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ABSTRACT

A central challenge in Bayesian inference is efficiently approximating posterior
distributions. Stein Variational Gradient Descent (SVGD) is a popular variational
inference method which transports a set of particles to approximate a target distri-
bution. The SVGD dynamics are governed by a reproducing kernel Hilbert space
(RKHS) and are highly sensitive to the choice of the kernel function, which di-
rectly influences both convergence and approximation quality. The commonly
used median heuristic offers a simple approach for setting kernel bandwidths but
lacks flexibility and often performs poorly, particularly in high-dimensional set-
tings. In this work, we propose an alternative strategy for adaptively choosing
kernel parameters over an abstract family of kernels. Recent convergence analy-
ses based on the kernelized Stein discrepancy (KSD) suggest that optimizing the
kernel parameters by maximizing the KSD can improve performance. Building on
this insight, we introduce Adaptive SVGD (Ad-SVGD), a method that alternates
between updating the particles via SVGD and adaptively tuning kernel bandwidths
through gradient ascent on the KSD. We provide a simplified theoretical analysis
that extends existing results on minimizing the KSD for fixed kernels to our adap-
tive setting, showing convergence properties for the maximal KSD over our kernel
class. Our empirical results further support this intuition: Ad-SVGD consistently
outperforms standard heuristics in a variety of tasks.

1 INTRODUCTION

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a deterministic particle-based
method for approximate Bayesian inference that has emerged as a popular alternative to traditional
Markov Chain Monte Carlo (MCMC) methods. SVGD evolves a set of particles using update di-
rections derived from the functional gradient of the Kullback-Leibler (KL) divergence to the target
distribution, with updates constrained to lie within the unit ball of a reproducing kernel Hilbert space
(RKHS). A critical limitation of SVGD is its sensitivity to kernel choice, which significantly influ-
ences the algorithm’s performance (Duncan et al., 2023; Nüsken & Renger, 2023). Additionally, the
resulting particle approximation commonly underestimates the posterior variance (Ba et al., 2022).
These observations have led to the widely held belief that SVGD in general fails to perform well as
the dimension of the underlying state space increases. In this work, we challenge this belief by in-
troducing an adaptive mechanism for selecting kernel parameters that dynamically tunes the kernel
during inference by maximizing the kernelized Stein discrepancy (KSD), enabling more effective
transport in complex and high-dimensional spaces.

1.1 RELATED WORK.

Since its introduction (Liu & Wang, 2016), SVGD has become a widely used tool for approximate
Bayesian inference in a range of machine learning applications (Liu et al., 2017; Messaoud et al.,
2024; Pu et al., 2017; Kassab & Simeone, 2022). Recent work has made substantial progress in un-
derstanding the theoretical underpinnings of SVGD. Mean-field convergence has been analyzed in
both continuous-time (Lu et al., 2019; Duncan et al., 2023; Chewi et al., 2020) and discrete-time (Ko-
rba et al., 2020; Salim et al., 2022) settings, while finite-particle convergence rates have been estab-
lished under various assumptions (Balasubramanian et al., 2025; Shi & Mackey, 2023). The SVGD
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dynamics have also been connected to gradient flows on probability distribution spaces (Liu, 2017;
Duncan et al., 2023), drawing analogy to Jordan et al. (1998).

The performance of SVGD depends critically on the choice of the kernel function, as it determines
the interaction between particles and the overall convergence of the method (see also Figures 1
and 8). Convergence results typically refer to mean-field convergence with respect to KSD, whose
relation to weak convergence depends on the selected kernel (Gorham & Mackey, 2017). The com-
monly used median heuristic (Gretton et al., 2012) provides a simple implementation but lacks the-
oretical justification and is known to degrade in performance as the dimensionality of the problem
increases (Ba et al., 2022; Zhuo et al., 2018; Wang et al., 2018). Recent work has developed tools
to mitigate performance degradation in high-dimensional settings (Detommaso et al., 2018; Wang
et al., 2019; Gong et al., 2021; Liu et al., 2022). The algorithm has also been modified through the
use of neural networks to learn the update direction (di Langosco et al., 2022; Zhao et al., 2023).

The approach most closely related to our work is Ai et al. (2023), which introduces a mixture-
of-kernels framework. Their method defines a KSD for a weighted linear combination of kernels
and learns the kernel weights by maximizing this multiple-kernel KSD. However, their approach is
limited to finite kernel bases and does not explore continuous parameter optimization as proposed
in our work.

1.2 CONTRIBUTIONS.

In this work, we address the fundamental research question of whether SVGD, without any archi-
tectural or algorithmic enhancements, can achieve competitive performance when equipped with
a principled and adaptively chosen kernel. By isolating kernel selection from other modifications
found in SVGD variants, we aim to rigorously understand the extent to which kernel choice alone
governs the effectiveness of SVGD and how far adaptive kernel learning can push the capabilities of
the original method.

Our main contributions are as follows.

(i) Adaptive Kernel Selection Method. We propose a novel method that dynamically up-
dates the kernel parameters by maximizing the KSD during SVGD inference. In contrast
to the commonly used median heuristic, which relies on a single scalar bandwidth, our
approach allows for the optimization of multiple continuous kernel parameters, enabling
greater flexibility and adaptivity during SVGD updates.

(ii) Theoretical Analysis. We provide theoretical motivation by analyzing our algorithm in
the discrete-time mean-field setting, extending existing convergence results for SVGD with
fixed kernels. Specifically, we show that the supremum of the KSD over a parameterized
kernel class converges to zero as the particle distribution approaches the target. Assuming
a Stein logarithmic Sobolev inequality we further derive iteration complexity in the mean-
field limit.

(iii) Empirical Validation. Through numerical experiments, we demonstrate that our adaptive
kernel selection consistently outperforms the median heuristic and helps alleviate variance
collapse.

2 MATHEMATICAL BACKGROUND

We begin by considering a symmetric positive definite kernel k : Rd × Rd → R and its associated
RKHS H0. We define H as the d-fold Cartesian product of H0 equipped with the inner product
⟨f, g⟩H =

∑d
i=1⟨fi, gi⟩H0

and the canonical feature map Φk(x) = k(·, x) ∈ H0. Moreover, we
denote by x ·y the Euclidean inner product and∇· the divergence operator. The space of probability
measures on (Rd,B(Rd)) is denoted by P(Rd) and Pp(Rd) denotes the subspace of measures with
finite p-th moment. For µ, ν ∈ Pp(Rd), we define the Wasserstein p-distance

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

∥x− y∥p2dγ(x, y)
)1/p

,

where Γ(µ, ν) is the set of couplings of µ and ν, i.e. the set of probability measures on Rd × Rd
with marginals µ and ν.
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2.1 INTEGRAL PROBABILITY METRICS AND KERNELIZED STEIN DISCREPANCY.

Integral probability metrics (IPMs) (Müller, 1997) are a way to quantify the distance between two
measures by considering the maximum deviation of integrals over a class of test functions. To make
this approach feasible for measuring the distance of a sample to an intractable target distribution,
Stein’s method (Stein, 1972) can be used to construct test functions which have zero mean w.r.t. the
target. Indeed, for the operator Sπf := ∇ log π · f +∇ · f and a suitable choice of kernel, we have∫
Rd Sπf(x)dπ(x) = 0 for all f ∈ H (Chwialkowski et al., 2016; Liu et al., 2016). They defined the

kernelized Stein discrepancy (KSD) as

KSD(µ|π) := sup
f∈B(H)

∣∣∣∣∫
Rd

Sπfdµ
∣∣∣∣ , (1)

where B(H) denotes the unit ball in H. This optimization problem is solved by f∗ = ψ
∥ψ∥H

with
ψ =

∫
Rd Akπdµ, where Akπ(x) = ∇ log π(x) Φk(x) + ∇Φk(x) ∈ H, and Φk is the feature map

associated with the kernel k. As a result, the supremum evaluates to the RKHS norm of ψ, giving
the equivalent characterization KSD(µ|π) = ∥ψ∥H.

2.2 STEIN VARIATIONAL GRADIENT DESCENT.

Given a target distribution π and reference distribution µ0, SVGD transforms µ0 into an approx-
imation of π by choosing µn+1 := T♯µn, where T♯· is the push-forward operator for the map
T (x) = x + γψµn(x), with the vector field ψµ =

∫
Rd Akπdµ for µ ∈ P(Rd) being the direc-

tion of steepest descent. This is motivated by the fact that the solution of Equation (1) implies that
ψµn

∥ψµn∥H
is the minimizer of d

dγKL(T♯µn ∥π)
∣∣∣
γ=0

in the unit ball of H (cf. Liu & Wang, 2016,

Theorem 3.1), where KL(· ∥ ·) denotes the KL-divergence. In particular, for this choice we have

d

dγ
KL

((
Id+γψµn

)
♯
µn

∥∥∥π)∣∣∣
γ=0

= −KSD2(µn|π). (2)

Iteratively applying the maps T generated in this way to a particle set {Xi
0}Mi=1 sampled from µ0

leads to the following particle updates:

Xi
n+1 = Xi

n +
γ

M

M∑
j=1

k(Xi
n, X

j
n)∇ log π(Xj

n) +∇Xj
n
k(Xi

n, X
j
n) . (3)

3 ADAPTIVE KERNEL SELECTION FOR SVGD

Since proving convergence of SVGD with respect to the KL divergence is challenging and requires
restrictive assumptions, recent work has shifted attention to analyzing convergence in terms of the
kernelized Stein discrepancy (KSD) (Korba et al., 2020; Shi & Mackey, 2023; Salim et al., 2022).
However, minimizing the KSD alone does not guarantee weak convergence: the sequence of mean-
field measures may fail to be tight, which is a necessary condition for weak convergence of proba-
bility measures in Polish spaces. Moreover, as seen from the optimization problem in Equation (1),
the RKHS structure (and therefore the choice of kernel) directly determines how well convergence
in KSD translates into weak convergence (Gorham & Mackey, 2017).

To address this issue and strengthen convergence guarantees, we formulate our adaptive variant of
SVGD using a parameterized family of kernels {kθ | θ ∈ Θ}. For each θ ∈ Θ, we denote by
KSDθ the corresponding kernelized Stein discrepancy, by ψµθ the optimal update direction, and by
Φθ the associated feature map. This explicit parameterization allows us to adaptively select kernels
during optimization. In doing so, we account for the kernel’s influence on convergence properties
and mitigate the limitations of relying on a fixed kernel choice.

Our approach builds on the idea that it is advantageous to select a kernel that maximizes the KSD
between the empirical particle distribution and the target distribution. The intuition is straightfor-
ward: the instantaneous decrease in KL divergence under SVGD is proportional to the squared KSD
at the current particle measure (see Equations (2) and (7)). Thus, at any given iteration, choosing

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the kernel that yields the largest KSD corresponds to maximizing the rate of KL decrease. This
perspective is reinforced by geometric analyses of SVGD as a gradient flow, which show that ker-
nels inducing larger KSD values yield more favorable convergence properties when comparing the
associated RKHSs (Nüsken & Renger, 2023; Duncan et al., 2023).

While vanilla SVGD usually aims to guarantee convergence of KSD for a fixed kernel, our proposed
algorithm targets the worst-case KSD within the kernel class. As opposed to the median heuristic
used by Liu & Wang (2016), the approach is applicable to any class of parameterized kernels: At
each step of the algorithm, we try to find an optimal parameter

θn ∈ argmax
θ∈Θ

KSDθ(µn|π) .

We implement this idea by adjusting the kernel parameter using one or possibly more gradient ascent
steps with a step size s > 0 for KSD before executing the particle update and also allow the possibil-
ity of not updating the parameter at every step of SVGD to decrease runtime (see Algorithm 1). To
enable this option, we introduce a user-specified decision variable paramupdate. It is worth noting
that the base SVGD step for transporting the particles can be replaced by more advanced variants
(e.g., adaptive step-size schedules, line searches, momentum, or second-order/preconditioned up-
dates) without modifying our kernel-selection mechanism. Similarly, we may replace the gradient
ascent on the kernel parameter with alternative optimization schemes. Our implementation of the
kernel update is based on the formula (Chwialkowski et al., 2016; Liu et al., 2016)

KSD2(µ|π) =
∫
Rd×Rd

ukπ d(µ⊗µ) (4)

with
ukπ(x, y) = k(x, y)∇ log π(x) · ∇ log π(y) +∇ log π(y) · ∇xk(x, y)

+∇ log π(x) · ∇yk(x, y) + trace(∇x∇yk(x, y)) ,
(5)

from which the necessary gradient can be computed directly. It is important to note two comments
regarding the additional computational cost of Ad-SVGD compared to vanilla SVGD:

• The gradient ascent steps for the kernel parameter use the same gradients ∇ log π(Xi
n) as

the corresponding SVGD step and Ad-SVGD does therefore not require additional gradient
evaluations of log π.

• The associated computational cost can be further reduced by relying on a small number
of update steps nstepstheta for the kernel parameter or optionally updating the kernel
parameter only after multiple SVGD steps. When the number of particles M is large, one
may use subsampled particles to empirically approximate the KSD.

Algorithm 1: Ad-SVGD

Input: Initial particle set {Xi
0 ∈ Rd | i = 1, . . . ,M}, kernel class {kθ | θ ∈ Θ}, initial kernel

parameter θ−1 ∈ Θ, step sizes γ, s > 0, number of steps nsteps, nstepstheta ∈ N
Output: Final particle set {Xi

nsteps ∈ Rd | i = 1, . . . ,M}

for n = 0 to nsteps− 1 do
Decide paramupdate ∈ {True,False};
if paramupdate then

θ0n ← θn−1;
for ℓ = 0 to nstepstheta− 1 do

θℓ+1
n ← θℓn + s∇θℓnKSD2

θℓn

(
1
M

∑M
i=1 δXi

n

∣∣∣π);

end
θn ← θnstepsthetan ;

else
θn ← θn−1;

end
for i = 1 to M do

Xi
n+1 ← Xi

n + γ
M

∑M
j=1 kθn(X

i
n, X

j
n)∇ log π(Xj

n) +∇Xj
n
kθn(X

i
n, X

j
n);

end
end

4
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4 CONVERGENCE ANALYSIS

We consider a target measure with Lebesgue density of the form π(x) ∝ exp(−V ) for a potential
V : Rd → R. To better motivate our proposed Ad-SVGD, we will demonstrate how to extend
recent results on the convergence of SVGD in the sense of KSD. To be more precise, we will extend
the convergence analysis conducted in Salim et al. (2022) under the Talagrand’s inequality which
holds under mild assumptions on the target distribution and is weaker than the commonly employed
logarithmic Sobolev inequality. We make the same assumptions as in Salim et al. (2022) uniform
over all kernel parameters.

Assumption 1. We assume that V ∈ C2 such that
∫
Rd exp(−V (x)) dx < ∞ and that the Hes-

sian H of V is uniformly bounded w.r.t. the operator norm, i.e. there exists L ≥ 0 such that
∥H(x)∥op ≤ L for all x ∈ Rd.

Assumption 2. We assume that π ∈ P1(Rd) satisfies Talagrand’s inequality T1, which means that
there exists λ > 0 such that

W1(µ, π) ≤
√

2KL(µ ∥π)/λ

for all µ ∈ P1(Rd).
Assumption 3. We assume there exists B > 0 such that ∥Φθ(x)∥H0 ≤ B for all x ∈ Rd, θ ∈ Θ,
and that ∇Φθ is continuous with ∥∇Φθ(x)∥2H =

∑d
i=1∥∂iΦθ(x)∥2H0

≤ B2 for all x ∈ Rd, θ ∈ Θ.

4.1 CONVERGENCE ANALYSIS OF SVGD UNDER TALAGRAND’S INEQUALITY

In the following, we denote
F(µ) := KL(µ ∥π).

and make use of the following fundamental inequality. Given a fixed kernel parameter θ ∈ Θ such
that Assumption 3 is satisfied, define the pushforward measure

µ̃ = (I + γg)#µ

for arbitrary g ∈ H. Under Assumptions 1 and 3, let γ,B > 0, α > 1 and g ∈ Hθ such that
γ∥g∥Hθ

≤ α−1
αB . Then, according to Proposition 3.1 in Salim et al. (2022), it holds

F(µ̃) ≤ F(µ) + γ⟨ψµθ , g⟩Hθ
+
γ2K

2
∥g∥Hθ

(6)

with K = (α2 + L)B. For the iterates (3) with a fixed kernel parameter θ ∈ Θ one can then derive
the descent condition (Salim et al., 2022, Theorem 3.2),

F(µn+1) ≤ F(µn)− γ(1−
γB(α2 + L)

2
)KSD2

θ(µn|π) , (7)

provided that

γ ≤ (α− 1)
(
αB

(
1 + ∥∇V (0)∥+ L

∫
Rd

∥x∥ dπ(x) + L

√
2F(µ0)

λ

))−1

. (8)

The key aspect to verify (7) is the verification of γ∥ψµn

θ ∥Hθ
≤ α−1

αB using Talagrand’s inequality,
Assumption 2, which allows to apply (6) for g = ψµn

θ . Condition (7) can then be used to argue that

lim
n→∞

KSD2
θ(µn|π) = 0 ,

since
∑∞
n=0 KSD2

θ(µn|π) ≤ c−1
γ F(µ0) for cγ = γ(1− γB(α2+L)

2 ) > 0.

When introducing an adaptive kernel parameter choice (θn), the inequality (7) changes to

F(µn+1) ≤ F(µn)− γ(1−
γB(α2 + L)

2
)KSD2

θn(µn|π) .

5
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4.2 CONVERGENCE ANALYSIS OF AD-SVGD.

Suppose the adaptive SVGD iteration can be written in the following simplified form

µn+1 = (I + γψµnθn )♯µn,

θn ∈ argmax
θ∈Θ

KSD2
θ(µn|π),

(9)

meaning that
∥ψµn

θn
∥Hθn

= max
θ∈Θ

KSDθ(µn|π) .

We emphasize that this formulation is possible when the maximization of the KSD with respect to
the kernel parameter has a (unique) closed-form solution. This is actually the case in the multiple-
kernel SVGD framework Ai et al. (2023), which parameterizes the kernel as a convex combination
of base kernels

kθ(x, y) =

N∑
i=1

θiki(x, y) with
N∑
i=1

θi = 1 .

For the general setting, the kernel parameter update θn in (9) needs to be approximated. Note that
in the general setup we assume that argmaxθ∈Θ KSD2

θ(µn|π)) ̸= ∅ for all n ∈ N.

The following descent condition is a direct consequence of Theorem 3.2 in Salim et al. (2022):

Lemma 1. Suppose that Assumptions 1-3 are satisfied. For any α > 1 with

γ ≤ (α− 1)
(
αB

(
1 + ∥∇V (0)∥+ L

∫
Rd

∥x∥ dπ(x) + L

√
2F(µ0)

λ

))−1

,

there exists cγ > 0 such that for all n ∈ N

F(µn+1) ≤ F(µn)− cγ max
θ∈Θ

KSD2
θ(µn|π) ,

where (µn)n∈N is generated by (9).

Corollary 2. Under the same assumptions as in Lemma 1 it holds that
limn→∞ maxθ∈Θ KSD2

θ(µn|π) = 0 .

The situation changes when we assume that we can only approximately solve the maximization task
of the KSD with respect to the kernel parameter. Suppose that maxθ∈Θ KSDθ(µ|π) < ∞ for any
µ ∈ P(Rd) and consider the alternating scheme

θn = Ψn(θn−1, µn) ,

µn+1 = (Id+γψµn

θn
)♯µn

(10)

for some sequence of iterative update rules Ψn : Θ × P(Rd) → Θ with the goal to maximize
KSDθ(µn | π). Specifically, in Algorithm 1 Ψn corresponds to the gradient ascent update for the
KSD. However, as mentioned above, this update could be replaced by other suitable iterative opti-
mization schemes. Our required assumption on the update rule is the following convergence behav-
ior.

Assumption 4. We assume that there exists a sequence (εn)n∈N such that
∑∞
n=0 εn <∞ and

max
θ∈Θ

KSD2
θ(µn | π)−KSD2

θn(µn | π) ≤ εn for all n ∈ N.

Using this assumption, we can make the following convergence guarantee.

Theorem 3. Suppose that Assumptions 1-3 are satisfied. Under Assumption 4, for any α > 1 with

γ ≤ (α− 1)
(
αB

(
1 + ∥∇V (0)∥+ L

∫
Rd

∥x∥ dπ(x) + L

√
2F(µ0)

λ

))−1

,

it holds that limn→∞ maxθ∈Θ KSDθ(µn|π) = 0 , where (µn)n∈N is generated by (10).

6
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Proof. Using Theorem 3.2 in Salim et al. (2022) we obtain

F(µn+1) ≤ F(µn)− cγ KSD2
θn(µn|π)

= F(µn)− cγ max
θ∈Θ

KSD2
θ(µn|π) + cγ

(
max
θ∈Θ

KSD2
θ(µn|π)− KSD2

θn(µn|π)
)

≤ F(µn)− cγ max
θ∈Θ

KSD2
θ(µn|π) + cγεn .

Iterating this inequality over n yields

cγ

∞∑
n=0

max
θ∈Θ

KSD2
θ(µn|π) ≤ F(µ0) + cγ

∞∑
n=0

εn <∞ .

Under the so-called Stein logarithmic Sobolev inequality, we can further extend the convergence of
Ad-SVGD to convergence in the KL divergence. Under specific scenarios for εn we derive iteration
complexity bounds for the mean-field limiting system (10). Moreover, this setting allows us to
explicitly describe the bias of Ad-SVGD when the KSD maximization is only solved up to a fixed
ε̄-accuracy in each iteration. The details can be found in Section B. Finally, we emphasize that we
require only one kernel in our kernel class {kθ} to satisfy the Stein logarithmic Sobolev inequality
which yields a promising flexibility to verify this condition.

5 NUMERICAL EXPERIMENTS

In the following section, we evaluate Ad-SVGD on two numerical experiments: a one-dimensional
Gaussian mixture model and a linear inverse problem governed by an ordinary differential equa-
tion. Additional toy experiments examining the effect of increasing dimensionality are provided in
Section A. Moreover, in Section 5.4 we demonstrate the advantages of Ad-SVGD over SVGD with
the median heuristic on a Bayesian logistic regression model, which was also used in prior SVGD
literature.

5.1 KERNEL PARAMETERIZATION

SVGD is most commonly used with kernels of the form

kh(x, y) = exp

(
−
∥x− y∥pp

h

)
,

where ∥·∥p denotes the p-norm on Rd (e.g. Liu & Wang, 2016; Ba et al., 2022; Duncan et al., 2023).
We will focus on selection strategies for the parameter h, which is known as the kernel bandwidth.
The commonly used heuristic sets h = medp

log(M−1) , where med denotes the current median distance
between the particles. This choice is motivated by the goal of balancing the two terms in the SVGD
update (3) (Liu & Wang, 2016).

To take advantage of the flexibility of our adaptive method, we use product kernels of the form

kh(x, y) =

d∏
i=1

exp

(
−|xi − yi|

p

hi

)
with parameter h = (h1, . . . , hd), i.e. we allow for dimension-dependent bandwidths. The deriva-
tives necessary to apply Algorithm 1 with these kernels (see Equations (4) and (5)) can easily be
calculated. We also tested using an adjusted version of the median heuristic with these kernels tak-
ing a naive median for each dimension. However, this approach did not produce good results and
suffered from a variance collapse.

Beyond our current experiments, the flexibility of Ad-SVGD allows for more scalable kernel fam-
ilies in higher-dimensional settings. In particular, spectral or low-rank kernel parametrizations can
adapt the dominant directions of variability without incurring the exponential cost of full product
kernels, while Matérn or mixed-product constructions provide additional control over smoothness
and anisotropy.

7
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5.2 TOY EXAMPLE

We first consider the one-dimensional example from Liu & Wang (2016). This is
a Gaussian mixture with two components: π = 1

3N (−2, 1) + 2
3N (2, 1). We

use M ∈ {50, 200, 500} particles and sample the initial particle set from N (0, 1).

10−3 10−2 10−1 100 101 102 103
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Figure 1: Final Wasserstein 1-distances for one-
dimensional example using SVGD with different
fixed bandwidths h.

We run SVGD for 104 steps with a step size
of 1, using kernels of the form described above
with p = 1 and different choices of (fixed)
bandwidth h. As a measure of sample qual-
ity, we use the Wasserstein 1-distance W1,
which we compute using an implementation of
the explicit formula W1(µ, ν) =

∫
R|Fµ(x) −

Fν(x)|dx (see Panaretos & Zemel (2019)) and
an exact sample of size 105. The results of these
experiments are shown in Figure 1, where we
see that the algorithm performs well only for
bandwidths within a certain range. The algo-
rithm is highly sensitive to the choice of the
parameter h and therefore, a careful selection
strategy is crucial.

5.3 LINEAR INVERSE PROBLEM BASED ON ODE

The following example is adapted from (Weissmann et al., 2022, Example 2.1). We consider the
one-dimensional differential equation{

−f ′′(s) + f(s) = u(s) for s ∈ (0, 1)

f(s) = 0 for s ∈ {0, 1} (11)

and the associated inverse problem of recovering the right-hand side u(·) ∈ L2([0, 1]) from dis-
crete noisy observation points of the solution f ∈ H2([0, 1]) ∩H1

0 ([0, 1]). These observations are
described by

y = Φ(u) + ε ∈ RNobs ,

where ε ∈ RNobs is observational noise and the forward operator Φ : L2([0, 1])→ RNobs is defined
by O ◦ H−1, with H(f) = −f ′′ + f and O(f) =

(
f(s1), . . . , f(sNobs

)
)⊤ ∈ RNobs being the

observation operator at Nobs equidistant points sk = k
Nobs

, k = 1, . . . , Nobs.
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s

−10

−5

0

5

10

u
(s

)

Ad-SVGD

0.00 0.25 0.50 0.75 1.00

s

Med-SVGD

true process posterior approximation posterior

Figure 2: GP reconstruction for ODE-based inverse
problem, showing mean and 90% confidence interval

For the Bayesian formulation of the in-
verse problem, we consider a Gaussian
process (GP) prior for u given by the trun-
cated Karhunen-Loève (KL) expansion

u(·, x) = Ax =

Nx∑
k=1

xkψi,

where ψk(s) =
√
2 sin(πks) and

xk ∼ N (0, λk) independently with
λk = 50k−2. The resulting problem
is to estimate the KL coefficients x =
(x1, . . . , xNx)

⊤ ∈ RNx with prior given
by N (0,Γ0) with Γ0 = diag(λ1, . . . , λNx

). Assuming ε ∼ N (0,Γ), this leads to the posterior
density

π(x) ∝ exp
(
− 1

2
∥Γ−1/2(y − ΦAx)∥2 − 1

2
∥Γ−1/2

0 x∥2
)
, x ∈ RNx .

For the implementation, we replace H by a numerical discretization operator for Equation (11) us-
ing a grid with mesh size 2−8 and consider the fully observed system (i.e. Nobs = 28). We use
Nx = 16 terms for the KL expansion of u and assume noise covariance Γ = 10−3 IdNobs

. We
construct reference observations ȳ ∈ RNobs by drawing x̄ ∼ N (0,Γ0) and setting ȳ = ΦAx̄.
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We compare the performance of SVGD using the median heuristic (we call this Med-SVGD) with
our Ad-SVGD for different choices of particle ensemble size M ∈ {50, 100, 200}. We use the ker-
nels described in Section 5.1 with the choice p = 1. We run both algorithms for 4 · 105 iterations
using the step size 10−3 for particle updates and, as suggested by Liu & Wang (2016), a variant
of AdaGrad for adaptive step size control. In Ad-SVGD we use the step size 10−5 for the band-
width updates and update the bandwidth only once for every 100 particle updates. With this update
scheme, there was no significant runtime difference between Med-SVGD and Ad-SVGD.
Figure 2 shows the GP reconstruction for an exemplary seed. We observe that both methods are
able to give a good approximation of the mean, but only Ad-SVGD correctly captures the poste-
rior uncertainty. To further quantify the approximation quality, we use the Wasserstein 2-distance
W2

(
N (µ̂, Σ̂), π

)
between the posterior π and the normal distributionN (µ̂, Σ̂), where µ̂ is the sam-

ple mean and Σ̂ the sample covariance of the particle set (Panaretos & Zemel, 2019, Section 3.2).
Since the target π is a multivariate normal distribution, this has an explicit formula

W2

(
N (µ̂, Σ̂), π

)2
= ∥µ̂− µπ∥2 + trace

(
Σ̂ + Σπ − 2

(
Σ̂1/2ΣπΣ̂

1/2
)1/2)

,

where µπ and Σπ are the mean and covariance of the posterior. We also compare the marginal
variances of the final particle distribution with the posterior. Figure 3 shows the results of these
experiments aggregated over 56 different random seeds (note that the posterior covariance does not
actually depend on ȳ). Again, we observe that Ad-SVGD achieves better approximations of the
posterior than Med-SVGD, which underestimates the uncertainty of the problem. Furthermore, in
contrast to Med-SVGD, the approximation quality of Ad-SVGD improves as the number of particles
increases beyond 50. Figure 4 shows the behavior of the bandwidths determined using Ad-SVGD.
We observe that the component-wise bandwidths stabilize more quickly than the approximation
error. Clear differences across the components are visible, with the final bandwidths being negatively
correlated with the corresponding marginal variances.
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(a) Convergence of approximation error

1 4 7 10 13 16

Dimension

10−6

10−5

10−4

10−3

10−2

10−1

M
a
rg

in
a
l

v
a
ri

a
n
ce

posterior

Ad-SVGD, M = 200

Med-SVGD, M = 200

(b) Marginal variances

Figure 3: Aggregated results (mean and 95% confidence interval over 56 random seeds) for ODE-
based inverse problem using Med-SVGD and Ad-SVGD
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Figure 4: Behavior of bandwidth parameter for ODE-based inverse problem using Ad-SVGD, ag-
gregated over 56 random seeds

5.4 BAYESIAN LOGISTIC REGRESSION

As in Liu & Wang (2016) and Liu et al. (2022), we consider a Bayesian logistic regression (BLR)
model applied to the Covertype data set (Blackard, 1998). For the regression weights w, we assign
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a Gaussian prior w | α ∼ N (0, α−1) with α ∼ Gamma(1, 0.01) and we want to infer the posterior
of x = [w,α]. Following Liu et al. (2022), we use the No-U-Turn Sampler (NUTS) introduced by
Hoffman & Gelman (2014) to generate a reference for evaluating the posterior approximation quality
of Med-SVGD and Ad-SVGD. Again following Liu et al. (2022), we test the methods on subsets of
the original data set of size 1000 and aggregate our results over 10 random draws. To evaluate the
performance of the methods for the classification task, we compute the prediction accuracy over a
test set achieved using the particle mean. As shown in Figure 5, Ad-SVGD outperforms Med-SVGD
across almost all seeds, achieving a higher test accuracy while also being closer to the MCMC
reference. To measure the accuracy of the posterior approximation, the same figure also shows the
squared maximum mean discrepancy (MMD2) (Muandet et al., 2017, Section 3.5) to the MCMC
samples. We observe a significant difference of how well the two methods are able to capture the
posterior distribution. This is further confirmed by Figure 6, which shows the covariance matrices of
the final particles compared to the MCMC reference, averaged over the 10 seeds (this visualization
style is taken from Liu et al. (2022)). We observe that Med-SVGD severely underestimates the
posterior uncertainty, while Ad-SVGD gives a better approximation. Additionally, the right plot in
Figure 5 shows the evolution of the bandwidths for each component. We see that from an uninformed
initialization (1 in every component), Ad-SVGD is able to recover suitable bandwidths, which differ
from the initialization by several orders of magnitude.
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Figure 5: Approximation quality of SVGD particles for Bayesian logistic regression measured by
prediction accuracy (left), MMD2 to reference samples (middle) and bandwidth evolution for BLR
example (right)
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Figure 6: Covariance matrices of final SVGD particle sets compared to MCMC samples (mean over
10 seeds)

6 LIMITATIONS AND OUTLOOK

The main limitation of our analysis is its reliance on Assumption 4. In our ongoing work, we
examine when Assumption 4 is satisfied by the alternating gradient-ascent scheme in Algorithm 1
used in our experiments. Although we have no guarantees for Assumption 4 to be satisfied, our
implementation led to promising empirical results.

Our considered analysis focused on the original dynamic of the SVGD, and it would be intriguing
to combine the proposed adaptive kernel selection with recent variants such as sliced SVGD (Gong
et al., 2021), Grassmann SVGD (Liu et al., 2022), or Stein transport (Nüsken, 2024).
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REPRODUCIBILITY STATEMENT

All parameters and procedures needed to reproduce our results are specified throughout the paper
and appendix. We have submitted the complete codebase for running the experiments and generating
the plots described in the main text.
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Nikolas Nüsken. Stein transport for Bayesian inference. arXiv-Preprint, arXiv:2409.01464, 2024.
URL https://arxiv.org/abs/2409.01464.
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A MORE NUMERICAL EXPERIMENTS

A.1 GAUSSIAN MIXTURE MODELS
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Figure 7: Approximation error for 1D Gaussian mixture.

We revisit the example from Sec-
tion 5.2. For the setup described
there, Figure 8 shows histograms of
the final particle distribution in com-
parison to the target density for h ∈
{0.001, 1, 1000}. We now turn to the
comparison of Med-SVGD with Ad-
SVGD. We consider different num-
bers of particles M and compare the
final particle distributions after 104 it-
erations with step size 1 for the two
methods.

Figure 7 shows the Wasserstein 1-
distance between the final empirical
distribution of the particles and the target distribution using Med-SVGD and Ad-SVGD with
M = 10, 20, 50, 100, 200, 500. We observe that, as expected, the approximation quality improves
with N for both methods. Both methods achieve similar results, reaching a Wasserstein distance
below 0.01 for N = 500.
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Figure 8: Histograms of final particle set generated using fixed bandwidths h = 0.001, 1, 1000;
target density π shown in red for comparison.

In the one-dimensional case, both methods are able to approximate the target distribution well.
Our adaptive bandwidth selection strategy works well, but has no significant advantage over the
commonly used median heuristic in this scenario.

A.2 SCALING DIMENSION: MULTIVARIATE NORMAL DISTRIBUTION

Moving into higher dimensions, we now consider the Gaussian target distributions πd = N (0,Σd)
with Σd = diag

(
1, 12 , . . . ,

1
d

)
for d ∈ {2, . . . , 8}. We usedN (0, 1d )

⊗d as the initial particle distribu-
tion and ran the algorithms for 104 iterations with step size 0.1. Whenever necessary for numerical
stability, we used a smaller step size and adjusted the number of iterations accordingly.

We compare the approximation quality of the final set of particles generated using Med-SVGD
and Ad-SVGD as the dimensionality of the problem increases. Because the Wasserstein 2-distance
between two Gaussian distributions has an explicit formula (see Panaretos & Zemel (2019)), we use
as a measure of sample quality the Wasserstein 2-distance between the target distribution πd and
the Gaussian distribution N (µ̂, Σ̂), where µ̂ and Σ̂ are the empirical mean and covariance matrix
calculated from the set of particles (Panaretos & Zemel, 2019, Section 3.2). In accordance with
the corresponding function of the Python Optimal Transport library Flamary et al. (2021), which
we used for our calculations, we call this the Bures Wasserstein distance. Figure 9a shows the
development of this sample quality measure, achieved using Med-SVGD and Ad-SVGD with M =
50, 100, 200, as the dimensionality of the problem increases. We see that Ad-SVGD significantly
outperforms Med-SVGD for all values of d.
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(a) Approximation error for M ∈ {50, 100, 200}.
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(b) χ2-test statistic for M = 200.

Figure 9: Results for multivariate normal distributions of increasing dimension

Table 1: Marginal variances of final particle distribution for d-dimensional examples generated using
Med-SVGD with M = 200; marginal variances of the target distribution πd shown for comparison.

component 1 2 3 4 5 6 7 8

Target 1.0000 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204 0.0156
d = 1 0.9285
d = 2 0.7921 0.1943
d = 3 0.6803 0.1625 0.0697
d = 4 0.6089 0.1440 0.0593 0.0311
d = 5 0.5532 0.1275 0.0526 0.0271 0.0157
d = 6 0.5190 0.1190 0.0481 0.0243 0.0140 0.0089
d = 7 0.4900 0.1122 0.0449 0.0228 0.0131 0.0081 0.0052
d = 8 0.4753 0.1077 0.0430 0.0215 0.0122 0.0074 0.0047 0.0032

For the Bures Wasserstein distance, the smaller variances in the last components of our target distri-
butions πd do not have a big impact; to see the impact of failing to correctly capture the uncertainty
in these components, we consider the test statistic X · Σ−1

d X which is χ2-distributed with d de-
grees of freedom (i.e. it has expected value d) for X ∼ N (0,Σd) (cf. (Sprungk et al., 2025, 27)).
We calculate the mean of this statistic on the set of particles with M = 200 and compare it to the
expected value d in Figure 9b. Moving beyond the one-dimensional case, the test statistic for Med-
SVGD deviates further and further from the true expected value as d increases, while the statistic
for Ad-SVGD stays relatively close to the true expectation. This shows the failure of Med-SVGD to
correctly approximate higher-dimensional distributions, while Ad-SVGD is able to deal with those
examples well.
We provide more details about the final particle distributions for M = 200 and different d in Ta-
bles 1 and 2. They list, for each d, the marginal variances of the set of particles compared to the
marginal variances of the target distribution, which are given in the first row. Table 1 shows the
results for Med-SVGD, Table 2 shows the results for Ad-SVGD. We see that Ad-SVGD is able to
achieve a good approximation of the target distribution in all components in terms of the marginal
variances. The particles generated using Med-SVGD, on the other hand, significantly underestimate
the uncertainty of the target distribution. This matches the observations already made in Figure 9b.
Lastly, we focus on the marginal particle distributions for M = 200 and d = 8. To ease the vi-
sualization, we normalized them by scaling each component of the particles with the inverse of
the corresponding marginal standard deviation of the target distribution (i.e. we multiplied the i-th
component with i). This turns each marginal distribution of πd into a standard normal distribu-
tion. Figures 10 and 11 show the histograms of these normalized marginal particles distributions
for d = 8 generated using Med-SVGD and Ad-SVGD, respectively. A standard Gaussian density is
shown in each plot for comparison. Again, we observe that Ad-SVGD is able to capture all marginal
distributions well, while Med-SVGD underestimates the uncertainty of the target distribution. These
observations are also visible in Figures 12 and 13, where the quantiles of the normalized marginal
particle distributions are compared against the target quantiles (i.e. against a standard normal distri-
bution).
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Table 2: Marginal variances of final particle distribution for d-dimensional examples generated using
Ad-SVGD with M = 200; marginal variances of the target distribution πd shown for comparison.

component 1 2 3 4 5 6 7 8

Target 1.0000 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204 0.0156
d = 1 0.9953
d = 2 0.9907 0.2472
d = 3 0.9867 0.2459 0.1095
d = 4 0.9881 0.2467 0.1095 0.0610
d = 5 0.9840 0.2433 0.1096 0.0616 0.0392
d = 6 0.9858 0.2459 0.1090 0.0611 0.0392 0.0269
d = 7 0.9856 0.2463 0.1086 0.0613 0.0390 0.0269 0.0199
d = 8 0.9691 0.2409 0.1085 0.0611 0.0390 0.0268 0.0196 0.0150
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Figure 10: Histograms of single components of the final set of particles for eight-dimensional ex-
ample generated using Med-SVGD with M = 200 and rescaled using marginal target variances;
standard Gaussian density shown for comparison.
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Figure 11: Histograms of single components of the final set of particles for eight-dimensional ex-
ample generated using Ad-SVGD with M = 200 and rescaled using marginal target variances;
standard Gaussian density shown for comparison.
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Figure 12: Q-Q plots comparing the marginals of the final particle distribution for eight-dimensional
example generated using Med-SVGD with M = 200 and rescaled using marginal target variances
with a standard normal distribution; line of slope 1 passing through the origin shown for comparison.
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Figure 13: Q-Q plots comparing the marginals of the final particle distribution for eight-dimensional
example generated using Ad-SVGD with M = 200 and rescaled using marginal target variances
with a standard normal distribution; line of slope 1 passing through the origin shown for comparison.
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A.3 GAUSSIAN PROCESS INFERENCE

We demonstrate the behavior of our Ad-SVGD for scaling dimensions in an inference task of a Gaus-
sian process (GP) proposed in Reich & Weissmann (2021). We consider a GP on [0, 1] represented
by a truncated Karhunen-Loève (KL) expansion u(s, x) =

∑Nx

k=1 xkψk(s) with basis functions
ψk(s) =

√
2 sin(kπs), where x = (x1, . . . , xNx

)⊤ is a vector of independent Gaussian random
variables xk ∼ N (0, k−2). We observe the process at Ny equispaced points in [0, 1] and infer the
coefficients xk. For fixed Nx and Ny , this corresponds to an inverse problem with forward model
Y = AX + ε, where the k-th column of A ∈ RNy×Nx is (ψk(s1), . . . , ψk(sNy

))⊤, si = i
Ny

for
i = 1, . . . , Ny . The prior is X ∼ N (0,Σ) with diagonal matrix Σ with entries k−2, k = 1, . . . , Nx
and we assume independent Gaussian noise ε ∼ N (0, INy

). We construct reference observations
ȳ ∈ RNy by drawing x̄ ∼ N (0,Σ) and setting ȳ = Ax̄.
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Figure 14: Estimated processes generated using the median heuristic and Ad-SVGD with M = 100
particles for different model configurations compared to posterior.

We use SVGD to sample from the resulting posterior X |Y = ȳ and compare the performance
of the median heuristic with our adaptive approach. For SVGD with the median heuristic, we use
kernels of the form k(x, y) = exp(−∥x− y∥1/h); for Ad-SVGD, we use product kernels k(x, y) =∏Nx

i=1 exp(−|xi − yi|/hi) with parameter h = (h1, . . . , hNx
), i.e. we use a different bandwidth for

each dimension. Following Liu & Wang (2016), we use a variant of Adagrad for step size control in
the scenarios with Nx = 16.

Figure 14 shows the resulting processes in comparison to the posterior for the choices Nx = 4 and
Ny = 64, Nx = 16 and Ny = 64 as well as Nx = 16 and Ny = 256. As the dimension increases,
SVGD with the median heuristic underestimates the posterior variance, while Ad-SVGD is able to
give a better approximation. The behavior is consistent across different numbers of observations of
the Gaussian process. In Table 3, we quantify these results by comparing the trace of the covariance
of the particle distributions generated by SVGD with the true posterior. SVGD with the median
heuristic severely underestimates the uncertainty while Ad-SVGD is able to capture the variance
more accurately.

Nx 4 8 16 16 16
Ny 64 64 64 128 256

theoretical 0.056 0.083 0.086 0.051 0.029
med. heuristic 0.026 0.023 0.022 0.012 0.006

Ad-SVGD 0.055 0.072 0.074 0.044 0.026

Table 3: Trace of covariance of final particle distribution (M = 100 particles) compared to theoret-
ical posterior for different configurations, averaged over 25 runs.
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B REFINED THEORETICAL ANALYSIS

We can further improve our convergence result under a so-called Stein log-Sobolev inequality, which
relates the KL divergence to the KSD. Duncan et al. (2023) introduced this inequality and discussed
conditions under which it might hold. Interestingly, in our adaptive setting of kernel selection, we
can relax this condition by requiring only one kernel in our entire kernel class to satisfy the log-
Sobolev inequality. More precisely, we make the following assumption.
Assumption 5. Given a kernel class {kθ | θ ∈ Θ}, we assume that π ∈ P1(Rd) satisfies the
generalized Stein log-Sobolev inequality with constant λ > 0:

2λKL(µ ∥π) ≤ max
θ∈Θ

KSD2
θ(µ|π)

for all µ ∈ P1(Rd).

Using this property, we can quantify convergence in terms of the KL divergence. We emphasize that
in this scenario we can give an error bound on F(µn) even under an approximate condition εn ≤ ε̄
without requiring εn → 0.
Theorem 4. Suppose that Assumptions 1 to 3 and 5 are satisfied. For any α > 1 and γ > 0 with

γ ≤ (α− 1)
(
αB

(
1 + ∥∇V (0)∥+ L

∫
Rd

∥x∥ dπ(x) + L

√
2F(µ0)

λ

))−1

,

and

ρ := 1− 2λcγ ∈ (0, 1) where cγ := γ(1− γB(α2 + L)

2
),

it holds that
F(µn+1) ≤ ρF(µn) + cγεn ,

where (µn)n∈N is generated by (10) and εn ≥ maxθ∈Θ KSD2
θ(µn | π) − KSD2

θn(µn | π). In
particular, if

1. εn ≤ ε̄ for all n ∈ N, then

F(µn) ≤ ρn F(µ0) +
cγ ε̄

1− ρ
for all n ∈ N.

2. ε ≤ cεqn for some q ∈ (0, 1), cε > 0 and all n ∈ N. Under ρ ̸= q we have

F(µn) ∈ O(max{ρ, q}n)
and under ρ = q we have

F(µn) ∈ O(q̃n)
for all ρ < q̃ < 1.

3. εn ≤ cε
(n+1)p for cε, p > 0 and all n ∈ N, then

F(µn) ≤ ρnF(µ0) +
2p cγ cε
np

1

1− ρ
+ cγ cε

ρ⌊n/2⌋

1− ρ
for all n ∈ N.

Proof. Similar to the proof of Theorem 3, under Assumption 5 and the conditions on α, γ, we have

F(µn+1) ≤ F(µn)− cγ max
θ∈Θ

KSD2
θ(µn | π) + cγεn

≤ ρF(µn) + cγεn ,

where cγ = γ(1− γB(α2+L)
2 ) > 0. Iterating this recursion over n ∈ N, we deduce the general error

bound

F(µn) ≤ ρnF(µ0) + cγ

n−1∑
k=0

ρn−1−kεk .

We consider the three different cases separately:
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1. Under εn ≤ ε̄, the first claim follows by the computation of the geometric series

n−1∑
k=0

ρn−1−k ≤
∞∑
k=0

ρk =
1

1− ρ
.

2. Assuming that εn ≤ cεqn for some q ∈ (0, 1) and cε > 0 we have

F(µn) ≤ ρnF(µ0) + cγcε

n−1∑
k=0

ρn−1−kqk .

Suppose that q > ρ, then we have

n−1∑
k=0

ρn−1−kqk =

n−1∑
k=0

qn−1−kρk = qn−1
n−1∑
k=0

(ρ/q)k ≤ qn−1 1

1− ρ/q
= qn

1

q − ρ

where we have used the formula for geometric series. Similarly, in the case of q < ρ, we
can directly bound

n−1∑
k=0

ρn−1−kqk = ρn−1
n−1∑
k=0

(q/ρ)k ≤ ρn−1 1

1− q/ρ
= ρn

1

(ρ− q)
.

Finally, in the case q = ρ, we simply bound qk < q̃k for any q < q̃ < 1 and deduce the
claim line by line as before.

3. In the setting of εn ≤ cε
(n+1)p) , we rewrite the upper bound on F(µn) as

F(µn) ≤ ρnF(µn) + cγ

n−1∑
k=0

ρkεn−1−k

= ρnF(µ0) + cγ(

⌊n/2⌋∑
k=0

ρkεn−1−k +

n−1∑
k=⌊n/2⌋+1

ρkεn−1−k)

≤ ρnF(µ0) +
2p cγ cε
np

1

1− ρ
+ cγ cε

ρ⌊n/2⌋

1− ρ
.

Here, we have used εn−1−k ≤ cε
(n−k)p ≤

2p cε
np for all k ≤ ⌊n/2⌋ and εk ≤ cε for all

k ∈ N.
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