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Abstract

Training data is a pivotal resource for building
large language models (LLMs), but unfair pric-
ing in data markets poses a serious challenge for
both data buyers (e.g., LLM builders) and sell-
ers (e.g., human annotators), which discourages
market participation, reducing data quantity and
quality. In this paper, we propose a fairshare
pricing framework that sets training data prices
using data valuation methods to quantify their
contribution to LLMs. In our framework, buyers
make purchasing decisions using data valuation
and sellers set prices to maximize their profits
based on the anticipated buyer purchases. We
theoretically show that pricing derived from our
framework is tightly linked to data valuation and
buyers’ budget, optimal for both buyers and sell-
ers. Through market simulations using current
LLMs and datasets (math problems, medical di-
agnosis, and physical reasoning), we show that
our framework is fairshare for buyers by ensuring
their purchased data is reflective of model training
value, leading to higher LLM task performances
per-dollar spent on data, and fairshare for sellers
by ensuring they sell their data at optimal prices.
Our framework lays the foundation for future re-
search on equitable and sustainable data markets
for large-scale AI.1

1. Introduction
Training data is a foundation for building effective and
reliable large language models (LLMs). LLMs need an
abundant amount of high-quality training data to excel at
complex tasks – such as coding (Chen et al., 2021) and
instruction-following (Bach et al., 2022) – which requires
human knowledge. In particular, human-annotated training
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data for LLMs critically affects model performance not only
for NLP tasks (Wang et al., 2023), but also significantly
impact the real-life capabilities of AI applications such as
virtual assistants (Xi et al., 2023), recommendation systems
(Wu et al., 2024b), and healthcare systems (He et al., 2024).

Given the critical role of data in distinguishing LLM perfor-
mance, LLM builders have intense demands for high-quality
data to achieve desired training outcomes (Reuters, 2024).
However, the current market for LLM training data acquisi-
tion is characterized by a lack of fairness and transparency
in data pricing (Paul & Tong, 2024; Zhang et al., 2024a),
which negatively affects all participants. For data sellers
or contributors (i.e., human annotators), unfair data pricing
leads to inadequate compensation that does not accurately
reflect the true value of their contributions (Mason & Watts,
2009; Hara et al., 2018; CBS News, 2024). In an interview
with 60 Minutes2, a civil rights activist described the ex-
ploitation of annotators working for large LLM builders as:

“They don’t pay well ... they could pay whatever,
and have whatever working conditions”

— Nerima Wako-Ojiwa on 60 Minutes

Unfair training data pricing also harms buyers (i.e., LLM
builders) by reducing annotation quantity and quality
(TechCrunch, 2024), which ultimately hinders their long-
term gains. Consequently, unfair data pricing ultimately
discourages participation in the data market, risks market
failure, (Ater & Rigbi, 2023; Akerlof, 1978), and hampers
the sustainable development of high-quality AI systems.

To tackle these issues, we propose a fairshare pricing frame-
work where data prices reflect their value for all participants.
Our pricing framework leverages data valuation methods,
which quantify the contribution of training data to model
performances. In our framework, buyers use data valuation
to make informed purchases under budget constraints. By
ensuring transparent data valuation for all participants, our
framework provides procedural justice (Konovsky, 2000)
and allows data sellers to make informed pricing to maxi-
mize their profits. This practice eventually improves seller
participation and increases the quality of data supplies.

We simulate buyer-seller interactions and empirically show

2CBS, 60 Minutes:“Labelers training AI say they’re over-
worked, underpaid and exploited by big American tech companies”
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that our framework achieves fairshare pricing. We create
markets for sourcing data to train current open-source LLMs
on complex NLP tasks, including math problems (Amini
et al., 2019), medical diagnosis (Jin et al., 2021), and phys-
ical reasoning (Bisk et al., 2020). We then analyze our
framework from two perspectives: data valuation and pric-
ing. Our findings show that adopting data valuation enables
buyers to achieve higher model performance at competitive
costs, making our framework particularly advantageous for
those with limited budgets.

Furthermore, both our empirical and theoretical results show
that it is the buyers’ best interest to accept the sellers’ fair-
share prices through a mechanism that models the seller’s
decrease in participation over time if compensated unfairly.
Our findings show that pricing methods which follow data
market norms (undervaluing sellers’ contributions) offer
buyers short-term utility gain. However, this approach is
unsustainable—persistent unfair compensation will drive
sellers away, reducing available datasets (hindering even
the most resourceful buyers), and stall LLM development.
This phenomenon is supported by research in organizational
justices theory (Folger et al., 1998; Folger & Cropanzano,
2001; Colquitt et al., 2013; Adamovic, 2023), which high-
lights that individuals’ motivation depends not only on the
fairness of compensation but also on the transparency of
information and processes.

In contrast, our findings show that by adopting our fairshare
pricing framework, where buyers accept the sellers’ fair-
share price, buyers (regardless of budget size) maximize
seller participation and, in turn, achieve greater long-term
utility and create a win-win scenario for both parties. We
encourage future research on equitable pricing methods for
LLM training data.

In summary, our contributions are as follows:

1. We propose a fairshare pricing framework where data
prices are reflected through data valuation methods.

2. We formalize our market dynamics with sequentially
arrived sellers and characterize the optimal data pricing
derived from our framework.

3. We show that our framework provides a win-win situ-
ation: sellers sell their datasets at optimal prices, and
buyers simultaneously achieve greater long-term gains.

2. Related Work
Data Acquisition for LLMs: Multiple sources are used to
supply training data for LLMs, including web-scraped data
(often used for LLM pre-training) and crowd-sourced data
(often used for LLM fine-tuning) (Wang et al., 2024). To cre-
ate datasets from these sources, human annotators are often
employed to give domain-specific annotations (e.g., labels
for expert-level math and coding tasks (Tan et al., 2024)),

but may face unfavorable labor conditions. For instance,
annotators are often underpaid on crowd-souring platforms
(Mason & Watts, 2009; Hara et al., 2018; Toxtli et al., 2021;
CBS News, 2024), and in regions without strong worker
rights, annotators are exposed to toxic digital material dur-
ing data labeling (Muldoon et al., 2023). While recent works
aimed to reduce unfair wages (Singer & Mittal, 2013; Wang
et al., 2013), their methods are based on task completion
quantity, which is a misleading factor for compensation, and
yields low quality annotations (Huynh et al., 2021).

Data Valuation: Data valuation is the process of measuring
the contribution of data towards a goal (i.e., LLM perfor-
mance). Influence-based methods, which rely on influence
functions (Hampel, 1974; Koh & Liang, 2017), perform
data valuation by measuring the contribution of training
samples to a model’s outputs using learning gradients. Re-
cent works have approximated influence functions for LLMs
by estimating the computationally costly inverse-Hessian
(Grosse et al., 2023; Choe et al., 2024; Bae et al., 2024).
Other influence-based methods omit this calculation entirely
(Pruthi et al., 2020; Xia et al., 2024). Given the effective-
ness of influence-based methods towards LLM training data
selection (Yu et al., 2024; Xia et al., 2024), recent works
such as Trak (Park et al., 2023), LOGIX (Choe et al., 2024),
and ICP (Jiao et al., 2024) examine the trade-offs between
efficiency/accuracy in influence function approximations.

Other data valuation methods measures semantic similarity
between training samples and target text. For instance, is
BM25 (Trotman et al., 2014), a ranking algorithm based on
word-term frequency. BM25 is used as a common baseline
for benchmarking new data valuation techniques (Akyurek
et al., 2022; Wu et al., 2024a) given its transparency.

Game Theory and Data Pricing: In dynamic games
with complete information, such as Stackelberg games
(Von Stackelberg, 2010; Maharjan et al., 2013; Zhang et al.,
2024b) and bi-level optimization (Colson et al., 2007; Sinha
et al., 2017; Bard, 2013), participants aim to maximize their
objectives in a sequential manner: a leader acts first, then the
followers. This has been used for pricing goods (Pei, 2020;
Böhnlein et al., 2021), where the seller (leader) first sets
prices for items to maximize profit, and buyers (followers)
aim to buy a subset of items with minimal cost.

Previous studies have explored this dynamic for different
data pricing settings. Agarwal et al. (2019) proposed an
auction-based data pricing framework where the data plat-
form allocates sellers’ data to buyers. Yang (2022) uses
historical transactions to conduct personalized pricing for fu-
ture consumers, assuming that buyers are risk-averse. These
frameworks focused pricing via market mechanism design
rather than potential LLM gains.
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3. Data Market Framework
In this section, we present a theoretical framework for a
fairshare data market. Beginning in Section 3.1, we pro-
vide an overview of the market participants—buyers and
sellers—and explain how data valuation informs their ob-
jectives and decision-making processes. Then, we present
the market dynamics, outlining the interactions between
buyers and sellers as well as the conditions guiding their
decision-making processes. Finally, we propose a pricing
strategy derived from our framework, characterize its key
properties, and demonstrate how it safeguards the welfare
of both sellers (Section 3.2) and buyers (Section 3.3).

3.1. Market Participants and Dynamics

In this section, we describe the objectives of buyers and
sellers within our market framework, and their interac-
tions. First, we denote a set of buyers {Bk}Mk=1 (e.g., LLM
builders), whose aim is to purchase datasets that maximize
performance gains for their LLMs, denoted asMk. Next,
sellers {Sj}Nj=1 (e.g., human annotators) arrive to the mar-
ket and set prices for their datasets Dj to maximize profits
based on buyers’ anticipated purchasing decisions.

Our framework adopts the well-established Stackelberg dy-
namic game (Von Stackelberg, 2010; Maharjan et al., 2013;
Zhang et al., 2024b) under complete information, where
players in the market move in sequence and possess full
knowledge of all other players. Such a market enforces
information transparency, allowing buyers and sellers to
access estimates of each dataset’s contribution to LLM per-
formance (e.g., provided by platforms or marketplace or-
ganizers). In Section 5, we show that this transparency is
beneficial for both parties. We provide a detailed explana-
tion of the buyers’ and sellers’ objectives below.

Buyer’s Objective. When a buyer Bk enters the market,
they optimize their purchasing decisions based on three fac-
tors: (i) the dataset prices, represented by the price vector
p := [p1, . . . , pN ], (ii) their budget constraint bk, and (iii)
their utility gain uk from acquiring a dataset Dj . Specifi-
cally, uk : Dj → R+ denotes the utility (e.g., economical
value, which may be expressed in currency) tied to the per-
formance improvement ofMk after training on dataset Dj ,
estimated using a data valuation method, such as influence
functions (Koh & Liang, 2017). Data valuation methods
can be applied to the buyer’s objectives in various ways for
different downstream LLM applications (see Appendix C).

Next, given datasets {Dj}Nj=1 in the market, price vector p,
budget bk, and the utility uk, the buyer makes a purchase
decision, denoted as a binary vector x ∈ {0, 1}N , where
xj = 1 indicates that dataset Dj is selected and xj = 0
indicates it is not. Given a decision x, the net utility for a

decision x is the utility, uk, minus the data’s listed price:

gk,N (x) := uk (x)− xTp, (1)

Finally, Bk’s purchasing problem is formulated as selecting
an optimal collection of datasets to maximize its net utility:

x̃k,N := argmax
x∈Xk,N

gk,N (x), s.t. (2)

Xk,N := {x | gk,N (x) ≥ 0,xTp ≤ bk}, (3)

where x̃k,N is the optimal solution, and Xk,N is the set of
all feasible solutions. Note that xTp ≤ bk ensures that the
total paid price is under the budget bk, and gk,n(x) ≥ 0
ensures a non-negative improvement in net utility, gk,N .

Seller’s Objective. The objective of seller Sj is to set a
price pj ∈ R+ for its listed dataset Dj , maximizing its profit.
There are two factors that Sj must consider for pricing its
data: (i) a fixed cost cj reflecting the effort that creates
dataset Dj , and (ii) the anticipated purchases of buyers for a
given price pj ∈ R+ (i.e., for all k ∈ [M ], the solution x̃k,N

to Bk’s purchasing problem). In practice, due to information
transparency, sellers can use buyers’ data valuations to
make reasonable estimates, as noted in previous works such
as Ghorbani et al. (2020), which characterizes data valuation
in the context of underlying data distributions, and Chen
et al. (2022) which examines price data via costly signaling.

Next, based on the seller’s estimates, we denote 1{Bk,Dj ,pj}
as an indicator function which returns 1 if buyer Bk pur-
chases dataset Dj at price pj (i.e., j-th element of x̃k,N is
1) and 0 otherwise (i.e., j-th element of x̃k,N is 0). Then,
the net profit for seller Sj defined as:

r(pj) :=

M∑
k=1

1{Bk,Dj ,pj}pj − cj . (4)

Finally, Sj’s pricing problem is formulated as choosing the
optimal price for their dataset to maximize its net profit:

p∗j := argmax
pj∈Pj,M

r(pj), s.t. (5)

Pj,M := {pj ∈ R+ | r(pj) ≥ 0}, (6)

where p∗j is the optimal price and r(pj) ≥ 0 ensures that
seller Sj’s net profit must be non-negative.

Market Dynamics. We now discuss the market dynam-
ics (i.e., the interactions between buyers and sellers). To
mirror a real-life scenario, we assume a fixed number of
buyers {Bk}Mk=1 in the market while sellers {Sj}Nj=1 arrive
sequentially, each with a dataset Dj . Only the number of
sellers in the market changes over time. When a new seller
Sj arrives, it prices Dj by solving for p∗j (Equation (5)),
based on buyers’ updated purchases x̃k,j (Equation (2)) for
all k ∈ [M ]. Algorithm 2 in Appendix F.1 shows a detailed
example of our market dynamic.
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(b) Seller S2’ profit over price.

Figure 1. The change in sellers S1’s and S2’s profit as their
datasets’ prices increase, alongside buyers B1’s and B2’s MWP
(buyer’s Maximum Willingness to Pay). Note: the market contains
2 sellers (S1, S2) and 2 buyers (B1, B2).

3.2. Optimal Pricing for Sellers

Previously, we described our framework’s buyer-seller dy-
namics. A follow-up question is: what factors influence the
buyer’s decision to purchase newly arrived data, and does
it affect the seller’s optimal price? In this section, we show
these factors that characterize our framework’s fairshare
pricing. Specifically, we show that the optimal price p∗j for
a dataset rests on each buyer’s Maximum Willingness to Pay
(MWP), which depends on two factors: (1) the utility gain
of a dataset for the buyer’s LLM and (2) the buyer’s budget.

We begin by discussing the first factor: the utility gain
of a dataset towards the buyer’s LLM. We denote the set
of all feasible purchase decisions for a buyer Bk before
the arrive of a dataset Dj as Xk,j−1. For each feasible
purchase decision (i.e., a collection of datasets), represented
by x ∈ Xk,j−1, let xnew denote its union with Dj . Then the
utility that Dj provides to Bk’s LLM is defined as:

∆uk(x
new) = gk,j(x

new)− gk,j−1(x̃
k,j−1). (7)

In other words, ∆uk(x
new) represents the additional utility

that gained from x and Dj together, compared to the utility
provided by the optimal decision x̃k,j−1.

Second, given buyer Bk’s purchase decision x̃k,j−1 before
the arrival of Dj , we define the budget surplus as

∆bk(x̃
k,j−1) = bk − (x̃k,j−1)Tp. (8)

That is, the budget surplus is the difference between the
budget bk and the total price of x̃k,j−1. Then we have the
formal definition of buyer’s maximum willingness to pay:
Definition 3.1 (Buyer’s Maximum Willingness to Pay). The
buyer Bk’s buyer’s maximum willingness to pay (MWP) for
dataset Dj is defined as the maximum of the minium of (1)
additional utility ∆uk(x

new) that Dj provides and (2) the
budget surplus ∆bk(x̃

k,j−1) across all feasible collection
of datasets x ∈ Xk,j−1 (before the arrivial of Dj):

MWPk := max
x∈Xk,j−1

{min{∆uk(x
new),∆bk(x̃

k,j−1)}}.

(9)

With respect to the buyer’s MWP, the seller Sj’s optimal
price, p∗j , for dataset Dj can be characterized as follows:

Lemma 1 (Characterization of optimal price p∗j ). Given
Definition 3.1 (MWP), seller Sj’s optimal price for Dj is
characterized as the MWP of one of the buyers in {Bk}Mk=1:

p∗j ∈ ∪M
k=1 max

xnew∈Xk,j−1

{min{∆uk(x
new),∆bk(x̃

k,j−1)}}.

(10)
See Appendix D for proof.

Lemma 1 states that among all buyers {Bk}Mk=1’ MWP,
Dj’s optimal price is set at the one that maximizes seller
Sj’s profit. Since the optimal price p∗j depends on the mini-
mum of the change in utility ∆uk(x

new) and budget surplus
∆bk(x̃

k,j−1)), when either buyer’s budget or its utility of
Dj increases, Dj’s price increases.

In Figure 1, we simulate a scenario of 2 buyers and 2 sellers.
The figure illustrates how buyers’ MWP determine the opti-
mal price p∗1, p

∗
2. Specifically, p∗1 matches buyer B1’s MWP

and p∗2 matches buyer B2’s MWP. These values are “break-
points” for the profit function r(pj). Each buyer’s MWP
represents the highest price that seller Sj could set without
reducing the total number of sales (i.e.,

∑M
k=1 1{Bk,Dj ,pj}).

If pj exceeds Bk’s MWP, the number of sales drops by 1,
creating a discontinuity in r(pj).

3.3. Optimal Pricing for Buyers

In this section, we show that buyers in fairshare framework
benefit by accepting sellers’ optimal prices, ensuring seller
participation and long-term utility gains. This alignment
of incentives between both parties fosters a sustainable,
mutually beneficial market.

To demonstrate this, we consider a single seller S and a
single buyer B in an infinite time-step setting. At each
time step t ≥ 0, seller S sets a price pt for dataset Dt and
buyer B decides whether to purchase based on utility ut

and budget bt. We assume that E[bt] < E[ut],∀t, where
expected utility always exceeds buyer’s expected budget.

Next, we make assumptions regarding the buyer’s and
seller’s behaviors: (1) a seller reduces future market partic-
ipation under unfair compensation, and (2) a buyer values
future gains, reflecting a forward-looking decision-making
process. These assumptions are formally defined below.

Assumption 1.1 (Seller’s participation is reduced under
unfair compensation). Suppose at any time period t, the
buyer has bargaining power and can negotiate a price
pt ≤ p∗t . Then, there exists a strictly increasing function π:
(pt, p

∗
t )→ [0, 1] that models the probability of the seller’s

participation in all future periods, such that π(0, p∗t ) = 0
and π(p∗t , p

∗
t ) = 1. In addition, the probability that the seller

S participates in the market at time T is
∏T−1

t=0 π(pt, p
∗
t ).
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Figure 2. Analysis of the buyer’s cumulative net utility as a function of the transaction prices over different time steps (T = 1, 2, 5, 10).
Note: we simulate with a single buyer B and a single seller S with a single dataset D. The function of cumulative net utility over price is
a discontinuous piecewise linear function which breaks at p = 1.

It states that if seller S receives fair compensation at time
t, its probability of continued participation remains one;
otherwise, it declines. As shown in (Akerlof, 1978), under-
paid sellers are less likely to produce high-quality goods or
remain active in the market in the future, inevitably leading
to a ”Lemon Market” for datasets. The assumption 1.1 is
aligned with organizational theory (Folger et al., 1998; Fol-
ger & Cropanzano, 2001; Colquitt et al., 2013), which high-
lights that unfair compensation causes distributive injustice
that significantly undermines motivation and discourages
participation over time. Moreover, seller’s participation
probability is assumed to be:

Assumption 1.2 (Seller reaction to unfair compensation is
sufficiently strong). The Lipschitz continuity of participa-
tion probability function π over p∗t is lower-bounded:

|π(pt,1, p∗t )− π(pt,2, p
∗
t )| ≥ L |pt,1 − pt,2| , (11)

for some constant L > 0 and all pt,1, pt,2 ∈ R+ for all t.

This assumption ensures that when seller S receives unfair
compensation, its probability of participation decreases by
a margin that is lower-bounded, and proportional to the dif-
ference between the unfair compensation and the fairshare
compensation.

Next, we use the participation function to model the value
function of B with the following Bellman equation (Bellman
& Kalaba, 1957):

G(ut, bt) = max
pt∈[0,∞)

[E [ut − pt] +

δE [π(pt, p
∗
t )G(ut+1, bt+1) | ut, bt]] , (12)

where G denotes the buyer B’s cumulative net utility over
infinite horizon, as the sum of the expected net utility at
current time step and discounted future expected net util-
ity. Here, δ is the buyer’s discount factor, which has the
following assumption:

Assumption 2 (Discount factor is lower bounded). The
discount factor δ satisfies the following inequality:

δ ≥ 1

1 + Lmint∈[0,∞) E[max{ut − bt, 0}]
,∀t. (13)

A higher discount factor indicates a greater emphasis on fu-
ture gains. This assumption indicates that the buyer assigns
weight to its future utility gains (as shown in Equation (12))
to adopt a forward-looking perspective. Finally, combining
assumptions 1.1 to 2, note the following result regarding
buyer B’s cumulative net utility under p∗t :

Lemma 2 (The optimal price for the buyer B is also p∗t ).
The fairshare price for the seller S under our framework is

p∗t := min{ut, bt},∀t. (14)

With assumptions 1.1 to 2, p∗t gives the buyer B the maxi-
mum cumulative net utility over infinite horizon. Proof is in
Appendix D.

Fairshare Pricing Ensures Win-win Outcomes: The
above lemma shows that p∗t from our fairshare pricing
framework is optimal for buyer B. Lower prices may boost
short-term utility gains, but p∗t ensures maximum long-term
gains, making it the optimal choice.

In Figure 2, we demostrate how the seller’s optimal price
p∗t also becomes optimal for the buyer B. We fix utility
ut = 2, budget bt = 1, and the discount factor δ = 0.95,∀t,
ensuring that buyer B’s optimal price remains constant at
p∗t = 1. At each time step t, we identify the price that
maximizes the buyer’s cumulative net utility up to t. Notably,
if pt > p∗t , the buyer refrains from purchasing, as it would
yield negative net utility.

Initially, the buyer’s optimal price is zero, benefiting from
low prices to maximize net utility. Over time, the buyer’s
optimal price shifts toward p∗t and eventually converges to
it. This occurs as sellers receiving unfair compensation
reduce their market participation, leading to periods where
no datasets are available. As a result, the buyer is unable
to make purchases. The minimum time step t∗ at which

5
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(a) MathQA (Llama-1b) (b) MedQA (Llama-1b) (c) PIQA (Llama-1b) (d) Avg. Price (Llama-1b)

Figure 3. Left, middle-left, middle-right columns: Buyers’ model performance versus cost. Performance of models is shown before
purchasing (BP) data, and after purchasing 2K and 4K data samples. Right column: Average price-per-sample cost of purchased data
across math, medical, and physical reasoning data markets. Purchasing decisions were using the constant, random, BM25, InflIP data
valuation methods. Additional analysis on the Pythia-1b and Pythia-410m models are in Appendix F.

buyer’s optimal price becomes p∗t is defined as:

t∗ := inf

{
T ∈ [0,∞) : E

[
T∑

t=0

δt (ut − p∗t )

]
≥

E

[
T∑

t=0

δt
T−1∏
t=0

π(pt, p
∗
t ) (ut − pt)

]
,∀pt ∈ R+

}
, (15)

which represents the equilibrium point where the buyer’s
cumulative net utility under fairshare pricing exceeds that
of other pricing methods.

4. General Experimental Setup
To ground the theoretical analysis of our fairshare frame-
work to real-life scenarios, we empirically analyze our
framework by running simulations on NLP tasks and
datasets for training current LLMs. In this section, we
discuss the general experimental setup for our analyzing our
market framework, which is used for all subsequent experi-
ments in Sections 5 and 6. In our simulations, each buyer
has a single LLM, and each seller owns a single data sample.
Buyers seek to buy training data to improve their model
performance towards a specific tasks (e.g., math problem
solving), which are described below.

Buyers and Models: We simulate three buyers, each using
a different model: Llama-3.2-Instruct-1b (Grattafiori et al.,
2024), Pythia-1b, and Pythia-410m (Biderman et al., 2023).
Notably, these models are all common open-sourced LLMs.
Since the Llama and Pythia models were pre-trained on
different corpora, their preference for downstream post-
training data can vary (Mai et al., 2024), reflecting buyers’
different data preferences in real life.

Sellers and Datasets: We focus on tasks that challenge
current LLMs – math problems, medical diagnosis, and
physical reasoning (Lu et al., 2023; Liu et al., 2023; Ahn
et al., 2024) – which were curated with human annotations,
adding to their complexity. For math problems, we use the
MathQA (Amini et al., 2019) and GSM8K (Cobbe et al.,

2021) datasets. We use the MedQA (Jin et al., 2021) dataset
for medical diagnosis, and PIQA (Bisk et al., 2020) for phys-
ical reasoning. Table 1 in Appendix F shows dataset splits
and examples. We use the training splits of these datasets
as the sellers’ data, and simulate the market dynamics in
Section 3. Specifically, we simulate separate math, medical,
and physical reasoning data markets (buyers and sellers do
not purchase and price data across different markets).

Following this general setup, we examine the effects of
incorporating data valuation into our framework in Sec-
tion 5, and compare the optimal pricing obtained through
our framework against other pricing strategies in Section 6.

5. Data Valuation Experiments
Since data valuation is a key component of our market frame-
work — affecting buyers’ purchasing decisions sellers’ pric-
ing — we begin by examining how different data valuation
methods affect buyers and sellers. In particular, we use dif-
ferent data valuation methods to aid the buyers’ purchases,
conduct supervised-finetuning on their models using their
purhcased data, and evaluate their model performance. We
describe our data valuation methods in Section 5.1, and then
discuss results in Section 5.2.

5.1. Data Valuation Experiment Setup

Using the previously mentioned models and dataset, we
run separate simulations for each data market (e.g., math,
medical, physical reasoning), each testing different data
valuation methods for the buyer. Below, we describe our
data valuation methods and our pricing setup.

Data Valuation Methods: In order to conduct data valua-
tion, for each previously mentioned dataset (e.g. math, med-
ical, physical reasoning), we randomly sample 200 demon-
strations from their validation sets to form representative
datasets 3. We use data valuation to score each data sample

3Note: For PIQA we take 200 samples from the training set
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Figure 4. Analysis of (1) buyer’s cumulative utilities with high-budget buyer (Figure 4a) and low-budget buyer (Figure 4b), and (2) sellers’
average cumulative profits (Figure 4c) and number of sellers in the market (Figure 4d) over time (T = 100). Model: Pythia-1b; Task:
MedQA. Experimental groups: (1) fairshare, (2) reduced, (3) random, and (4) current pricing.

in the market according to its similarity with a representative
dataset. We use the following methods for data valuation:

1. Constant: returns the same value for every data sample
in the market. This is common in annotation platforms
(e.g., MTurk, Remotasks 4 5), where there is a flat-
price-per-annotation.

2. Random: randomly assigns a number between [0, 1]
for every data sample in the market.

3. Semantic: returns a score based on the avg. semantic
similarity between each data sample and each sample
in a representative dataset. Specifically, we use BM25
(Trotman et al., 2014), see Section 2.

4. Influence-based: returns a score which leverages
learning gradients to estimate a data sample’s avg. con-
tribution to model learning of a representative dataset.
Specifically, we use InflIP (see Appendix A) (Pruthi
et al., 2020; Xia et al., 2024).

We apply normalization so that each method returns a score
between [0, 1] to better align it with monetary value (as
discussed in Section 3). We note that both the semantic
and influence-based methods fall under the category of data
valuation given that it measures the potential impact of
training their LLM on a data sample, which is not the case
for the constant and random methods.

Market/Pricing Setup: We provide details following our
market dynamics and sellers’ pricing values for our data
valuation experiments in Appendix E.1.

Model Training and Evaluation: Fine-tuning and evalua-
tion of the buyers’ models are described in Appendix E.1

5.2. Data Valuation Experiment Results

Figure 3 shows the results from using different data valu-
ation methods for buyers, following the experiment setup
previously described. We note that training on data pur-
chased using BM25 and InflIP resulted in higher overall

since the validation set is commonly reserved for testing.
4https://www.mturk.com/
5https://www.remotasks.com

model performance across our models and tasks. When
considering trade-offs between cost and performance, us-
ing InflIP provided reduced cost (lower than random and
BM25, as shown in Figures 3d and 6d), while having high
contribution towards model performance.

On the other hand, while constant valuation was the most
cost-effective, its effect on model performance was lower
than BM25 or InflIP. Meanwhile, using random valuation
neither yielded the best model performance, nor was it the
most cost effective. Given that constant valuation is a popu-
lar choice in data annotation platforms, our findings show
that using data valuation in market frameworks provides a
better alternative for buyers. In real-world scenarios, this
is especially beneficial for financially constrained buyers
seeking to improve their LLMs. Thus, our fairshare frame-
work ensures the price of data is reflective of its value and
provides a win-win situation: buyers receive greater value-
per-price for data, and sellers get higher pay for their data.

6. Data Pricing Experiments
In this section, we evaluate our pricing framework in terms
of buyer and seller welfare. Building on the theoretical
analysis in Section 3.3, we empirically demonstrate that,
compared to other pricing methods, our framework yields
the highest utilities for buyers and the highest profits for
sellers, ensuring mutually beneficial outcomes. Below, we
outline our experimental setup Section 6.1, followed by
findings in Section 6.2.

6.1. Data Pricing Experiment Setup

Market Setup: Following similar setups in Section 3.3, we
simulate a market with multiple buyers (M = 2) and sellers
(N = 10) across multiple time steps. To examine the impact
of fairshare pricing on buyers with varying resources, we in-
clude a high-budget buyer (well-funded LLM builder) and a
low-budget buyer (under-resourced one). Each buyer’s bud-
get is generated randomly at each time step, with different
mean values reflecting their resource disparity. Within each
time step, (1) sellers arrive sequentially with a new dataset
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(containing 300+ data samples) at fixed prices, and then
(2) after all sellers arrive, buyers make purchase decisions
based on Equation (2). Details of the experimental setup are
provided in Appendix E.2.

Participation Function: Following assumptions 1.1 to 2,
we simulate 100 time steps with a discount factor δ = 0.999,
reflecting buyers’ forward-looking behavior and prioritizing
long-term value in the rapidly growing LLM industry (IBM,
2024). The participation function is π(pj,t, p∗j,t) = pj,t/p

∗
j,t

for its simplicity and compliance with assumptions 1.1
and 1.2. When sellers receives unfair compensation (i.e.,
pj,t < p∗j,t), their probability of future participation de-
clines.

Pricing Methods: We consider four methods to price pj,t:

1. Fairshare: Prices are set by the fairshare pricing
framework from Section 3, i.e., pj,t = p∗j,t.

2. Reduced: Buyers and sellers negotiate reduced prices
as a fixed fraction of the optimal price, pj,t = c ∗ p∗j,t
with c = 0.5.

3. Random: Prices are randomly determined within the
range (0, p∗j,t).

4. Current: Buyers and sellers negotiate a low fixed price,
reflecting current data market norms, (e.g., MTurk).
We set pj,t as 10% of the avg. utility contribution of
each dataset to a LLM.

6.2. Pricing Experiment Results

Figure 4 compares the long-term welfare outcomes of differ-
ent pricing methods for buyers and sellers using Pythia-1b
on the MedQA task. For models’ performances on MathQA
and PiQA (including Pythia-410m and Llama-3.2-Instruct-
1b), see Appendix F, which shows similar trends.

Current Pricing Norm Leads to Lose-loss Results: The
current pricing method, which sets uniformly low, fixed
prices to reflect real-world practices ((CBS News, 2024)),
offers LLM developers short-term utility gains (see Fig-
ures 4a and 4b). However, this approach systematically
undervalues datasets and unfairly compensates annotators.
As a result, sellers gradually exit the market due to unsus-
tainable returns, leading to a collapse in data supply. Over
time, even well-funded LLM developers will struggle to
acquire sufficient datasets, regardless of their budgets. If
this pricing model persists, it will not only hurt the market
but also hinder the long-term advancement of LLMs.

Fairshare Pricing Creates Win-win Outcomes: For sell-
ers, the results (Figure 4c) demonstrate that our fairshare
pricing framework consistently maximizes seller profits at
all time steps. This aligns with the market setup described
in Section 3.1, which aims to maximize sellers’ profits.

For buyers, the fairshare pricing framework is particularly
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Figure 5. Number of purchased datasets for the buyer with high
budget (Figure 5a) and low budget (Figure 5b) over time periods
(T = 100). Model: Pythia-1b; Task: MedQA.

effective for the high-budget buyer (Figure 4a), delivering
the highest cumulative utility over time. Low-budget buyer
(Figure 4b), however, experiences reduced short-term utility
in exchange for long-term gains. Its limited budget prevents
them from fully leveraging the increased dataset supply en-
sured by fairshare pricing, making other low-pricing meth-
ods initially more appealing. Yet, in the long run, fairshare
pricing sustains seller participation, ensuring data supply.
In contrast, low-pricing methods drastically reduce seller
participation, leaving fewer datasets available.

Analysis of the mechanism: Unfair compensation drives
sellers out of the market (see Figure 4d), ultimately deplet-
ing data avalibility. Except for fairshare pricing, all other
methods lead to a rapid collapse in data transactions (see
Figures 5a and 5b). This exposes a critical trade-off: buyers
may initially benefit from cheaper prices, but unsustainable
pricing methods erode market supply, leaving them with no
datasets to purchase. Fairshare pricing, in contrast, sustains
a healthy data market ecosystem, ensures long-term market
viability, and is essential for the continued advancement of
the LLM industry.

7. Conclusion
In this paper, we proposed a fairshare pricing framework
using data valuation methods for transparent training data
pricing for LLMs. Our results showed that buyers achieved
higher gains for their models at reduced costs by leveraging
data valuation methods, which promote buyer participant in
the market, particularly for those with financial constraints.
Simultaneously, sellers were able to sell their data at optimal
prices, ensuring a win-win situation leading to long-term
social welfare gain.

To the best of our knowledge, we are the first to combine
the economics of optimal pricing and game theory, with a
deep understanding of the LLM data valuation methods, to
develop solutions that reflect real-world dynamics in the
emerging LLM data market. Our approach provides pol-
icy makers and regulatory bodies potential guidelines for
pricing training data in LLM markets to ensure fairness and
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transparency. By fostering fair market access, our frame-
work also empowers small businesses and startups, leading
to more equitable technological advancements.

Future research can explore our framework from differ-
ent angles, including additional data valuation methods,
incomplete information game theoretical framework (e.g.,
Bayesian game), and applications across diverse data do-
mains (e.g., pre-training data vs fine-tuning). We hope this
work paves way for future research in equitable markets for
AI and emerging technologies.

Impact Statement
This paper addresses the critical issue of fairshare pricing
in the data market for large language models (LLMs) by
proposing a framework and methodologies for fair compen-
sation of datasets from LLM developers to data annotators.
Our work directly tackles the ethical and societal challenges
in the current data market, where many data annotators are
underpaid and receive compensation significantly discon-
nected from the true economic value their contributions
bring to LLMs.

From ethical and societal perspectives, our framework prior-
itizes the welfare of both data annotators and LLM develop-
ers. Our methodology ensures that data annotators are fairly
compensated for their labor, promoting equity and fairness
in the data ecosystem. This contributes to mitigating the
exploitation of vulnerable annotators in the data market and
aligns the incentives of stakeholders toward a more ethical
and sustainable practice. In addition, our framework also
benefits LLM developers, by demonstrating that our frame-
work maximizes their utilities and welfare in the long term.
Fair compensation encourages ongoing participation of data
annotators in the market, ensuring a steady supply of diverse,
high-quality datasets essential for LLM development. By
addressing existing inequities, our work lays the foundation
for a more sustainable, equitable, and mutually beneficial
ecosystem for all stakeholders in the LLM data market.
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A. Influence-based Data Valuation
In Section 4, we introduced a gradient-based data attribution method, denoted as InflIP. In this section, we provide additional
information on InflIP, which has been shown to be effective in training data selection in previous works (Pruthi et al., 2020;
Xia et al., 2024). Suppose we have a LLM parameterized by θ, and a train set D and a test set D′. For a training sample
d ∈ D, we wish to estimate its training impact on a test sample d′ ∈ D. That is, we want to measure the impact of d on the
model’s loss on d′ (i.e., L(d′; θ)). As simple method of achieving this is to take training step – that is, a gradient descent
step – on d and obtain:

θ̂ = θ − η∇L(d; θ) (16)

where η is the learning rate. Then, in order to measure the influence of d towards d′, we wish to find the change in loss on d′:

L(d′; θ)− L(d′; θ̂) (17)

Instead of taking a single training step to measure the influence of d ∈ D on d′, we can instead approximate Equation (17)
with using the following:

Lemma 3. Suppose we have a LLM with parameters θ. We perform a gradient descent step with training sample d with
learning rate η such that θ̂ = θ − η∇L(d; θ). Then,

L(d′; θ)− L(d′; θ̂) ≈ ∇L(d′; θ) · ∇L(d; θ)
See Appendix D for the proof.

Then, we set InflIP to be:
InflIP = ∇L(d′; θ) · ∇L(d; θ) (18)

which is the dot-product between the learning gradients of d′ and d.

B. Royalty model
So far, we have shown the case of flat rate (see Section 3.1), which is well-suited resource-rich buyers, such as leading
tech companies whose LLMs generate significant economic value due to their wide-ranging impact and scalability. In this
section, we introduce the royalty model, a contract framework that differs from the flat rate by offering a subscription-like
structure. Under the royalty model, the price paid for training data is proportional to the future economic value generated by
the LLM, providing a flexible and performance-based approach to data valuation. This scenario incorporates buyers in a less
dominant position – those who are (1) uncertain about the prospective model outcome or (2) do not own a sufficient cash
flow for purchasing data with full prices. We present updated decision-making models for buyers and sellers as follows.

Buyers. Unlike the flat pricing setting, the buyer Bk would alternatively pay with a fractional price. Suppose each dataset
Dj is priced with an individual rate αj ∈ [0, 1) (as we denote α = (α1, · · · , αN )), then the price of an arbitrary data
collection uk (x) is a fraction of its future marginal gain, i.e., xTp = f(α,x)uk (x), where the overall rate function
f : [0, 1)|α|×{0, 1}|x| → [0, 1) depends on specific contexts. We assume that f is a monotonically non-decreasing function
of α. In this sense, the buyer Bk reduces the risk of losing bk from its cash flow while the seller is betting on the potential
value of the LLM Mk. Then we obtain an updated objective function for Bk:

gk,N,frac(x) := (1− f(α,x))uk (x) , (19)

On the other hand, similar to the budget constraint 3, here each buyer Bk has a maximum rate αk that it is willing to pay.
Then the buyer’s purchasing problem is given as

x̃k,N,frac := argmax
x∈Xk,N,frac

gk,N,frac(x), s.t. (20)

Xk,N,frac := {x | gk,N,frac(x) ≥ 0, f(α,x) ≤ αk}, (21)

And x̃k,N,frac is the optimal solution to maxx∈Xk,N,frac gk,N,frac(x) with a given rate vector α.

Sellers. In the fractional pricing setting, since the buyer Bk pays for the entire data collection, there should exists a fair and
transparent allocation mechanism that distributes a portion of the total price charged to each individual dataset Dj . That is,
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xjpj =
∑M

k=1 fj(α, x̃k,j−1,frac)uk(x̃
k,j−1,frac), where f(·) =

∑N
j=1 fj(·). And we assume that for all j ∈ [N ], fj(·) is

monotonically non-decreasing over α. Therefore, we have an updated profit function for Sej :

rfrac(αj) :=

M∑
k=1

fj(α, x̃k,N,frac)uk(x̃
k,N,frac)− cj . (22)

which gives the following problem:
α∗
j := argmax

αj∈Aj,M,frac

rfrac(αj), s.t. (23)

Aj,M := {αj ∈ [0, 1) | rfrac(αj) ≥ 0}, (24)

From this point onward, the market dynamics stays the same as in the previous section. It is noted that, compared to
maxpj∈Pj,M

r(pj) where optimal flat rate is indirectly connected to the utility, the optimal rate of maxαj∈Aj,M,frac rfrac(αj)
offers a more direct representation of the utility.

B.1. Solving for optimal price of the royalty model

Similar to flat rate, in the case of royalty model, we need to solve buyer’s problem maxx∈Xk,j−1,frac gk,j−1,frac(x) (be-
fore the arrival of Sj) and maxx∈Xk,j,frac gk,j,frac(x) (after the arrival of Sj) for all k ∈ [M ] and seller’s problem
maxαj∈Aj,M,frac rfrac(αj).

Solve buyer’s problems. For each feasible collection of datasets x ∈ Xk,j−1,frac (before the arrival of Sj), denotes
it union with dataset Dj as xnew. Then we run the check: (1) if the net utility of xnew is larger than the one of
x̃k,j−1,frac, i.e., gk,j,frac(x

new) > gk,j,frac(x̃
k,j−1,frac), and (2) if the rate for purchasing xnew is still under the budget

αk, i.e., f(
[
αT αj

]
,xnew) ≤ αk, where

[
αT αj

]
denotes concatenating αj to α. If the answer is positive to bother tests,

then we can determine that the buyer Bk will change its decision and purchase Sj under the rate αj .

Solve seller’s problem. First, we consider when αj = 0. We could first find all x ∈ Xk,j−1,frac such that gk,j,frac(x
new) >

gk,j,frac(x̃
k,j−1,frac). And we denote the set that contains such x as X 1

k,j−1,frac. If X 1
k,j−1,frac is empty, then 1{Bk,Dj ,pj} = 0,

as Sj cannot bring positive value to Bk; else, then for all x ∈ X 1
k,j−1,frac, thanks to the monotonicity of fj over αj ,

we could gradually increase αj until the either of the two criterion are met first: (1) we find the largest αj such that
gk,j,frac(x

new) > gk,j,frac(x̃
k,j−1,frac), and (2) fj(

[
αT αj

]
,xnew) ≤ αk. Then we have the following property about the

optimal rate α∗
j for Equation (23):

Lemma 4 (Characterization of α∗
j under royalty model). Define αx

j as

min

{
sup

αj∈[0,1)

{
αj : fj(

[
αT αj

]
,xnew) < 1− (1− fj(α, x̃k,j−1,frac))

uk(x̃
k,j−1,frac)

uk(xnew)

}
,

sup
αj∈[0,1)

{
αj : fj(

[
αT αj

]
,xnew) ≤ αk

}}
. (25)

For every x ∈ X 1
k,j−1,frac and all k ∈ [M ], we obtain αx

j and their union ∪Mk=1 ∪x∈X 1
k,j−1,frac

{αx
j }. Then we have

α∗
j ∈ ∪Mk=1 ∪x∈X 1

k,j−1,frac
{αx

j }.

Remark B.1 (Similarities between flat rate and royalty model). Observing from 4 and 1, we see that the both the optimal
price p∗j and the optimal rate α∗

j are closely tied to Bk’s maximum willingness to pay. That is, compared to the market prior
to the arrival of Sj , the optimal values are characterized by the minimum of two factors: (1) marginal utility that Sj provides
to Bk and (2) Bk’s budget surplus. It is also noted that, under royalty model, the rate function f also plays an important role
as it determines the how the single rate αj affects the total rate that Bk pays.

C. Applications for Real-Life Scenarios
In real-life settings, the relationship between the data valuation of a training sample and the buyer’s utility uk (i.e., the
economical value, which may be expressed in dollar amounts) can have different mappings, as mentioned in Section 3.1.
Suppose the data valuation function is denoted as vk : D → R for a dataset D. Then, a buyer may expect a linear relationship
between vk and uk, where the utility increases as the data valuation score increases. Alternatively, a buyer may prefer to
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only purchase data beyond a certain threshold for vk. In this section, we present three types mappings between vk and uk to
reflect these scenarios: linear, discrete, and zero-one mappings. We show that these mappings can be easily adapted to our
proposed framework in Section 3. We only present the updated buyer’s purchasing problem (Equation (2)) since the seller’s
pricing problem (Equation (5)) stays the same.

C.1. Linear Outcome

In practice, there are many applications where uk is an affine function of vk. As previously mentioned, training LLMs
on data with higher valuation scores vk can result in better economic value towards downstream model performance, as
shown in previous works (Xia et al., 2024; Yu et al., 2024). In this outcome setting, in addition to considering uk to be a
affine function of vk, we also include a bias variable β to account for other potential other factors that are independent of vk.
Therefore, we can set uk = γvk(x) + β into Equation (1), where γ ∈ R+ is a known coefficient, and obtain buyer Bk’s net
utility function for the linear outcome:

gk,N (x) = γvk(x) + β − xTp, (26)

To obtain optimal price p∗, we can directly refer to same procedure described in Section 3 using set values for γ and β.

C.2. Discrete Outcome

There are also many applications where uk is discrete. For instance, if the data buyers are participating in an LLM benchmark
challenge, such as MMLU (Hendrycks et al., 2021), then training on data that falls within various ranges vk may lead to
drastically different model performance, and hence leaderboard rankings.

To mirror this, consider uk to be a category variable. We denote {ch}Hh=1 as a strictly increasing set of numbers such that
when vk ∈ [ch, ch+1), the buyer will receive reward uk,h. We also assume that uk,h+1 > uk,h since higher data valuation
scores may lead to a larger reward. Therefore, we could set uk =

∑H
h=1 1{vk(x)∈[ch,ch+1)}uk,h(x) and rewrite buyer Bk’s

net utility function as

gk,N (x) =

H∑
h=1

1{vk(x)∈[ch,ch+1)}uk,h(x)− xTp. (27)

We again apply the same procedure in Section 3 to solve for the optimal pricing.

C.3. Zero-One Outcome

There are scenarios where the data buyers are risk-adverse and focus on the effects of rare events. In these cases, suppose
that vk is normalized between [0, 1]. Then buyers may wish to purchase training data with higher values of vk, assuming
that purchasing data with lower vk may result in severe adverse effects. For instance, data buyers who are building AI for
healthcare should not purchase data with incorrect medical information, and even a small amount of contaminated data
can result in severe real-life consequences such as mis-diagnosis (Jin et al., 2021; Zhou et al., 2023) or unsuitable medical
protocols in emergency situations (Sun et al., 2024). Therefore, in this context, we consider uk as a generalized Bernoulli
distribution. The downstream outcome has a small positive reward u with probability vk (normal events) and a massive
negative reward u with probability 1− vk (undesirable rare events). And we assume that E(uk) > 0. Therefore, we can
plug in and obtain buyer Bk’s net utility function:

gk,N (x) = E[uk(x)]− xTp (28)

= vk(x)(u− u) + u− xTp, (29)

which is an affine function of vk. Therefore, we again apply same procedure in Section 3 to solve for the optimal pricing.

C.4. Multiple tasks

In practice, many LLMs are evaluated over multiple tasks (Hendrycks et al., 2021). To this end, we consider the context
where buyer Bk wishes their modelMk to perform well across multiple tasks, denoted as Q. Each data valuation score for
a task is denoted by vk1 , · · · , vkQ and the vector of all task valuations is denoted as vk = (vk,1 · · · vk,Q). Then we consider
that the utility uk is an affine function of the utility in each task, denoted by uk = (uk,1 · · ·uk,Q) that is, uk = θTuk + ϵ,
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where θ ∈ RQ is a coefficient vector and ϵ ∈ R denotes other factors independent from uk. We also assume that the each
task is one of three categories mentioned in the last section. Therefore, we can rewrite uk as a function of vk, which gives
uk = θTuk(vk) + ϵ. Therefore, the buyer’s net utility function becomes

gk,N (x) = θTuk(vk(x)) + ϵ− xTp. (30)

whose solution could adopt the same procedure as described in Section 3 to solve for the optimal pricing.

D. Proofs
Lemma 1 Seller Sj’s optimal price for Dj is characterized as the MWP of one of the buyers in {Bk}Mk=1:

p∗j ∈ ∪Mk=1 max
xnew∈Xk,j−1

{min{∆uk(x
new),∆bk(x̃

k,j−1)}}.

Proof. Recall that before the arrival of dataset Dj , each buyer Bk has already solved maxx∈Xk,j−1
gk,j−1(x) according to

our market dynamics in Section 3, where Xk,j−1 is the set of all feasible purchase decisions. Next, after seller Sj (with Dj)
has arrived on the market, we analyze the conditions in which Bk will purchase Dj at a potential price pj . For each feasible
purchase decision (i.e., a collection of datasets), represented by x ∈ Xk,j−1, let xnew denote its union with Dj . For buyer
Bk to change their previous decision to purchase Dj , there are two requirements that need to be satisfied. First, we must
have:

gk,j(x
new) > gk,j−1(x̃

k,j−1). (31)

That is, the net utility gk,j(x
new) of purchasing decisions xnew, must be larger than the net utility gk,j−1(x̃

k,j−1) of a
previous optimal purchasing decision x̃k,j−1. It is also noted that gk,j(x̃k,j−1) = gk,j−1(x̃

k,j−1). Second, for buyer Bk to
purchase xnew at price pj , we must fulfill the budget constraint:

pj ≤ bk −
(
x̃k,j−1

)T

p = ∆bk(x̃
k,j−1). (32)

Which ensures that purchasing Dj does not exceed the buyer’s budget bk If both requirements are satisfied, then the buyer
Bk will change their previous purchasing decision in order to purchase Dj under the price pj . This procedure is presented
in detail in Algorithm 1 in Appendix F.1.

Next, given the conditions for the buyer Bk to purchase Dj , the seller must solve maxpj∈Pj,M
r(pj) to find the optimal

price p∗j . First, we consider an edge case where the price of dataset Dj is set as pj = 0. For a buyer Bk, we denote
X 1

k,j as the set of all purchasing decisions where including Dj in the purchase improves the buyer’s previous net utility
gk,j(x̃

k,j−1). That is, for every xnew ∈ X 1
k,j , we have gk,j(x

new) > gk,j(x̃
k,j−1). If X 1

k,j is empty, then Bk will not
purchase Dj at any price, since Dj cannot bring positive improved net utility to Bk. Then, when pj gradually increases and
exceeds maxxnew∈Xk,j−1

{min{∆uk(x
new),∆bk(x̃

k,j−1)}}, then Bk will decide not to purchase Dj , causing the value of∑M
k=1 1{Bk,Dj ,pj} to drop by one. Since the profit function r(pj) is a piecewise linear function, the its optimal point must

be one of its breakpoints.

Lemma 2 The optimal price for the seller S under our framework is

p∗t := min{ut, bt},∀t. (33)

With assumptions 1.1 to 2, p∗t gives the buyer B the maximum cumulative net utility over infinite horizon.

Proof. We show that when the buyer pays the optimal price p∗t , its total value is the largest, i.e.,

E [ut − p∗t + δE [r(p∗t , p
∗
t )G | ut, bt]] ≥ E [ut − pt + δE [π(pt, p

∗
t )G | ut, bt]] (34)

for all pt ∈ [0,∞). Through some linear transformation, this is equivalent to show that

E [pt − p∗t + δE [G(π(p∗t , p
∗
t )− π(pt, p

∗
t )) | ut, bt]] ≥ 0. (35)
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We first find the lower bound of G. We see that p∗t = min{ut, b} is a feasible solution, which gives a payoff of

E

[ ∞∑
t=0

δt (ut −min{ut, bt})

]
≥

mint∈[0,∞) E[max{ut − bt, 0}]
1− δ

. (36)

Therefore, we must have G ≥ mint∈[0,∞) E[max{ut−bt,0}]
1−δ . Along with assumptions 1.2 and 2, this gives us, for a given ut

and bt,
δG (π(p∗t , p

∗
t )− π(pt, p

∗
t ))

p∗t − pt
≥ δGL ≥ 1, (37)

implying that
E [pt − p∗t + δE [G(π(p∗t , p

∗
t )− π(pt, p

∗
t )) | ut, bt]] ≥ 0. (38)

Lemma 3 Suppose we have a LLM with parameters θ. We perform a gradient descent step with training sample d with
learning rate η such that θ̂ = θ − η∇L(d; θ). Then,

L(d′; θ)− L(d′; θ̂) ≈ ∇L(d′; θ) · ∇L(d; θ)

Proof. First, we consider the change in loss of z′ using a first-order approximation:

L(d′; θ̂) = L(d′; θ) +∇L(d′; θ)(̇θ̂ − θ) +O(||θ̂ − θ||2) (39)

L(d′; θ)− L(d′; θ̂) = −∇L(d′; θ)(̇θ̂ − θ) +O(||θ̂ − θ||2) (40)

Next, suppose a gradient descent step is taken on training sample d, and the model parameters are updated as: θ̂ =
θ − η∇L(d; θ). Thus, we have θ̂ − θ = −η∇L(d; θ), and the change in loss can be written as

L(d′; θ)− L(d′; θ̂) ≈ η∇L(d′; θ) · ∇L(z; θ) ∝ ∇L(d′; θ) · ∇L(d; θ) (41)

Given that η is a constant.

Lemma 4

Proof. We show that, for every x ∈ X 1
k,j−1,frac, αx

j gives the largest revenue of xnew for Sj . Recall that in the main text, we
need to increase αj from zero until we find the largest αj such that either of:

1. gk,j,frac(x
new) > gk,j,frac(x̃

k,j−1,frac),

2. fj(
[
αT αj

]
,xnew) = αk.

If we rewrite the first condition, we are essentially looking for αj such that

sup
αj∈[0,1)

{
αj : fj(

[
αT αj

]
,xnew) < 1− (1− fj(α, x̃k,j−1,frac))

uk(x̃
k,j−1,frac)

uk(xnew)

}
(42)

Then we see that the revenue that for each x ∈ X 1
k,j−1,frac, seller Sj can make from buyer Bk is

fj(
[
αT αj

]
,xnew)uk(xj(α)), (43)

where fj(
[
αT αj

]
,xnew) is a non-decreasing function over αj while other terms stays fixed. It indicates that αx

j is the
largest αj that the seller Sj could set for buyer Bk to purchase Sj . Therefore, the optimal rate α∗

j is one of the rates
∪Mk=1 ∪x∈X 1

k,j−1,frac
{αx

j }.

E. Additional Experimental Details
E.1. Data Valuation Experiments

Model Training: After obtaining purchasing decisions for all data samples, the buyers train their models using the purchased
data. In order to conduct a fair comparison across buyers, we sample a set number of data from the buyers’ purchases
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(shown in Figure 3). We train each model (i.e., buyer) on these samples separately using LoRA (Hu et al., 2021) for 3
epochs, with a learning rate of 2e-7 and batch size 32.

Model Evaluation: For evaluation, we use the test splits of the previously mentioned datasets. In particular, we use
5-shot evaluation on the MathQA test set, and 4-shot evaluation in on the MedQA test. Table 2 in Appendix F shows the
demonstrations used for 5-shot and 4-shot evaluation.

Market/Pricing Setup: We reserve 1% of the samples from each dataset’s training split to represent the existing data
in their respective markets. Each data sample was randomly priced between (0, 1]. Next, for each remaining data
sample in the training set, we determine whether each buyer will purchase the data sample at potential price points
[0.5, 0.625, 0.75, 0.875, 1.0] by solving Equation (2). The seller then sets their prices according to Equation (5). We price
data separately for each data valuation method. This assesses the method’s ability to discern whether a new data sample is
worth purchasing for each buyer given the existing market data, as noted in our analysis in Section 3.2.

E.2. Data Pricing Experiments

Experiment Setups: We simulate two buyer budgets at each time step t. The first buyer (high budget) has a budget
uniformly randomly generated between 95% and 100% of the total utilities of all 10 datasets listed in the market. The
second buyer (low budget) has a budget uniformly randomly generated between 90% and 95% of the total utilities of all 10
datasets listed in the market.

F. Additional Tables and Figures
F.1. Algorithms

Algorithm 1 Determine if buyer Bk will purchase dataset Dj at price pj

1: Inputs: prices p, optimal solution x̃k,j−1, feasible solutions Xk,j−1, price pj .
2: Output: 1{Bk,Dj ,pj}.
3: Initialize 1{Bk,Dj ,pj} → 0.
4: for x ∈ Xk,j−1 do
5: if gk,j(xnew) > gk,j−1(x̃

k,j−1) and xTp+ pj ≤ bk then
6: 1{Bk,Dj ,pj} ← 1
7: end if
8: end for
9: Return 1{Bk,Dj ,pj}

Algorithm 2 Market Dynamic Procedure
1: Inputs: Buyers {Bk}Mk=1 and sellers {Sj}Nj=1.
2: Initialization: Buyers {Bk}Mk=1 enter the market.
3: for j ∈ [N ] do
4: Sj enters the market with potential prices Pj,M for dataset Dj

5: for pj ∈ Pj,M do
6: for k ∈ [M ] do
7: Bk solves for x̃k,j−1 = argmaxx∈Xk,j

gk,j(x) to determine if they will purchase Dj at potential price pj .
(Eqn. 2)

8: end for
9: Seller calculates net profit r(pj) if they sold potential price pj . (Eqn. 4)

10: end for
11: Seller solves for p∗j = argmaxpj∈Pj,M

r(pj), and sets p∗j as the price for Dj (Eqn. 5), which is fixed for subsequent
rounds.

12: end for
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F.2. Datasets

Dataset # of Train/Valid/Test Example

MathQA 29837/4475/2985 Question: A train running at the speed of 48 km / hr crosses a pole in 9 seconds . what is the length of the train? a )
140 , b ) 130 , c ) 120 , d ) 170 , e ) 160
Answer: C

GSM8K 7473/1319 Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?
Answer: 72

MedQA 10178/1272/1273 Question: A 27-year-old man presents to the emergency room with persistent fever, nausea, and vomiting for the
past 3 days. While waiting to be seen, he quickly becomes disoriented and agitated. Upon examination, he has
visible signs of difficulty breathing with copious oral secretions and generalized muscle twitching. The patient’s
temperature is 104°F (40°C), blood pressure is 90/64 mmHg, pulse is 88/min, and respirations are 18/min with an
oxygen saturation of 90% on room air. When the nurse tries to place a nasal cannula, the patient becomes fearful
and combative. The patient is sedated and placed on mechanical ventilation. Which of the following is a risk factor
for the patient’s most likely diagnosis? a) Contaminated beef b) Epiglottic cyst c) Mosquito bite d) Spelunking
Answer: D

PIQA 16000/2000 Question: How do I ready a guinea pig cage for it’s new occupants? a) Provide the guinea pig with a cage full of a
few inches of bedding made of ripped paper strips, you will also need to supply it with a water bottle and a food
dish. b) Provide the guinea pig with a cage full of a few inches of bedding made of ripped jeans material, you will
also need to supply it with a water bottle and a food dish.
Answer: A

Table 1. Dataset splits and demonstrations from the MathQA, GSM8K, MedQA, and PIQA datasets
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Dataset Prompts

MathQA Question: the banker ’ s gain of a certain sum due 3 years hence at 10 % per annum is rs . 36 . what is the present worth ? a ) rs . 400 , b ) rs . 300 , c )
rs . 500 , d ) rs . 350 , e ) none of these
Answer: A
Question: average age of students of an adult school is 40 years . 120 new students whose average age is 32 years joined the school . as a result the
average age is decreased by 4 years . find the number of students of the school after joining of the new students . a ) 1200 , b ) 120 , c ) 360 , d ) 240 , e
) none of these
Answer: D
Question: sophia finished 2 / 3 of a book . she calculated that she finished 90 more pages than she has yet to read . how long is her book ? a ) 229 , b )
270 , c ) 877 , d ) 266 , e ) 281
Answer: B
Question: 120 is what percent of 50 ? na ) 5 % , b ) 240 % , c ) 50% , d ) 2 % , e ) 500
Answer: B
Question: there are 10 girls and 20 boys in a classroom . what is the ratio of girls to boys ? a ) 1 / 2 , b ) 1 / 3 , c ) 1 / 5 , d ) 10 / 30 , e ) 2 / 5
Answer: A

MedQA Question: A mother brings her 3-week-old infant to the pediatrician’s office because she is concerned about his feeding habits. He was born without
complications and has not had any medical problems up until this time. However, for the past 4 days, he has been fussy, is regurgitating all of his feeds,
and his vomit is yellow in color. On physical exam, the child’s abdomen is minimally distended but no other abnormalities are appreciated. Which of
the following embryologic errors could account for this presentation? a) Abnormal migration of ventral pancreatic bud b) Complete failure of proximal
duodenum to recanalize c) Abnormal hypertrophy of the pylorus d) Failure of lateral body folds to move ventrally and fuse in the midline
Answer: A
Question: A 53-year-old man comes to the emergency department because of severe right-sided flank pain for 3 hours. The pain is colicky, radiates
towards his right groin, and he describes it as 8/10 in intensity. He has vomited once. He has no history of similar episodes in the past. Last year,
he was treated with naproxen for swelling and pain of his right toe. He has a history of hypertension. He drinks one to two beers on the weekends.
Current medications include amlodipine. He appears uncomfortable. His temperature is 37.10̆0b0C (99.30̆0b0F), pulse is 101/min, and blood pressure
is 130/90 mm Hg. Examination shows a soft, nontender abdomen and right costovertebral angle tenderness. An upright x-ray of the abdomen shows
no abnormalities. A CT scan of the abdomen and pelvis shows a 7-mm stone in the proximal ureter and grade I hydronephrosis on the right. Which of
the following is most likely to be seen on urinalysis? a) Urinary pH: 7.3 b) Urinary pH: 4.7 c) Positive nitrites test d) Largely positive urinary protein
Answer: B
Question: A 48-year-old woman comes to the emergency department because of a photosensitive blistering rash on her hands, forearms, and face for 3
weeks. The lesions are not itchy. She has also noticed that her urine has been dark brown in color recently. Twenty years ago, she was successfully
treated for Coats disease of the retina via retinal sclerotherapy. She is currently on hormonal replacement therapy for perimenopausal symptoms. Her
aunt and sister have a history of a similar skin lesions. Examination shows multiple fluid-filled blisters and oozing erosions on the forearms, dorsal side
of both hands, and forehead. There is hyperpigmented scarring and patches of bald skin along the sides of the blisters. Laboratory studies show a
normal serum ferritin concentration. Which of the following is the most appropriate next step in management to induce remission in this patient? a)
Pursue liver transplantation b) Begin oral thalidomide therapy c) Begin phlebotomy therapy d) Begin oral hydroxychloroquine therapy
Answer: C
Question: A 23-year-old pregnant woman at 22 weeks gestation presents with burning upon urination. She states it started 1 day ago and has been
worsening despite drinking more water and taking cranberry extract. She otherwise feels well and is followed by a doctor for her pregnancy. Her
temperature is 97.70̆0b0F (36.50̆0b0C), blood pressure is 122/77 mmHg, pulse is 80/min, respirations are 19/min, and oxygen saturation is 98% on
room air. Physical exam is notable for an absence of costovertebral angle tenderness and a gravid uterus. Which of the following is the best treatment
for this patient? a) Ampicillin b) Ceftriaxone c) Doxycycline d) Nitrofurantoin
Answer: D

Table 2. Demonstrations included for 5-shot evaluation on the MathQA dataset and for 4-shot evaluation on the MedQA dataset.
Demostrations were randomly selected from their respective dataset’s training sets.
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F.3. Additional Experimental Results

(a) MathQA (Pythia-1b) (b) MedQA (Pythia-1b) (c) PIQA (Pythia-1b) (d) Avg. Price (Pythia-1b)

(e) MathQA (Pythia-410m) (f) MedQA (Pythia-410m) (g) PIQA (Pythia-410m) (h) Avg. Price (Pythia-410m)

Figure 6. Buyers’ model (Pythia-410m) performance and costs from their purchased data from math, medical, and physical reasoning data
markets. Purchasing decisions were using the constant, random, BM25, InflIP data valuation methods (see Section 5 for details).
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(a) High-budget buyers’ utilities
(Pythia-1b).
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(b) Low-budget buyers’ utilities
(Pythia-1b).
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(c) Sellers’ profits (Pythia-1b).
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(d) Sellers’ participation (Pythia-
1b).
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(e) High-budget buyers’ utilities
(Pythia-410m).
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(f) Low-budget buyers’ utilities
(Pythia-410m).
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(g) Sellers’ profits (Pythia-
410m).
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(h) Sellers’ participation (Pythia-
410m).

0 20 40 60 80 100
Time Steps

0

150

300

450

C
um

m
ul

at
iv

e 
U

til
iti

es

Fairshare
Reduced
Random
Current

(i) High-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(j) Low-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(k) Sellers’ profits (Llama-3.2-
Inst.-1b).
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(l) Sellers’ participation (Llama-
3.2-Inst.-1b).

Figure 7. Analysis of (1) buyer’s cumulative utilities with high-budget buyer (Figures 7a, 7e and 7i) and low-budget buyer (Figures 7b, 7f
and 7j), and (2) sellers’ average cumulative profits (Figures 7c, 7g and 7k) and number of sellers in the market (Figures 7d, 7h and 7l)
over time (T = 100). Model: Pythia-1b, Pythia-410m, and Llama-3.2-Inst.-1b; Task: medqaQA. Experimental groups: (1) fairshare, (2)
reduced, (3) random, and (4) current pricing.
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(a) High-budget buyers’ utilities
(Pythia-1b).
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(b) Low-budget buyers’ utilities
(Pythia-1b).
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(c) Sellers’ profits (Pythia-1b).
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(d) Sellers’ participation (Pythia-
1b).
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(e) High-budget buyers’ utilities
(Pythia-410m).
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(f) Low-budget buyers’ utilities
(Pythia-410m).
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(g) Sellers’ profits (Pythia-
410m).
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(h) Sellers’ participation (Pythia-
410m).
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(i) High-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(j) Low-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(k) Sellers’ profits (Llama-3.2-
Inst.-1b).
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(l) Sellers’ participation (Llama-
3.2-Inst.-1b).

Figure 8. Analysis of (1) buyer’s cumulative utilities with high-budget buyer (Figures 8a, 8e and 8i) and low-budget buyer (Figures 8b, 8f
and 8j), and (2) sellers’ average cumulative profits (Figures 8c, 8g and 8k) and number of sellers in the market (Figures 8d, 8h and 8l)
over time (T = 100). Model: Pythia-1b, Pythia-410m, and Llama-3.2-Inst.-1b; Task: MathQA. Experimental groups: (1) fairshare, (2)
reduced, (3) random, and (4) current pricing.
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(a) High-budget buyers’ utilities
(Pythia-1b).
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(b) Low-budget buyers’ utilities
(Pythia-1b).

0 20 40 60 80 100
Time Steps

0

100

200

300

400

C
um

ul
at

iv
e 

Pr
of

it

(c) Sellers’ profits (Pythia-1b).
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(d) Sellers’ participation (Pythia-
1b).
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(e) High-budget buyers’ utilities
(Pythia-410m).
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(f) Low-budget buyers’ utilities
(Pythia-410m).
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(g) Sellers’ profits (Pythia-
410m).
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(h) Sellers’ participation (Pythia-
410m).
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(i) High-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(j) Low-budget buyers’ utilities
(Llama-3.2-Inst.-1b).
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(k) Sellers’ profits (Llama-3.2-
Inst.-1b).
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(l) Sellers’ participation (Llama-
3.2-Inst.-1b).

Figure 9. Analysis of (1) buyer’s cumulative utilities with high-budget buyer (Figures 9a, 9e and 9i) and low-budget buyer (Figures 9b, 9f
and 9j), and (2) sellers’ average cumulative profits (Figures 9c, 9g and 9k) and number of sellers in the market (Figures 9d, 9h and 9l) over
time (T = 100). Model: Pythia-1b, Pythia-410m, and Llama-3.2-Inst.-1b; Task: PIQA. Experimental groups: (1) fairshare, (2) reduced,
(3) random, and (4) current pricing.
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(a) High-budget buyer (MedAQ, Pythia-1b).
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(b) High-budget buyer (MedAQ, Pythia-
410m).
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(c) High-budget buyer (MedAQ, Llama-3.2-
Inst.-1b).
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(d) High-budget buyer (MathAQ, Pythia-
1b).
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(e) High-budget buyer (MathAQ, Pythia-
410m).
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(f) High-budget buyer (MathAQ, Llama-3.2-
Inst.-1b).
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(g) High-budget buyer (PiQA, Pythia-1b).
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(h) High-budget buyer (PiQA, Pythia-
410m).
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(i) High-budget buyer (PiQA, Llama-3.2-
Inst.-1b).

Figure 10. Number of purchased datasets for the buyer with high budget over time periods (T = 100). Model: Pythia-1b, Pythia-410m,
and Llama-3.2-Inst.-1b; Task: MedQA, MathQA, and PiQA. Experimental groups: (1) fairshare, (2) reduced, (3) random, and (4) current
pricing.
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(a) Low-budget buyer (MedAQ, Pythia-1b).
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(b) Low-budget buyer (MedAQ, Pythia-1b).
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(c) Low-budget buyer (MedAQ, Llama-3.2-
Inst.-1b).
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(d) Low-budget buyer (MathQA, Pythia-
1b).
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(e) Low-budget buyer (MathQA, Pythia-
410m).
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(f) Low-budget buyer (MathQA, Llama-3.2-
Inst.-1b).
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(g) Low-budget buyer (PiQA, Pythia-1b).
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(h) Low-budget buyer (PiQA, Pythia-
410m).
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(i) Low-budget buyer (PiQA, Llama-3.2-
Inst.-1b).

Figure 11. Number of purchased datasets for the buyer with low budget over time periods (T = 100). Model: Pythia-1b, Pythia-410m,
and Llama-3.2-Inst.-1b; Task: MedQA, MathQA, and PIQA. Experimental groups: (1) fairshare, (2) reduced, (3) random, and (4) current
pricing.
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