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Abstract
Both PAC-Bayesian and Sample Compress learn-
ing frameworks have been shown instrumental
for deriving tight (non-vacuous) generalization
bounds for neural networks. We leverage these
results in a meta-learning scheme, relying on a
hypernetwork that outputs the parameters of a
downstream predictor from a dataset input. The
originality of our approach lies in the investigated
hypernetwork architectures that encode the
dataset before decoding the parameters: (1) a
PAC-Bayesian encoder that expresses a posterior
distribution over a latent space, (2) a Sample Com-
press encoder that selects a small sample of the
dataset input along with a message from a discrete
set, and (3) a hybrid between both approaches
motivated by a new Sample Compress theorem
handling continuous messages. The latter theorem
exploits the pivotal information transiting at the
encoder-decoder junction in order to compute
generalization guarantees for each downstream
predictor obtained by our meta-learning scheme.

1. Introduction
Machine learning is increasingly shaping our daily lives, a
trend accelerated by rapid advancements in deep learning and
the widespread deployment of these models across various
applications (e.g., language models and AI agents). Ensuring
the reliability of machine learning models is therefore more
critical than ever. A fundamental aspect of reliability is
understanding how well a model generalizes beyond its
training data, particularly for modern neural networks, whose
complexity makes it challenging to obtain strong theoretical
guarantees. One way to assess generalization is through
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Figure 1: Overview of our meta-learning framework.

probabilistic bounds on a model’s error rate. Applying these
techniques to deep neural networks is challenging because
classical approaches struggle to account for the true effective
complexity of such models (Zhang et al., 2017), which may
not be well captured by naive measures such as parameter
count (Belkin et al., 2019). However, prior work suggests
that if one can obtain a more compact yet expressive rep-
resentation of a model’s complexity, tighter generalization
bounds are possible (Dziugaite et al., 2020; Wang et al.,
2022; Kawaguchi et al., 2023), even when it comes to models
as big as Large Langage Models (Lotfi et al., 2024a;b).

In this work, we investigate a meta-learning framework for
obtaining such representations and leverage them to establish
tight generalization bounds. Our approach is based on a
hypernetwork architecture, trained by meta-learning, and
composed of two components: an encoder that projects a set
of training examples into an explicit information bottleneck
(Tishby & Zaslavsky, 2015) and a decoder that generates
a downstream predictor based on this bottleneck. We demon-
strate that the complexity of this information bottleneck
provides an effective measure of the downstream predictor
complexity by computing generalization guarantees based
on that complexity. Conceptually, our hypernetwork is
akin to a learning algorithm that explicitly exposes the
complexity of the models it produces. We then show how
our approach can be used to obtain generalization guarantees
in three theoretical frameworks: PAC-Bayesian analysis,
sample compression theory, and a new hybrid approach
that integrates both perspectives, each of which motivates
a specific architecture for the bottleneck.

We begin by introducing the theoretical frameworks used
to obtain generalization bounds (Section 2), including a new
PAC-Bayes Sample Compression framework, which we
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propose in Section 2.3. We then describe our meta-learning
approach for training hypernetworks and how it is adapted to
each theoretical framework (Section 3). Finally, we present
an empirical study evaluating the quality of the obtained
bounds and models on both simulated and real-world
datasets (Section 4). Our results demonstrate that our
approach effectively learns accurate neural network-based
classifiers. We also show that the information bottleneck
reliably serves as a proxy for model complexity, enabling
the derivation of tight generalization guarantees.

Related works. The meta-learning framework was pio-
neered by Baxter (2000), where a learning problem encom-
passes multiple tasks under the assumption that all learning
tasks are independently and identically distributed (i.i.d.)
from a task environment distribution. Various standpoints
have been considered to derive generalization guarantees
in this setting, for example the VC-theory (Maurer, 2009;
Maurer et al., 2016) and algorithmic stability (Maurer, 2005;
Chen et al., 2020). In recent years, the PAC-Bayesian frame-
work has been the foundation of a rich line of work: Pentina &
Lampert (2014); Amit & Meir (2018); Rothfuss et al. (2021);
Liu et al. (2021); Guan et al. (2022); Guan & Lu (2022); Reza-
zadeh (2022); Zakerinia et al. (2024). Up to our knowledge,
using the sample compression framework (Littlestone & War-
muth, 1986) to derive generalization bounds for meta-learned
predictors is an idea that has not been explored yet.

2. Learning Theory and Generalization Bounds
The prediction problem. A dataset S = {(xj , yj)}mj=1 is
a collection of m examples, each of them being a feature-
target pair (x, y) ∈ X × Y , and a predictor is a function
h : X → Y . We denoteH the predictor space. Let A be a
learning algorithmA :

⋃
k∈N(X ×Y)k → H that outputs a

predictorA(S) ∈ H. Given a predictor h and a loss function
ℓ : Y × Y → [0, 1], the empirical loss of the predictor over
a set ofm i.i.d. examples is L̂S(h) = 1

m

∑m
j=1 ℓ(h(xj), yj).

We denote D the data-generating distribution over X ×Y
such thatS ∼ Dm and the generalization loss of a predictorh
isLD(h) = E(x,y)∼D [ℓ(h(x), y)].

2.1. PAC-Bayesian Learning Framework

The PAC-Bayes theory, initiated by McAllester (1998; 2003)
and enriched by many (see Alquier (2024) for a recent
survey), has become a prominent framework for obtaining
non-vacuous generalization guarantees on neural network
since the seminal work of Dziugaite & Roy (2017). As
a defining characteristic of PAC-Bayes bounds, they rely
on prior P and posterior Q distributions over the predictor
spaceH. Hence, most PAC-Bayes results are expressed as
upper bounds on theQ-expected loss of the predictor space,
thus providing guarantees on a stochastic predictor.

Notable theoretical results. Germain et al. (2015) expresses
a general PAC-Bayesian formulation that encompasses
many specific results previously stated in the literature, by
resorting on a comparator function ∆ : Y ×Y → [0, 1],
used to assess the discrepancy between the expected
empirical loss Eh∼Q L̂S(h) and the expected generalization
loss Eh∼Q LD(h). The theorem states that this discrepancy
should not exceed a complexity term that notably relies on the
Kullback-Leibler divergence KL(Q∥P ) = Eh∼Q ln Q(h)

P (h) .

Theorem 2.1 (General PAC-Bayesian theorem (Germain
et al., 2015)). For any distributionD onX ×Y , for any set
H of predictors h : X → Y , for any loss ℓ : Y ×Y → [0, 1],
for any prior distribution P over H, for any δ ∈ (0, 1]
and for any convex function ∆ : [0, 1] × [0, 1] → R, with
probability at least 1− δ over the draw of S ∼ Dm, we have

∀Q over H : ∆
(

E
h∼Q
L̂S(h), E

h∼Q
LD(h)

)
≤ 1

m

[
KL(Q||P ) + ln

(
I∆(m)
δ

)]
with I∆(m) = ES∼Dm Eh∼P em∆(L̂S(h),LD(h)).

A common choice of comparator function is the Kullback-
Leibler divergence between two Bernoulli distributions of
probability of success q and p,

kl(q, p) = q · ln q
p
+ (1− q) · ln 1− q

1− p
, (1)

for which Ikl(m) ≤ 2
√
m.

To avoid relying on a stochastic predictor, disintegrated PAC-
Bayes theorems have been proposed to bound the loss of a sin-
gle deterministic predictor, as the one of Viallard et al. (2024)
reported in the appendix (Theorem E.1). They allow the study
of a single hypothesis (drawn once) from the distributionQ.

2.2. Sample Compression Learning Framework

Initiated by Littlestone & Warmuth (1986) and refined
by many authors over time (Attias et al., 2024; Bazinet
et al., 2025; Campi & Garatti, 2023; David et al., 2016; ?;
Hanneke & Kontorovich, 2021; Hanneke et al., 2019; 2024;
Laviolette et al., 2005; Marchand & Shawe-Taylor, 2002;
Marchand & Sokolova, 2005; Moran & Yehudayoff, 2016;
Rubinstein & Rubinstein, 2012; Shah, 2007), the sample
compression theory expresses generalization bounds on
predictors that rely only on a small subset of the training set,
referred to as the compression set, valid even if the learning
algorithm observes the entire training dataset. The sample
compression theorems thus express the generalization ability
of predictive models as an accuracy-complexity trade-off,
measured respectively by the training loss and the size of
the compressed representation.

The reconstruction function. Once a predictor h is
learned from a dataset S, i.e. h = A(S), one can obtain
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an upper bound on LD(h) thanks to the sample compres-
sion theory whenever it is possible to reconstruct the
predictor h from a compression set (that is, a subset of S)
and an optional message (chosen from a predetermined
discrete message set Ω) with a reconstruction function
R :
⋃
k∈N(X ×Y)k × Ω→ H. Thus, a sample compress

predictor can be written

h = R(Sj, ω) , (2)

with j ⊂ {i}mi=1 being the indexes of the training samples be-
longing to the compression setSj = {(xj , yj)}j∈j, andω ∈Ω
being the message. In the following, we denote the set of all
training indicesm={i}mi=1, andP(m) its powerset; for com-
pression set indices j ∈ P(m), the complement is j = m \ j.

An example: the Support Vector Machine (SVM). Con-
sider A to be the SVM building algorithm, and S a dataset
withY = {−1,+1}. An easy way of reconstructingA(S) is
by choosing the compression set to be Sj, them support vec-
tors ofA(S), and having the reconstruction function to be the
linear SVM algorithmR = A. Thus, we know thatR(Sj) =
A(Sj) = A(S), without having to use any message.

Another example: the example-aligned decision stump.
Given a dataset S withY = {−1,+1}, the example-aligned
decision stump (weak) learning algorithm A returns a
predictor A(S) = hx′,υ,k such that hx′,υ,k(x) = 1 if
υ(xk − x′k) ≤ 0 or −1 otherwise, for some datapoint
x′ = (x′1, . . . , x

′
d) ∈ S, direction υ ∈ {−1,+1} and

index k ∈ {1, . . . , d}. We can fully reconstruct the stump
with R(Sj, υ) = hx′,υ,k, where Sj = {(x′, y′)} is the
compression set and ω = (υ, k) is the message.

Notable theoretical results. Theorem 2.2 below, due to
Laviolette et al. (2005), improves the bound developed for
their Set Covering Machine (SCM) algorithm (Marchand
& Shawe-Taylor, 2001; Marchand & Shawe-Taylor, 2002;
Marchand & Sokolova, 2005). It is premised on two
data-independent distributions: PP(m) on the compression
set indices P(m), and PΩ on a discrete set of messages Ω.
Noteworthy, the bound is valid solely for binary-valued
losses, as it considers each "successful" and "unsuccessful"
prediction to be the result of a Bernoulli distribution.

Theorem 2.2 (Sample compression - binary loss (Laviolette
et al., 2005)). For any distribution D over X ×Y , for any
set J ⊆ P(m), for any distribution PJ over J , for any PΩ

overΩ, for any reconstruction functionR, for any binary loss
ℓ : Y ×Y → {0, 1} and for any δ ∈ (0, 1], with probability
at least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, ω ∈ Ω : LD
(
R(Sj, ω)

)
≤

argsup
r∈[0,1]

{
K∑
k=1

(
|j|
k

)
rk(1− r)|j|−k ≥ PJ(j)PΩ(ω) δ

}
,

withK = |j|L̂Sj

(
R(Sj, ω)

)
.

Theorem 2.2 is limited in its scope, for many tasks involve
non-binary losses (e.g. regression tasks, cost-sensitive
classification). The following recent result, due to Bazinet
et al. (2025), permits real-valued losses ℓ : Y ×Y → R.
Given a comparator function ∆ analogous to the one
classically used in PAC-Bayesian theorems, Theorem 2.3
bounds the discrepancy between the empirical loss of the
reconstructed hypothesis R(Sj, ω) on the complement set Sj

and its generalization loss on the data distributionD.

Theorem 2.3 (Sample compression - real-valued losses
(Bazinet et al., 2025)). For any distributionD overX ×Y ,
for any set J ⊆ P(m), for any distribution PJ over J ,
for any distribution PΩ over Ω, for any reconstruction
function R, for any loss ℓ : Y ×Y → R, for any function
∆ : R×R → R and for any δ ∈ (0, 1], with probability at
least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, ω ∈ Ω : ∆
(
L̂Sj

(R(Sj, ω)),LD(R(Sj, ω))
)

≤ 1

m− |j|

[
ln

(
J∆(j, ω)

PJ(j) · PΩ(ω) · δ

)]
,

with

J∆(j, ω) = E
Tj∼D|j|

E
Tj∼Dm−|j|

e
|j|∆

(
L̂T

j
(R(Tj,ω)),LD(R(Tj,ω))

)
.

In order to compute a numerical bound on the general-
ization loss LD(R(Sj, ω)), one must commit to a choice
of ∆. See Appendix A for corollaries involving specific
choices of comparator function. In particular, the choice
of comparator function kl(q, p) of Equation (1) leads to
Jkl(j, ω) ≤ 2

√
m− |j| (see Corollary A.2).

2.3. A New PAC-Bayes Sample Compression Framework

Our first contribution lies in the extension of Theorem 2.3
to real-valued messages. This is achieved by using a
strategy from the PAC-Bayesian theory: we consider a
data-independent prior distribution over the messages Ω,
denoted PΩ, and a data-dependent posterior distribution over
the messages, denotedQΩ. We then obtain a bound for the
expected loss overQΩ. Note that this new result shares sim-
ilarities with the existing PAC-Bayes sample compression
theory (Germain et al., 2011; 2015; Laviolette & Marchand,
2005; ?), which gives PAC-Bayesian bounds for an expecta-
tion of data-dependent predictors given distributions on both
the compression set and the messages. Our result differs by
restricting the expectation solely according to the message.

Theorem 2.4 (PAC-Bayes Sample compression - real-valued
losses with continuous messages). For any distributionD
over X ×Y , for any set J ⊆ P(m), for any distribution
PJ over J , for any prior distribution PΩ over Ω, for any
reconstruction function R, for any loss ℓ : Y ×Y → [0, 1],
for any convex function ∆ : [0, 1]× [0, 1]→ R and for any
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δ ∈ (0, 1], with probability at least 1 − δ over the draw of
S ∼ Dm, we have

∀ j ∈ J,QΩ over Ω :

∆

(
E

ω∼QΩ

L̂Sj
(R(Sj, ω)), E

ω∼QΩ

LD (R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
KL(QΩ||PΩ) + ln

(
A∆(m)

PJ(j)δ

)]
with

A∆(m) = E
(j,ω)∼P

E
T∼Dm

e
|j|∆

(
L̂T

j
(R(Tj,ω)),LD(R(Tj,ω))

)
.

See Appendix D for the complete proof of Theo-
rem 2.4 and specific choices of ∆. In particular,
Akl(m)≤Ej∼PJ

2
√
m− |j|≤2

√
m−minj∈J |j| (Cor. D.2).

Note that, in the setting where the compression set size is
fixed (i.e., ∀j ∈ J, |j|=c), Theorem 2.3 is a particular case of
Theorem 2.4 where the message space Ω is discrete and the
posteriorQΩ is a Dirac over a singleω⋆∈Ω (i.e.,QΩ(ω

⋆)=1).

Leveraging the PAC-Bayes disintegrated theorem of Viallard
et al. (2024), we also obtain a variant of Theorem 2.4 valid
for a single deterministic predictor R(Sj⋆ , ω

⋆) (with ω⋆

drawn once according toQΩ), instead of the expected loss ac-
cording toQΩ. This new result requires the use of a singular
compression function ζ(S, PΩ) = (Sj⋆ , Q

S
Ω), which takes

as input a dataset and a prior distribution over the messages,
and outputs a compression set and a posterior distribution.

Theorem 2.5 (Disintegrated PAC-Bayes Sample compres-
sion bound). For any distribution D over X ×Y , for any
set J ⊆ P(m), for any prior distribution PJ over J , for
any prior distribution PΩ over Ω, for any reconstruction
function R, for any compression function ζ, for any loss
ℓ : Y ×Y → [0, 1], for any α > 1, for any convex function
∆ : [0, 1]× [0, 1]→ R, for any δ ∈ (0, 1], with probability
at least 1 − δ over the draw of S ∼ Dm (which leads to
(Sj⋆ , Q

S
Ω) = ζ(S, PΩ) ), and ω⋆ ∼ QSΩ, we have

(m−max
j∈J
|j|)∆

(
L̂Sj⋆

(R(Sj⋆ , ω
⋆)),LD (R(Sj⋆ , ω

⋆))
)

≤ 2α− 1

α− 1
ln
2

δ
+ ln

1

PJ(j
⋆)

+Dα(Q
S
Ω||PΩ) + lnA∆(m) .

The proof of Theorem 2.5 is given in Appendix E.

3. Meta-Learning with Hypernetworks
The meta-prediction problem. We now introduce the meta-
learning setting that we leverage in order to benefit from the
generalization guarantees presented in the previous section.

Let a task Di be a realization of a meta distribution D, and
Si∼Dmi

i be a dataset ofmi i.i.d. samples from a given task.

A meta-learning algorithm receives as input a meta-dataset
S = {Si}ni=1, that is a collection of n datasets obtained
from distributions {Di}ni=1. The aim is to learn a meta-
predictor H that, given only a few sample S′ ∼ (D′)m

′
for

a new taskD′ ∼ D, produces a predictor h′ = H(S′) that
generalizes well, i.e., with low generalization lossLD′(h′).

In conformity with classical meta-learning literature (Setlur
et al., 2020; Vinyals et al., 2016), the following considers that
each task dataset Si ∈ S is split into a support set Ŝi ⊂ Si
and a query set T̂i = Si\Ŝi; the former is used to learn the
predictor hi = H(Ŝi) and the latter to estimate hi’s loss:

L̂T̂i
(hi) =

1

|T̂i|

∑
(x,y)∈T̂i

ℓ
(
hi(x), y

)
.

Meta-learning hypernetworks. We propose to use a
hypernetwork as meta-predictor, that is a neural network Hθ

with parameters θ, whose output is an array γ ∈ R|γ| that is
in turn the parameters of a downstream network hγ : Rd→Y .
The particularity of our approaches is the use of an explicit
bottleneck in the hypernetwork architecture. An overview
is given in Figure 1. Hence, given a training set S, we train
the hypernetwork by optimizing its parameters θ in order
to minimize the empirical loss of the downstream predictor
hγ on the query set. That is, given a training meta-dataset
S={Si}ni=1, we propose to optimize the following objective.

min
θ

{
1

n

n∑
i=1

L̂T̂i
(hγi)

∣∣∣∣∣ γi=Hθ

(
Ŝi
)}
. (3)

Toward generalization bounds. From now on, our aim
is to study variants of hypernetwork architectures for the
meta-predictor Hθ, each variant inspired by the learning
frameworks of Section 2. By doing so, once Hθ is learned,
every downstream network hγ′ = Hθ(S

′) comes with its
own risk certificate, i.e., an upper bound on its generalization
lossLD′(hγ′) statistically valid with high probability.

We stress that, while the usual meta-learning bounds are
computed after the meta-learning training phase in order to
guarantee the expected performance of future downstream
predictors learned on yet unseen tasks, the bounds we
provide concern the generalization of downstream predictors
once they are outputted by the meta-predictor.

3.1. PAC-Bayes Encoder-Decoder Hypernetworks

We depart from previous works on PAC-Bayesian meta-
learning and from classical PAC-Bayes, which consider a
hierarchy of (meta-)prior and (meta-)posterior distributions
(e.g., Pentina & Lampert, 2014). Instead, we consider
distributions over a latent representation learned by the hy-
pernetwork Hθ. To encourage this representation to focus on
relevant information, we adopt an encoder-decoder architec-
ture Hθ(·) = Dψ(Eϕ(·)), with θ = {ϕ, ψ}. The encoder Eϕ
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Figure 2: The PAC-Bayes hypernetwork.

compresses the relevant dataset information into a vector
µµµ ∈ R|µµµ| (typically, |µµµ|≪|γ|). The vectorµµµ is then treated as
the mean of the Gaussian posterior distributionQµµµ=N (µµµ, I)
over the latent representation space, such that the decoderDψ

maps the realizations drawn from Qµµµ to the downstream
parameters γ. Figure 2 illustrates this architecture.

Training objective. Based on the above, learning the
proposed encoder-decoder hypernetwork amount to solve

min
ψ,ϕ

{
1

n

n∑
i=1

E L̂T̂i
(hγi)

∣∣∣∣∣ γi=Dψ

(
µµµi+ϵϵϵ

)
; µµµi=Eϕ

(
Ŝi
)}
,

with ϵϵϵ ∼ N (0, I).

Bound computation. Given a new task sampleS′∼ (D′)m
′
,

we obtain from the PAC-Bayesian Theorem 2.1 (using a
prior P0 = N (0, I) over the latent representation space
and the comparator function of Equation (1)), the following
upper bound on the expected loss according toD′:

τ∗=argsup
τ∈[0,1]

{
kl
(
E L̂S′(hγ′), τ

)
≤

1
2∥µµµ∥

2+ln2
√
m′

δ

m′

}
,

(4)

where µµµ is the mean of the Gaussian posterior distri-
bution. That is, with probability at least 1−δ, we have
ELD′(hγ′)≤ τ∗, where the expectation comes from the
stochastic latent space.

3.2. Sample Compression Hypernetworks

Let us now design a hypernetwork architecture derived from
the sample compression theory presented in Section 2.2. Sim-
ilar to the previously presented PAC-Bayes encoder-decoder,
the architecture detailed below acts as an information
bottleneck. However, instead of a PAC-Bayesian encoder Eϕ
mapping the dataset to a latent representation, we consider
a sample compressor Cϕ1 that selects a few samples from the
training set. These become the input of a reconstructorRψ
that produces the parameters of a downstream predictor,
akin to the decoder in our PAC-Bayesian approach. In line
with the sample compress framework, our reconstructorRψ
optionally takes additional message input, given by a
message compressor Mϕ2 . This amounts to learn the
reconstruction function; an idea that has not been envisaged

Figure 3: The Sample Compression hypernetwork.

before in the sample compress literature (to our knowledge).
The overall resulting architecture is illustrated by Figure 3.

Reconstructor hypernetwork. In line with the sample com-
pression framework of Section 2.2, our reconstructor Rψ
takes two complementary inputs:

1. A compression set Sj containing a fixed number of c
examples;

2. (optionally) A message ωωω ∈ {−1, 1}b = Ω, that is a
binary-valued vector of size b.

The output of the reconstructor hypernetwork is an array
γ ∈R|γ| that is in turn the parameters of a downstream
network hγ : Rd → Y . Hence, given a (single task) training
set S, a compression set Sj ⊂ S and a message ωωω ∈ Ω, a
reconstructor is trained by optimizing its parameters ψ in
order to minimize the empirical loss of the downstream
predictor hγ on the complement set Sj̄ = S \ Sj :

min
ψ

{
1

m− |j|
∑

(x,y)∈Sj̄

ℓ
(
hγ(x), y

) ∣∣∣∣∣ γ = Rψ(Sj,ωωω)

}
. (5)

Note that the above corresponds to the minimization of
the empirical loss term L̂Sj

(·) of the sample compression
bounds (e.g., Theorem 2.3). However, to be statistically valid,
these bounds must not be computed on the same data used
to learn the reconstructor. Fortunately, our meta-learning
framework satisfies this requirement since the reconstructor
is learned on the meta-training set, rather than the task of
interest. Note that the compression set and the message are
not given, but outputted by Cϕ1

and Mϕ2
.

Training objective. Our goal is to learn parameters ψ, ϕ1
andϕ2 such that, for any taskD′∼D producingS′∼ (D′)m

′
,

the resulting output gives rise to a downstream predictor hγ′

of low generalization lossLD′(hγ′ ), with

γ′ = Rψ
(
Cϕ1(S

′),Mϕ2(S
′)
)
. (6)

Given a training meta-dataset S = {Si}ni=1, we propose to
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optimize the following objective:

min
ψ,ϕ1,ϕ2

{
1

n

n∑
i=1

L̂T̂i
(hγi)

∣∣∣∣∣γi=Rψ(Cϕ1(Ŝi),Mϕ2(Ŝi)
)}
. (7)

Note that the learning objective is a surrogate for Equa-
tion (5), as the complement of the compression set Sj̄ is
replaced by the query set T̂i in Equation (7). The pseudocode
of the proposed approach can be found in Appendix G.

Bound computation. When the 0-1 loss is used, the gener-
alization bound from Theorem 2.2 is computed, using a fixed
size c for the compression sets; given a dataset sizem′, we use
J = {j ∈ P(m′) : | j | = c} and a uniform probability dis-
tribution over all distinct compression sets (sets that are not
permutations of one another): p = PJ(j) =

(
m′

c

)−1 ∀ j ∈ J .
When using the optional message compressor module, we
set a message size b and a uniform distribution over all
messages of size b: PΩ(ωωω) = 2−b ∀ωωω ∈ {−1, 1}b, leading
to the following upper bound on the loss:

τ∗= argsup
τ∈[0,1]

{
K∑
k=1

(
m′−c
k

)
τk(1− τ)m

′−c−k ≥ p2−b δ

}
,

withK = |j|L̂S′
j

(
hγ′
)

.

When a real-valued loss is used, applying Theorem 2.3
with the comparator function of Equation (1), we obtain the
following upper bound on the loss:

τ∗=argsup
τ∈[0,1]

{
kl
(
L̂S′

j
(hγ′), τ

)
≤ 1

m′ − c
ln

2b+1
√
m′ − c
p δ

}
.

That is,LD′(hγ′) ≤ τ∗ with probability at least 1− δ.

3.3. PAC-Bayes Sample Compression Hypernetworks

As a third hypernetwork architecture, the new theoretical per-
spective presented in Section 2.3 led to a hybrid between pre-
vious PAC-Bayesian and sample compression approaches.

Recall that Theorem 2.4 is obtained by handling the message
of the sample compress framework in a PAC-Bayesian
fashion, enabling the use of a posterior distribution over con-
tinous messages. Hence, this motivates revisiting the sample
compress hypernetwork of Section 3.2 by replacing the
message compressor Mϕ2 (outputting a binary vector) by the
PAC-Bayes encoder of Section 3.1. We denote the latter Eϕ2 ,
whose task is to output the mean µµµ ∈ Rb of a posterior
distribution QΩ,µµµ = N (µµµ, I) over a real-valued message
space Ω = Rb. The sample compressor remaining un-
changed from Section 3.2, the PAC-Bayes Sample Compress
architecture is expressed by Hθ(·) = Rψ(Cϕ1(·),Eϕ2(·)).
Figure 4 illustrates the resulting architecture.

Figure 4: The PAC-Bayes Sample Compression hypernetwork.

Training objective. Based on the above formulation, we
obtain the following training objective:

min
ψ,ϕ1,ϕ2

{
1

n

n∑
i=1

E L̂T̂i
(hγi)

∣∣∣∣∣γi=Rψ
(
Cϕ1

(
Ŝi
)
,Eϕ2

(
Ŝi
)
+ϵϵϵ
)}
,

with ϵϵϵ ∼ N (0, I).

Bound computation. From Theorem 2.4, using a fixed
compression set size c, a prior PΩ,0 = N (0, I) over the real-
valued message space of size b, a uniform probability over
the compression set choice p = PJ(j) =

(
m′

c

)−1 ∀ j ∈ J ,
and the comparator function of Equation (1), we obtain the
following upper bound on the expected loss:

τ∗=argsup
τ∈[0,1]

{
kl
(
E L̂S′

j
(hγ′), τ

)
≤

1
2∥µµµ

′∥2+ln 2
√
m′−c
p·δ

m′ − c

}
.

That is, with probability at least 1 − δ, we have
ELD′(hγ′) ≤ τ∗, where the expectation comes from
the stochastic message treatment.

To compute the disintegrated bound of Theorem 2.5, we
choose ζ to output the compression set S′

j = Cϕ1
(S′)

and a normal distribution centered on the message
Eϕ2(S

′), denoted QSΩ = N (Eϕ2(S
′), I). Thus, we have

ζ(S′, PΩ) = (S′
j, Q

S
Ω).After sampling a message ω ∼ QSΩ,

we define γ′ = Rψ(S′
j, ω). Applying Theorem 2.5 with

α = 2, we have the following upper bound on the loss :

τ∗=argsup
τ∈[0,1]

{
kl
(
L̂S′

j
(hγ′), τ

)
≤
∥µµµ′∥2 + ln 16

√
m′−c
p·δ3

m′ − c

}
.

That is,LD′(hγ′) ≤ τ∗ with probability at least 1− δ.

4. Experiments
We now study the performance of models learned using
our meta-learning framework as well as the quality of the
obtained bounds. Then, we report results on a synthetic
meta-learning task (Section 4.2) and two real-world
meta-learning tasks (Sections 4.3 and 4.4).
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Figure 5: Illustration of decision boundaries generated by
downstream predictors hγ , when parameters γ are given by a
PAC-Bayes decoder Dψ(µµµ) with inputµµµ = (µ1, µ2) ∈ R2. The
encoder generated the message (0.97,−0.27) on shown training
datapoints. Left: The first latent dimension is fixed (µ1 = 0.97),
while the second varies (µ2 ∈ [−1, 1]). Right: The first dimension
varies (µ1 ∈ [−1, 1]), while the second is fixed µ2 = −0.27.

4.1. Implementation Details

In each task, we split our training datasets into train and
validation datasets; for each meta-learning hypernetwork,
the hyperparameters are selected according to the error made
on the validation datasets. Detailed hyperparameters used
for each experiment are given in Appendix H.1

DeepSet dataset encoding. The hypernetwork Hθ(S) must
be invariant to the permutation of its input S: the order of the
examples in the input dataset should not affect the resulting
encoding. Modules such as FSPool (Zhang et al., 2020) or
a transformer (Vaswani et al., 2017) ensure such property.
Our experiments use a simpler mechanism that is inspired
by the DeepSet module (Zaheer et al., 2017).

Definition 4.1 (DeepSet Module). For binary tasks:
given a data-matrix X ∈ Rm×d and a binary label vector
y ∈ {−1, 1}m, the output of a DeepSet module is the embed-
ding z ∈ Rd′ , obtained by first applying a fully-connected
neural network gω : Rd → Rd′ to each row of X, sharing
the weights across rows, to obtain a matrix M ∈ Rm×d′ and
then aggregating the result column-wise: z = 1

mMTy.

For κ class tasks, where κ> 2: given a data-matrix
X∈Rm×d and a one-hot encoding of the label Y, the
output of a DeepSet module is the embedding z ∈ Rd′ ,
obtained by first applying a fully-connected neural network
gω:Rd→Rd′+κ to each row ofX, where the label representa-
tion have been appended, to obtain a matrixM ∈ Rm×(d′+κ)

and then aggregating the result column-wise: z = 1
mMT1.

PAC-Bayes encoder / message compressor. The PAC-
Bayes encoder takes as input a dataset and outputs a
continuous representation.2 It is composed of a DeepSet
module, followed by a feedforward network. Its last
activation function is a Tanh function, so that the message is
close to 0, leading to a bound that is not penalized much from

1Our code is available at https://github.com/
GRAAL-Research/DeepRM.

2In a slight language abuse, from now on, this continuous
representation will be referred to as message, just like the output
of the message compressor.

Figure 6: Examples of decision boundaries given by the down-
stream predictors, with a compression set of size 3 and without
message, on test datasets. The stars show the retained points from
the sample compressor Cϕ1 . As shown by the axes, each plot is
centered and scaled on the moons datapoints.

having an important representation size (see Equation (4)).

As for the message compressor, it has the same architecture
as the PAC-Bayes encoder, but its final activation is the sign
function coupled with the straight-through estimator (Hinton,
2012) in order to generate binary values.

Sample compressor. Given a fixed compression set size c,
the sample compressor Cϕ1

is composed of c independent
attention mechanisms (Bahdanau et al., 2015). The queries
are the result of a DeepSet module (see Definition 4.1), the
keys are the result of a fully-connected neural network and
the values are the features themselves. Each attention mech-
anism outputs a probability distribution over the examples
indices from the support set, and the example having the
highest probability is added to the compression set.

Decoder / reconstructor. The input of the decoder / recon-
structor is passed through a DeepSet. Then, both the obtained
compression set embedding and the message (if there is
one) are fed to a feedforward neural network, whose output
constitutes the parameters of the downstream network.

Nomenclature. In the following, we refer to our different
meta-predictors as such: PAC-Bayes Hypernetwork (PBH);
Sample Compression Hypernetwork, without messages
(SCH−) and with messages (SCH+); and PAC-Bayes
Sample Compression Hypernetwork (PB SCH).

4.2. Numerical Results on a Synthetic Problem

We first conduct an experiment on the moons 2-D synthetic
dataset from Scikit-learn (Pedregosa et al., 2011), which
consists of two interleaving half circles with small Gaussian
noise, the goal being to better understand the inner workings
of the proposed approach. We generate tasks by rotating
(random degree in [0, 360]), translating (random moon center
in [−10, 10]2), and re-scaling the moons (random scaling
factor in [0.2, 5]). The moons meta-train set consists of 300
tasks of 200 examples, while the meta-test set consists of
100 tasks of 200 examples. We randomly split each dataset
into support and query of equal size. See Appendix H for
implementation details.

Figure 5 displays the decision boundaries of a predictor
trained with the PBH model, given a message of size |µµµ| = 2,
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on a random test dataset. We plot the result for many values
of the message, displaying its effect on the decision boundary
of the resulting downstream predictor; we observe that each
dimension of the message encapsulates a unique piece of
information about the task at hand.

Figure 6 displays the decision boundaries of a predictor
(trained with the SCH− meta-predictor, with a compression
set of size c = 3) for three different test tasks. We see that
the sample compressor selects three examples far from
each other, efficiently compressing the task, while the
reconstructor correctly leverages the information contained
in these examples to correctly parameterize the downstream
predictor, leading to an almost perfect classification. Recall
that SCH− does not incorporate any message.

4.3. Test Case: Noisy MNIST

Following Amit & Meir (2018), we experiment with three dif-
ferent yet related task environments, based on augmentations
of the MNIST dataset (LeCun et al., 1998). In each envi-
ronment, each classification task is created by the random
permutation of a given number (100, 200, and 300) of pixels.
The pixel permutations are created by a limited number of lo-
cation swaps to ensure that the tasks stay reasonably related in
each environment. In each of the three experiments, the meta-
training set consists of 10 tasks of 60’000 training examples,
while the meta-test set consists of 20 tasks of 2000 examples.

We compare our approaches to algorithms yielding PAC-
Bayesian bounds as benchmarks. The reported bounds
concern the generalization property of the trained model on
a given test task. We chose a fully connected network with
no more than 3 hidden layers and a linear output layer as a
backbone, as per the selected benchmarks. We also report the
performances of a strawman: an opaque encoder outputting
nothing, followed by a decoder which input is a predefined
sole constant scalar; though the reconstructor can be trained,
the hypernetwork always generates the same predictor, no
matter the input. We report the test bounds and test errors on
the novel tasks of various methods in Table 1. More details
about the experiment setup can be found in Appendix H.

When it comes to generalization bounds, our approaches
outperform the benchmarks. However, our approaches
cannot learn from the task environment, their performances
being similar to those of the strawman. This is because the
difference between the various tasks is very subtle; such
a setting is not well-suited for our approaches, which rely
on the encapsulation of the differences between tasks in a
message or a compression set. The benchmark methods per-
form well because the posterior (over all of the downstream
predictor), for each test task, is similar to the prior. Indeed,
the various tasks do not vary much; this is reflected by a
single predictor (the strawman, an opaque hypernetwork)
yielding competitive performances across all of the test tasks.

This matter is empirically confirmed by the next experiment.

4.4. Test Case: Binary MNIST and CIFAR100 Tasks

In light of the analysis made in the previous subsection, we
now explore an experimental setup where a prior model can-
not encompass most of the information of the various tasks.
To do so, we create a variety of binary tasks involving the var-
ious classes of the MNIST (CIFAR100) dataset, where a task
corresponds to a random class versus another one. We create
90 (150) such tasks, where the meta-test set corresponds to
all of the tasks involving either label 0 or label 1, chosen at
random, leading to a total of 34 (50) meta-test tasks. Each
training task contains 2000 (1200) examples from the train
split of the MNIST (CIFAR100) original task, while each
test task contains at most 2000 (200) examples from the test
split of the original task. We consider the same benchmarks
as previously. We report the test bounds and test errors on
the novel tasks of various methods in Table 2 with their
corresponding latent representation information in Table 3.

As expected, in such a setting, when it comes to the
benchmarks, the posterior for each task is required to be truly
different from the prior in order to perform well (as attested
by the strawman’s test error, being similar to a random guess).
We present in Table 4 the penalty (KL) value measuring the
distance between the prior and posterior for two benchmarks
on both the pixel swap experiments and the binary MNIST
variant. There is a significant gap between the KL value re-
ported for the various pixel swap tasks and the binary MNIST
task, which confirms our insight. Thus, the benchmarks
methods generate uninformative generalization bounds,
even though their test loss is competitive. On the other hand,
most of our approaches achieve competitive empirical perfor-
mances while also having informative generalization bounds,
since the downstream predictors can be truly different from
one another without impacting the quality of the bound.

The architectures reported in Table 3, along with the empiri-
cal performances in Table 2, confirm that 1) the encoder / the
message compressor and the sample compressor correctly
distill the particularities of the task at hand, and 2) that
the reconstructor is able to utilize this representation to
judiciously generate the downstream predictor.

Figure 7 depicts the test error and generalization bound for
our PB SCH algorithm as a function of both the compression
set size and the message size. We recall that Tables 1 and 2
report the performances of the models obtaining the best
validation error. Figure 7 helps to grasp the inner workings
of our proposed approach: using a larger message seems
better-suited for minimizing the test error, but a trade-off
between the compression set size and the message size is
required to obtain the best bounds. Interestingly, when the
message size |µµµ| is restricted to be small, we clearly see the
benefit of using a compression set (c > 0).
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Table 1: Comparison of different meta-learning methods on the MNIST-pixels-swap task. The 95% confidence interval is reported for
generalization bound and test error, computed over 20 test tasks. The best (smallest) result in each column is bolded.

Algorithm 100 Pixels swap 200 Pixels swap 300 Pixels swap
Bound (↓) Test error (↓) Bound (↓) Test error (↓) Bound (↓) Test error (↓)

(Pentina & Lampert, 2014) 0.190 ± 0.022 0.019 ± 0.001 0.240 ± 0.030 0.026 ± 0.002 0.334 ± 0.036 0.038 ± 0.003
(Amit & Meir, 2018) 0.138 ± 0.024 0.016 ± 0.001 0.161 ± 0.002 0.020 ± 0.001 0.329 ± 0.081 0.040 ± 0.681
(Guan & Lu, 2022) - kl 0.119 ± 0.024 0.017 ± 0.001 0.189 ± 0.027 0.026 ± 0.001 0.359 ± 0.042 0.030 ± 0.002
(Guan & Lu, 2022) - Catoni 0.093 ± 0.027 0.015 ± 0.001 0.128 ± 0.025 0.019 ± 0.001 0.210 ± 0.035 0.024 ± 0.001
(Zakerinia et al., 2024) 0.053 ± 0.020 0.019 ± 0.1346 0.108 ± 0.037 0.026 ± 0.263 0.149 ± 0.039 0.035 ± 0.547
PBH 0.068∗± 0.007 0.027 ± 0.005 0.112∗± 0.021 0.076 ± 0.018 0.219∗± 0.031 0.186 ± 0.060
SCH− 0.067 ± 0.007 0.029 ± 0.007 0.129 ± 0.023 0.084 ± 0.017 0.193 ± 0.038 0.162 ± 0.043
SCH+ 0.035 ± 0.012 0.024 ± 0.005 0.091 ± 0.022 0.075 ± 0.019 0.177 ± 0.032 0.153 ± 0.028
PB SCH 0.068∗± 0.007 0.027 ± 0.005 0.112∗± 0.021 0.076 ± 0.018 0.219∗± 0.031 0.186 ± 0.060
Opaque encoder 0.043 ± 0.003 0.037 ± 0.006 0.092 ± 0.019 0.087 ± 0.018 0.173 ± 0.030 0.159 ± 0.031

∗Bound on average over the decoder output.

Figure 7: Test error and generalization bound for the PB SCH algorithm as a function of both the compression set size and the message size on
binary MNIST tasks. The 95% confidence interval is reported for both the generalization bound and the test error, computed over 34 test tasks.

Table 2: Comparison of different meta-learning methods on the
MNIST and CIFAR100 binary tasks. The 95% confidence interval
is reported for generalization bound and test error, computed over
test tasks. The best (smallest) result in each column is bolded.

Algorithm
MNIST CIFAR100

Bound (↓) Test error (↓) Bound (↓) Test error (↓)
(Pentina & Lampert, 2014) 0.767 ± 0.001 0.369 ± 0.223 0.801 ± 0.001 0.490 ± 0.070
(Amit & Meir, 2018) 1372 ± 23.36 0.351 ± 0.212 950.9 ± 343.1 0.284 ± 0.120
(Guan & Lu, 2022) - kl 0.754 ± 0.003 0.366 ± 0.221 0.802 ± 0.001 0.489 ± 0.073
(Guan & Lu, 2022) - Cat. 1.132 ± 0.021 0.351 ± 0.212 1.577 ± 0.567 0.282 ± 0.122
(Rezazadeh, 2022) 11.43 ± 0.005 0.366 ± 0.221 10.91 ± 0.368 0.334 ± 0.139
(Zakerinia et al., 2024) 0.684 ± 0.021 0.351 ± 0.212 0.953 ± 0.315 0.281 ± 0.125
PBH 0.597∗± 0.107 0.150 ± 0.114 0.974∗± 0.022 0.295 ± 0.103
SCH− 0.352 ± 0.187 0.278 ± 0.076 0.600 ± 0.143 0.374 ± 0.118
SCH+ 0.280 ± 0.148 0.155 ± 0.109 0.745 ± 0.101 0.305 ± 0.142
PB SCH 0.597∗± 0.107 0.150 ± 0.114 0.974∗± 0.022 0.295 ± 0.103
Opaque encoder 0.533 ± 0.104 0.497 ± 0.134 0.544 ± 0.112 0.506 ± 0.101
∗Bound on average over the decoder output.

Table 3: Selected architecture for the sample compression
hypernetwork algorithm (we recall that c corresponds to the
compression set size, while |µµµ|, b corresponds to the message size);
hyperparameter choices can be found in Appendix H.

SC Hypernetwork MNIST CIFAR100
c |µµµ|, b c |µµµ|, b

PBH N/A 128 N/A 128
SCH− 8 N/A 4 N/A
SCH+ 1 64 1 128
PB SCH 0 128 0 128

See Table 5 in Appendix H for results involving the bound
from Theorem 2.3 and Theorem 2.5. See also in Appendix H
a decomposition of the various terms involved in the
composition of our bounds and the benchmarks’.

Table 4: KL value of two benchmarks on the pixel swap tasks and
the binary MNIST task. The 95% confidence interval is reported
for generalization bound and test error, computed over 20 test tasks.

Algorithm 100 Pixels swap 200 Pixels swap 300 Pixels swap binary MNIST
(Pentina & Lampert, 2014) 3.833 ± 0.444 5.760 ± 0.720 9.604 ± 1.035 14.02 ± 0.018
(Zakerinia et al., 2024) 63.91 ± 24.12 159.9 ± 54.78 223.9 ± 58.60 661.2 ± 20.32

5. Conclusion
We developed a new paradigm for deriving generalization
bounds in meta-learning by leveraging the PAC-Bayesian
framework or the Sample Compression theory. We also
present a new generalization bound that permits the coupling
of both paradigms. We develop meta-learning hypernet-
works based on these results. We show that many PAC-Bayes
approaches do not scale when the various tasks in an envi-
ronment have important discrepancies while our approaches
still yield low losses and tight generalization bounds.

The approaches we presented could be enhanced by having
the model dynamically select the compression set size and the
latent representation (or message) size or using a larger archi-
tecture for the reconstruction function, inspired from Mother-
Net (Mueller et al., 2024). Finally, since the bound values are
not impacted by the complexity of the decoder or the down-
stream predictor, our approach could be used to get tight gen-
eralization bounds for very large models of the multi-billion
parameter scale, assuming that the parameters varying across
tasks admit a compact representation (e.g., a LoRA adapter).
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A. Corollaries of Theorem 2.3
For completeness, we present the corollaries of Theorem 2.3 derived by Bazinet et al. (2025).

Corollary A.1 (Corollary 4 of Bazinet et al. (2025)). In the setting of Theorem 2.3, with

∆C(q, p) = − ln
(
1− (1− e−C)p

)
− Cq (whereC > 0) ,

with probability at least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, ω ∈M(|j|) :

LD(R(Sj, ω)) ≤
1

1− e−C

[
1− exp

(
−CL̂Sj

(R(Sj, ω)) +
ln
(
PJ(j) · PM(|j|)(ω) · δ

)
m− |j|

)]
.

Corollary A.2 (Corollary 6 of Bazinet et al. (2025)). In the setting of Theorem 2.3, with

∆(q, p) = kl(q, p) = q · ln q
p
+ (1− q) · ln 1− q

1− p
,

with probability at least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, ω ∈M(|j|) : kl
(
L̂Sj

(R(Sj, ω)),LD(R(Sj, ω))
)
≤ 1

m− | j |

[
ln

(
2
√
m− | j |

PJ(j) · PM(|j|)(ω) · δ

)]
.

Corollary A.3 (Corollary 7 of Bazinet et al. (2025)). In the setting of Theorem 2.3, for any λ > 0, with ∆(q, p) = λ(p− q),
with a ς2-sub-Gaussian loss function ℓ : Y ×Y → R, with probability at least 1− δ over the draw of S ∼ Dm, we have

∀j ∈ J, ω ∈M(|j|) : LD(R(Sj, ω)) ≤ L̂Sj
(R(Sj, ω)) +

λς2

2
−

ln
(
PJ(j) · PM(|j|)(ω) · δ

)
λ(m− | j |)

.

B. General PAC-Bayes Sample Compression Theorems
We derive two new PAC-Bayes Sample compression theorems for real-valued losses, both for the loss on the complement
set and on the train set. Theorem B.1 extends the setting of Laviolette & Marchand (2005); ?); Thiemann et al. (2017), whilst
Theorem B.2 extends the setting of Germain et al. (2011; 2015).

B.1. First General PAC-Bayes Sample Compression Theorem

We first present a new general PAC-Bayes Sample Compression theorem, from which we will derive a sample compression
bound for continuous messages. Interestingly, this theorem is directly at the intersection between PAC-Bayes theory and
sample compression theory. Indeed, if we restrict the model to have no compression set, this bound reduces to Theorem 2.1.
Moreover, if we restrict the model to a discrete family Ω and to Dirac measures as posteriors on J and Ω, this bound is almost
exactly reduced to Theorem 2.3, albeit being possibly slightly less tight, as the complexity term denominatorm− |j| of the
latter is replaced by the worst case: m−maxj∈J |j| .
Theorem B.1 (PAC-Bayes Sample Compression). For any distributionD overX ×Y , for any reconstruction function R,
for any set J ⊆ P(m), for any set of messages Ω, for any data-independent prior distribution P over J × Ω, for any loss
ℓ : Y ×Y → [0, 1], for any convex function ∆ : [0, 1] × [0, 1] → R and for any δ ∈ (0, 1], with probability at least 1 − δ
over the draw of S ∼ Dm, we have

∀Q over J × Ω :

∆

(
E

(j,ω)∼Q
L̂Sj

(R(Sj, ω)), E
(j,ω)∼Q

LD (R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
KL(Q||P ) + ln

(
A∆(m)

δ

)]
,

with

A∆(m) = E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−|j|)∆

(
L̂T

j
(R(Tj,ω)),LD(R(Tj,ω))

)
.
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Proof. With η > 0, our goal is to bound the following expression

η∆

(
E

(j,ω)∼Q
L̂Sj

(R(Sj, ω)), E
(j,ω)∼Q

LD (R(Sj, ω))

)
.

We follow the proof of the General PAC-Bayes bound for real-valued losses of Germain et al. (2015). We first apply Jensen’s
inequality and then use the change of measure inequality to obtain the following result.

∀Q over J × Ω : η∆

(
E

(j,ω)∼Q
L̂Sj

(R(Sj, ω)), E
(j,ω)∼Q

LD (R(Sj, ω))

)
≤ E

(j,ω)∼Q
η∆
(
L̂Sj

(R(Sj, ω)),LD (R(Sj, ω))
)

(Jensen’s Inequality)

≤ KL(Q||P ) + ln

(
E

(j,ω)∼P
e
η∆

(
L̂S

j
(R(Sj,ω)),LD (R(Sj,ω))

))
. (Change of measure)

Using Markov’s inequality, we know that with probability at least 1− δ over the sampling of S ∼ Dn, we have

∀Q over J × Ω :

η∆

(
E

(j,ω)∼Q
L̂Sj

(R(Sj, ω)), E
(j,ω)∼Q

LD (R(Sj, ω))

)
≤ KL(Q||P ) + ln

(
1

δ
E

T∼Dm
E

(j,ω)∼P
e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

))
.

By choosing to defineQ and P on J × Ω instead of on the hypothesis class, the prior P is independent of the dataset. We
can then swap the expectations to finish the proof.

We use the independence of the prior to the dataset and the i.i.d. assumption to separate Tj and Tj = T \ Tj to obtain the
following results.

E
T∼Dm

E
(j,ω)∼P

e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)

= E
(j,ω)∼P

E
T∼Dm

e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
(Independence of the prior)

= E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
. (i.i.d. assumption)

For all j ∈ J , we need to bound the moment generating function

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
.

To bound the moment generating function using the usual PAC-Bayes techniques, we need η ≤ m− |j| for all j ∈ J . Thus,
the largest value of η (which gives the tightest bound) that can be used is η = m−maxj∈J |j|.

As the exponential is monotonically increasing andm−maxj∈J |j| ≤ m− |j| ∀ j, we have

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
≤ E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−|j|)∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
=: A∆(m).
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B.2. Second General PAC-Bayes Sample Compression Theorem

We now extend the setting of Germain et al. (2015), by making the bound rely on L̂S(·) instead of L̂Sj
(·).

Theorem B.2 (PAC-Bayes Sample Compression). For any distributionD overX ×Y , for any reconstruction function R,
for any set J ⊆ P(m), for any set of messages Ω, for any data-independent prior distribution P over J × Ω, for any loss
ℓ : Y ×Y → [0, 1], for any convex function ∆ : [0, 1] × [0, 1] → R, withB = supq,p∈[0,1] ∆(q, p), and for any δ ∈ (0, 1],
with probability at least 1− δ over the draw of S ∼ Dm, we have

∀Q over J × Ω :

∆

(
E

(j,ω)∼Q
L̂S (R(Sj, ω)), E

(j,ω)∼Q
LD (R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
KL(Q||P ) + ln

(
A′

∆(m)

δ

)]
,

with

A′
∆(m) = E

(j,ω)∼P
eB

(m−maxj∈J |j|) |j|
m E

Tj∼D|j|
E

Tj∼Dm−|j|
e
(m−|j|)∆

(
L̂T

j
(R(Tj,ω)),LD(R(Tj,ω))

)
.

Proof. We start from the end of the proof of Theorem B.1, after using the i.i.d. assumption. As the loss of the hypothesis is
computed on the data used to define R(Tj, ω), this term cannot be bounded straightforwardly as before. To tackle this problem,
we assume that ∆ is bounded. We want to remove the need to compute the loss on examples Tj = T \ Tj in the following term.

E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

eη∆(L̂T (R(Tj,ω)),LD (R(Tj,ω))) (with η > 0).

Following the work of Germain et al. (2015), we separate the loss :

L̂T (R(Tj, ω)) =
1

m

m∑
i=1

ℓ(R(Tj, ω)(xi), yi)

=
1

m

 ∑
(xi,yi)∈Tj

ℓ(R(Tj, ω)(xi), yi) +
∑

(xi,yi)∈Tj

ℓ(R(Tj, ω)(xi), yi)


=

1

m

 |j|
|j|

∑
(xi,yi)∈Tj

ℓ(R(Tj, ω)(xi), yi) +
m− |j|
m− |j|

∑
(xi,yi)∈Tj

ℓ(R(Tj, ω)(xi), yi)


=

1

m

[
|j| L̂Tj

(R(Tj, ω)) + (m− |j|) L̂Tj
(R(Tj, ω))

]
.

With this new expression, we have

E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

eη∆(L̂T (R(Tj,ω)),LD (R(Tj,ω)))

= E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η∆

(
|j|
m L̂Tj

(R(Tj,ω))+
m−|j|

m L̂T
j
(R(Tj,ω)),LD (R(Tj,ω))

)

≤ E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η |j|
m ∆(L̂Tj

(R(Tj,ω)),LD (R(Tj,ω)))+ η(m−|j|)
m ∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
(Jensen inequality)

≤ E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
η |j|
m supq,p∈[0,1] ∆(q,p)+

η(m−|j|)
m ∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)

= E
(j,ω)∼P

e
η |j|
m supq,p∈[0,1] ∆(q,p) E

Tj∼D|j|
E

Tj∼Dm−|j|
e

η(m−|j|)
m ∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)

= E
(j,ω)∼P

eB
η |j|
m E

Tj∼D|j|
E

Tj∼Dm−|j|
e

η(m−|j|)
m ∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
(B := supq,p∈[0,1] ∆(q, p))

≤ E
(j,ω)∼P

eB
η |j|
m E

Tj∼D|j|
E

Tj∼Dm−|j|
e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
.
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Similarly to Theorem B.1, we choose η = m−maxj∈J |j| and we have

E
(j,ω)∼P

eB
η |j|
m E

Tj∼D|j|
E

Tj∼Dm−|j|
e
η∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)

≤ E
(j,ω)∼P

eB
(m−maxj∈J |j|) |j|

m E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−|j|)∆

(
L̂T

j
(R(Tj,ω)),LD (R(Tj,ω))

)
=: A′

∆(m) .

The most common comparator functions, namely the quadratic loss ∆2(q, p) = 2(q − p)2, Catoni’s distance
∆C(q, p) = − ln

(
1− (1− e−C)p

)
− Cq and the linear distance ∆λ(q, p) = λ(q − p) are all bounded, with the exception

of the kl. Thus, we have supq,p∈[0,1] ∆2(q, p) = 2, supq,p∈[0,1] ∆C(q, p) = C and supq,p∈[a,b] ∆λ(q, p) = λ(b− a).

C. Corollaries of Theorem B.1 and Theorem B.2
With Theorem B.1 and ∆ = kl, we recover a real-valued version of Theorem 4 of Laviolette & Marchand (2005).

Corollary C.1. In the setting of Theorem B.1, with ∆(q, p) = kl(q, p) and S = Sj, with probability at least 1− δ over the
draw of S ∼ Dm, we have

∀Q over J × Ω :

kl

(
E

(j,ω)∼Q
L̂Sj

(R(Sj, ω)), E
(j,ω)∼Q

LD (R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
KL(Q||P ) + ln

(
E(j,ω)∼P 2

√
m− |j|

δ

)]
.

We can relax this corollary to obtain a bound that has Theorem 6 of Thiemann et al. (2017) as a special case where we choose
J = {j | |j| = r} for r > 0.

Corollary C.2. In the setting of Theorem B.1, with S = Sj, with probability at least 1− δ over the draw of S ∼ Dm, we have

∀Q over J × Ω,∀λ ∈ (0, 2) :

E
(j,ω)∼Q

L̂Sj
(R(Sj, ω)) ≤

E(j,ω)∼Q LD (R(Sj, ω))

1− λ
2

+
KL(Q||P ) + ln

(
1
δ E(j,ω)∼P 2

√
m− |j|

)
λ(1− λ

2 )(m−maxj∈J |j|)
.

We can also recover a tighter bound than Theorem 39 of Germain et al. (2015). Instead of bounding the complement loss,
they bound the training loss on the whole dataset, thus we can use Theorem B.2. Although this could theoretically lead to
tighter bounds, later in the section we present a toy experiment that shows that in practice, it rarely is tighter.

Corollary C.3. In the setting of Theorem B.2, with ∆(q, p) = 2(q − p)2, with probability at least 1 − δ over the draw
S ∼ Dm, we have

∀Q over J × Ω :

E
(j,ω)∼Q

LD (R(Sj, ω)) ≤ E
(j,ω)∼Q

L̂S (R(Sj, ω)) +

√√√√KL(Q||P ) + ln
(

1
δ E(j,ω)∼P e

2(m−|j|) |j|
m 2

√
m− |j|

)
2(m−maxj∈J |j|)

.

Corollary C.3 expresses a tighter and more general bound than the results of Germain et al. (2015). Moreover, as explained
below, the latter is not always valid.

Identifying a small error in previous work of Germain et al. (2015). Although the sample compression result of Germain
et al. (2015) is stated for any compression sets of size at most λ, only the case for compression set sizes λwere considered
by the authors. Indeed, in the proof of Lemma 38, with λ > 0, when boundingA′

∆(m), they consider the term

E
(j,ω)∼P

E
Sj∼Dλ

E
Sj∼Dm−λ

e(m−λ)2(L̂S(R(Sj,ω))−LD(R(Sj,ω)))
2

. (8)

15



Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks

By the definition Sj = {(xj , yj)}j∈j, we have that |Sj| = |j|. Thus, Equation (8) only makes sense when λ = |j|. Moreover,
later on, the decomposition of the loss

L̂S(R(Sj, ω)) =
1

m

[
λ L̂Sj

(R(Sj, ω)) + (m− λ) L̂Sj
(R(Sj, ω))

]
only makes sense when |j| = λ. Indeed, we have

L̂S(R(Sj, ω)) =
1

m

m∑
i=1

ℓ(R(Sj, ω)(xi), yi)

=
1

m

 ∑
(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi) +
∑

(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi)


=

1

m

λ
λ

∑
(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi) +
m− λ
m− λ

∑
(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi)


=

1

m

[
λ L̂Sj

(R(Sj, ω)) + (m− λ) L̂Sj
(R(Sj, ω))

]
.

If λ ̸= |j|, then L̂Sj
(R(Sj, ω)) ̸= 1

λ

∑
(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi) and L̂Sj
(R(Sj, ω)) ̸= 1

m−λ

∑
(xi,yi)∈Sj

ℓ(R(Sj, ω)(xi), yi).

The result was used correctly in Germain et al. (2015), as they only considered this setting. However, the statement of the
theorem was slightly incorrect.

In this specific setting, we can easily show that the log term of Corollary C.3 is upper bounded by the log term in Theorem 39
of Germain et al. (2015):

1

δ
e

2(m−|j|) |j|
m 2

√
m− |j| ≤ 1

δ
e2 |j|2

√
m− |j|

≤ 1

δ
e4 |j|2

√
m− |j|.

Empirical comparison of the bounds. We now compare the bound on L̂S instead of L̂Sj
. To do so, we compute the value

of Corollary C.3 and a relaxed version of Corollary C.1 using Pinsker’s inequality. We choosem = 10000, KL(Q||P ) = 100,
δ = 0.01, L̂Sj

(h) = 0 and J such that maxj∈J |j| = 2000. In this setting, we can investigate the relationship between the
compression set size and the validation loss L̂Sj

(h). In Figure 8(a), we report the difference between Corollary C.3 and the
relaxed version of Corollary C.1.

It is obvious that in this setting, the exponential term exp
( 2(m−|j|) |j|

m

)
of Corollary C.3 is very penalizing. We can see that

the difference becomes smaller when the validation loss becomes larger. This can be explained by the fact that the loss
L̂S(h) = m−|j|

m L̂Sj
(h) decreases when |j| becomes larger. However, it doesn’t come close to being advantageous. Indeed, it

seems like Corollary C.3 only becomes advantageous when theKL is very large. In Figure 8(b), we choseKL(Q||P ) = 10000.
We then observe that for L̂Sj

(h) larger than 0.6, Corollary C.3 is actually smaller. However, the advantage doesn’t seem
good enough to use this bound in any setting, as the advantage is only available in degenerate cases when the loss on the
dataset is very high and the KL is also very large.
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(a) The KL is small compared to the MGF. (b) The KL is large compared to the MGF.

Figure 8: Behavior of the gap between Corollary C.3 and the relaxed version of Corollary C.1, when the KL is (a) small or (b) large
compared to the moment generating function (MGF) term. A positive value means Corollary C.3 is looser.

D. Proof and Corollaries of Theorem 2.4
Using Theorem B.1, we can obtain a new sample compression bound for real-valued messages. To do so, we restrict the
result to use only Dirac measures as posterior distributions for the compression sets.

Theorem 2.4 (PAC-Bayes Sample compression - real-valued losses with continuous messages). For any distributionD over
X ×Y , for any set J ⊆ P(m), for any distribution PJ over J , for any prior distribution PΩ over Ω, for any reconstruction
function R, for any loss ℓ : Y ×Y → [0, 1], for any convex function ∆ : [0, 1] × [0, 1] → R and for any δ ∈ (0, 1], with
probability at least 1− δ over the draw of S ∼ Dm, we have

∀ j ∈ J,QΩ over Ω :

∆

(
E

ω∼QΩ

L̂Sj
(R(Sj, ω)), E

ω∼QΩ

LD (R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
log

1

PJ(j)
+ KL(QΩ||PΩ) + ln

(
A∆(m)

δ

)]
with

A∆(m) = E
(j,ω)∼P

E
Tj∼D|j|

E
Tj∼Dm−|j|

e
(m−|j|)∆

(
L̂T

j
(R(Tj,ω)),LD(R(Tj,ω))

)
.

Proof. We restrict the posterior distributions to be Dirac measures, e.g. for any vector j∗, the posterior distribution is
Q(j∗) = 1 andQ(j) = 0 ∀ j ̸= j∗. We also separate the KL in two terms.

KL(Q||P ) = E
h∼Q

log
Q(h)

P (h)

= E
(j,ω)∼Q

log
Q(j, ω)

P (j, ω)

= E
j∼QJ

E
ω∼QΩ

log
Q(j, ω)

P (j, ω)

= E
j∼QJ

E
ω∼QΩ

log
QJ(j)QΩ(ω)

PJ(j)PΩ(ω)
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= E
j∼QJ

E
ω∼QΩ

[
log

QJ(j)

PJ(j)
+ log

QΩ(ω)

PΩ(ω)

]
= E

j∼QJ

E
ω∼QΩ

log
QJ(j)

PJ(j)
+ E

j∼QJ

E
ω∼QΩ

log
QΩ(ω)

PΩ(ω)

= E
ω∼QΩ

QJ(j∗) log QJ(j∗)
PJ(j

∗)
+
∑
j ̸=j∗

QJ(j) log
QJ(j)

PJ(j)

+ E
j∼QJ

E
ω∼QΩ

log
QΩ(ω)

PΩ(ω)

= E
ω∼QΩ

1 · log 1

PJ(j
∗)

+
∑
j ̸=j∗

0 · log 0

PJ(j)

+ E
j∼QJ

E
ω∼QΩ

log
QΩ(ω)

PΩ(ω)

= log
1

PJ(j
∗)

+ E
ω∼QΩ

log
QΩ(ω)

PΩ(ω)

= log
1

PJ(j
∗)

+ KL(QΩ||PΩ) .

If we also restrict the posterior distribution on Ω to be Dirac measures, we obtain a slightly worse version of Theorem 2.3.
Indeed, it restricts the comparator function to be convex and it is penalized by the maximum in the denominator and the
expectation inA∆(m), which weren’t present in Theorem 2.3.

The following corollaries are easily derived from Theorem 2.4 by choosing a comparator function ∆ and boundingA∆(m).

Corollary D.1. In the setting of Theorem 2.4, with∆C(q, p) = − ln
(
1− (1− e−C)p

)
−Cq (whereC > 0), with probability

at least 1− δ over the draw of S ∼ Dm, we have

∀ j ∈ J,QΩ over Ω :

E
ω∼QΩ

LD(R(Sj, ω)) ≤
1

1− e−C

[
1− exp

(
−C E

ω∼QΩ

L̂S
j
(R(Sj, ω))−

KL(QΩ||PΩ)− ln (PJ(j) · δ)
m−maxj∈J |j|

)]
.

Corollary D.2. In the setting of Theorem 2.4, with ∆(q, p) = kl(q, p) = q · ln q
p + (1 − q) · ln 1−q

1−p , with probability at
least 1− δ over the draw of S ∼ Dm, we have

∀ j ∈ J,QΩ over Ω :

kl

(
E

ω∼QΩ

L̂Sj
(R(Sj, ω)), E

ω∼QΩ

LD(R(Sj, ω))

)
≤ 1

m−maxj∈J |j|

[
KL(QΩ||PΩ) + ln

(
Ej∼PJ

2
√
m− |j|

PJ(j) · δ

)]
.

Corollary D.3. In the setting of Theorem 2.4, for any λ > 0, with ∆(q, p) = λ(p− q), with a ς2-sub-Gaussian loss function
ℓ : Y ×Y → R, with probability at least 1− δ over the draw of S ∼ Dm, for all j ∈ J and posterior probability distribution
QΩ, we have

E
ω∼QΩ

LD(R(Sj, ω)) ≤ E
ω∼QΩ

L̂Sj
(R(Sj, ω))

+
1

λ(m−maxj∈J |j|)

[
KL(QΩ||PΩ) + ln

1

PJ(j) · δ
+ ln E

j∼PJ

exp

(
(n− |j|)λ2ς2

2

)]
.

E. Proof of Theorem 2.5
Theorem 2.5 (Disintegrated PAC-Bayes Sample compression bound). For any distributionD overX ×Y , for any set J ⊆
P(m), for any prior distributionPJ overJ , for any prior distributionPΩ overΩ, for any reconstruction functionR, for any com-
pression function ζ , for any loss ℓ : Y ×Y → [0, 1], for anyα > 1, for any convex function∆ : [0, 1]× [0, 1]→ R, for any δ ∈
(0, 1], with probability at least 1−δ over the draw ofS ∼ Dm (which leads to (Sj⋆ , Q

S
Ω) = ζ(S, PΩ) ), andω⋆ ∼ QSΩ, we have

∆
(
L̂Sj⋆

(
R(S⋆j , ω)

)
,LD

(
R(S⋆j , ω

⋆)
))
≤ 1

m−maxj∈J |j|

[
2α− 1

α− 1
ln

2

δ
+ ln

1

PJ(j
⋆)

+Dα(Q
S
Ω||PΩ) + lnA∆(m)

]
.
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To prove this result, we need the following results from Viallard et al. (2024).

Theorem E.1 (Viallard et al. 2024). For any distribution D on Z , for any hypothesis set H, for any prior distribution
P ∈ M∗(H), for any measurable function ϕ : H×Z → R>0, for any α > 1, for any δ ∈ (0, 1], for any algorithm
B : Zm ×M∗(H)→M(H), we have

P
S∼Dm,h∼QS

(
α

α− 1
lnϕ(h, S)

≤ 2α− 1

α− 1
ln

2

δ
+Dα(QS || P) + ln

[
E

S′∼Dm
E

h′∼P
ϕ(h′, S′)

α
α−1

])
≥ 1− δ,

whereQS = ζ(S,P) is output by the deterministic algorithm ζ.

Proof of Theorem 2.5. Let Z = X ×Y . We consider a set of sample-compressed predictors that can be defined using a
reconstruction function R, a compression set j and a message ω. Following from the PAC-Bayes Sample compression work of
Laviolette & Marchand (2005), we define the distribution on J × Ω instead of the hypothesis class; it is equivalent to sample
h from a distribution on the hypothesis class and to sample (j⋆, ω⋆) from a distribution on J × Ω and set h = R(Sj⋆ , ω

⋆).

Let apply Theorem E.1 with

ϕ(h, S) = exp

(
α− 1

α
(m−max

j∈J
|j|)∆

(
L̂Sj⋆

(R(Sj⋆ , ω
⋆)),LD(R(Sj⋆ , ω

⋆))
))

.

Then, we have

α

α− 1
lnϕ(h, S) =

α

α− 1
ln exp

(
α− 1

α
(m−max

j∈J
|j|)∆

(
L̂Sj⋆

(R(Sj⋆ , ω
⋆)),LD(R(Sj⋆ , ω

⋆))
))

=
α

α− 1

α− 1

α
(m−max

j∈J
|j|)∆

(
L̂Sj⋆

(R(Sj⋆ , ω
⋆)),LD(R(Sj⋆ , ω

⋆))
)

= (m−max
j∈J
|j|)∆

(
L̂Sj⋆

(R(Sj⋆ , ω
⋆)),LD(R(Sj⋆ , ω

⋆))
)
.

Moreover,

ln

[
E

S′∼Dm
E

h′∼P
ϕ(h′, S′)

α
α−1

]
= ln

[
E

h′∼P
E

S′∼Dm
ϕ(h′, S′)

α
α−1

]
= ln

[
E

j∼PJ

E
ω∼PΩ

E
S′
j∼D|j|

E
S′
j
∼Dm−|j|

exp

(
α− 1

α
(m−max

j∈J
|j|)∆

(
L̂S′

j
(R(S′

j, ω)),LD(R(S
′
j, ω))

)) α
α−1

]

= ln

[
E

j∼PJ

E
ω∼PΩ

E
S′
j∼D|j|

E
S′
j
∼Dm−|j|

exp

(
α− 1

α

α

α− 1
(m−max

j∈J
|j|)∆

(
L̂S′

j
(R(S′

j, ω)),LD(R(S
′
j, ω))

))]

= ln

[
E

j∼PJ

E
ω∼PΩ

E
S′
j∼D|j|

E
S′
j
∼Dm−|j|

exp

(
(m−max

j∈J
|j|)∆

(
L̂S′

j
(R(S′

j, ω)),LD(R(S
′
j, ω))

))]

≤ ln

[
E

j∼PJ

E
ω∼PΩ

E
S′
j∼D|j|

E
S′
j
∼Dm−|j|

exp
(
(m− |j|)∆

(
L̂S′

j
(R(S′

j, ω)),LD(R(S
′
j, ω))

))]
.

With these two derivations, we have a disintegrated PAC-Bayes Sample Compression bound, with a posterior distribution
QS = ζ(S, P ). We need to reframe this to accommodate the fact that we want a single compression set and a message
sampled from an uncountable set of messages.
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To do so, we start by choosing P = PJ × PΩ andQS = QSJ ×QSΩ. Moreover, we choose ζ such thatQSJ is always a Dirac
distribution such that the only compression set with a non-zero probability is j⋆. The Rényi Divergence then becomes:

Dα(Q||P ) =
1

α− 1
ln

[
E

(j,ω)∼P

[
Q(j, ω)

P (j, ω)

]α]
=

1

α− 1
ln

[
E

(j,ω)∼P

[
QJ(j)QΩ(ω)

PJ(j)PΩ(ω)

]α]
=

1

α− 1
ln

[
E

(j,ω)∼P

[
QJ(j)

PJ(j)

]α[
QΩ(ω)

PΩ(ω)

]α]
=

1

α− 1
ln

[
E

ω∼PΩ

E
j∼PJ

[
QJ(j)

PJ(j)

]α[
QΩ(ω)

PΩ(ω)

]α]
=

1

α− 1
ln

[
E

ω∼PΩ

[
QΩ(ω)

PΩ(ω)

]α
E

j∼PJ

[
QJ(j)

PJ(j)

]α]

=
1

α− 1
ln

 E
ω∼PΩ

[
QΩ(ω)

PΩ(ω)

]αPJ(j⋆)[QJ(j⋆)
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⋆)

]α
+
∑
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PJ(j)

[
QJ(j)
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]α
=

1

α− 1
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ω∼PΩ

[
QΩ(ω)

PΩ(ω)

]αPJ(j⋆)[ 1
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]α
+
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PJ(j)

[
0

PJ(j)

]α
=

1

α− 1
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[
E

ω∼PΩ

[
QΩ(ω)

PΩ(ω)

]α
PJ(j

⋆)

[
1
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⋆)

]α]
=

1
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ln

[
E
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[
QΩ(ω)
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]α[
1
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⋆)
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=
1
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[
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[
QΩ(ω)

PΩ(ω)

]α]
+

1
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1
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1
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ln

[
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[
QΩ(ω)
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+ ln

[
1

PJ(j
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= Dα(QΩ||PΩ) + ln

[
1

PJ(j
⋆)

]
.

F. Corollaries of Theorem 2.5
Corollary F.1. In the setting of Theorem 2.5, with probability at least 1 − δ over the draw of S ∼ Dm, j ∼ QJ , ω ∼ QΩ,
we have

kl
(
L̂Sj

(R(Sj, ω)),LD (R(Sj, ω))
)
≤ 1

m−maxj∈J |j|

[
2α− 1

α− 1
ln

2

δ
+ ln

1

PJ(j)
+Dα(QΩ||PΩ) + ln E

j∼PJ

2
√
m− |j|

]
.

Corollary F.2. In the setting of Theorem 2.5, with probability at least 1 − δ over the draw of S ∼ Dm, j ∼ QJ , ω ∼ QΩ,
we have

LD (R(Sj, ω)) ≤
1

1− e−C

[
1− exp

(
− C L̂Sj

(R(Sj, ω))−
1

m−maxj∈J |j|

[
2α− 1

α− 1
ln

2

δ
+ ln

1

PJ(j)
+Dα(QΩ||PΩ)

])]
.

Corollary F.3. In the setting of Theorem 2.5, for any λ > 0, with probability at least 1 − δ over the draw of S ∼ Dm,
j ∼ QJ , ω ∼ QΩ, we have

LD (R(Sj, ω)) ≤L̂Sj
(R(Sj, ω))

+
1

λ(m−maxj∈J |j|)

[
2α− 1

α− 1
ln

2

δ
+ ln

1

PJ(j)
+Dα(QΩ||PΩ) + ln E

j∼PJ

exp

(
(n− |j|)λ2ς2

2

)]
.
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G. Algorithm
The following pseudocode depicts our Sample Compression Hypernetworks approach.

Algorithm 1 Training of Sample Compression Hypernetworks (with messages) architecture.

Inputs : S = {Si}ni=1, a meta-dataset
α ∈ N, support set size (1 ≤ α < mini[mi])
c, b ∈ N, the compression set and message size
BackProp, a function doing a gradient descent step

ψ, ϕ1, ϕ2 ← Initialize parameters
while Stopping criteria is not met do:

for i = 1, . . . , n do:
Ŝi ← Sample α datapoints from Si
j← Cϕ1

(Ŝi) such that | j | = c

ωωω ←Mϕ2(Ŝi) such that |ωωω| = b

γ ← Rψ(Ŝi,j,ωωω)
loss← 1

mi−α
∑

(x,y)∈Si\Ŝi
l
(
hγ(x), y

)
ψ, ϕ1, ϕ2 ←BackProp(loss)

end for
end while
return Rψ,Cϕ1

,Mϕ2

H. Numerical Experiment and Implementation Details
The code for all experiments is available at https://github.com/GRAAL-Research/DeepRM.

Synthetic experiments (moons dataset). We fixed the MLP architecture in the sample compressor, the message compressor,
the reconstructor and the DeepSet modules to a single-hidden layer MLP of size 100 while the predictor also is a single-hidden
layer MLP of size 5.

We added skip connections and batch norm in both the modules of the meta-learner and the predictor to accelerate the training
time. The experiments were conducted using an NVIDIA GeForce RTX 2080 Ti graphic card.

We used the Adam optimizer (Kingma & Ba, 2015) and trained for at most 200 epochs, stopping when the validation accuracy
did not diminish for 20 epochs. We initialized the weights of each module using the Kaiming uniform technique (He et al., 2015).

Pixels swap and binary MNIST and CIFAR100 experiments. Let MLP1 be the architecture of the feedforward network
in the sample compressor, the message compressor, the encoder, and the reconstructor; MLP2 be the architecture of the
feedforward network in the DeepSet module; MLP3 the architecture of the downstream predictor. We used the following
components and values in our hyperparameter grid:

• Learning rate: 1e-3, 1e-4;

• MLP1: [200, 200], [500, 500];

• MLP2: [100], [200];

• MLP3: [100], [200, 200];

• c: 0, 1, 2, 4, 6, 8;

• |µµµ|, b: 0, 1, 2, 4, 8, 16, 32, 64, 128.

We added skip connections and batch norm in both the modules of the meta-learner and the predictor to accelerate the training
time. The experiments were conducted using an NVIDIA GeForce RTX 2080 Ti graphic card.

We used the Adam optimizer (Kingma & Ba, 2015) and trained for at most 200 epochs, stopping when the validation accuracy
did not diminish for 20 epochs. We initialized the weights of each module using the Kaiming uniform technique (He et al., 2015).
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Table 5: Comparison of different meta-learning methods and generalization bounds on the MNIST and CIFAR100) binary task. The 95%
confidence interval is reported for generalization bound and test error, computed over the test tasks.

Algorithm MNIST CIFAR100
Bound (↓) Test error (↓) Bound (↓) Test error (↓)

PBH 0.597∗± 0.107 (Thm. 2.1) 0.150 ± 0.114 0.974∗± 0.022 (Thm. 2.1) 0.295 ± 0.103
0.770 ± 0.076 (Thm. 2.5) " 0.999 ± 0.001 (Thm. 2.5) "

SCH− 0.352 ± 0.187 (Thm. 2.2) 0.278 ± 0.076 0.600 ± 0.143 (Thm. 2.3) 0.374 ± 0.118
0.369 ± 0.187 (Thm. 2.3) " 0.629 ± 0.142 (Thm. 2.5) "

SCH+ 0.280 ± 0.148 (Thm. 2.2) 0.155 ± 0.109 0.745 ± 0.101 (Thm. 2.2) 0.305 ± 0.142
0.295 ± 0.148 (Thm. 2.3) " 0.758 ± 0.098 (Thm. 2.5) "

PB SCH 0.597∗± 0.107 (Thm. 2.4) 0.150 ± 0.114 0.974∗± 0.022 (Thm. 2.4) 0.295 ± 0.103
0.770 ± 0.076 (Thm. 2.5) " 0.999 ± 0.001 (Thm. 2.5) "

∗Bound on average over the decoder output.

More results on binary MNIST and CIFAR100 experiments. We present in Figure 9(a) and Table 6 (Figure 9(b) and
Table 7) the contribution of each of the terms impacting the bound value for a few algorithms on the MNIST 200 pixels
swap (binary CIFAR100) task. In the figures, the cumulative contributions are displayed, while in the tables, the marginal
contributions are displayed. The bounds are decomposed as follows:

• The observed meta train “error”;

• The “confidence penalty”, which corresponds to the term− ln θ in Theorem 2.1 and the corresponding term in other
bounds;

• The “complexity term”, which corresponds to the KL factor in the PAC-Bayes bounds. The latter is further decomposed
into the compression set probability and the message probability in our sample compression-based bounds.

When considering the decomposition on the 200 pixels swap experiment, we see that our approaches, despite having a larger
error term, relies on a small message probability and an empty compression set to yield competitive bounds. In contrast,
for Pentina & Lampert (2014), the complexity term profoundly impacts the bound, making it non-competitive. As for the
decomposition on the CIFAR100 experiments, it is interesting to see that the bound from Zakerinia et al. (2024) and the
one from PB SCH have a similar decomposition, whereas SCH+, despite being penalized by the message probability, relies
on a better treatment of its error and confidence term to obtain best bound of the four considered algorithms. This is empirical
evidence of the tightness of our bounds compared to those of the runner-ups, all factors (error, confidence θ, ...) being kept
equal, thanks to the non-linear comparator function ∆ (see Theorem 2.1).

Label shuffle experiment. As suggested by one ICML reviewer, we performed an additional experiment, based on the
one in Amit & Meir (2018) (as well as Zakerinia et al. (2024)). The label shuffle experiment goes as follows: we start with
the MNIST multiclass dataset, and we create each new task by performing random permutations of the label space. There
are 30 training tasks of 1000 examples, and we evaluated the methods on 10 tasks of 100 samples. Table 8 presents the
obtained results. We witness that, despite an extensive grid search over hyperparameters, the PB SCH approach fails to learn
to generalize to the test tasks. We empirically observed severe overfitting on meta-train tasks. We hypothesize that this is
due to the DeepSet architecture, which might not be powerful enough to encode the subtleties of the tasks at hand.
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(a) MNIST 200 pixels swap task (b) Binary CIFAR100 task

Figure 9: Bound values cumulative decomposition for a few algorithms.

Table 6: Bound value decomposition for a few algorithms on the 200 pixels swap task.

Algorithm Error Confidence penalty Complexity Total
(Pentina & Lampert, 2014) 0.028 ± 0.002 0.085 ± 0.000 0.127 ± 0.028 0.240 ± 0.030
(Zakerinia et al., 2024) 0.042 ± 0.198 0.045 ± 0.000 0.021 ± 0.160 0.108 ± 0.037

Error Confidence penalty Message prob. Comp. set prob. Total
SCH+ 0.073 ± 0.017 0.015 ± 0.002 0.003 ± 0.001 0.000 ± 0.000 0.091 ± 0.022
PB SCH 0.077 ± 0.016 0.030 ± 0.001 0.005 ± 0.005 0.000 ± 0.000 0.112 ± 0.021

Table 7: Bound value decomposition for a few algorithms on the binary CIFAR100 task.

Algorithm Error Confidence penalty Complexity Total
(Pentina & Lampert, 2014) 0.485 ± 0.068 0.270 ± 0.000 0.046 ± 0.069 0.801 ± 0.001
(Zakerinia et al., 2024) 0.283 ± 0.120 0.133 ± 0.000 0.537 ± 0.195 0.953 ± 0.315

Error Confidence penalty Message prob. Comp. set prob. Total
SCH+ 0.264 ± 0.133 0.078 ± 0.010 0.374 ± 0.017 0.027 ± 0.003 0.745 ± 0.101
PB SCH 0.298 ± 0.098 0.155 ± 0.008 0.521 ± 0.045 0.000 ± 0.000 0.974 ± 0.022

Table 8: Comparison of different meta-learning methods on the MNIST label shuffle binary task. The 95% confidence interval is reported
for generalization bound and test error, computed over 10 test tasks. The best (smallest) result in each column is bolded.

Algorithm MNIST label shuffle
Bound (↓) Test error (↓)

(Pentina & Lampert, 2014) 2.376 ± 0.001 0.900 ± 0.589
(Amit & Meir, 2018) 0.542 ± 0.034 0.023 ± 0.062
(Guan & Lu, 2022) - kl 3.199 ± 0.372 0.023 ± 0.006
(Guan & Lu, 2022) - Catoni 0.536 ± 0.063 0.030 ± 0.001
(Rezazadeh, 2022) 12.95 ± 0.001 0.902 ± 0.660
(Zakerinia et al., 2024) 3.779 ± 0.079 0.165 ± 0.023
PB SCH 0.997∗± 0.005 0.792 ± 0.070

∗Bound on average over the decoder output.
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