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Abstract

We propose a novel approach for antibody library design that combines deep
learning and multi-objective linear programming with diversity constraints. Our
method leverages recent advances in sequence and structure-based deep learning
for protein engineering to predict the effects of mutations on antibody properties.
These predictions are then used to seed a cascade of constrained integer linear
programming problems, the solutions of which yield a diverse and high-performing
antibody library. Operating in a cold-start setting, our approach creates designs
without iterative feedback from wet laboratory experiments or computational
simulations. We demonstrate the effectiveness of our method by designing antibody
libraries for Trastuzumab in complex with the HER2 receptor, showing that it
outperforms existing techniques in overall quality and diversity of the generated
libraries.

1 Introduction

Figure 1: Overview of the proposed method for antibody library design. (a) The input to the method
is an antibody-antigen complex and a target antibody sequence. (b) We generate in silico deep
mutational scanning data using protein language and inverse folding models. (c) The result is fed into
a multi-objective linear programming solver. (d) The solver generates a library of antibodies that are
co-optimized for the in silico scores while satisfying diversity constraints.

Antibody-based therapeutics have revolutionized the treatment of a wide range of diseases, including
cancer, autoimmune disorders, and infectious diseases [1]. To develop these drugs, researchers
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often rely on directed evolution, a process that involves experimentally screening large libraries of
antibodies to identify candidates with desirable properties [2]. In the early stages of directed evolution
for antibody drug discovery, a key challenge is to design a diverse library of potential antibodies
for further experimental screening [3, 4]. This challenge involves identifying promising "leads" that
exhibit high affinity to target antigens and possess favorable developability characteristics [5, 6].
Effective library design is also central to many Bayesian optimization methods used in antibody
discovery [3, 7], a problem known as batch active learning [8].

Traditionally, the initial step to bootstrap the directed evolution process has relied on random
mutagenesis, often informed by deep mutational scanning data [9, 10, 11, 12], or through biomolecular
simulations of binding free energies [13, 7]. These methods have been successfully applied to generate
libraries that are enriched with high-affinity antibodies [14, 11]. However, these methods required a
large amount of experimental data and/or computational resources, which can be prohibitively costly
and time-consuming. Additionally, these approaches often overlook the need to maintain diversity
within the antibody library, which is crucial for exploring the vast sequence space and overcoming
potential failure modes or systematic biases in prediction tools [15, 16, 17].

Recent advancements in deep learning applied to biological sequences [18, 19, 20] and structures
[21, 22], or a combination of both [23], have shown great promise as in silico screening tools for
antibody drug discovery. These methods leverage the power of machine learning to learn from
evolutionary scale data and predict the effects of mutations on antibody properties, such as binding
affinity, stability, and developability [24, 25].

In this paper, we propose a novel approach that combines recent advances in deep learning for protein
engineering with integer linear programming (ILP) to design diverse and high-quality antibody
libraries. We are interested in a cold-start setting, where the objective is to design effective starting
libraries without the need for experimental or computational fitness data. This setting is relevant
for rapid response design scenarios against escape variants or new targets [7], where the availability
of experimental data is limited or non-existent, and for seeding the directed evolution process with
diverse and high-quality candidates [3]. We summarize our contributions as follows:

• We introduce a novel method for antibody library design that leverages constrained integer linear
programming to generate high-quality libraries with explicit control over diversity parameters.

• We apply the method to the problem of cold-start antibody library design using in silico deep
mutational scanning data from inverse folding and protein language models.

• We evaluate the performance of our approach to design antibody libraries for the Trastuzumab
antibody in complex with the HER2 receptor.

2 Related work

Below we discuss relevant work related to antibody library design.

Antibody library design Typically when designing antibody libraries, experimental deep mutational
scanning data or simulation data is utilized. For example, in [12] the authors start with experimental
single-site deep mutational scanning to create a combinatorial library of antibody with respect to
the Trastuzumab antibody. The library containing over 31, 000 designs is validated via in vitro
experiments to determine binding quality. Additionally, in [7], an antibody that had previously lost
potency due to mutations on the SARS-COV-2 antigen, is computationally redesigned to restore
potency by producing an antibody library for experimental validation using a sequence generator
informed by simulated data obtained after a large scale simulation campaign. In contrast, our proposed
approach utilizes relatively inexpensive machine learning models to generate libraries in a cold-start
setting without the need for experimental or computational fitness data.

Antibody library design with diversity Recently, a number of methods have been proposed to
explicitly include diversity when generating antibody libraries. In [26], the authors use a quality-
diversity optimization approach called MAP-elites [27] to produce a library of high performing and
diverse antibodies. Similarly to SPEA2, the approach in [26], struggles to generate libraries of a
pre-defined size and requires an additional down-selection step to generate a final library.

In [28], a constrained Bayesian optimization approach is proposed to strike a balance between binding
affinity and thermostability while maintaining sequence diversity. This method optimizes a latent
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space representation learned by a variational autoencoder [29] to produce a fit and diverse batch
of designs. To ensure diversity, "black-box" constraints are utilized with an additional Levenstein
distance constraint. In contrast, our ILP formulation optimizes directly on the additive objective
values produced from the ML driven models, and enforces diversity directly in sequence-space with
respect to the defined constraints.

In the larger context of protein design, [16, 17] recently proposed a differentiable generative approach
to jointly optimize for the expected score and diversity of the generated library. By relaxing the
discrete optimization problem to a continuous one, the authors are able to utilize gradient-based
optimization methods to generate libraries. However, the diversity is represented by the entropy of
the generator, which may not be directly related to the desired sequence diversity.

Integer linear programming for antibody optimization Antibody optimization has been formulated
as integer linear programming in [14] and is used in an optimization pipeline to design a library with
broadly binding and stable antibodies with respect to 180 divergent HIV viral strains. While the
proposed approach is successful, the optimization pipeline requires extensive simulation data to train
an ML binding predictor. The proposed ILP is formulated to optimize the respective binding scores
of the trained ML predictor. We note the ML predictors may struggle to generalize to targets outside
of the problem under consideration. Therefore, to apply this formulation to a new target viral strain,
new data must be generated and the ML model retrained. Additionally, the ILP defined in [14] does
not include diversity as a constraint during optimization.

Machine learning for antibody engineering Masked language models, trained on protein sequences,
have been used to predict mutations in [20] and [19], where the scores produced by the models convey
the predictive effects of mutations on protein function. For example, in [20], the authors use the
likelihood of a mutation of a wild-type antibody under an ensemble of masked language models to
select mutations on a number of antibodies. The models select evolutionarily plausible mutations
without any context about the target antigen.

The majority of research to date has focused on using scores generated from masked language models
without any context about the target antigen. However, the approach proposed in this work utilizes
scores from antibody inverse folding models that can interpret provided antigen information. In
[22], the trained inverse folding model achieves strong correlations when predicting antibody-antigen
binding affinity. As machine learning methods improve, we assume the ability of these models to
convey the predictive effects of mutations on protein function will also improve.

3 Method

The antibody reengineering problem starts with a wild-type antibody sequence w = (w1, . . . , wL)
of length L, where each wi takes a value in the set of M = 20 amino acids A = {a1, . . . aM}. The
wild-type antibody might present weak binding to an epitope g (showed in purple in Figure 1(a)).
The antibody interface is a set of N ≤ L position indices r = {r1, . . . , rN} where 1 ≤ ri ≤ L (gray
positions in Figure 1(a)). Typically, residues at positions r are in contact with the antigen g or have
been deemed important for binding. In the following, we use the notation IA(a) to denote the index
of the amino acid a in the set A.

In a library design problem, the objective is to identify a set of mutants derived from the wild-type
antibody w that exhibit enhanced binding to the antigen g while preserving developability properties
[30, 31, 11]. Each mutant is represented by x = (x1, . . . , xN ), where xi ∈ A. Additionally, the set
of mutants should be diverse to encompass a broad spectrum of potential antibodies and reduce the
risk of experimental failure [32]. Consider a batch of K mutants B = {x1, . . . ,xK}. Formally, we
can write the problem as the following constrained multi-objective optimization problem:

MinimizeB F(B), (1)
subject to div(B) ≥ δ, (2)

where F(B) is a vector of aggregated scores for the batch B, div(B) is the diversity of the batch
B, and δ is a given tolerance. Different scoring functions F(B) with different fidelity levels can be
used to evaluate the mutants in the batch B. For instance, F(B) could involve experimental data,
computational models, or a combination of both. In this work, we focus on scoring functions based
on deep learning models.
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3.1 In silico deep mutational scanning with deep learning

Experimental deep mutational scanning (DMS) is a powerful technique to guide protein design by
systematically mutating position indices r to all amino acid identities in the set A and measuring
the effects of these mutations on protein function [9, 10, 11]. The result is a matrix of scores sij ,
where sij is the effect of mutating the amino acid at position i to amino acid j. DMS has been
successfully used to design libraries enriched with high-affinity antibodies [14, 11]. However, DMS
can be prohibitively costly and time-consuming, and it may not be feasible for all proteins of interest.
For that reason, we propose to use in silico DMS, obtained via deep learning methods, to predict the
effects of mutations on protein properties. We use two recent types of deep learning models to predict
the effects of mutations: sequence-based models and structure-based models.
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Figure 2: (right) Objective values of mutants generated by the ILP and baseline methods for
Trastuzumab in complex with the HER2 receptor. Each point represents a 5 to 8-point mutant.
(left) Zoomed-in perspective focusing on the objective values of the Pareto front and mutants gener-
ated by the ILP with, and without, diversity constraints.

Intrinsic fitness score from protein language models Protein language models (PLM) [18, 19, 20],
trained on evolutionary-scale datasets of protein sequences, can be used to capture the evolutionary
rules that govern protein sequences. PLMs capture the intrinsic fitness of a protein sequence, which
is related to its folding stability, thermostability, developability, and evolutionary plausibility [20]. In
this work, we use a protein masked language model [20] and compute the score as

sPLM
ij = − log

(
p(xi = aj |w)

p(xi = wi|w)

)
= − log(p(xi = aj |w)) + log(p(xi = wi|w)). (3)

The score function (3) has been shown to be predictive of mutation effects [18, 19, 20]. In [19]
they refer to (3) as the wild-type marginal probability, and they show extensive experiments on the
predictive power of this score. Note that (3) is a measure of the likelihood of observing a mutation to
amino acid aj at position i over the wild type sequence w. As such, it is formally related to the free
energy difference between the wild type and the mutant state, ∆Gwi→aj

= −κT log (p(aj)/p(wi)),
by the Boltzmann distribution in statistical mechanics, where κ is the Boltzmann constant and T is
the temperature.

Extrinsic fitness score from inverse folding models Several inverse-folding (IFOLD) methods
have been proposed to design protein sequences that fold into a given target structure [33, 21, 34]. It
has been shown that, given an epitope as context, these methods can capture the extrinsic fitness of an
antibody sequence, e.g., the specific selection pressure for binding to the epitope [33]. These models
are conditioned on structural data of the co-complex structure struct(w,g). We define the score

sIFOLD
ij = − log(p(xi = aj |w<i, struct(w,g))) + log(p(xi = wi|w<i, struct(w,g))). (4)

In this work, we consider Antifold [22], an IFOLD method based on ESM-IF1 [33], fine-tuned on
a large dataset of antibody data [35]. In the case of Antifold, struct(w,g) is given by the spatial
coordinates of the backbone atoms (N , Cα and C). Geometric deep learning methods [24, 25] trained
as regressors of antibody-antigen binding affinity could also be used to capture extrinsic fitness.
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3.2 Multi-objective integer linear programming for antibody optimization

In this section, we consider the problem of finding a mutant of the wild-type antibody that minimizes
a set Q of objectives. A mutant x = (x1, . . . , xN ) is represented by a matrix z = zij ∈ {0, 1},∀1 ≤
i ≤ N, 1 ≤ j ≤ M , where zij = 1 if the amino acid j is present in the position i of the mutant, and
zij = 0 otherwise. We assume that for each objective q ∈ Q, we have a score sqij ∈ R associated to
the contribution of the amino acid j in position i to the objective q.

We define the ILP multi-objective problem as follows:

Minimize


N∑
i=1

M∑
j=1

sqijzij


q∈Q

(5)

subject to 0 ≤
M∑
j=1

zij ≤ 1, ∀i ∈ {1, . . . , N} (6)

nmin ≤
N∑
i=1

M∑
j=1

zij ≤ nmax (7)

N∑
i=1

ziIA(wri
) = 0 (8)

zij ∈ {0, 1}, ∀i ∈ {1, . . . , N}, j ∈ {1, . . . ,M} (9)

where (6) constraints the solution to one mutation per position, (7) constraints the number of mutations
to be between nmin and nmax, (8) constraints the current solution to be different from the wild-type at
the positions r, and (9) constraints the solution to be binary.

If |Q| = 1, problem (5)–(9) can be solved by presenting it as an integer linear program. Specifically,
problem (5)–(9) is a relaxed version of an assignment problem [36], where the bijectivity constraint
is removed from (6). The convex optimization problem can be solved globally and efficiently using
any available ILP solver. In this work, we use the COIN-OR Branch and Cut solver (CBC) [37]. If
|Q| > 1, the problem is a multi-objective optimization problem that can be solved in a Pareto optimal
sense using the weighted sum method [38], i.e., a single objective problem is solved by weighting the
vector (5) with weights λ = (λ1, . . . , λ|Q|), where λq ≥ 0 and

∑|Q|
q=1 λq = 1. In the following, we

consider Q = {PLM, IFOLD} with the corresponding score matrices introduced in (3) and (4).

Note that the additive model in (5) has been extensively used in the literature to score multipoint
mutants. In [39], the authors show that (5) correlates well with experimentally measured binding
affinities when used with different generative models, including PLM and IFOLD methods. For
q = PLM, the additive model in (5) has been used in [19] for scoring general protein mutants.

3.3 Solve-and-remove algorithm for library design with diversity constraints

In this section, we present a novel algorithm to solve the antibody library design problem with
diversity constraints (1)–(2). We use the notation ILP(nmin, nmax, z, Q,λ) to represent the problem
defined in equations (5)–(9) with minimum and maximum number of mutations per mutant given by
nmin and nmax, respectively. Given a budget of K > 0 mutants, we aim to find the top K solutions to
the problem, ensuring diversity among the selected mutants.

The proposed solve-and-remove algorithm is presented in Algorithm 1. Additionally, we visualize
the solve-and-remove process using a step by step illustration in Figure 3. The basic idea is to solve a
sequence of K problems (10), where each problem is supplemented with constraints that depend on
the solutions found in previous steps (11)–(13). The ball constraint (11) ensures that a set of balls
of radius ϵ around the solutions found in previous steps are removed from the feasible region of the
next step. The position constraint (12) and the mutation constraint (13) ensure that the final antibody
library presents at most δ1 mutations in the same position and at most δ2 mutants with the same
mutation, respectively.

Furthermore, in the experiments section, we refer to this algorithm as simply the ILP algorithm.
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Algorithm 1 Solve-and-remove algorithm for antibody library design with diversity constraints

Input: w (wild-type sequence), K ∈ N (budget), ϵ ∈ R (ball radius), δ1 ∈ N (max number
of mutations in the same position), δ2 ∈ N (max number of mutants with same mutation), and,
ILP(nmin, nmax, z) (integer linear programming solver for 5-9).
Output: {z(1), . . . z(K)} (library of mutants)
Initialize: Compute sPLM and sIFOLD score matrices, define z

(0)
ij = 0,∀i, j.

for k = 1 to K do
Sample λ(k) ∼ Dirichlet(1, . . . , α|Q|+1) and normalize λ(k) = λ(k)/

∑|Q|
q=1 λ

(k)
q .

Solve problem:

ILP(nmin, nmax, z
(k), {PLM, IFOLD},λ(k)) (10)

N∑
i=1

M∑
j=1

z
(k)
ij − 2

N∑
i=1

M∑
j=1

z
(l)
ij ≥ 1 + ϵ−

N∑
i=1

M∑
j=1

z
(l)
ij , ∀l = 1, . . . , k − 1, (11)

M∑
j=1

z
(k)
ij = 0, ∀i s.t.

k−1∑
l=1

M∑
j=1

z
(l)
ij ≥ δ1, (12)

z
(k)
ij = 0, ∀i, j s.t.

k−1∑
l=1

z
(l)
ij ≥ δ2 (13)

end for

4 Experiments

We show the flexibility of our library design method using the Trastuzumab antibody in complex with
the antigen human epidermal growth factor receptor 2 (HER2) [12]. Due to space limitations, we
refer the reader to Appendix A.4 for extensive ablations and discussion.

Experiment configuration To evaluate the different batches of mutated sequences generated by
the ILP, we use a binding prediction surrogate to evaluate each sequence (see Appendix A.4). We
also compare the performance of the ILP against a LMG algorithm designed for antibody library
design [7].

We mutate the Trastuzumab antibody sequence on the CDR3 region of the heavy chain. The set
of mutable positions N contains the following positions: H99, H100, H101, H102, H103, H104,
H105, H106, H107, H108. The set of amino acids M contains all amino acids except for wild-type,
resulting in a set of 19 possible amino acids from which to choose.

We generate a batch, K, of 1, 000 mutated sequences from wild-type, the minimum number of
mutations, nmin, is 5 and the maximum of number of mutations, nmax, is 8.

Experimental setup As previously outlined, the proposed method can be used to design a diverse
antibody library whereby a given wild-type is mutated with respect to pre-defined optimization
objective(s). For our experiments, we use scores sIFOLD

ij from Antifold [22], and, sPLM
ij from ProtBERT

[40], as optimization objectives for the ILP problem (5).

Our method can be used to design new antibody candidates, where mutations are required on specific,
or various, regions across the heavy on light chains of the wild-type antibody. During experimentation,
we use the Trastuzumab antibody, and consider only heavy chain mutations on the CDR3 region of
the wild-type.

To generate a batch of diverse sequences for each experiment, we apply constraints to the number
of solutions containing a given position (12) and to the solutions containing a given mutation per
position (13). These constraints ensure any one mutation or position is not overly represented in the
final batch. We enforce a maximum, nmax and minimum, nmin, number of mutations from wild-type,
to ensure a library of variation with respect to mutation length.
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Figure 3: Illustration of the solve-and-remove strategy for diversification. The algorithm finds the
best solution to the problem and then removes a neighborhood of solutions to ensure diversity (a
ball of radius ϵ around the solution). The algorithm proceeds by solving new problems with reduced
search spaces until the desired number of solutions is reached.

4.1 Results

For evaluation, we compare the ILP with the Linear Mutant Generator (LMG) algorithm [7], the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [41], and the ML-optimized library design with
improved fitness and diversity (MODIFY) method [17]. See Appendix A.2 for extensive details on
baselines, including implementation details. Figure 2 shows the libraries generated by each algorithm
projected onto the objective space and Table 1 presents the compiled evaluation metrics.

In Figure 2 we observe that the ILP libraries are concentrated in the bottom-left corner of the objective
space, near the Pareto front (PF). The mutants obtained by the ILP with diversity constraints are
organized in stratified layers separated by the effect of diversity constraints, while the ILP without
diversity constraints presents a single layer of mutants. In contrast, the LMG and MODIFY libraries
distributions resemble the trace of a shotgun across the objective space. The SPEA2 libraries exhibit
intermediate performance but face a significant limitation in generating the required library size, as
shown in Table 1. This is due to the presence of non-unique sequences in the final population (targeted
at 1,000 individuals), resulting in less diverse libraries. For the problem of designing a 1, 000-mutant
library, the ILP variants outperform all other methods in multi-objective metrics BEU and HV (see
Appendix A.3 for definitions) while maintaining entropy values larger than 3. A trade-off between
entropy and BEU values is observed in the ILP libraries with and without diversity constraints.

To further illustrate each algorithms ability to optimize the objective values, we present the Pareto
front for the ILP and each baseline algorithm in Figure 4. The volume of the computed Pareto front
with respect to a reference vector (Vref = [50, 50]) corresponds to the HV score in Table 1. The ILP
and SPEA2 algorithms compute the Pareto front that captures the best objective values compared
to the other baselines. The ILP and SPEA2 Pareto fronts span greater ranges of the objective space.
Furthermore, both the ILP and SPEA2 algorithms compute the approximated Pareto front in Table 1,
resulting in the ILP, SPEA2, and Pareto front having the same HV score. As a result, the ILP
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Method # of unique Residue BEU ↓ HV ↑ Average Oracle
sequences ↑ entropy ↑ humanness ↑ fitness (%) ↑

ILP (1000, 300) 1,000 3.22 4.615 2231.90 -1296.73 58.2
ILP (no diversity) 1,000 3.11 4.30 2231.90 -1293.68 61.8

LMG [7] 1,000 4.75 10.70 1937.70 -1309.75 17.1
MODIFY [17] 1,000 3.97 10.14 2012.43 -1308.27 18.6

SPEA2 (strat.)∗ 263 2.74 6.24 2231.90 -1290.01 38.02
SPEA2 (unified)∗ 69 2.60 4.08 2231.90 -1282.57 68.12

Pareto Front† 10 2.21 3.55 2231.90 -1282.31 80.0

Table 1: Diversity and fitness of libraries generated by each algorithm. ∗SPEA2 methods [41] were
unable to generate libraries of the required size, making direct comparison with other algorithms
difficult, though we include their results for reference. †We approximate the Pareto front by combining
the Pareto front of each algorithm’s solutions set and removing the Pareto dominated solutions.

and SPEA2 algorithms are both able to optimize the respective objective values while maintaining
diversity.

The last two columns in Table 1 are used as external evaluation metrics for the library design problem.
Following [42], we consider the log-likelihood of the mutants under ProtGPT2 [43] as a proxy for
developability (called average humanness). The oracle fitness is the percentage of mutants predicted
to bind to the target antigen by a ML-classifier trained on experimental data (see Appendix A.3
for details). We observe ≃ 3.5-fold increase in predicted oracle fitness of the ILP mutants with
higher average humanness compared to the LMG and MODIFY mutants. A similar trade-off between
entropy and oracle fitness as described above is observed within the ILP libraries. The ILP libraries
present a comparable predicted oracle fitness to the SPEA2 libraries, while involving a 5 to 14 times
larger libraries. Note that the derived PF has an oracle fitness of 80%, justifying the choice of scoring
functions. Overall, the ILP method provides the best libraries under the multi-objective metrics BEU
and HV, oracle fitness, and average humanness, while providing library size control and flexibility to
adjust the trade-off between diversity and fitness.
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Figure 4: The individually computed Pareto front of the batches generated by the ILP and all baseline
algorithms.

5 Conclusion and future work

In this work, we proposed a novel method for antibody library design that combines multi-objective
optimization with diversity constraints. Our method leverages recent advances in sequence and
structure-based machine learning models to compute in silico deep mutational scanning data that
is fed into an integer linear programming solver to generate diverse and high-performing antibody
libraries. In an extensive evaluation involving the Trastuzumab antibody, we showed that our method
provides the best libraries in terms of multi-objective metrics, oracle fitness, and average humanness,
while providing library size control and diversity-fitness trade-off flexibility.
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As limitations, it is important to note that our method requires the structure of the antibody-antigen
complex (which may not always be available) and that the quality of the generated libraries is affected
by the quality of the scores predicted by the deep learning models. It is also important to note that the
method might become computationally expensive for very large libraries, as the number of constraints
in the ILP formulation grows linearly with the number of selected mutants.

In future work, we plan to extend our method to consider the breadth optimization problem, where
the goal is to design antibodies that are effective against a set of divergent viral strains. We also
plan to investigate the use of a quadratic assignment formulation to model the pairwise interactions
between amino acids in the antibody-antigen complex.
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A Appendix

A.1 Antibody library design as a multi-objective problem

Designing a library with respect to extrinsic fitness, e.g. binding quality to the antigen target, does
not ensure experimental success. Safe, stable, and manufacturable antibody candidates contain
key properties related to intrinsic fitness e.g thermostability, developability, and stability. Without
explicitly considering the intrinsic fitness related properties during optimization a generated library
may contain candidates that overfit to the biases of the optimized in silico tool increasing the risk of
experimental failure. As a risk mitigation strategy, we propose to optimize for intrinsic fitness and
extrinsic fitness simultaneously as separate objectives.

Approaches that frame antibody library design as a multi-objective problem typically compute a
Pareto front of solutions, or optimize the library for a fixed weighting over the problem objectives
[17]. As we will show, the Pareto front does not contain sufficiently diverse solutions from which an
adequate antibody library can be derived. Moreover, in a zero-shot setting, optimizing a library with
respect to a fixed weighting over the objectives increases the risk of experimental failure. Objective
weightings are extremely difficult to tune [44] and, as a further complicating factor, it is infeasible
to determine if any selected weighting is appropriate given the absence of experimental fitness data.
We utilize a dynamic weighting approach [45], whereby for each iteration a random weighting over
the objectives is sampled from the distribution over all possible weightings, and used to compute a
feasible solution for the given problem. Sampling weights mitigates the risk of over optimizing for
any individual weighting, ensuring diversity and coverage over the space of objective weights.

A.2 Baseline Algorithms

Below we outline the LMG, SPEA2 and MODIFY algorithms, used as baselines to compare against
our proposed ILP method. We also describe how an approximation of the Pareto front is computed,
which we also use as a comparison.

Linear Mutant Generator The Linear Mutant Generator (LMG) baseline is adapted from [7].
The LMG uses a hierarchical sampling process. First, the number of mutations is sampled from the
range [5, 8] uniformly at random. Then, mutations are sampled without replacement according to the
following probabilities,

pij =

∑|Q|
q=1 σ(s

q
ij)∑N

i=1

∑M
j=1

∑|Q|
q=1 σ(s

q
ij)

,

where σ(s) is the generalized logistic function σ(s) = 1
(1+a·e−s·b)1/c

, with a = 1000, b = 5, and
c = 8. The LMG algorithm can be used to generate a batch of K mutants.

Strength Pareto Evolutionary Algorithm 2 As a baseline, we implemented the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [41], enhanced with an island model strategy. SPEA2 was chosen
for its balance between convergence and diversity, crucial in exploring the complex design space of
antibody optimization. The island model employed 20 independent sub-populations, each with 50
individuals, totaling 1,000 individuals across the entire population. Each sub-population evolved
independently, with no migration, ensuring isolated genetic pools and promoting diverse exploration
of the solution space.

A restart strategy was introduced to maintain diversity. If a sub-population’s Pareto Front (PF) was a
subset of another sub-population’s PF, the sub-population was restarted by replacing all individuals
with random solutions. This mechanism helped prevent premature convergence within any sub-
population, encouraging ongoing exploration. The restart mechanism was disabled for the last 10%
of generations to prevent random solutions from appearing in the final population.

In our SPEA2 implementation, each solution (antibody mutant) is represented as y = (y1, . . . , yN ),
where yi = IA(xi) and xi ∈ A. Here, yi indicates the index of the amino acid selected for the i-th
mutable position from the set of amino acids A, and N represents the number of antibody positions
permitted to mutate.

The crossover operator was a modified version of one-point crossover that respected the constraint of
5 to 8 amino acid mutations per antibody sequence. After the traditional one-point crossover was
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applied, if the offspring exceeded the upper mutation limit, random mutations were reverted to the
wild-type sequence. If the number of mutations fell below the lower threshold, additional random
amino acid mutations were introduced. The probability of crossover was set to 70%.

A custom mutation operator was also used, which randomly mutated an amino acid at a position that
already had a mutation to a different amino acid. This ensures the total number of mutations remained
constant and within the specified range. The probability of mutation was 30% at the individual
level and 5% at the position level. The algorithm ran for 500 generations, with the final population
comprising all unique individuals of the joint sub-populations, ensuring a broad and diverse set of
solutions. We used the SPEA2 implementation from the DEAP [46] Python package.

In our experiments, we used two SPEA2 setups called stratified and unified. In the stratified setup,
we ran four separate SPEA2 instances, each constrained to find solutions with an exact number of
mutations (5, 6, 7, or 8). The final antibody library was composed of all unique solutions from the
combined selections of these instances, ensuring diversity in the number of mutations. In the unified
setup, a single SPEA2 instance was run across the entire mutation range [5, 8].

ML-optimized library design with improved fitness and diversity The MODIFY algorithm was
introduced in [17], following the work in [16]. The method optimizes a tensor ϕ ∈ RN×M and uses
it to build probabilities pij = exp(ϕij)/

∑N
k=1 exp(ϕik) for each mutable position i. The probability

of a mutant is given by

p(x|ϕ) =
N∏
i=1

M∑
j=1

zijpij .

The optimization objective is,

J(ϕ) = Ex∼p(x|ϕ) [f(x)] + λ

N∑
i=1

αiH(pi), (14)

where f(x) =
∑|Q|

q=1 wqs
q(x) is the weighted sum of the scores of the |Q| objectives, wq is the

weight of the q-th objective, sq(x) is the score of the q-th objective, and H(pi) is the entropy of the
marginal distribution pi over amino acids at position i. The method sweeps through 200 λ values,
optimizes the tensor ϕ for each λ value using policy gradient, and then selects the best λ value based
on the area under the expected fitness and entropy curve. Objective (14) has been extensively used in
other works for discrete optimization [47, 48].

Here, we adopt the MODIFY algorithm with Q = {PLM, IFOLD}, the scores defined in (3)-(4),
and, as suggested in [17], wPLM = wIFOLD = 0.5. We train the models for 2, 000 iterations, with a
batch size of 1, 000, and a learning rate of 10−1. The final library of 1, 000 mutants was obtained by
sampling from the optimal distribution p(x|ϕλ=0.66) (see Figure 5).
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Figure 5: (a) Evolution during training of the fitness and entropy of the MODIFY algorithm. (b) The
optimal λ value maximizes the area under the curve of the expected fitness and entropy.

Approximating the Pareto front It is infeasible to exhaustively compute all valid solutions over
the search space for 5− 8 point mutations. As a result, exactly computing the Pareto front is difficult
without access to an exhaustive set of solutions. Therefore, we compute an approximation of the
Pareto front by first computing the Convex hull of the Pareto front, then running Pareto optimality
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Figure 6: Convex hull computed using the ILP without the solve-and-remove algorithm. Generated
using 1, 000 sampled linear weights.

filter on the combined sets of the Convex hull with the ILP, SPEA2, MODIFY and LMG runs. The
resulting set of solutions is then used as the approximation of the Pareto front shown in Section 4.

The Convex hull is a subset of the Pareto front [44, 49]. The ILP is an optimal solver, meaning for
any linear weighting the ILP can find the optimal solution that lies on the Convex hull. To compute
the Convex hull, we run the ILP without the solve-and-remove algorithm, therefore the solution
landscape remains static during optimization. To uncover the Convex hull, at each iteration we sample
a different linear weighting and solve with respect to the sampled weighting. For our experiments,
we sampled a total of 1,000 weightings. The resulting Convex hull is presented in Fig. 6. While the
Convex hull contains many solutions that lie on the Pareto front, it does not contain solutions that lie
on the concave regions of the Pareto front. Therefore, we initiate another step to approximate the
remaining solutions in these missing regions.

To find the missing regions, we first compute the Pareto fronts of the solution set computed by each
algorithm. In Fig. 4, it is clear that the solutions computed by the LMG and MODIFY algorithms are
all Pareto dominated by the SPEA2 and ILP Pareto fronts. Both the ILP and SPEA2 runs compute
identical Pareto fronts, which also contain all solutions on the Convex hull, and solutions in concave
regions. As a result, we use the resulting Pareto front as our approximation presented in Section 4.

A.3 Evaluation metrics

To measure each individual batch produced by the ILP, MODIFY, LMG, and SPEA2 algorithm we
utilized a number of metrics to compare the performance of each algorithm.

Evaluating extrinsic fitness To measure the extrinsic fitness of a batch of mutated sequences, we
employ an oracle function to approximate the binding potential of a given mutated sequence to the
target antigen. The oracle is a trained predictive classification model and will act as a surrogate for
experimental validation. To train the oracle, we utilized extensive experimental binding data from
[12]2. The corresponding dataset contains 31, 000 experimentally validated and labelled mutated
sequences, where 11, 000 bind to the target antigen (labelled as 1) and 20, 000 do not bind to the
target antigen (labelled as 0). During training we use a random 70/10/20 train/val/test split with
binary cross-entropy loss for 20 epochs and a batch size of 16. The trained oracle network achieves
83% accuracy on the test set. To measure the extrinsic fitness of each batch, we report the percentage
of sequences in the batch that are predicted by the oracle to bind to the target.

Evaluating intrinsic fitness Similarly to Gruver et al. [42], to measure the intrinsic fitness of a
batch of mutated sequences we utilize the log-likelihood assigned by ProtGPT2 [43] (trained on
Uniref50 [50]). The resulting score for each sequence represents how likely a given sequence is with
respect to the model. The log-likelihood assigned by ProtGPT2 can be interpreted as a humanness
score, where a lower score corresponds to a sequence being more "natural" or human-like. Therefore,

2All experimental data can be found here: https://github.com/dahjan/DMS_opt
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we refer to this measure as humanness in Section 4. To calculate the humanness of a given batch, we
compute the mean over the batch with respect to the humanness score.

Diversity metrics We use the residue entropy to measure the diversity of the batch. The residue
entropy refers to the entropy of the empirical distribution over amino acids and positions of a batch,
B. Consider the empirical distribution, pij ∝

∑K
k=1 z

(k)
ij , the residue entropy of the batch is defined

as

Hres(B) = −
N∑
i=1

M∑
j=1

pij log (pij) .

As entropy increases a distribution becomes uniform. As a result, we aim to maximize entropy to
compute a batch that is uniform over possible amino acids and mutable positions, therefore making
the batch more diverse.

Multi-objective metrics To measure the ability of each algorithm to optimize each objective we
utilize the hypervolume metric and a based expected utility metric.

The hypervolume (HV) metric measures the volume in vector space of a given Pareto front, which
correlates to the spread of a given undominated set over the possible multi-objective solutions space.
The HV is defined as

HV(PFB ,Vref ) =
⋃

x∈PFB

Volume(Vref ,x),

where Volume(Vref ,x) is the volume of the hypercube spanned by the reference vector, Vref , and
the solution vector x in the Pareto front of a given batch, PFB [44]. To measure the HV in our
experiments we set Vref = [50, 50].

While the hypervolume metric has been used extensively in the literature, it has some limitations.
Specifically, the hypervolume metric requires a reference point to compute the score. The choice of
reference point is arbitrary and effects the resulting score.

Many multi-objective measures focus on evaluating an algorithms ability to compute a coverage
set of non-dominated solutions e.g. Pareto front [49]. However, for antibody library design we are
concerned with measuring the quality with respect to the objective values over a batch of solutions.
To do so, we implement a batch expected utility metric (BEU) that leverages the expected utility
metric (EUM) proposed by Zintgraf et al. [51]. The BEU metric produces a scalar representation of
the expected utility over a given batch of solutions with respect to a distribution over utility functions,
and can be defined as follows:

BEU = Ex∼B [Eu∼P (·|U)[u(x)]],

where u is a utility function drawn from a set of utility functions U , and x is a mutant in the batch, B.

To compute the BEU metric, a distribution over utility functions must be known a priori. Therefore,
we assume a distribution over linear utility functions and sample from a simplex over all possible
convex combinations. In our experiments, we sample 10, 000 utility functions (linear scalarization
weights) and compute the BEU metric for each algorithm in Table 1.

A.4 Ablations

In Table 2, we show results of ablations of ILP experiments with different diversity constraints
and mutation shuffling configurations. In Table 2, fitness is measured as the percentage of the
generated library predicted to bind the antigen HER2 target using the binding prediction surrogate.
For experiment 1, we evaluate the ILP without any diversity constraints and without mutation shuffling
enabled. In this case, the ILP is greedy and selects sequences only with respect to the weighted
AntiFold and ProtBERT scores, and achieves a fitness of 61.8%. For evaluations 2-6, we introduce
diversity constraints, and vary them for each experiment respectively. We focus on varying the
mutational constraint, δ2, from 500 to 100, to evaluate the effect of this constraint on the fitness and
diversity of a given batch. For δ2 = 500 and δ2 = 400 a small change in the fitness and diversity
of the batch is observed. However, as the δ2 constraint is reduced further (δ2 < 400) the predicted
fitness of each batch decreases. Simultaneously, as the δ2 constraint is reduced, the entropy of each
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Exp. id Diversity constraints δ1 δ2 Shuffle Entropy Pred. Fitness (%)
1 × NA NA × 3.11 61.8
2 ✓ 1000 500 × 3.10 62.9
3 ✓ 1000 400 × 3.12 66.2
4 ✓ 1000 300 × 3.22 58.2
5 ✓ 1000 200 × 3.47 44.5
6 ✓ 1000 100 × 4.02 28.5
7 × NA NA ✓ 2.96 40
8 ✓ 1000 500 ✓ 3.09 39.7
9 ✓ 1000 400 ✓ 3.21 37.4

10 ✓ 1000 300 ✓ 3.33 32.8
11 ✓ 1000 200 ✓ 3.66 22.9
12 ✓ 1000 100 ✓ 4.26 13.4

Table 2: Ablation of ILP experiments with various diversity parameters and the resulting predicted
fitness and entropy scores.

batch increases resulting in more diverse batches. A trade-off between predicted fitness and diversity
is observed, where generating batches of higher diversity results in a lower predicted fitness.

Fig. 8a visualizes the scores for the problem objectives for each mutated sequence computed by
ILP experiments, where experiments 1 and 4 are shown in Fig. 8a from Table 2. Additionally, we
compute the Pareto front, represented in Fig. 8 as a dashed line. Both ILP configurations find all
sequence mutations on the Pareto front. Experiment 1 (red), the ILP instance without diversity
constraints, greedily selects sequences close to, or on, the PF. It is clear, the solve-and-remove
algorithm (Algorithm 1) enables some level of diversity even without diversity constraints being
explicitly configured. Without the solve-and-remove algorithm, only solutions on the PF would be
selected. In contrast, experiment 4 (teal), the ILP instance with diversity constraints, produces a batch
of sequences where some solutions lie close to the PF, but many solutions span different regions
of the objective space, resulting in more pronounced diversity. The diversity for experiment 4 is
visualized as a sequence logo in Fig. 7b. The entropy of experiment 4 is 3.22, and is higher (i.e.,
more diverse) when compared to the entropy score of 3.11 for experiment 1.

Next, we investigate the impact of mutational shuffling on the batches generated by the ILP. For
experiments 7-12, we introduce mutational shuffling with and without diversity constraints. Notably,
the diversity of each batch with mutational shuffling enabled increases when compared to the
corresponding experiments without mutational shuffling. Fig. 8b presents the objective scores for
experiment 7 and 10, where the objective score values are distributed differently when compared to
their corresponding experiments in Fig. 8a. For example, the solutions generated in experiment 7 are
much further from the PF when compared to the solutions generated in experiment 1 which lie close to
the PF. Additionally, the solutions generated in experiment 10 are scattered throughout the objective
space. As a result, mutational shuffling impacts the fitness of each batch, given all experiments with
mutational shuffling have a lower fitness compared to their corresponding experiment. Mutational
shuffling ensures more diversity in the point mutations of the given batch and without mutational
shuffling this level of diversity cannot be guaranteed.

A.5 Further baseline comparisons & discussion

Below we extend our comparison of the ILP runs against with LMG, MODIFY, and SPEA2. We also
use an approximation of the Pareto front for further comparisons.

Unique sequences Library design typically requires a fixed number of sequences to be generated to
fit a capacity for experimental validation. Therefore, it is important to have control on the number of
unique sequence generated by a library design algorithm. Using the ILP, MODIFY, and the LMG it is
possible to generate a library of fixed size, given each algorithm generates the required library size
of 1, 000. However, the SPEA2 algorithm struggles to generate batches that meet this requirements.
SPEA2 (joint) generates a batch of 69 unique sequences, while SPEA2 (independent) generates a
batch of 263 sequences. Although the initial population size of the SPEA2 runs was set to 1, 000
many similar, or the same solutions, were generated or dropped due to the algorithms optimization
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(a) ILP (no diversity)

(b) ILP (300, 1000)

(c) Pareto front

(d) SPEA2

(e) ILP (Shuffle, no diversity)

(f) ILP (Shuffle, 300, 1000)

(g) LMG

(h) MODIFY

Figure 7: Sequence logo plots of batches generated from various experiments for the ILP, each
respective baseline, and the Pareto front.

process, resulting in smaller batch sizes. As a result, the inability to control the exact size of the
library being generated limits the SPEA2 algorithms use in practical settings.

Residue entropy & oracle fitness The measured entropy of the distribution over amino acids and
positions is utilized score the diversity of a given batch, where a diverse batch of sequences maximizes
the entropy of the distribution. We also use the predicted oracle fitness of the batch using a trained
predictive model (see Section 4) to measure the extrinsic fitness of each batch. The measured entropy
of the LMG generated library is 4.75, resulting in a highly diverse batch of solutions. Similarly,
the MODIFY algorithm has a residue entropy score of 4. Both LMG and MODIFY achieve higher
diversity scores when compared to ILP experiments presented in Table 2. Fig. 7g and Fig. 7h display
the sequence logo plot of the batch produced by the LMG and MODIFY. The difference in diversity
obvious when comparing the MODIFY and LMG logo plots with those of the ILP runs (Fig. 7a,
Fig. 7b, Fig. 7e, and Fig. 7f). Each position contains a number of amino acids, resulting in a highly
diverse batches. However, LMG and MODIFY have lower predicted oracle fitness scores, 17.1 and
18.6, when compared to the ILP runs (61.8 and 58.2) in Table 1.

Both SPEA2 runs also have lower diversity scores when compared to the ILP runs. SPEA2 (joint)
has a score of 2.6 and SPEA2 (independent) has a score of 2.74. This is reflected in Fig. 7d, where
many amino acids are missing from the logo plot at each mutated position. The SPEA2 (joint) has a
fitness score of 68.12 and SPEA2 (independent) has a fitness score of 68.12. Both SPEA2 runs have
a lower diversity score when compared to the ILP runs. However, the SPEA2 (independent) run has
a higher fitness score than the ILP. The SPEA2 (independent) batch only has 69 sequences, where
10 of those sequences lie on the Pareto front. Therefore, the results from the SPEA2 runs are not
directly comparable. The ILP produces a much larger batch when compared to both SPEA2 runs and
maintains a high level of both diversity and fitness.

Given multiple objectives are used during optimization, we approximate the Pareto front of the
underlying problem and compare the set of sequences in the Pareto front with the ILP and LMG. The
set of sequences on the Pareto front have high fitness (80%) but very low diversity (2.21). Although
the Pareto front has fit solutions, the Pareto front is not sufficiently diverse to use as a batch for
experimental validation. However, we should aim to include the Pareto front as a subset of solutions
contained with the overall batch.

The diversity parameters for the LMG and MODIFY algorithms are not configurable, resulting in
algorithms that always produce batches with high diversity. Similarly for SPEA2, certain parameters
can be altered to enforce diversity, however, the diversity of the resulting set is not directly controllable.
In contrast to all other baselines, the ILP can be configured to generate more or less diversity within
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Figure 8: The objective values of the batch of sequences generated by the ILP, LMG, SPEA2, and
MODIFY algorithms. Each point corresponds to a unique mutated sequence.

a batch when required. Given various library design scenarios can arise where varying levels of
diversity may be necessary, having the ability to configure the diversity parameters as required is
important.

Fig. 9 presents the trade-off between fitness and diversity with respect to the ILP and each baseline.
Each baseline is shown as a single point to reflect the fitness and diversity score of the final batch.
The ILP contains multiple points representing each ablation performed. It is clear, that to increase
fitness scores the diversity of the batch must decrease. As diversity increases, the fitness of the batch
also declines. Therefore it is important to have control over the diversity of a batch, given depending
on the objectives certain diversity parameters may be required.

Humanness While the typically objective of library design is to generate a batch of antibodies
that bind to the given target, it is also crucial ensure that a given antibody library contains sequences
with properties related to intrinsic fitness – like developability, human-likeness, etc. – to ensure
experimental success. Sequences without properties related to intrinsic fitness may not be developable,
human-like, or stable. To generate a library with these properties, we optimize the PLM scores as
previously outlined. We measure the humanness of a given batch using the log-likelihood scores
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Figure 9: Predicted oracle fitness and residue entropy based diversity of each ILP ablations against
the baseline algorithms.

from a PLM, specifically ProtGPT2. The LMG and MODIFY generate libraries with scores of
−1309.75 and −1308.27. In comparison, the ILP runs have humanness scores of −1293.68 and
−1296.73. Additionally, the SPEA2 algorithm produces batches with −1290.01 and −1282.57.
We aim to maximize the humanness score of a given batch. The LMG and MODIFY scores are
worse performing when compared to the ILP and SPEA2 scores. Again, it is important to note the
SPEA2 batches contain fewer sequences when compared to all other baselines, average humanness
scores for a given batch are not directly comparable. However, given the scores of both the ILP and
SPEA2 batches both libraries of sequences are more likely to contain the intrinsic fitness properties
related to developability when compared to LMG and MODIFY. A library designed to contain
developable (human-like) sequences may avoid the biases or failure modes that can arise when
optimizing specifically for binding. A resulting library may be more likely to avoid experimental
failure by ensuring the key properties related to intrinsic fitness are contained within the library.

Hypervolume To understand how effectively each objective is being optimized, we compute and
compare the hypervolume (HV) of the Pareto front of the batch of solutions computed by the ILP
and all baselines. The Pareto fronts computed by all algorithms are presented in Fig. 4, where the
LMG (HV = 1937.7) and MODIFY (HV = 2012.43.7) algorithms struggle to compute solutions that
effectively minimize the objectives. Both ILP and SPEA2 runs uncover the full approximated Pareto
front which contains the Convex hull (see Fig. 6), resulting in an equal HV score of 2231.90. The ILP
and SPEA2, contain good approximations of the Pareto front, given they both contain the computed
Convex hull. Therefore, both the ILP and SPEA2 effectively optimize the problem objectives.

Expected utility of the batch To further measure the quality of each batch with respect to the
defined objectives we compute the batch expected utility (BEU) score for each algorithm. Here,
we aim to minimize the BEU because a lower BEU score corresponds to a batch that effectively
minimizes the objective values across a range of utility functions. Both LMG (BEU = 10.7) and
MODIFY (BEU = 10.14) achieve a similar BEU score. However, the SPEA2 and ILP BEU scores
are much lower when compared to the LMG and MODIFY. The batch produced by the SPEA2 (joint)
algorithm achieves the lowest BEU score, however, as previously stated, the batch contains only 69
sequences making the BEU score for SPEA2 runs not directly comparable. The ILP runs achieve
slightly higher scores of 4.30 and 4.612, however these scores are achieved over much larger batches.
As expected, the Pareto front has the lowest BEU score.

Diversity of the Pareto front Many multi-objective optimization methods aim to compute the
Pareto front [44, 49], where the Pareto front is the set of Pareto non-dominated solutions. Pareto
dominance enforces diversity in the objective space, given in the Pareto front no two solutions can be
the same, and, by the nature Pareto dominance, the objective values within the set span the range
of feasible solutions. Figure 7c displays the positional and mutational diversity of the Pareto front
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some positions contain no mutations while others contain little mutational variation. Additionally,
the PF has a lowest measured entropy value of 2.21. Given the lack of diversity of the set of solutions
on the Pareto front it is important to explicitly optimize for diversity in sequence space. As a result,
solutions that may be Pareto dominated can potentially be included in the final batch given these
solutions may promote diversity.

ILP solve-and-remove enables computation of the Pareto front Methods that utilize a linear
scalarization are known to only be able to recover solutions that lie on the convex regions of the
Pareto front, i.e the Convex hull [49]. ILP algorithms that use a weighted-sum scalarization are
limited in this manner. However, the solve-and-remove algorithm enable the ILP to compute solutions
that lie in concave regions on the Pareto front, and in our experiments recovered the full Pareto front.
The solve-and-remove algorithm alters the shape of the solution landscape ensuring that previously
selected solutions are removed from consideration. Throughout the execution of the algorithm, the
landscape changes, and as solutions are removed regions of the landscape becomes convex. Therefore,
previously concave regions become convex allowing for the ILP to compute the given solution using
the weighted sum methods.
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