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Abstract

A well-balanced exploration-exploitation trade-off
is crucial for successful acquisition functions in
Bayesian optimization. However, there is a lack of
quantitative measures for exploration, making it
difficult to analyze and compare different acqui-
sition functions. This work introduces two novel
approaches – observation traveling salesman dis-
tance and observation entropy – to quantify the
exploration characteristics of acquisition functions
based on their selected observations. Using these
measures, we examine the explorative nature of
several well-known acquisition functions across a
diverse set of black-box problems, uncover links
between exploration and empirical performance,
and reveal new relationships among existing acqui-
sition functions. Beyond enabling a deeper under-
standing of acquisition functions, these measures
also provide a foundation for guiding their design
in a more principled and systematic manner.

1 INTRODUCTION

Bayesian optimization (BO) is a widely used method to max-
imize black-box functions. Given a function f : X → R,
BO guides the optimization process by sequentially con-
structing probabilistic surrogates – typically a Gaussian
process (GP) – and selecting new sampling points by max-
imizing an acquisition function (AF) α : X → R. The AF
is a key component for any BO algorithm that chooses the
point to evaluate next. As BO is typically used for problems
where the underlying function is expected to be multi-modal,
it is crucial that the AF exhibits explorative behavior, allow-
ing it to discover different modes of the objective function,
but also exploitative behavior, allowing it to focus on finding
the optimum in a promising region of the search space X .

*Equal contribution.
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Figure 1: Observations of UCB with various β values (1, 10,
and 100) on a two-dimensional GP-prior sample reveal the
explorative behavior for different β. The black crosses are
initial points, the orange plus signs are the observations of
the BO phase, and the red star is the optimal location.

In short, a successful AF should exhibit a good exploration-
exploitation trade-off (EETO) that balances these desiderata.

It is widely recognized in the BO community that dif-
ferent AFs exhibit varying degrees of explorative prefer-
ence, and some AFs include parameters that allow explicit
control over this behavior. For example, upper confidence
bound (UCB) [Srinivas et al., 2010] employs a parameter
β to regulate the level of exploration. Figure 1 illustrates
an example of UCB with various β values applied to a two-
dimensional GP prior with a length scale of 0.1. In this
experiment, five initial points were fixed, and observations
were collected over 25 iterations for each β value. A larger
β produces a more dispersed layout of observations, indi-
cating increased exploration. Similar behavior is observed
in other acquisition functions, such as weighted expected
improvement [Sóbester et al., 2005] and ϵ-greedy strate-
gies [Sutton, 2018]. However, when comparing AFs from
different families – such as UCB versus weighted expected
improvement or ϵ-greedy strategies – assessing their explo-
ration preferences becomes challenging, as no universally
accepted metric exists to quantify these characteristics. Un-
derstanding the exploration tendencies of different AFs is
important, as this knowledge influences the selection of ap-
propriate AFs for real-world problems, especially when a
specific level of exploration is required.
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In this work, we fill this gap by proposing two novel quan-
tities to quantify the level of exploration. We make the fol-
lowing contributions:

• We propose two novel means for quantifying exploration
named observation traveling salesman distance (OTSD)
and observation entropy (OE)1. The first quantity is based
on the total Euclidean distance of a traveling salesman
tour connecting all the observation points in the search
space, while the second adopts an information-theoretic
approach and uses the empirical differential entropy of
the observations.

• We introduce the first empirical taxonomy of acquisition
function exploration based on these new methods, demon-
strating their effectiveness in capturing exploration behav-
ior.

• We provide an extensive evaluation across a diverse set
of low- and high-dimensional synthetic and real-world
benchmarks, demonstrating the exploration behavior of
popular acquisition functions and their extensions. OTSD
and OE strongly correlate in benchmark problems, cross-
validating their reliability.

2 BACKGROUND AND RELATED WORK

2.1 GAUSSIAN PROCESSES

A GP is a stochastic process that models an unknown func-
tion. It is characterized by the property that any finite set
of function evaluations follows a multivariate Gaussian dis-
tribution. Assuming that the prior has a zero mean, a GP
is uniquely determined by the current observations Dt :=
{(xi, yxi

)}ti=1 and the kernel function κ(x,x′). Given
these, at stage t, the predicted mean of yx at a new point
x is µt(x) = κt(x)

T (Kt)
−1yt, and the predicted covari-

ance between points x and x′ is Covt(x,x
′) = κ(x,x′)−

κt(x)
T (Kt + σ̃I)−1κt(x

′), where [κt(x)]i = κ(xi,x),
[yt]i = yxi , σ̃ is noise level, and [Kt]i,j = κ(xi,xj). At
point x, the GP posterior yx ∼ N (µt(x), σt(x)), where
σt(x) := Covt(x,x); see Rasmussen et al. [2006] for more
details.

2.2 ACQUISITION FUNCTIONS

One-step. One commonly used AF for BO is expected
improvement (EI) [Jones et al., 1998], defined as αEI(x) :=
E
[
max{yx − y∗t , 0}

]
, where y∗t denotes the current-best

(i.e., incumbent) observation. A closely related function
is probability of improvement (PI) [Jones, 2001], which
considers only the probability that a new observation yx
exceeds the incumbent y∗t , without accounting for the mag-
nitude of improvement: αPI(x) := P

[
yx > y∗t

]
. Both

1Our code is available at https://github.com/LeoIV/
exploring-exploration-public

EI and PI have closed-form expressions and are therefore
computationally efficient. Similarly, UCB is defined as
αUCB(x) := µt(x) +

√
βt σt(x), where βt is a parame-

ter that balances exploration and exploitation. In contrast,
information-theoretic AFs select the next sampling point
to reduce uncertainty about a particular property of the op-
timum – whether its location as in entropy search (ES) or
predictive entropy search (PES) [Hennig and Schuler, 2012,
Hernández-Lobato et al., 2014], its value as in max-value
entropy search (MES) [Wang and Jegelka, 2017], or both as
in joint entropy search (JES) [Hvarfner et al., 2022, Tu et al.,
2022]. Thompson sampling (TS) implicitly balances the
exploration-exploitation trade-off by maximizing posterior
samples from a Gaussian process whose accuracy improves
as more observations are incorporated [Bijl et al., 2016].
However, TS has been criticized for being overly explorative.
To address this, several approaches have been proposed to
make it less explorative, including trust regions (TRs) that
restrict the space over which the AF is maximized to a sub-
region of X [Eriksson et al., 2019] and random axis-aligned
subspace perturbations (RAASP) sampling that only con-
siders points close to the incumbent observation for the
maximization of the AF [Rashidi et al., 2024].

Multi-step. One common property of all aforementioned
AFs is that they assume that the next evaluation will be the
last, i.e., they greedily maximize the simple or inference
regret for the next iteration, assuming no more evaluations
will be performed [Wang and Jegelka, 2017]. In contrast,
multi-step AFs [Ginsbourger and Le Riche, 2010, Wu and
Frazier, 2019, Jiang et al., 2020] consider the impact of the
current choice for future evaluations: αMS(x) = v1(x|Dt)+
Ey [maxx2

(v1(x2|Dt ∪ {(x, yx)}+ Ey2
[. . .])], where

v1(x) is the one-step marginal value of x, e.g., the expected
improvement upon observing x. See Jiang et al. [2020]
for details. Multi-step AFs, such as knowledge gradi-
ent (KG) [Frazier, 2009], are computationally expensive
since the expectations of αMS must be approximated with
Monte-Carlo methods and, therefore, are often limited to
one lookahead step even though the theoretical framework
can usually be extended to arbitrarily many lookahead
steps [Jiang et al., 2020]. At the same time, they are
fundamentally different from previous AFs and may be
characterized by a unique EETO [Wu and Frazier, 2019].

Batch. Batching is a technique used where multiple func-
tion evaluations can be performed in parallel. Instead of
re-conditioning the GP after a single new observation, one
observes q points in parallel. Batching requires modifica-
tions of the AF to ensure that a batch contains a diverse set of
candidates. One strategy for batch BO is using multi-point
AFs that estimate the improvement of some utility upon ob-
serving q new points [Wang et al., 2020]. Other approaches
include local penalization [González et al., 2016] that repels
points from regions around points already included in the
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batch.

2.3 EXPRESSIONS OF EXPLORATION

Quantifying Exploration. Although achieving a good
balance between exploration and exploitation is widely
recognized as a crucial component of an effective acqui-
sition function, the BO community still lacks a simple and
convenient metric for quantifying exploration. Several re-
lated metrics have been proposed – such as total center
distance (TCD) [Eriksson et al., 2019, Fig. 6] and incum-
bent distance [Hvarfner et al., 2024, Fig. 20] – but each has
notable shortcomings. For instance, TCD focuses solely on
the movement of the incumbent, and it fails when the first
sample lands on the optimum (yielding a TCD of zero) or
when the search oscillates between multiple optima. Simi-
larly, incumbent distance measures the distance between the
next query and the incumbent but does not reliably capture
exploration, as repeatedly querying the opposite corner of
the space can yield high values without representing mean-
ingful explorative behavior.

Another approach employs Pareto analysis to interpret the
EETO [Bischl et al., 2014, Feng et al., 2015, Žilinskas and
Calvin, 2019, De Ath et al., 2021]. In this framework, explo-
ration and exploitation are treated as distinct objectives, with
the utility function depending on both the predicted mean µ
and variance σ. Under this interpretation, many AFs, such
as PI, EI, and UCB, can be accommodated. However, more
sophisticated AFs, particularly those based on information-
theoretic principles, do not conform to this framework.

Quantifying Exploration in Evolutionary Algo-
rithms. The measurement of the exploration extends
beyond Bayesian optimization. In evolutionary algo-
rithms (EAs) [Eiben and Smith, 2015], this quantity is
evaluated from two perspectives: genotypic and phe-
notypic [Črepinšek et al., 2013]. Genotypic measures
assess diversity in the input space using tree-based
techniques [Burke et al., 2002, Črepinšek et al., 2011],
Euclidean distance quantities [McGinley et al., 2011],
entropy-based methods [Misevičius, 2011], and individual-
population similarity indices [Inoue et al., 2015]. In
contrast, phenotypic measures evaluate diversity in terms
of fitness or performance, employing distance-based
methods [Chaiyaratana et al., 2007], entropy-based
measures [Adra and Fleming, 2010, Turkey and Poli,
2014], and local-attraction metrics [Jerebic et al., 2021].
Notably, the distance-based approaches mentioned above
typically measure the distance from each individual to
the population’s center rather than the aggregate distance
connecting all individuals, distinguishing them from our
method. Additionally, entropy-based approaches have
mainly focused on low-dimensional discrete domains –
often using binning methods to approximate entropy –

whereas our proposed techniques target high-dimensional
continuous domains.

Quantifying Exploration in Reinforcement Learning.
In reinforcement learning (RL), whether in simpler settings
like multi-armed bandits (MABs), a special case of Markov
decision processes (MDPs) where the state remains constant,
or in more complex MDP scenarios, an agent must balance
exploration and exploitation to achieve long-term benefits.

In MAB problems, one measure of exploration is track-
ing the frequency with which each action (arm) is se-
lected [Kuleshov and Precup, 2014]. For general RL tasks,
both states and actions must be considered. Some meth-
ods promote exploration by maximizing the entropy of
the action distribution [Williams and Peng, 1991, Ahmed
et al., 2019] to encourage the agent to try diverse actions.
Curiosity-driven exploration, often quantified using infor-
mation gain [Sun et al., 2011, Houthooft et al., 2016], pro-
vides another approach to exploration in the state-action
space. Existing entropy-based exploration methods in RL
often rely on parametric methods, like variational inference,
which leverage prior knowledge of the underlying density
functions (e.g., for actions) but may be inaccurate when
the parametric assumptions fail. In BO, we do not have
access to the true density of observations, so we adopt a non-
parametric approach for density estimation. Consequently,
our method is not directly comparable to previous entropy-
based approaches in RL that depend on specific parametric
families.

Low-Discrepancy Sequences. Low-discrepancy se-
quences, also known as quasi-random sequences, are
designed to fill a space more uniformly than random
sampling. They are often used in numerical integration
and optimization tasks to ensure that samples are evenly
distributed across the search space. Examples include Sobol
sequences [Sobol, 1967] and Halton sequences [Halton,
1964]. Discrepancy measure themselves, such as the star
discrepancy [Niederreiter, 1992], quantify how uniformly a
set of points covers a space and thus can be used to assess
exploration. However, current methods are expensive to
compute and finding more efficient methods is an active
area of research [Clément et al., 2023].

3 QUANTIFYING EXPLORATION

Motivated by the Cambridge dictionary definition of explo-
ration as “the activity of travelling to and around a place,
especially one where you have never been [. . . ] before, in
order to find out more about it”, we define exploration in
the context of black-box optimization.

Definition 3.1 (Exploration). The activity of sampling in
a region of the search space, especially one that has never
been sampled before, to learn more about a global optimum.



Quantifying the exploration preferences of AFs is crucial
for understanding their behavior and for developing an ef-
fective AF portfolio to achieve better performance. In this
section, we first summarize existing knowledge on the ex-
ploration tendencies of different acquisition functions and
then propose two key methods to quantify exploration.

3.1 ANALYSIS OF TRIBAL KNOWLEDGE

The EI and PI AFs have been shown to explore relatively
little [De Ath et al., 2021], with PI being even less explo-
rative than EI [Benjamins et al., 2022]. In contrast, the KG
AF – which can be seen as a generalization of EI [Wu,
2017, p. 12] – has been reported to be more explorative
than EI [Frazier, 2009, p. 89]. Information-theoretic acqui-
sition functions are generally considered on the explorative
side [Hernández-Lobato et al., 2014], although they can be
surpassed by UCB with a high β value. At the extremes of
the spectrum, random search (RS) samples points uniformly
at random throughout the domain X , while deterministic
selection (DM) always selects the same fixed point; both
completely disregard the probabilistic surrogate model. Em-
pirical findings on the explorative behavior of AFs can be
broadly summarized by the following informal ordering:
RS ⪰ UCB (high β) ⪰ Information Theoretic ?⃝KG ⪰
EI ⪰ PI ⪰ UCB (low β) ≻ DM. Finally, although TS is
known to be explorative [Do et al., 2024], its exact place-
ment in this ranking remains unclear. This ordering reflects
a general quantitative understanding within the BO commu-
nity; however, the relative explorative behavior of acquisi-
tion functions may vary depending on the specific problem
setting. In particular, the relationship between information-
theoretic acquisition functions and KG remains uncertain,
as indicated by the question mark.

3.2 EXPLORATION METHODS

We introduce two quantities to evaluate the exploration be-
havior of different black-box optimization methods based
on the locations of their observations in the search space.

Observation Traveling Salesman Distance (OTSD).
OTSD quantifies the minimum Euclidean distance required
to connect all observation points by formulating the prob-
lem as a traveling salesman problem (TSP). Given a set
of t observation points Xt := {xi}ti=1 from Dt, OTSD is
defined as the total length of the shortest possible route that
visits each observation point exactly once and returns to the
starting point. Mathematically, it is expressed as:

OTSD(Xt) := min
τ∈St

(
t∑

i=1

∥xτ(i) − xτ(i+1)∥

)
, (1)

where τ is a permutation of {1, 2, . . . , t} representing a tour
that visits all points with τ(t + 1) := τ(1), ∥·∥ denotes

the Euclidean distance, and St is the set of all possible
permutations of t elements. OTSD increases monotonically
with the number of observations.

Since the TSP is NP-hard, we approximate the solution us-
ing an insertion heuristic method [Rosenkrantz et al., 1974],
which has a time complexity of O(dT 2) for T observations
in d dimensions, and the worst-case tour length is guaran-
teed to be at most twice the optimal distance. This approach
conveniently allows us to track the OTSD for each t ≤ T .
The pseudocode for calculating OTSD is in Algorithm 1.

Algorithm 1 OTSD Insertion Heuristic
Input: Observation locations Xt = {x1,x2, . . . ,xt}
Output: Estimated TSP distance, OTSD(Xt)

1: Compute pairwise distances: D(i, j) = ∥xi − xj∥ for
all i, j ∈ {1, . . . , t}, i ̸= j.

2: Initialize the permutation τ : {1} → {1} that represents
the (trivial) tour order on one point, x1.
For a tour on k points, define τi := τ(i mod k).

3: Initialize OTSD← 0
4: for k = 2 to t do
5: For each consecutive pair in the tour τ on points

{x1, . . . ,xk−1}, compute the insertion cost for plac-
ing xk between them: ∀i = 1, . . . , k − 1,
∆C(i) := D(τi, k) +D(k, τi+1)−D(τi, τi+1)

6: Identify the insertion point i⋆ that minimizes ∆C(i).
7: Update the permutation to τ on {x1, . . . ,xk} by in-

serting xk at the optimal position i⋆.
8: OTSD← OTSD +∆C(i⋆).
9: end for

10: Return OTSD.

Normalized OTSD. To eliminate the influence of the
problem dimensionality and ensure value consistency across
different problems, we propose the normalized OTSD:

OTSDnorm(Xt) :=
OTSD(Xt)

Ψ(d, t)
, (2)

where d denotes the dimensionality of the problem and
Ψ(d, t) := 2

√
5d
(
3t
2

)1−1/d
is the upper bound derived in

Proposition 3.2. Unlike OTSD, the normalized OTSD is
non-monotonic; a constant value indicates that the AF does
not change its behavior throughout the optimization, while
higher and lower values suggest increased and decreased
exploration, respectively. We use the normalized OTSD to
aggregate results across different problems in Section 4.

Observation Entropy (OE). By treating observation
points as samples from a random variable, we quantify
the uniformity of the data distribution using empirical dif-
ferential entropy. Higher entropy values indicate a more
uniform spread of points, reflecting greater exploration.
To estimate entropy without assuming an underlying dis-
tribution, we employ a non-parametric entropy estimator.



Several methods exist, including histogram-based [Györfi
and Van der Meulen, 1987], kernel-density based [Ahmad
and Lin, 1976], and nearest-neighbor based [Kozachenko
and Leonenko, 1987] approaches. Among them, the
nearest-neighbor-based estimator, namely the Kozachenko-
Leonenko (KL) estimator, stands out for its sample ef-
ficiency and applicability in moderate-dimensional cases
(d ≤ 50), while other methods are very costly for d ≥ 10.

We define OE using the KL estimator as follows:

OE(Xt) :=
d

t

t∑
i=1

log
(
εki
)
+ ψ(t)− ψ(1) + log Vd, (3)

where εki denotes the distance between xi and its k-th near-
est neighbor, Vd := πd/2/Γ(1 + d/2) is the volume of the
d-dimensional unit ball, Γ(·) denotes the Gamma function,
and ψ(t) := ∂

∂t log Γ(t) is the digamma function. Follow-
ing the recommendation of Berrett et al. [2019], we set
k = log(t) (using the natural logarithm), as increasing k
with t improves the efficiency of the estimation.

OE is non-monotonic and may take on either positive or neg-
ative values. An increasing OE over BO iterations indicates
that the observed samples are more uniformly distributed,
suggesting more exploration. Because of its non-monotonic
nature, a sharp change in OE signals that an AF is altering
its level of exploration over iterations. The computational
complexity of OE is O(dT 2) for T observations in d di-
mensions, or O(dTk) if distances are provided or t ≤ T
gets updated sequentially. Algorithm 2 details the steps for
computing OE.

Algorithm 2 Kozachenko-Leonenko Entropy Estimation

Require: Observation locations Xt = {x1,x2, . . . ,xt}
Ensure: Estimated observation entropy OE(Xt)

1: Compute pairwise distances: D(i, j) = ∥xi − xj∥ for
all i, j ∈ {1, . . . , t} with i ̸= j.

2: For each point xi, determine εki as the k-th smallest
value in the set {D(i, j) : j ̸= i}.

3: Compute the volume of the unit ball in Rd: Vd =
πd/2

Γ
(
1+

d
2

) , where Γ(·) denotes the gamma function.

4: Evaluate the digamma functions ψ(t) and ψ(1), then
compute the KL entropy estimator as given in Equa-
tion (3).

5: Return OE(Xt).

We illustrate OTSD, normalized OTSD, and OE for various
AFs on the 6-dimensional Hartmann function in Figure 2.
The left panel shows the OTSD, which increases mono-
tonically as new observations are added. The center panel
presents the normalized OTSD, providing a clearer distinc-
tion among the different AFs. The right panel displays the
OE results. Since DM yields very low OE values (around
−134), we exclude DM from the OE plot for better visu-
alization. Overall, the figure demonstrates the explorative
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Figure 2: The exploration quantities OTSD and OE of RS,
UCB (β = 0.1), EI, PI, MES, and deterministic selection
(DM) on the 6-dimensional Hartmann function.From left
to right, these plots show OTSD, normalized OTSD, and
OE, respectively. DM values for OE (around −134) are
hidden for better visualization. The shaded areas show the
standard error of the mean.

behavior of the various AFs and cross-validates the perfor-
mance of OTSD and OE, as both yield consistent rankings.

The values of OTSD and OE are not directly comparable
between different objective functions, as variations in input
dimension, domain, and function landscape can significantly
impact these quantities; neither quantity is invariant under
a change of variables (for OE, this reflects that differential
entropy is not invariant, unlike discrete entropy).

3.3 EXPLORATION BOUNDS

In Figure 2, we denote OTSD and OE as the statistical es-
timators based on the given input Xt. In this section, we
establish bounds on their true values, denoted as OTSD∗(t)
and OE∗(t) which depend only on t. The proofs for Propo-
sitions 3.2 and 3.3 are detailed in Appendices A.1 and A.2,
respectively.

Proposition 3.2 (Upper and Lower Bounds for the True
OTSD). Let t denote the number of observations drawn
from the unit cube [0, 1]d in d-dimensional space (d ≥ 3).
Building on the bounds derived in Bollobás and Meir [1992]
and Balogh et al. [2024], the true observation traveling
salesman distance OTSD∗(t) satisfies

0 ≤ OTSD∗(t) ≤ Ψ(d, t)
def
= 2
√
5d

(
3

2
t

)1−1/d

. (4)

Note that the minimum traveling salesman distance is zero,
which occurs when all points coincide.

Proposition 3.3 (Upper Bound for the True OE). For any
probability distribution supported in the unit cube of di-
mension d, the uniform distribution achieves the maximum



differential entropy with a zero value. Conversely, the differ-
ential entropy can be made arbitrarily negative, implying
that there is no finite lower bound.

Typically, the sample set Xt does not consist of indepen-
dently and identically distributed points, as they are chosen
adaptively via the Bayesian optimization process. Conse-
quently, it is not necessarily the case that OE(Xt) ≤ 0, even
when the samples lie within the unit hypercube. Further
discussion is provided in Appendix A.3.

Extension to Non-Euclidean Domains. In many prac-
tical problems, the input domain may be non-Euclidean.
Examples include integers, ordinals, categoricals, protein
sequences, strings, and graphs. Quantifying exploration on
these non-Euclidean domains is particularly interesting. The
OTSD can still be applied in these settings provided a suit-
able metric is available since the insertion heuristic in Al-
gorithm 1 relies on the triangle inequality and thus only
requires a metric space. However, the estimation of OE be-
comes more challenging. In particular, the KL estimator in
Equation (3) is designed for estimating differential entropy
in Euclidean spaces. Defining an appropriate notion of en-
tropy and developing an estimator for such irregular spaces
is a case-by-case problem that requires further investigation
and is beyond the scope of this paper.

4 EXPERIMENTS

We evaluate OTSD (including normalized OTSD) and OE
on a wide range of synthetic and real-world benchmarks to
tackle the following three research questions:

RQ1. Are the proposed quantities consistent with the lit-
erature, i.e., do OTSD and OE show higher exploration
levels for AFs that are known to be more explorative?

RQ2. How do AFs, whose exploration level has not yet
been discussed, relate to others in terms of exploration?

RQ3. What is the relationship between the level of explo-
ration and optimization performance?

4.1 EXPERIMENTAL SETUP

Evaluation. For each run of an AF on a given benchmark,
we record the locations xi ∈ X and their corresponding
function values yxi ∈ R. From these observations, we com-
pute the OTSD, the OE, and the performance, defined as the
highest function value observed during the run. To aggre-
gate OTSD results across different problems, we normalize
OTSD using Equation (2) and then average these normalized
values across the selected benchmarks. We give runtimes
for OTSD and OE in Appendix E; OTSD is fast to compute,
requiring less than 200 ms while OE needs ≈ 5 s for 1,000

observations in a 20d space. We also empirically validate
Proposition 3.2 in Appendix C.

Since there is no straightforward method to normalize OE
and performance across problems with varying dimensions,
we assess their relative rankings of competing methods.
Specifically, we compute the mean OE or performance for
each method on each problem over ten repetitions, rank
these mean values per problem, and then average the rank-
ings across problems to obtain the mean relative ranking
(individual optimization performances for each benchmark
are provided in Appendix D.6). Note that for OE, the rank-
ing is reversed so that more explorative methods receive a
larger rank, ensuring consistency with the normalized OTSD
results. Because the KL estimator exhibits significant bias
in high dimensions, we report OE only for low-dimensional
experiments (d ≤ 20); for high-dimensional real-world ex-
periments, we exclusively use OTSD.

For better clarity, we only plot the mean values for normal-
ized OTSD and the ranks. In Appendix D.2, we show the
figures with the standard error of the mean.

We also compare against the star discrepancy [Niederreiter,
1992] as a measure of uniformity in the input space using
the parallel implementation by Clément et al. [2023]. Since
computing the star discrepancy quickly becomes infeasi-
ble for high-dimensional problems or long sequences, we
only report results for the synthetic, low-dimensional bench-
marks with at most 8 dimensions and 200 function evalu-
ations. Importantly, low star discrepancy values indicate a
more uniform distribution of points, i.e., higher exploration.
Therefore, the star discrepancy is inversely related to OTSD
and OE.

Acquisition Functions. We study the following AFs: ex-
pected improvement (EI), probability of improvement (PI),
max-value entropy search (MES), Thompson sampling (TS),
and upper confidence bound (UCB). We also include knowl-
edge gradient (KG) in our comparison but only apply it
to low-dimensional problems (d ≤ 10) due to its high
computational cost. We further compare with the popular
CMA-ES [Hansen, 2016], which is an evolutionary method
for gradient-free continuous non-convex optimization using
the implementation by Hansen et al. [2019], version 3.3.0.

In addition to the simple BO setup, we experiment with
two common techniques for high-dimensional Bayesian op-
timization (HDBO): TRs and RAASP, both introduced in
the TuRBO algorithm [Eriksson et al., 2019]. In TuRBO,
TRs, TS, and RAASP are interwoven and not studied inde-
pendently. To allow assessing their individual effects, we
therefore consider adaptations of these techniques.

Finally, we study the effect of batched evaluations. In par-
ticular, we use the batched variants of the aforementioned
AFs where available with batch sizes of q = 8 and q = 32.
While it is not uncommon to study the number of batch
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Figure 3: Normalized OTSD and OE rank averaged across
all the synthetic benchmarks. A lower rank means lower ex-
ploration. We do not show the initial design of experiments
phase.

evaluations to assess the effect of batching, we always study
the number of function evaluations as we are interested in
how batching changes exploration, i.e., we count one batch
of size q as q individual function evaluations.

Benchmarks. We evaluate several AFs and variations
thereof on nine benchmark problems, ranging from low-
dimensional synthetic problems to noisy, high-dimensional
simulations. A summary of the benchmarks is given in Ta-
ble 1 in Appendix B. The 2d Branin, 4d Levy, 6d Hartmann,
and 8d Griewank problems are from Surjanovic and Bing-
ham, the 8d Lasso-Diabetes and 180d Lasso-DNA prob-
lems from Šehić et al. [2022], the 60d Rover and 14d Robot
Pushing problems from Wang et al. [2018], and the 124d
Mopta08 problem from Eriksson and Jankowiak [2021].

4.2 EMPIRICAL VALIDATION OF OTSD AND OE

We begin by empirically validating that OTSD and OE effec-
tively quantify exploration by applying them to methods that
exhibit increasing levels of explorative behavior. Figure 3
shows the normalized OTSD (left) and the mean OE ranks
(right) averaged over the synthetic benchmarks. As expected,
UCB with a low β = 0.1 (blue) achieves the lowest normal-
ized OTSD and mean OE rank, followed by UCB with a
moderate β = 1 (orange). UCB with a high β = 5 (green)
achieves the highest OTSD and OE. The OTSD curves go-
ing down indicate that, as expected, the AFs become more
exploitative over time. Comparing OTSD and OE to the star
discrepancy, we see that both are strongly correlated with
the star discrepancy. Importantly, they come at a consider-
ably lower computational cost, especially in high dimen-
sions, with the normalized OTSD being computed in a few
hundred milliseconds, while the star discrepancy requires
several minutes to hours to compute for high-dimensional
problems or long sequences. The strong correlation between
the star discrepancy and the normalized OTSD is a recurring
theme in our experiments. Appendix D.1 shows the same
result for real-world benchmarks; we also show the same

analysis for CMA-ES with varying levels of σ0.

4.3 SYNTHETIC BENCHMARKS

Figure 5 shows the performance of the various AF (with-
out RAASP sampling and TRs), averaged over the four
synthetic benchmarks. We observe that at the start of the
optimization, right after the design of experiments (DoE)
phase, PI is the least explorative AF as it has low normalized
OTSD and the highest OE relative rank of all AFs. UCB-
1.0 is similarly unexplorative, starting only slightly more
explorative than PI and ending up overtaking PI as the least
explorative AF. In contrast, TS starts as the most explorative
AF according to both OTSD and OE. Eventually, MES, KG,
and CMA-ES overtake TS as the most explorative AF. EI
is on the same level of exploration as TS. TS and UCB-1
shows the best relative rank optimization performance.

Next, we study the effect of batching, TR, and RAASP sam-
pling on the level of exploration for EI in Figure 6; see
Appendix D.5 for the same setting on other AFs. Batching
increases exploration: EI with a batch size of 32 (red) is the
most explorative variant as indicated by both OTSD and OE.
The variant with the smaller batch size 8 (purple) is the next
most explorative variant, followed by regular EI. RAASP
and TRs, on the other hand, lower the level of exploration.
Both RAASP and TRs get a similarly low OE rank, indicat-
ing that they are similarly unexplorative. However, while
RAASP is the highest performing variant (orange), TRs
reduce exploration on a similar level as RAASP, but it is
one of the worst variants, as shown in the right panel of
Figure 6. Batching also degrades optimization performance,
as is expected when plotting against the number of function
evaluations.

4.4 REAL-WORLD BENCHMARKS

Figure 7 shows the performance of the various AF (without
RAASP sampling and TRs) on the real-world benchmarks.
Since most real-world benchmarks are in high dimensions,
we do not plot OE for the aggregated results. The explo-
ration behavior in high dimensions is highly consistent,
with minimal overlap between the OTSD curves. We hy-
pothesize that EI and UCB-1.0 show the best optimization
performance due to their balanced the EETO as shown by
the OTSD. The overly-explorative TS shows the worst per-
formance, followed by the less-explorative PI. Compared
to the other methods, MES and TS show a unique behav-
ior: MES initially becomes less explorative, indicated by a
decreasing normalized OTSD, but then reverses this trend
and becomes more explorative. TS shows the opposite be-
havior. Initially, it strives for pure exploration and is even
more explorative than RS. We explain this behavior with TS
choosing areas where the surrogate exhibits high posterior
variance, choosing points distant to previous observations
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Figure 5: Normalized OTSD, average rank for OE and opti-
mization performance on the synthetic benchmarks.

and hence yielding high OTSD. Later on, as the posterior
variance of the surrogate decreases, TS becomes less explo-
rative.

We also study the effect of TRs, RAASP, and batching on
the real-world benchmarks. The results are similar to the
synthetic case, so we save them for Appendix D.3.

Impact of the Dimensionality. In addition to distinguish-
ing between synthetic and real-world scenarios, we examine
OTSD and OE across low- and high-dimensional regimes.
Two key differences emerge: first, TS is considerably more
explorative in high-dimensional benchmarks; second, while
EI is more explorative than other methods in low dimen-
sions, it becomes less so in high dimensions. One potential
explanation is that in high-dimensional spaces, the GP may
struggle to accurately learn the objective function, further en-
couraging explorative sampling, which significantly impacts
TS. Moreover, lengthscales are underestimated in higher di-
mensions, causing EI to make more conservative predictions
than in low-dimensional settings. Due to space limitations,
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Figure 6: Normalized OTSD, average ranks for OE and
optimization performance for EI and its variations on the
synthetic benchmarks.

we present their synthetic problem results in Appendix D.4.

4.5 EXPLORATION TAXONOMY

Our empirical results on synthetic and real-world bench-
marks confirm the partial ordering KG ⪰ EI ⪰ PI, which
was common knowledge within the community as discussed
in Section 3.1. Furthermore, our findings reveal that KG is
slightly more explorative than MES, addressing a missing
link in previous studies. TS is challenging to classify be-
cause its behavior varies dramatically between low and high
dimensions. In low dimensions, TS performs similarly to
EI; while it becomes overly explorative in high dimensions –
surpassing even RS in terms of normalized OTSD. Expand-
ing the exploration taxonomy, we empirically demonstrate
that techniques such as trust regions (TRs) and RAASP
consistently reduce exploration, whereas batching tends to
increase exploration. Finally, our findings indicate that the
best-performing methods tend not to exhibit extreme ex-
ploration quantities; their OTSD and OE values are neither
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Figure 7: Normalized OTSD and average optimization per-
formance rank on the real-world benchmarks.

excessively high nor excessively low compared to other ap-
proaches. However, they are often on the less explorative
side of the spectrum, as demonstrated by the decrease in
OTSD during the optimization iterations. To summarize
our results, we present a revised empirical AF exploration
taxonomy in Figure 4 based on our new OTSD and OE
quantities.

5 CONCLUSION

In this work, we introduce two novel methods and their the-
oretical bounds to quantify the magnitude of exploration in
various acquisition functions. We conduct extensive exper-
iments on synthetic and real-world benchmarks, spanning
low- and high-dimensional settings, to evaluate commonly
used acquisition functions and their variants. Our empirical
findings demonstrate that OTSD and OE effectively cap-
ture the level of exploration exhibited by these acquisition
functions. Finally, we present the first empirical taxonomy
of acquisition function exploration based on these quantifi-
cation methods. These results offer valuable insights for
designing new acquisition functions, constructing acquisi-
tion function portfolios, or controlling the optimization. For
instance, an AF having higher OTSD than a random search
(see TS in Figure 7) can serve as a warning sign that this AF
is too explorative for the problem at hand. In such situations,
one could either switch to more local AF according to the
taxonomy or combine the AF with RAASP sampling. Sim-
ilarly, if an AF approaches the OTSD of a random search
after being less explorative at the beginning of the optimiza-
tion (see MES in Figure 7), it could be an early-stopping
indicator where the AF exhaustively visited all local minima
and the optimization can come to an end.

Limitations and Future Work. While our results are ob-
tained by extensive empirical experimentation, they do not
consider the effect of GP hyperparameters and hyperpriors
on the behavior of AFs and are limited to continuous do-
mains. In the future, we will expand the taxonomy to include
additional AFs, for instance, other information-theoretic

AFs [Hennig and Schuler, 2012, Hernández-Lobato et al.,
2014, Hvarfner et al., 2022, Cheng et al., 2025], and study
the effect of kernel and likelihood functions and their hy-
perparameters on the behavior of AFs in Bayesian optimiza-
tion. Furthermore, we will study if OTSD and OE can be
extended to other domains, such as non-Euclidean spaces.
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A PROOFS

A.1 OTSD UPPER BOUND

Proof. Our proof follows from Balogh et al. [2024, Theorem 1.3]. In that work, the authors show that the d-norm length of
a Hamiltonian cycle with t nodes in a d-dimensional unit cube, denoted by

sHC
d (t) :=

(
t∑

i=1

√
edi

)1/d

, (5)

satisfies

sHC
d (t) ≤ 3

√
5

(
2

3

)1/d√
d, (6)

where
ei := ∥xτ(i) − xτ(i)+1∥2 (7)

represents the Euclidean distance between successive nodes.

The true total distance with t nodes, denoted by OTSD∗(t), is given by

OTSD∗(t) :=

t∑
i=1

ei. (8)

Applying Hölder’s inequality,
∥e∥1 ≤ ∥e∥d · ∥1∥(1−1/d)−1 , (9)

yields

OTSD∗(t) =

t∑
i=1

ei ≤ sHC
d (t) ·

(
t∑

i=1

1

)1−1/d

. (10)

Since
∑t

i=1 1 = t, it follows that

OTSD∗ ≤ 3
√
5

(
2

3

)1/d

t1−1/d
√
d = 2

√
5d

(
3

2
t

)1−1/d

. (11)
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A.2 OE UPPER BOUND

We show that the distribution with maximum differential entropy in the unit cube [0, 1]d is the uniform distribution.

Proof. We wish to determine the probability density function p(x), for x ∈ [0, 1]d, that maximizes the differential entropy

H[p] = −
∫
[0,1]d

p(x) ln p(x) dx, (12)

subject to the normalization constraint ∫
[0,1]d

p(x) dx = 1. (13)

To enforce this constraint, we introduce a Lagrange multiplier λ and consider the augmented functional

L[p] = −
∫
[0,1]d

p(x) ln p(x) dx+ λ

(∫
[0,1]d

p(x) dx− 1

)
. (14)

We then compute the first variation δL with respect to an arbitrary variation δp(x), yielding

δL = −
∫
[0,1]d

δp(x)
[
ln p(x) + 1

]
dx+ λ

∫
[0,1]d

δp(x) dx. (15)

For δL to vanish for all admissible variations δp(x), the integrand must be zero:

− ln p(x)− 1 + λ = 0 for all x ∈ [0, 1]d. (16)

Solving for ln p(x), we obtain
ln p(x) = λ− 1, (17)

which implies that
p(x) = eλ−1. (18)

Since p(x) is constant over [0, 1]d, we can determine the constant by imposing the normalization condition:∫
[0,1]d

p(x) dx = eλ−1 · 1 = 1. (19)

Thus,
eλ−1 = 1 =⇒ λ− 1 = 0 =⇒ λ = 1, (20)

yields
p(x) = 1 for all x ∈ [0, 1]d. (21)

This completes the proof that the maximum entropy distribution on the d-dimensional unit cube is indeed the uniform
distribution. Therefore,

OE∗(t) ≤ H[punif] = 0. (22)

A.3 KL ESTIMATION CONSISTENCY AND BIAS

Many studies have examined the estimation bias of the Kozachenko-Leonenko estimator (see Equation (3)). The original
work by Kozachenko and Leonenko [1987] established the consistency of the estimator under mild conditions when
k = 1. Furthermore, Pál et al. [2010] demonstrated both the consistency and the convergence rate of the nearest-neighbor-
based estimator for Rényi entropies under the assumption that the entropy support is bounded. In addition, Delattre and
Fournier [2017] extended these results to non-compactly supported densities, providing an upper bound for the bias of
order O(t−2/d). A more recent study [Devroye and Györfi, 2021] presents a consistency result for the KL estimator even
when the density function is not smooth. However, in our study the sample points in Xt are generally not independent and
identically distributed, as they are collected via a Bayesian optimization process. Consequently, we believe that the practical
performance of OE does not align with the findings of these previous studies.



B DETAILS ON THE EXPERIMENTAL SETUP

We run each AF in a basic BO setup where we first initialize the GP with ten observations that we sample uniformly at
random from X and then start the BO loop for 200 iterations for synthetic and 1000 iterations for real-world problems.
Similarly, we run CMA-ES with a population size of 5 with different initial step sizes σ0 ∈ {0.05, 0.1, 0.5}. UCB allows
one to specify an exploration parameter β, which we set to β ∈ {0.1, 1, 5}.

To evaluate the AFs, we use the default SingleTaskGP GP model provided by BoTorch version 0.12.0 [Balandat
et al., 2020] as well as BoTorch’s provided methods to fit the GP and maximize the AF. In the case of TS, we sample from
the GP posterior using pathwise conditioning [Wilson et al., 2021] and maximize the posterior sample using BoTorch’s
optimize_posterior_samples function with 1024 initial random samples and 20 restarts of the gradient descent
(GD) optimizer.

For RAASP sampling, we rely on the sample_around_best parameter for BoTorch’s AF optimizer that, with a
probability of min

(
1, 20d

)
, substitutes a parameter’s current best configuration with a value sampled from a truncated

Gaussian, centered on the incumbent observation. For TRs, we follow TuRBO’s specification for finding the TR bounds. We
then configure the AF maximizer to respect these bounds, similar to Eriksson [2025] but dropping the sparse perturbations.

Table 1 summarizes the benchmarks used in this work.

Name d Noise Synth.

Branin 2 ✗ ✓
Levy 4 ✗ ✓
Hartmann 6 ✗ ✓
Griewank 8 ✗ ✓
Lasso-Diabetes 8 ✗ ✗
Robot Pushing 14 ✓ ✗
Rover 60 ✗ ✗
Mopta08 124 ✗ ✗
Lasso-DNA 180 ✗ ✗

Table 1: Benchmark summary.

C EMPIRICAL VERIFICATION OF THE OTSD BOUND

To verify the upper bound stated in Proposition 3.2, we take advantage of the normalized OTSD defined in Equation (2)
which makes the OTSD independent from the dimensionality d. If the approximation error to compute OTSD is ignored,
the theoretical bound implies that OTSDnorm(t) should remain below 1 for all t (or with approximation error considered,
OTSDnorm(t) should remain below 2 for all t).

We show OTSDnorm for Random Search (RS) across various dimensionalities of the problem in Figure 8. As the figure
illustrates, all values remain well below the theoretical threshold of 1. Given that RS represents a highly explorative scenario,
this result empirically corroborates the bound in Proposition 3.2. Moreover, we observe that for higher-dimensional problems,
the normalized OTSD converges to a specific constant, whereas for lower-dimensional problems, the convergence is less
pronounced. This suggests that while the bound is reliable in high dimensions, it may not be as tight in low dimensions.

D ADDITIONAL EXPERIMENTS

D.1 EMPIRICAL VALIDATION OF OTSD AND OE

In this section, we study the OTSD for varying β-values for UCB in real-world settings and for CMA-ES with different step
sizes, further supporting the adequacy of OTSD and OE for quantifying exploration.
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Figure 8: Normalized OTSD of Random Search for varying problem dimensions.
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Figure 9: Normalized OTSD and mean ranks of the empirical performance for UCB with varying β-parameters on the
real-world benchmarks.
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Figure 10: Normalized OTSD and mean ranks of the empirical performance for CMA-ES with varying σ0-parameters on the
synthetic benchmarks.
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Figure 11: Normalized OTSD and mean ranks of the empirical performance for CMA-ES with varying σ0-parameters on the
real-world benchmarks.

D.2 ERROR BARS FOR MAIN TEXT FIGURES

We report the figures from the main text with error bars indicating the standard error of the mean.
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Figure 12: Normalized OTSD and OE rank averaged across all the synthetic benchmarks. A lower rank means lower
exploration. We do not show the initial design of experiments phase.
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Figure 13: Normalized OTSD, average rank for OE and optimization performance on the synthetic benchmarks.
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Figure 14: Normalized OTSD, average ranks for OE and optimization performance for EI and its variations on the synthetic
benchmarks.
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Figure 15: Normalized OTSD and average optimization performance rank on the real-world benchmarks.

D.3 TRS, RAASP, AND BATCHING ON THE REAL-WORLD BENCHMARKS
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Figure 16: Normalized OTSD and average optimization performance rank on the real-world benchmarks for EI and its
variations. TRs and RAASP sampling promote exploitation.

Figure 16 zooms in on the effect of batching, TR, and RAASP sampling. Here, the behavior is similar to the synthetic
benchmarks: batching increases exploration and larger batch sizes lead to more exploration while RAASP sampling and TRs
reduce exploration. In particular, the level of exploitation introduced by the TRs dominates all other methods. Compared
to the optimization performance, both over-exploration and over-exploitation get punished: the most and least explorative
methods (‘EI + TR’ and ‘EI + q=32’) show the worst empirical performance as indicated by the high average rank of the
purple and blue curves in the right panel of Figure 16.



D.4 IMPACT OF THE DIMENSIONALITY

Next, we study how the dimensionality of problems affects exploration. To this end, we compare low-dimensional (d ≤ 20,
Figure 17) and high-dimensional problems (d > 20, Figure 18), unveiling significant differences between low- and high-
dimensional regimes. While TS is eventually overtaken by MES in terms of exploration, it is by far the most explorative AF
on high-dimensional problems. This is arguably due to the vast regions of high posterior uncertainty in high-dimensional
spaces that allow diverse posterior samples. Similarly, MES is more explorative than other AFs (except for TS) in high-
dimensional than low-dimensional spaces. Conversely, EI is considerably more explorative than UCB-1 in low-dimensional
but not high-dimensional spaces. Arguably, the fast collapse of posterior uncertainty in low-dimensional spaces affects
UCB-1 more than EI, making UCB almost as exploitative as PI. In both regimes, PI is most exploitative while showing
mediocre to bad optimization performance. Brought together that the over-explorative TS also shows subpar optimization
performance, we reinforce our conclusion that a balanced EETO is crucial for successful black-box optimizers.
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Figure 17: Normalized OTSD and optimization performance ranks on the low-dimensional problems.

10 500 1000
iteration

0.00

0.02

0.04

0.06

OTSDnorm

0 500 1000
iteration

1
2
3
4
5

Performance
(relative rank)

CMA-ES-0.5
EI

MES
PI

TS
UCB-1.0

RS

High Dimensional Benchmarks

(a) Without error bars.

10 500 1000
iteration

0.000

0.025

0.050

0.075
OTSDnorm

0 500 1000
iteration

1
2
3
4
5

Performance
(relative rank)

CMA-ES-0.5
EI

MES
PI

TS
UCB-1.0

RS

High Dimensional Benchmarks

(b) With error bars.

Figure 18: Normalized OTSD and optimization performance rank on the high-dimensional problems.

D.5 OPTIMIZER VARIATIONS ON DIFFERENT ACQUISITION FUNCTIONS

Here, we study the effect of RAASP sampling, TRs, and batching on all AFs used in Section 4.

D.5.1 Probability of Improvement

For PI, we did not study batching as it is not implemented in BoTorch, so we only focus on TRs and RAASP sampling.
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Figure 19: Effect of TRs and RAASP sampling on PI in the context of synthetic benchmarks: Both methods reduce the level
of exploration.
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Figure 20: Effect of TRs and RAASP sampling on PI in the context of real-world benchmarks: Both methods reduce the
level of exploration.

D.5.2 Upper Confidence Bounds
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Figure 21: Effect of TRs, RAASP sampling, and batching on UCB-1 in the context of synthetic benchmarks:RAASP
sampling and TRs reduce exploration, batching increases it.
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Figure 22: Effect of TRs, RAASP sampling, and batching on UCB-1 in the context of real-world benchmarks:RAASP
sampling and TRs reduce exploration, batching increases it.

D.5.3 Thompson Sampling
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Figure 23: Effect of TRs, RAASP sampling, and batching on TS in the context of synthetic benchmarks:RAASP sampling
and TRs reduce exploration, batching increases it. RAASP sampling also improves optimization performance.
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Figure 24: Effect of TRs, RAASP sampling, and batching on TS in the context of real-world benchmarks:RAASP sampling
and TRs reduce exploration, batching increases it. RAASP sampling also improves optimization performance.

D.5.4 Max-Value Entropy Search

For MES, we only study the effect of RAASP sampling as we observed model-fitting errors for the TRs. Furthermore,
batching is not implemented for MES in BoTorch.
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Figure 25: Effect of RAASP sampling on MES in the context of synthetic benchmarks: RAASP sampling reduces the level
of exploration.
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Figure 26: Effect of RAASP sampling on MES in the context of real-world benchmarks: RAASP sampling reduces the level
of exploration.

D.5.5 Knowledge Gradient

We only ran KG for low-dimensional synthetic benchmarks due to its high computational cost in high dimensions.
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Figure 27: Effect of TRs, RAASP sampling, and batching on KG in the context of synthetic benchmarks:RAASP sampling
and TRs reduce exploration, batching increases it.

D.6 OPTIMIZATION PERFORMANCE

We present the optimization performance of various acquisition functions (AFs) and their variants for each individual
benchmark. These results form the basis for the performance ranking plots in Section 4. For synthetic benchmarks with
known optimal values, we show the simple regret, whereas we show the best-observed function value at each iteration for
the real-world benchmarks with unknown optima.
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Figure 28: Optimization performance of the basic optimizer configuration on the different benchmarks.
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Figure 29: Optimization performance of the different EI variations on the benchmarks.
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Figure 30: Optimization performance of the different KG variations on the benchmarks.
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Figure 31: Optimization performance of the different MES variations on the benchmarks.
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Figure 32: Optimization performance of the different TS variations on the benchmarks.
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Figure 33: Optimization performance of the different UCB variations on the benchmarks.

E RUNTIME ANALYSIS

We analyze the runtimes for OTSD and OE. We measure OTSD and OE on random sequences of length 1000 in different
dimensionalities, ranging from 10 – 1000 for OTSD and from 2 – 20 for OE. We repeat each experiment 20 times and
observe the runtimes for calculating OTSD and OE. Figure 34 shows the runtimes for computing OTSD and OE. Computing
OTSD is fast; for 1000 observation points in 10 dimensions it takes less than 200 ms and in 1000 dimensions less than 300
ms. OE is considerably more costly and restricted to low-dimensional spaces.
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Figure 34: Runtimes for OTSD and OE in different dimensions. Empirically, OTSD scales linearly with the number of
dimensions. OE is costlier.
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