except that the reward 𝜴 is now a vector,
with each component corresponding to an objective that the agent
seeks to optimize. Here, the additional ω represents the entire space
of preferences, and 𝑆ω is the preference function which takes a lin-
ear form, producing a single utility 𝑆𝜴 (𝜴) = 𝜶𝑂 𝜴 (𝑂,𝑃), where 𝜶 is a
vector representing the preference weights for di#erent objectives.
In MOMDPs, the objectives may be con!icting, and hence it is often
di$cult to optimize all objectives simultaneously.

The goal of an agent in an MOMDP is to either learn a single
policy that balances multiple objectives or a set of policies that op-
timize di#erent trade-o#s among objectives. These approaches are
referred to as single-policy MORL and multi-policy MORL, respec-
tively. A policy 𝑇 is a strategy that maps states to actions, which can
be deterministic (i.e., ↘𝑂, 𝑇 (𝑂) ↑ A) or stochastic (i.e., ↘𝑂,𝑃, 𝑇 (𝑃 |𝑂)
denotes the probability of selecting 𝑃 in 𝑂). In MOMDPs, policies
are typically stationary orMarkovian, meaning that action selection
probabilities depend solely on the current state, irrespective of past
states and actions. Conversely, a non-stationary policy 𝑇 (𝑃 |𝑈, 𝑂),
also known as an adaptive policy, may depend on the agent’s his-
tory 𝑈 . Standard de"nitions in MDPs, such as the return 𝑉 (𝑈) and
the value functions 𝑊 or 𝑋 , extend naturally to MOMDPs, albeit
represented as vectors and matrices respectively. The vector return
in an MOMDP is expressed as 𝜷 (𝑈) =

∑≃
𝑁=1 𝑁

𝑁⇐1𝜴𝑁 , where 𝑈 is a
trajectory comprising a sequence of states, actions, and rewards
following the policy, and 𝜴𝑁 is a vector reward obtained at time
step 𝑌 . The state value function of a policy 𝑇 in an MOMDP is
de"ned as 𝜸𝑃 (𝑂) = [𝑊 𝑃

𝑄 (𝑂)] = E𝑅⇒𝑃
[∑≃

𝑁=1 𝑁
𝑁⇐1𝜴𝑁 | 𝑄0 = 𝑂

]
, where

all operations (addition, product) are applied component-wise.
In MOMDPs, value functions do not o#er a complete order-

ing over the policy space. This means it is possible to encounter
scenarios wherein, e.g., 𝑊 𝑃

𝑄 (𝑂) > 𝑊 𝑃 →
𝑄 (𝑂) for objective 𝑍 , while



𝑊 𝑃
𝑆 (𝑂) < 𝑊 𝑃 →

𝑆 (𝑂) for 𝑎 . Hence, value functions in MOMDPs induce
only a partial ordering within the policy space, necessitating addi-
tional information into objective prioritization for policy ordering.

Envelope Multi-Objective Q-Learning. The Envelope algo-
rithm [55] learns a CCS by sampling preference weights 𝜶 ↑ ω and
optimizing linearly scalarized Q-values: 𝑋 (𝑂,𝑃,𝜶) = 𝜶𝑂𝜹 (𝑂,𝑃),
where 𝜹 (𝑂,𝑃) ↑ R𝑇 is the vector of Q-values for 𝑏 objectives.
The Bellman optimality equation for the Envelope algorithm is:
𝜹⇑ (𝑂,𝑃,𝜶) = 𝜴 (𝑂,𝑃) + 𝑁 max𝐿→ 𝜶𝑂𝜹⇑ (𝑂→,𝑃→) . A single neural net-
work parameterizes 𝜹 (𝑂,𝑃,𝜶) by concatenating 𝜶 to the state 𝑂 , en-
abling e$cient learning across all preferences. Despite its scalability,
Envelope lacks explicit fairness guarantees, as linear scalarization
may prioritize dominant objectives.

3.2 Fairness Formulation
In MORL, fairness, rooted in distributive justice [34], is crucial for
ensuring equitable distribution of rewards. Prior studies in fair
optimization within MORL have primarily focused on learning a
single-policy, commonly referred to as an average policy [21, 46,
47, 56]. In this paper, we adopt a more inclusive view of fairness,
including e!ciency, equity, and impartiality to generate fair optimal
solutions for user-speci"c preferences.

D!"#$#%#&$ 3.1. E!ciency states that among two solutions, if one
solution is (weakly or strictly) preferred by all users, then it should
be preferred to the other one, e.g., 𝜸 ⇓ 𝜸 → ⇔ 𝑐 (𝜸 ) > 𝑐 (𝜸 →), where
𝑐 (𝜸 ) is the scalar utility function by using the 𝑐 that speci"es the
value of a solution.

The e$ciency property speci"es that given all else equal, one
prefers to increase a user’s utility. In the MORL setting, the e$-
ciency property simply means Pareto dominance. More speci"cally,
a solution is considered e$cient if it is not dominated by any other
solution for all objectives.

D!"#$#%#&$ 3.2. For a given pair of solutions 𝜸 , 𝜸 → ↑ R𝑇 , 𝜸
weakly Pareto-dominates 𝜸 → if ↘𝑍,𝑊𝑄 ↖ 𝑊 →

𝑄 , ↘𝑍 ↑ {1, · · · ,𝑏}, where
𝑏 is the total number of objectives. Besides, 𝜸 Pareto-dominates 𝜸 → if
𝑊𝑄 ↖ 𝑊 →

𝑄 ,↘𝑍 and ↙ 𝑎,𝑊𝑆 > 𝑊 →
𝑆 . For brevity, we denote Pareto dominance

as ↖ for the weak form and > for the strict form.

Essentially, a solution 𝜸 (weakly) Pareto-dominates another so-
lution 𝜸 → if the former’s value 𝑐 (𝜸 ) (weakly) Pareto-dominates that
of the latter 𝑐 (𝜸 →). A solution 𝜸 ⇑ is said to be Pareto-optimal if no
other solution 𝜸 Pareto-dominates it. Pareto front (F ) is de"ned
as the set of Pareto-optimal solutions, which may consist of in"n-
itely many solutions, especially when policies can be stochastic. A
typical way to approximate (F ) is to compute the CCS, de"ned
below.

D!"#$#%#&$ 3.3. A solution in CCS has a maximal scalarized value
in a weighted sense if there exists a weight vector 𝜶 ↑ ω such that
the scalarized utility 𝜶𝑂 𝜸 is weakly preferred to the scalarized utility
𝜶𝑂 𝜸 → for all other solutions 𝜸 → in the Pareto front. Formally speaking,
𝜸 ↑ CCS ∝⇔ ↙ 𝜶 ↑ ω s.t. 𝜶𝑂 𝜸 ↖ 𝜶𝑂 𝜸 →,↘ 𝜸 → ↑ F .

Next, we discuss the signi"cance of the equity property, a stronger
property than e$ciency and often associated with distributive jus-
tice, as it refers to the fair distribution of resources or opportunities.

This property ensures that a fair solution follows the Pigou-Dalton
principle [34], which states the transferring of rewards from more
advantaged users to less advantaged users.

D!"#$#%#&$ 3.4. A solution satis"es the Pigou-Dalton principle
if for all 𝜸 , 𝜸 → equal except for 𝑊𝑄 = 𝑊 →

𝑄 + 𝑑 and 𝑊𝑆 = 𝑊 →
𝑆 ⇐ 𝑑 where

𝑊 →
𝑄 ⇐𝑊 →

𝑆 > 𝑑 > 0, 𝑐 (𝜸 ) > 𝑐 (𝜸 →).

Finally, the impartiality property, which is rooted in the principle
of “equal treatment of equals” states that individuals sharing similar
characteristics should be treated similarly.

D!"#$#%#&$ 3.5. In a system, individuals with similar characteris-
tics should be treated similarly, i.e., the solution should be independent
of the order of its arguments 𝑐 (𝜸 ) = 𝑐 (𝜸𝑈 ), where 𝑒 is a permutation
and 𝜸𝑈 is the vector obtained from vector 𝜸 permuted by 𝑒 .

To ensure fairness that satis"es the above three properties, we
use a well-known generalized Gini welfare function (GGF) [53],
which can be de"ned as:

𝑐𝜴 (𝝐) =
∑
𝑄↑𝑇

𝑓𝑄𝑔
′
𝑄 , (1)

𝝐 ↑ R𝑇 represents the utility vector of a size 𝑏 for 𝑏 objectives,
𝜶 ↑ R𝑇 is a "xed weight vector with positive components that
strictly decrease (i.e., 𝑓1 > . . . > 𝑓𝑇 ) with

∑
𝑄 𝑕𝑄 = 1, and 𝝐′

denotes the vector by sorting the components of 𝝐 in an increasing
order (i.e., 𝑔′1 ∞ . . . ∞ 𝑔′𝑇 ). GGF satis"es the aforementioned three
fairness properties. As the weights are positive, it is monotonic
with respect to Pareto dominance, thus satisfying the e$ciency
property. Since the utility vector is reordered, it is also symmetric
and therefore satis"es the impartiality property. Furthermore, the
positive and decreasing weights ensure that GGF is Schur-concave,
i.e., monotonic with respect to Pigou-Dalton transfers, and therefore
satis"es the impartiality property.

Moreover, the GGF is a piecewise-linear concave function and
can be equivalently expressed as:

𝑐𝜴 (𝜸𝑃 (𝑂)) = min
𝑈↑S𝐿

{
𝜶∈
𝑈 𝜸

𝑃 (𝑂)
}

(2)

where S𝑇 is the symemetric group of degree 𝑏 and 𝜶∈
𝑈 denotes the

permutation of weights corresponding to 𝑒 . For a "xed permutation,
𝜶∈
𝑈 𝜸

𝑃 (𝑂) de"nes an a$ne function of 𝜸𝑃 (𝑂), which guarantees
piecewise linearity and concavity of GGF.

GGF has been studied and used in MORL extensively [31, 40, 47,
56], however, all of these works used it for single-policy setting.
We are the "rst ones to use it in a multi-policy MORL setting.
In multi-policy MORL, the usual approach is to "nd all Pareto
non-dominated solutions [35, 51]. This approach may work for
small problems, however, for large-scale problems, the Pareto non-
dominated solutions grow exponentially. A better way to achieve
scalable and multiple solutions to approximate the Pareto front is
possibly to arrive at the solutions that form the convex envelope
and thus form a CCS.

4 FAIRNESS IN MORL
Since we are in a multi-policy MORL setting, where an agent learns
a set of Pareto optimal policies, fairness becomes more important
as di#erent stakeholders may have di#erent preferences and during
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Figure 1: Examples of 2-objective MOMDP where GGF leads
to fairer outcomes.

inference, any solution can be used from the Pareto non-dominated
solutions given the stakeholder preferences. We formalize this so-
phisticated multi-policy fair optimization problem as:

↘𝜶 ↑ ω, max
𝑃↑ε

𝑐𝜴 (𝜻 (𝑇)), (3)

where ω is the set of valid preference weights sorted in descending
order, 𝜻 (𝑇) = E𝑃 [

∑≃
𝑁=0 𝑁

𝑁 𝜴𝑁 ] is the expected discounted return,
and 𝑐𝜴 (𝜻 ) = ∑𝑇

𝑄=1𝑕𝑄 𝑖(𝑄 ) with 𝑖(1) ∞ · · · ∞ 𝑖(𝑉) . The concavity of
GGF makes problem (3) as convex optimization problem, enabling
e$cient solutions within the CCS. Below, we establish three foun-
dational results, which show that it is always feasible to obtain
optimal solutions in the CCS corresponding to GGF fair optimiza-
tion. Next, we demonstrate that a non-stationary policy based on
accrued rewards is bene"cial in yielding improved fairness when
compared with its stationary counterpart. Here, a policy yields im-
proved fairness or is fairer if a higher welfare score, de"ned in (1),
is achieved. Lastly, we show that a stochastic policy may yield fairer
solutions than a deterministic one.

Su!ciency of Optimal Solutions in the CCS. The "rst ques-
tion relates to the learning of fair policies in a multi-policy MORL
setting is which subset of policies may be optimal among the set of
all (possibly non-stationary) policies. Indeed, for linear scalarization
function, CCS contains the set of Pareto front solutions. Below, we
formally state it:

L!’’( 4.1. For any MOMDP with linear preferences over objec-
tives, the CCS contains an optimal policy for any linear combination
of the objectives.

While GGF introduces non-linear fairness objectives, its piece-
wise linearity and concavity allow representation as a maximum of
linear functions, which ensures that solutions lie within the CCS.
The following proposition establishes the su$ciency of the CCS in
representing optimal policies for 𝑐𝜴 preference weights.

P)&*&+#%#&$ 4.1. For any 𝑂 ↑ S in an MOMDP and a piecewise-
linear concave welfare function 𝑐𝜴 (e.g., GGF) that can be represented
as, 𝑐𝜴 (𝜸𝑃 (𝑂)) = min𝑈↑S𝐿

{
𝜶∈
𝑈 𝜸

𝑃 (𝑂)
}
, there exists a policy 𝑇⇑ ↑

CCS such that 𝑐𝜴 (𝜸𝑃⇑ (𝑂)) ↖ 𝑐𝜴 (𝜸𝑃 (𝑂)), ↘𝑇 ↑ ε.

E,(’*-! 4.1. To illustrate how the GGF function ensures fairness
in MORL, consider a two-objective MOMDP with objective values
𝜸1 = (3, 1) and 𝜸2 = (2, 3) and weights (1, 2). For 𝜸1, two weighted
combinations are possible: A) (3, 1) · (2, 1) = (6, 1) with scalar sum
6+ 1 = 7, B) (3, 1) · (1, 2) = (3, 2) with scalar sum 3+ 2 = 5. Since the

GGF is de"ned as 𝑐𝜴 (𝜸𝑃 (𝑂)) = min𝑈↑S𝐿
{
𝜶∈
𝑈 𝜸

𝑃 (𝑂)
}
, it selects the

lower scalar utility, preferring B over A (see left "gure of Figure 1).
Similarly, for 𝜸2: C) (2, 3) · (1, 2) = (2, 6) with scalar sum 2 + 6 = 8,
D) (2, 3) · (2, 1) = (4, 3) with scalar sum 4+3 = 7. Here, D is preferred
over C. This mechanism directs the solutions toward the fairer region
(gray dotted area in the right "gure of Figure 1), demonstrating that
maximizing the GGF leads to fair Pareto-optimal solutions.

Fairness of Non-Stationary Policies. In fair MORL, learning
non-stationary policies can be particularly bene"cial, as they lever-
age historical information to make more informed decisions and
adapt over time.

P)&*&+#%#&$ 4.2. Let the reward 𝜴 be nonnegative, and ε𝑊 and
ε𝑋𝑊 be the sets of stationary and non-stationary policies, respec-
tively. For any 𝑂 ↑ S in an MOMDP and a given 𝑐𝜴 , there exists
a non-stationary policy 𝑇𝑋𝑊 ↑ ε𝑋𝑊 that achieves a higher wel-
fare score than any stationary policy 𝑇𝑊 ↑ ε𝑊 , i.e., ↙𝑇NS ↑ εNS :
𝑐𝜴 (𝜸𝑃NS (𝑂)) ↖ max𝑃S↑εS 𝑐𝜴 (𝜸𝑃S (𝑂)) .

(10, 0) 𝑂𝑁⇐1 𝑂𝑁

(0, 10)
𝑃1

(5, 5)
𝑃2

(0, 0)

(0, 0)

Figure 2: Example of MOMDP where actions lead to di!erent
rewards.

E,(’*-! 4.2. To illustrate the value of learning a non-stationary
policy, consider a 2-objective MOMDP, shown in Fig. 2. At timestep
𝑌 > 0, the agent has accrued a vector reward 𝜴acc = (10, 0) for two
objectives. The preference weights, encapsulated within the welfare
function 𝑐 , denote decreasing weights, such as (0.8, 0.2). With two
potential actions, each leading to a "nal state, action𝑃1 yields a reward
of (0, 10), while action 𝑃2 yields (5, 5). Since 𝑂𝑁 is the absorbing state,
we can set the discount factor 𝑁 = 1. Under the given welfare function
𝑐 de"ned in Equation (1), executing 𝑃1 yields a welfare score of 2,
whereas executing 𝑃2 yields a score of 5 if only future rewards are
considered. However, considering historical data, i.e., 𝜴acc, 𝑃1 yields a
higher accrued episodic return of (10, 10) and a welfare score of 10.
Similarly, 𝑃2 yields (15, 5) and 7 episodic return and welfare scores,
respectively. Note that action 𝑃1 is a fairer choice in this case since it
balances the two objectives, unlike action 𝑃2, which fails to achieve a
more equitable outcome. Hence, employing historical data, namely,
accrued rewards in this case, is critical to enable fair policy learning.

Optimality of Stochastic Policies for Fairness. Unlike single-
objective RL, in MORL, a deterministic policy may not be fair opti-
mal. A fairer solution can often be achieved through randomization.

P)&*&+#%#&$ 4.3. Let εST be the set of stochastic policies and εD
be the set of deterministic policies. For an MOMDP M and a concave
welfare function such as𝑐𝜴 , there exists a stochastic policy 𝑇ST ↑ εST
such that 𝑐𝜴 (𝜸𝑃ST ) ↖ max𝑃D↑εD 𝑐𝜴 (𝜸𝑃D ) .

The proofs of the above lemma and propositions can be found
in Appendix A. Figure 3 (left) illustrates GGF on a two-objective
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Figure 3: Left Figure: Point A is always preferred to B due
to Pareto dominance; A is always preferred to C due to the
Pigou-Dalton transfer principle (fairer solution); depending
on the weights of GGF, Points D and E can be dominated or
non-dominated by A (w.r.t. GGF); with weights (0.3, 0.7), A is
preferred to E but not to D. Right Figure: Black points refer
to deterministic policy that in CCS and stochastic policy can
be obtained with the mixture of deterministic policies in
the CCS, shown in dotted point. Demonstrate that stochastic
policy may achieve a fairer solution, which a deterministic
policy cannot.

optimization task. The optimality of stochastic policies implies that
restricting the search for fair solutions to deterministic policies is
insu$cient. Stochastic policies o#er a broader range of solutions
and may better capture the trade-o#s among multiple objectives,
enhancing the overall fairness, as shown in Figure 3 (right).

5 PROPOSED ALGORITHMS
In this section, we introduce three novel algorithms that incorpo-
rate fairness into MORL based on our technical analysis Section 4.
These algorithms optimize the GGF welfare function de"ned in (1)
to ensure fairness across 𝑏 "xed users with varying preferences.
Our proposed methods are scalable and sample-e$cient as they
utilize a single parameterized network to estimate Q-values for all
objectives while maintaining a diverse set of Pareto-optimal policies.
We present three distinct algorithms: Fair Multi-Objective Deep
Q-Learning (F-MDQ), its extension with non-stationary policies
(FN-MDQ), and a novel extension incorporating stochastic policies
(FNS-MDQ). This progression from stationary to non-stationary to
stochastic and non-stationary policies demonstrates our systematic
approach to enhancing fairness in MORL algorithms, with each
method building upon and improving the previous one.

F-MDQ. F-MDQ builds on the Envelope algorithm [55] by replac-
ing the linear scalarization function with the GGF 𝑐 . This ensures
fairness while learning policies across all preferences 𝜶 ↑ ω. The
Bellman optimality equation for F-MDQ is given by:

𝜹⇑ (𝑂,𝑃,𝜶) = E[𝜴 (𝑂,𝑃) + 𝑁𝜹⇑ (𝑂→, sup
𝐿→ ↑A

𝑐𝜴 (𝜴 (𝑂,𝑃)+

𝑋⇑ (𝑂→,𝑃→,𝜶),𝜶) | 𝑂,𝑃],
where 𝜹𝑃 (𝑂,𝑃,𝜶) represents the expected return vector for pol-
icy 𝑇 , conditioned on preference 𝜶. As the MO Q-function is pa-
rameterized, it can be learned by minimizing the loss function
L = E(𝑀,𝐿,𝜶,𝑀→,𝑌 )⇒D

[
∋𝜼 ⇐ 𝜹 (𝑂,𝑃,𝜶)∋22

]
, where the expectation is

taken over experiences sampled from the replay bu#er D. Given

that the loss function includes an expectation over 𝜶, the prefer-
ence weights are sampled randomly and are decoupled from the
transitions, allowing increased sample e$ciency through a resam-
pling scheme similar to Hindsight Experience Replay (HER) [3].
The target 𝜼 is F-MDQ is computed as

𝜼 = 𝜴 (𝑂,𝑃) + 𝑁𝜹 → (𝑂→, sup
𝐿→ ↑A

𝑐𝜴 (𝜴 (𝑂,𝑃) + 𝑁𝑋 (𝑂→,𝑃→,𝜶)),𝜶),

where 𝑋 → represents the target multi-objective Q-function, and the
supremum is applied over the GGF welfare function 𝑐𝜴 instead of
a linear weighted sum. This ensures that actions are selected based
on higher welfare scores rather than simply maximizing Q-values.

FN-MDQ. FN-MDQ extends F-MDQ by incorporating accrued
rewards into the state to learn non-stationary policies, as discussed
in Proposition A.2. It augments the observed state with accrued
rewards, allowing the agent to balance reward distribution across
users more e#ectively (as demonstrated in Example 2). The aug-
mented state is de"ned as ω𝑁 = (𝑂𝑁 , 𝜴acc), where 𝜴acc =

∑𝑁⇐1
𝑄=1 𝑁

𝑄⇐1𝜴𝑄
is the discounted total reward received in the current trajectory.
The regression target for FN-MDQ is then given by

𝜴 (𝑂𝑁 ,𝑃𝑁 ) + 𝑁𝜹 → (ω𝑁+1, sup
𝐿→ ↑A

𝑐𝜴 (𝑋 (ω𝑁+1,𝑃→,𝜶)),𝜶) .

Here, the immediate reward 𝜴 (𝑂𝑁 ,𝑃𝑁 ) is excluded from the optimal
action computation since this signal is already included in the aug-
mented state as part of the discounted total reward. This extension
enables the agent to identify and prioritize users who have received
insu$cient rewards within an episode.

FNS-MDQ. Given that stochastic policies can outperform deter-
ministic ones (see Proposition A.3), the performance of FN-MDQ
can be enhanced by incorporating stochastic policies. We now ex-
plain how stochastic policies can be integrated into the FN-MDQ.

Under the stochastic policies, the target Q-value is adjusted to
account for the expected Q-values, which reformulates the update:

𝜴 (𝑂𝑁 ,𝑃𝑁 ) + 𝑁𝜹 → (ω𝑁+1,
∑
𝐿→ ↑A

𝑐𝜴 (𝑇 (𝑃→ | ω𝑁+1)𝑋 (ω𝑁+1,𝑃→,𝜶)),𝜶),

where 𝑇 (𝑃→ | ω𝑁+1) is the probability of taking action 𝑃→ given the
augmented state ω𝑁+1. This reformulation considers the distribution
of possible actions rather than selecting a single best deterministic
action, aligning with our theoretical insights.

Unlike F-MDQ and FN-MDQ, which rely on deterministic action
selection, FNS-MDQ samples actions from a probability distribution
over Q-values. This stochastic action selection improves fairness
by enabling more balanced policy exploration and reducing biases
that arise from always selecting the highest Q-value action. Note
that, during the training phase, all algorithms employ an 𝑗-greedy
policy during training, however, FNS-MDQ di#ers in its action-
selection strategy by using the best learned stochastic policy rather
than a deterministic greedy approach. This increased !exibility and
randomness can lead to more equitable solutions.

6 EXPERIMENTS
To evaluate the proposed methods, we conduct experiments across
three domains, each characterized by varying levels of complexity
in terms of the number of objectives. These domains, ranging from
low to high in terms of the number of objectives, include species
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(a) Total density, CV, min density, and max density. (b) GGF scores.

Figure 4: Performances of multi-policy MORL baselines and our methods in species conservation (𝑏 = 2)
.

conservation, resource gathering, and multi-product web advertis-
ing. Each environment presents unique challenges where fairness
plays a critical role. We "rst brie!y describe each environment and
then present our experimental results.

6.1 Environments
Our "rst domain is a species conservation (SC) environment, which
addresses a critical ecological challenge: balancing the populations
of two highly interacting endangered species, the sea otter and
the northern abalone. Both species are at risk of extinction, requir-
ing sophisticated management strategies to ensure their survival.
We adopt the model proposed by [10], which simulates the pre-
dation relationship between the species, where sea otters prey on
abalones. This dynamic presents a unique preservation challenge,
as the survival of one species could potentially drive the other to
extinction if not properly managed. In this environment, the state
space comprises the current population of both species. The ac-
tion space includes introducing sea otters, enforcing anti-poaching
measures, controlling sea otters, implementing a combination of half-
antipoaching and half-controlled sea otters, or taking no action. Each
action has signi"cant ecological implications. For instance, intro-
ducing sea otters may help balance the abalone population, but if
mismanaged, could lead to abalone extinction. The reward function
is de"ned by the population densities of both species, i.e., 𝑏 = 2.
Fairness in this context is interpreted as achieving a balanced dis-
tribution of species densities to ensure their preservation.

Our second environment is a resource-gathering (RG) problem,
which is a 5 ↓ 5 grid world that contains three types of resources:
gold, gems, and stones. These resources are randomly positioned
on the grid and regenerate randomly upon consumption. The main
challenge here is to collect these resources, where each resource
has a di#erent value: gold and gems are valued at 1, while stones
have a lower value of 0.4. This creates an intentionally uneven
resource distribution, with two stones, one gold and one gem. In
this environment, the state is de"ned by the agent’s current location
on the grid and the cumulative count of each resource collected
during its trajectory. The agent can take four actions: up, down, left,
and right. The reward function is de"ned as a vector representing
the rewards collected for each type of resource, i.e., 𝑏 = 3. Fairness
here is de"ned as the equitable collection of resources despite their
di#ering values. Note that, this problem is particularly important

for validating whether the proposed methods can achieve fairer
solutions while still reaching Pareto optimal solutions.

Our third domain is a multi-product web advertising (MWP)
problem that involves an online store o#ering 𝑏 = 7 distinct prod-
ucts. Here, the agent decides which advertisement to display: a
product-speci"c advertisement for one of the products 𝑍 ↑ [0, ...,𝑏⇐
1], or a general advertisement that is not tailored to any speci"c
product. In this environment, the state space includes the number
of products available in the store, as well as the number of visits,
purchases, and exits. The action space is 𝑏 + 1, where actions 0
through 𝑏 ⇐ 1 correspond to displaying advertisements for speci"c
products, and action 𝑏 involves showing a general advertisement.
This additional action adds complexity, requiring the agent to de-
cide the optimal moment to transition between states. The reward
function is designed so that the agent receives a reward of 1 in the
𝑍𝑁𝑍 dimension of the reward vector if a product of the type 𝑍 is sold
after displaying its advertisement. In this environment, fairness is
de"ned as balancing the frequency of advertisements shown for
each product, ensuring no single product is overly prioritized. The
challenge lies in increasing overall rewards while maintaining a
fair distribution of advertisement exposure across all products.

6.2 Baselines
We compare our methods against several multi-policy MORL base-
lines. Generalized Policy Improvement Linear Support (GPI-LS) [2]
employs GPI [4] to combine policies within its learned CCS and
prioritize the weight vectors on which agents should train at each
moment. The Envelope algorithm [55] uses a single neural network
conditioned on a weight vector to approximate the CCS. Pareto
Conditioned Networks (PCN) [42] utilizes a neural network condi-
tioned on a desired return per objective and is trained via supervised
learning to predict actions that yield the desired return. Hyperpa-
rameters for each method were optimized, and experiments were
run for "ve di#erent seeds, with average results reported. Further
details on experimental con"gurations and hyperparameters are
provided in the Appendix D.

6.3 Results
In this section, we present the experimental results across the three
environments presented above. The primary objective of these ex-
periments is to assess the e#ectiveness of our proposed methods



(a) Envelope. (b) F-MDQ. (c) FN-MDQ. (d) FNS-MDQ.

Figure 5: Individual densities of Envelope, and our proposed methods during testing with unseen preferences.

(a) Total resources, CV, min and max resources. (b) GGF scores.

Figure 6: Performances of multi-policy MORL baselines and our methods in resource gathering (𝑏 = 3).

by addressing the following key research questions: (A) How ef-
fective are our methods in learning fairer solutions compared to
multi-policy MORL baselines? (B) Can our methods generate fair
solutions across di#erent preference settings during inference? (C)
To what extent can our proposed algorithms achieve comparable
performance in terms of hypervolume and cardinality relative to
multi-policy MORL approaches? (D) What is the impact of our ap-
proach on the diversity and quality of non-dominated solutions that
satisfy fairness criteria? (E) Does the incorporation of stochastic
policies in MO Q-learning based algorithms contribute to improved
fairness or overall performance?

Question (A). To evaluate how e#ective our methods are in
learning fair solutions, we conducted experiments in the SC, RG,
and MWP domains, as shown in Figures 4a, 6a and 7a. We com-
pare our proposed methods (F-MDQ, FN-MDQ, and FMS-MDQ)
with multi-policy MORL baselines during the training phase. We
choose these baselines as they are the current state-of-the-art MORL
baselines. The Key evaluation metrics used include total rewards,
Coe$cient of Variation (CV) indicating the variations in di#erent
objectives’ utilities, and the minimum and maximum objective util-
ities. Moreover, GGF welfare scores were computed to quantify
fairness. As we are in a multi-policy MORL, an agent learns a set
of Pareto optimal policies during learning. To show the results,
we computed these metrics over the last 50 trajectories for all the
Pareto optimal policies and reported their normalized scores. Note
that, during the last 50 trajectories, all the agents are converged so
it ensures a fair comparison for multi-policy MORL methods.

As shown in Figure 4a, PCN performs the worst. GPI outperforms
PCN, likely due to its TD3-based [22] architecture and e$cient pri-
oritization scheme in learning the Pareto front F . The Envelope

algorithm performs better than PCN and GPI as it achieves higher
total density and, interestingly, lower CV. However, our proposed
algorithms outperform all other methods by achieving the lowest
CV and highest welfare scores Figure 4b, with FN-MDQ outper-
forming F-MDQ, underscoring the value of non-stationary policies.
Furthermore, FNS-MDQ outperforms both F-MDQ and FN-MDQ
as it maximizes the minimum objective utility and demonstrates
better fairness through optimizing the welfare function 𝑐𝜴 . Simi-
lar results are observed in RG Figure 6a, where PCN performs the
worst as it collects the least resources, likely due to its limitations
in deterministic environments [42]. Although GPI performs better
than PCN, both exhibit low CV alongside poor overall performance
and GGF welfare utility Figure 6b. The Envelope algorithm achieves
better performance in terms of rewards but su#ers from the highest
CV and lower GGF utility scores. In contrast, our proposed methods
attain a lower CV compared to all baselines, and they achieve the
highest GGF scores, highlighting their e#ectiveness in identifying
fair policies through welfare function optimization. Interestingly,
FNS-MDQ exhibits a higher CV due to its higher maximum objec-
tive and the total resources collected. Nevertheless, it also achieves
the highest welfare scores. Consistent with our previous results,
our proposed methods in MVP environment Figure 7a achieve the
highest welfare scores, indicating their capacity to ensure an equi-
table distribution of rewards across all objectives. Moreover, they
maintain the lowest CV, highlighting their robustness in learning
fair policies, even in highly stochastic environments with a higher
number of objectives. Once again, PCN, and GPI perform the worst,
further underscoring the e$cacy of our methods in this context.

Question (B). To check whether our methods can generate fair
solutions across di#erent preference settings, we evaluated our



Table 1: Hypervolume (HV) and Cardinality (CD) of di!erent MORL methods across SC, RC, and MWP domains.

Methods SC RC MWP

HV (104)′ CD′ HV (105) CD HV (109) CD

PCN 1.81 ± 0.14 19.67 ± 2.99 11.69 ± 0.90 6.0 ± 1.27 10.17 ± 0.22 43.5 ± 1.06
GPI 2.82 ± 0.03 12.0 ± 2.05 7.33 ± 0.19 43.0 ± 2.62 10.44 ± 0.86 41.0 ± 2.83
Envelope 2.35 ± 0.18 5.6 ± 1.04 17.51 ± 3.73 19.75 ± 6.79 10.55 ± 1.96 51.5 ± 1.06
F-MDQ 2.22 ± 0.19 6.6 ± 1.31 16.92 ± 1.63 31.33 ± 7.84 10.45 ± 2.40 48.0 ± 2.12
FN-MDQ 2.34 ± 0.07 11.68 ± 1.05 20.38 ± 1.49 33.54 ± 8.29 10.51 ± 2.42 52.2 ± 2.44
FNS-MDQ 2.91 ± 0.20 15.38 ± 1.10 24.40 ± 2.22 36.11 ± 8.96 10.62 ± 2.45 51.05 ± 2.30

(a) Total rewards, CV, min reward, and max reward. (b) GGF scores.

Figure 7: Performances of multi-policy MORL baselines and our proposed methods in the MPW (𝑏 = 7).

algorithms with unseen preferences during testing in the SC en-
vironment. As shown in Figure 5, which presents the individual
species densities (sea otters and abalones) for preference con"gura-
tions (0.1, 0.9), (0.5, 0.5), (0.9, 0.1), the Envelope algorithm fails to
produce fair solutions, suggesting its limitation in generating fair
optimal policies across varying preferences. In contrast, F-MDQ
generates more balanced solutions, while FN-MDQ and FNS-MDQ
achieve even fairer outcomes, further validating our earlier "ndings.

Question (C). To answer this question, we evaluate algorithms
in terms of MORL metrics, such as cardinality and hypervolume
(HV) in all three environments. A higher cardinality indicates
greater policy diversity within F , while HV measures both the
convergence rate and policy diversity [29]. Recall that, HV is de-
"ned as for any given F → an approximation of F and a reference
point (the worst-possible return), it measures the volume of the
hypercube spanned by the reference point and estimated return in
a trajectory. Table 1 presents the HV and cardinality in all environ-
ments. These results show that our proposed methods perform on
par with multi-policy MORL baselines.

Question (D). The results discussed in previous questions sug-
gest that our methods can generate a range of Pareto non-dominated
solutions across varied preference con"gurations, which indicates
better coverage of the objective space, thus improving performance
across multiple objectives. For quality, our proposed algorithms
consistently achieve the lowest CV and highest GGF scores across
all three domains, performing on par in terms of HV and CD which
indicates that our solutions exhibit more equitable distribution of
objective utilities while maintaining Pareto optimality.

Question (E). Finally, to assess the impact of incorporating sto-
chastic policies in MOQ-learning algorithms, we refer to the results
in Figures 4, 6 and 7, where stochastic policies consistently improve
both e$ciency and fairness. Moreover, as shown in Table 1 incor-
porating stochastic policies also enhances MORL metrics, including
HV and cardinality, validating the contribution of stochasticity to
both fairness and overall performance.

7 CONCLUSIONS AND LIMITATIONS
In this paper, we presented a novel approach to addressing fair-
ness in the context of multi-policy MORL. Our proposed methods
leverage a single parameterized network to learn optimized policies
across the entire space of possible preferences. Both theoretical
and empirical analyses demonstrate that learning a non-stationary
policy signi"cantly improves fairness. Additionally, we highlighted
the importance of stochastic policies in achieving fair outcomes.
Experimental evaluations in three domains validated the e#ective-
ness of our approach in yielding more equitable policies compared
to state-of-the-art MORL and fair baselines.

Our approach also has some limitations. First, it is limited to
MOMDPs with discrete action spaces. Second, it assumes that pref-
erence weights are linear to learn the CCS, which may not capture
the concave regions of the Pareto front. Third, the current formu-
lation is focused on individual fairness. Given that optimizing a
welfare function is a broad framework applicable to various real-
world MORL problems involving general utilities, an important
direction for future research is to extend this approach to accom-
modate more sophisticated objective functions, particularly those
related to group-level fairness, safety, and risk sensitivity.
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