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Abstract

Visual question answering (VQA) requires
vision-language models (VLMs) to reason over
images and respond to questions that ask about
diverse details and inferences of these images.
Typically, VLMs use pre-trained vision en-
coders to map visual inputs to feature repre-
sentations, and fuse these representations with
large language models (LLMs), which gener-
ate responses to questions. However, these
query-agnostic visual representations only re-
flect a static set of features of the visual input,
which hinders VLMs from robustly respond-
ing to queries about out-of-distribution (OOD)
features. To address this challenge, we pro-
pose to fuse the query as additional context
into early-stage vision encoding, enabling mod-
els to learn context-aware visual representa-
tions that can flexibly adapt to different queries.
Our contextualized vision transformer, C-ViT,
learns the early fusion of vision and context
via a fine-grained curriculum learning scheme,
based on a novel Contextual Vision-Inference
Alignment (CVIA) dataset. We apply C-ViT to
two VLM architectures, and results on both ar-
chitectures demonstrate that C-ViT effectively
improves reasoning robustness of VLMs, par-
ticularly when generalizing to OOD VQA data.

1 Introduction

Visual question answering (VQA; Singh et al.,
2019) requires vision-language models (VLMs) to
reason over visual inputs (images) with text-based
queries, and generate appropriate textual responses.
To answer visual questions, VLMs typically use
pre-trained vision encoders to convert visual inputs
to feature representations. These features are then
concatenated with query embeddings, to enable rea-
soning across modalities via large language models
(LLMs) (Liu et al., 2023a; Wang et al., 2024; Ghosh
et al., 2024). However, the pre-trained vision en-
coder does not receive the queries as contexts when
constructing the visual feature representations. As
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Figure 1: Illustration of how our contextualized visual
representation dynamically adapts to different contexts
(queries). Heatmap areas with warmer colors indicate
image regions that the model puts more attention to
when responding to each query. LLaVA-1.5 with our
C-ViT contextual vision encoder shows more flexible at-
tention to image regions that are relevant to each query.

a result, current VLMs that rely on such context-
agnostic representations may fail to generalize to
out-of-distribution (OOD) queries (Mayilvahanan
et al., 2024b; Liu et al., 2024b; Abbasi et al., 2024),
which may require visual feature representations
that are more fine-grained than the ones yielded by
a query-agnostic visual encoder.

For example, as shown in Figure 1, to answer
question Q1, which asks about the season presented
in the image, the model must focus on the snow
at the bottom part of the image. In contrast, for
answering question Q2 that concerns the relation-
ship between the creatures, the model needs to
pay attention to the center of the image instead,
where two creatures are engaged in a fight. VLMs
with context-agnostic vision encoders such as CLIP
(Radford et al., 2021) only capture visual features
that are relevant to Q1, failing to extract features
that are useful for answering Q2. This loss of visual
information during early-stage encoding reduces



the reasoning robustness of VLMs when encoun-
tering various real-world input queries.

In this work, we propose a Contextualized
Vision Transformer (C-ViT) to overcome the limi-
tations of context-agnostic visual representations,
by incorporating the input query (as additional con-
text) into the early stage of vision encoding. C-
ViT’s early fusion of vision and query enables the
learning of context-aware visual representations,
which dynamically produce visual features that are
more relevant to varied input queries, enhancing
VLMs’ reasoning robustness, as seen in Figure 1.

To facilitate the learning of contextualized visual
representations, we introduce a Contextual Vision-
Inference Alignment (CVIA) dataset along with its
automatic generation pipeline. CVIA contains 10M
image—context—inference triples, which form con-
trastive learning samples on three difficulty levels
(basic, easy and hard), according to the difficulty of
discriminating the positive versus negatives and the
number of negatives included per sample. Based on
CVIA, we propose a three-stage curriculum learn-
ing pipeline to train C-ViT, which progressively
enhances the alignment of C-ViT’s context-aware
vision encoding with the output inference corre-
sponding to the context. Specifically, in the first
two stages, to learn the alignment, C-ViT is trained
on our contrastive learning data CVIA gradually
from basic, easy to hard levels. While in the fi-
nal stage, we finetune the entire VLM (i.e., LLM
plugged with C-ViT) end-to-end on downstream
VQA tasks, to further adapt C-ViT’s encoding into
the LLM inference process.

We evaluate C-ViT by integrating it into two
leading VLM architectures: the encoder-decoder
framework (Cho et al., 2021) and the decoder-only
framework (Liu et al., 2024a). The models are
benchmarked on a diverse set of vision-language
tasks. Across all benchmarks, models equipped
with C-ViT consistently outperform their baseline
vision encoders, particularly in zero-shot settings.
Our results highlight C-ViT’s robustness to domain
shifts and its strong generalization to OOD contexts.
This performance is attributed to C-ViT’s dynamic
focus on contextually relevant regions of an image,
as verified by our analysis in Section 6.3.

2 Background: Early-fusion Vision
Encoder

Traditional late-fusion architectures (Bai et al.,
2025; Chen et al., 2024b) combine visual features

and text embeddings at the stage just before the
final LLM inference generation. In doing so, they
produce a context-agnostic image representation
that related only to image itself, constraining its
ability to extract task-specific details and, conse-
quently, hindering performance on complex vision-
language tasks (Li et al., 2024a).

In contrast, early-fusion architectures (Team,
2024) introduce contextual information at the early
stage of image feature processing, leading to dy-
namic vision representations that adapt to the ac-
companying context. By conditioning visual fea-
tures in context, early-fusion architectures exhibit
greater robustness and generalization ability, as ver-
ified in Section 5.

QA-ViT (Ganz et al., 2024) accomplishes early-
fusion by augmenting a frozen CLIP vision encoder
to form a conditional encoder, V' (1) — V (I|Q).

The input question () is encoded to produce
textual features F(y via the LLM’s text encoder.
At each self-attention block of the vision encoder,
these question features are concatenated with the
visual sequence Fy,, enabling a cross-modal at-
tention over the combined sequence. The output
corresponding to the visual sequence F"/Q is able
to capture context-aware vision features:

F"/Q = Attention(concat(Fy, FQ))p.ag (1

where M is the length of vision sequence. Finally,
the fused vision feature passes through both the
original projection P and a learnable gated pro-
jection P, maintaining the layer’s outputs with
minimal deviation at initialization while enabling a
residual learnable stream of information:

Fyq = P(Fyrq) + Py(Firg) - tanh(B)  (2)

In this work, we follow QA-ViT to build a early-
fusion contextual vision encoder C-ViT, and pro-
pose a method to seek stronger learning of contex-
tualized visual representations using C-ViT.

3 Contextualized Visual Representation
Learning

In this section, we propose a novel method for con-
textualized visual representation learning. First,
we introduce the Contextualized Vision Trans-
former (C-ViT), a vision encoder that integrates
contextual information from the early-stage of vi-
sion encoding. Next, we describe our Contextual
Vision—Inference Alignment dataset (CVIA), de-
signed to align C-ViT’s outputs with visual infer-
ences. Finally, we detail a curriculum learning
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Figure 2: An overview of our C-ViT architecture. C-
ViT consists a vision and a text encoder to process both
image and text inputs, jointly generating contextualized
visual representations. It enables cross-modal interac-
tion by injecting context features directly into each self-
attention layer.

pipeline that progressively increases sample diffi-
culty throughout training.

3.1 Contextualized Vision Transformer

Building on QA-ViT architecture described in Sec-
tion 2, we propose the Contextualized Vision Trans-
former (C-ViT), a contextual vision encoder de-
signed to early fuse the input context (query) with
the visual features, as illustrated in Figure 2. Unlike
late-fusion approaches, which combine modalities
only at LLM input stage, C-ViT injects context
features into the self-attention layers of the vision
encoder. This allows rich cross-modal interactions,
leading to a context-aware representation that pro-
vides more effective feature extraction.

C-ViT consists of two main components: a vi-
sion encoder and a text encoder. The vision encoder
is responsible for generating visual representations
and the text encoder provides the contextual rep-
resentations needed. The exact implementation of
C-ViT can vary depending on the VLM architec-
ture. Specifically, the text encoder can inherit the
LLM'’s encoder in an encoder-decoder architecture,
while in a decoder-only setup, it’s initialized by a
pretrained CLIP text encoder.

Thanks to this flexibility, C-ViT functions as a
plug-and-play module, supporting both encoder-
decoder and decoder-only architectures.

3.2 Contextual Vision-Inference Alignment
Dataset

Recent findings (Li et al., 2024b) suggest that vi-
sion and language models learn similar representa-
tions of the world, differing only in spatial distribu-

tion. The cross-modality alignment mainly relies
on the vision-language connector in a VLM. Since
C-ViT modifies the original CLIP vision encoder
architecture by introducing new input and param-
eters, the original output distribution is disrupted.
As a result, we must retrain C-ViT to learn the cor-
rect representations. To support this, we propose
a Contextual Vision-Inference Alignment (CVIA)
dataset, which contains three types of samples and
supports curriculum contrastive learning.

Image Context Visual Inference

Positive %
Negative,,, &

Negative..;,

Negative,, %

Figure 3: An example from our CVIA. The dataset is
constructed for curriculum contrastive learning, contain-
ing positive samples paired with negative samples across
three difficulty levels: basic, easy, and hard. Each level
includes ten negative samples per positive instance.

What is the condition of The sky in the image is
the sky in the image? cloudy.

What is the main
landmark in the image?

The Palace of Westminster.

What is the condition of
the sky in the image?

The sky is clear and blue
outside.

Which sign is postioned
above the other?

The One Way sign.

The CVIA dataset categorizes samples into three
difficulty levels: basic, easy, and hard. Basic sam-
ples are obtained via random negative sampling
from the Cambrian dataset (Tong et al., 2024),
while easy and hard samples are generated by
our proposed data-augmentation strategies: neg-
ative image augmentation and negative context
augmentation, respectively. An example is illus-
trated in Figure 3. We further denote our dataset as
CVIAgusy or CVIAp,q when the majority of its sam-
ples come from the easy or hard level, respectively.
Our design allows precise control over training dif-
ficulty by tuning the proportions of basic, easy, and
hard samples. Detailed implementations of these
strategies are provided in the following sections.

3.2.1 Negative Image Augmentation

For each sample, our objective is to identify a dif-
ferent image that yields a different visual inference
when paired with the same context. To achieve this,
we search for negative images within the Cambrian
dataset by computing CLIP embeddings and select-
ing those that have high cosine similarity scores
to the positive image. We then apply a two-round
verification with a VLM to ensure that the positive



Contrastive Loss —‘

Text
Encoder

Vision &

Encoder

Vision ft

Encoder

Text
Encoder

©
Stage 1 Contrastive
Learning with CVIA,,,,

Contrastive Loss

Text &

Encoder

Stage 2 Contrastive
Learning with CVIA, .4

Text &

Encoder

®

Stage 3 Supervised Finetuning

Figure 4: An overview of the three-stage curriculum learning pipeline. Stage 1 and Stage 2 use curriculum
contrastive learning to finetune C-ViT using CVIA dataset under two difficulty settings. Stage 3 use supervised

finetuning to finetune the entire VLM architecture.

inference is not a plausible answer for the negative
images, and vice versa. Finally, we employ a LLM
to rewrite each negative inference to eliminate any
length-based shortcuts.

We label the data produced by this strategy as
"easy" negatives, since each positive sample can
only be paired with exactly one negative in one
contrastive batch, because there is no guarantee that
different negatives will be mutually irrelevant. We
include our detailed prompts for sampling negative
images in Appendix B.1 and B.3.

3.2.2 Negative Context Augmentation

Negative context augmentation aims to pair each
image with a diverse set of contexts. Although
the Cambrian dataset includes several contexts per
image, we enrich this pool by following prior work
(Zhu et al., 2024) and implementing an automated
questioning pipeline to generate additional negative
contexts and their corresponding inferences.

Our pipeline utilizes two separate VLMs: a ques-
tioner, which formulates questions about the image,
and an answerer, which provides the visual infer-
ences. The pipeline proceeds in three levels (coarse-
grained, fine-grained, and reasoning-required) of
question generation. The questioner moves forward
to the next level once no new questions can be gen-
erated on the current topic. Additionally, we still
deploy a LLM to complete the rewriting process to
prevent shortcuts.

We label the resulting samples as "hard" nega-
tives, since each image can be paired with multiple,
mutually irrelevant contexts, forcing the model to
learn stronger discriminative capabilities when all
negatives are included in the same contrastive batch.
The detailed prompts for negative context sampling
can be found in Appendix B.2.

3.3 Curriculum Learning Pipeline

Curriculum learning (Wang et al., 2021) introduces
training samples in increasing order of difficulty,
enabling models to first master simpler examples
before tackling more complex ones. This gradual
progression has been shown to improve conver-
gence and final performance, particularly in trans-
fer learning scenarios where smoother adaptation
to new tasks is critical.

Inspired by this approach, we designed a three-
stage curriculum learning pipeline (Figure 4) with
two distinct training objectives: aligning visual fea-
tures with contextual understanding and enhancing
performance on downstream tasks. The first two
stages focus on curriculum contrastive learning,
training the model to align visual representations
with their corresponding contextual inferences. In
the final stage, we apply supervised finetuning to
the entire VLM, allowing us to evaluate its effec-
tiveness on downstream tasks.

We believe that this staged approach fosters a
strong generalization capability, enabling C-ViT
to function as a strong and flexible vision encoder
when plugged into a VLM. The detailed strategy
for each stage is described as follows.

3.3.1 Contrastive Learning Stages

Combined with C-ViT, we introduce a novel con-
trastive learning objective that requires three inputs:
image, context, and visual inference. The goal is
to align the visual representation, conditioned on
both the image and context, with the representation
of its corresponding visual inference. We employ
a two-stage training strategy that progressively in-
creases data difficulty while gradually unfreezing
model parameters, with a smooth transition from
the pretrained CLIP encoder to our new objective.

Stage One In the first stage, we train on
CVIAg,sy. At this stage, the text encoder is kept



frozen and only the newly added vision-encoder
parameters are updated. This configuration enables
the model to begin embedding contextual informa-
tion into its visual representations while preserv-
ing CLIP’s foundational encoding capabilities. By
starting with simpler examples and limiting the
scope of parameter updates, we reduce the risk of
overfitting or shortcut learning, and ensure a stable
shift from CLIP’s original contrastive objectives to
our context-aware targets.

Stage Two In the second stage, we train on
CVIA}..q- Here, we unfreeze the text encoder so it
can fully participate in the joint contrastive objec-
tive. This stage mainly focuses on distinguishing
representations of the same image under different
contexts, reinforcing the model’s ability to infer
how context shapes visual interpretation. By gradu-
ally increasing both data difficulty and model flexi-
bility, our two-stage contrastive curriculum enables
C-ViT to learn a rich, context-sensitive visual em-
bedding, laying a robust foundation for subsequent
downstream fine-tuning.

3.3.2 Supervised Finetuning Stage

In the third stage, we plug C-ViT into the VLM
framework and perform supervised finetuning on
downstream tasks. Unlike approaches such as
LLaVA, which freeze the vision encoder at this
point, we choose to keep C-ViT’s newly introduced
parameters unfrozen. This decision stems from
our belief that contrastive learning with our limited
data size may not be sufficient for the model to
fully master how to utilize contextual information.
Continuing to finetune the vision encoder allows
it to better fuse contextual information with visual
features, ultimately improving its performance on
downstream benchmarks.

4 Experimental Setup

In this section, we detail the model configurations
and experimental settings used in our data augmen-
tation, training, and experiments.

4.1 VLM architecture

We plug our C-ViT into two types of VLM archi-
tectures: encoder-decoder and decoder-only. For
the encoder-decoder setup, we use Flan-T5 (Chung
et al., 2024) as the backbone language model and
evaluate performance on four VQA benchmarks:
TextVQA, VQA-v2 (Antol et al., 2015), ST-VQA
(Biten et al., 2019), and VizWiz (Gurari et al.,

2018). For the decoder-only architecture, we follow
the LLaVA-1.5 configuration and use Vicuna-1.5
(Zheng et al., 2023) as the backbone. We evaluate
our method on eight VQA benchmarks: TextVQA,
VQA,,, VizWiz, MME (Fu et al., 2023), POPE
(Li et al., 2023b), MMBench (Liu et al., 2024c¢),
ScienceQA (Lu et al., 2022) and SEED (Li et al.,
2023a). For each architecture, we employ C-ViT
as the vision encoder and compare its performance
against two baselines: the original CLIP model
(Radford et al., 2021) and QA-ViT (see Section 2).

4.2 Data Construction

We used some specific models in the process of
building our CVIA dataset. We use MetaCLIP-
h14 (Xu et al., 2024) as vision encoder to gen-
erate vision embeddings for similarity calcula-
tion. MiniCPM-V-2.6 (Yao et al., 2024) is used in
both data augmentation pipeline for image filtering
and new context (query) generation. For rewrit-
ing the visual inference, we adopt Llama-3.1-70B
(Grattafiori et al., 2024).

4.3 Training Settings

For the contrastive learning stages (Stages 1 and 2),
we use 1 million samples from our CVIA dataset
for training, running for 10 epochs at each stage.
The data distribution in CVIA,sy consists of 40%
basic, 40% easy, and 10% hard samples. In con-
trast, CVIAp,q 1s composed of 10% basic, 10%
easy, and 80% hard samples, emphasizing more
challenging instances. For fine-tuning the encoder-
decoder architecture, we follow the training strat-
egy of QA-ViT and apply LoRA (Hu et al., 2022).
We use the QA-ViT training data, excluding the
OCR-VQA dataset (Mishra et al., 2019), due to
partial unavailability. For the decoder-only archi-
tecture, we follow LLaVA-1.5, using the same data
as in LLaVA’s training process.

5 Results

Vision Encoder | TextVQA VQA,, ST-VQA VizWiz
CLIP-ViT 48.0 72.7 52.7 27.0
QA-ViT 49.7 73.2 54.5 27.6
C-ViT (ours) 51.2 74.8 55.3 29.1

Table 1: Evaluation results on Flan-T5-XL encoder-
decoder architecture. The vision encoders in both QA-
ViT and C-ViT are initialized with CLIP-ViT encoder
weights, while their text encoders are initialized with
Flan-T5-XL encoder weights.



Vision Encoder | TextVQA VQA.,, VizWiz MME POPE(rand/pop/adv) MMBench ScienceQA  SEEDjp,
CLIP-ViT 58.2 78.5 50.0 1510 87.3/86.1/84.2 64.3 66.8 66.1
QA-ViT 59.0 79.1 51.2 1518 88.0/87.2/85.3 65.1 67.0 66.2
C-ViT (ours) 60.8 80.0 52.1 1533 89.1/87.6/86.1 66.2 68.9 67.2

Table 2: Evaluation results on LLaVA-1.5 decoder-only architecture. All methods employ Vicuna-1.5-7B as the
initial LLM to be trained with the vision encoder. The vision encoders in both QA-ViT and C-ViT are initialized
with CLIP-ViT encoder weights, while their text encoders are initialized with the weights of CLIP’s text encoder.

5.1 Evaluation on Downstream Tasks

We evaluate the effectiveness of our proposed C-
ViT via plugging it into both encoder-decoder and
decoder-only VLM architectures. We compare its
performance against the late-fusion baseline and
the QA-ViT method across a range of benchmarks.
For the encoder-decoder architecture, we adopt
Flan-T5 (Chung et al., 2024) as the base model
and evaluate on four datasets, as shown in Table 1.
For the decoder-only architecture, we use Vicuna-
1.5 as the base model and compare our approach
to LLaVA-1.5 following LLaVA evaluation bench-
marks, including eight benchmarks (see Table 2).
In both settings, our method consistently out-
performs the baselines, demonstrating that our ap-
proach, which provides contextualized vision rep-
resentations, enhances model performance across
various VQA tasks. Furthermore, when compared
to other VLMs of similar parameter sizes but with
different base models, C-ViT surpasses the base-
lines on nearly all datasets (see Appendix C). More-
over, the modular and decoupled design of C-ViT
enables it to be a general-purpose strategy for im-
proving vision-language tasks. This means that
C-ViT is independent of the specific backbone ar-
chitecture and can be used with any visual encoder.

5.2 Generalization Ability on Zero-shot

Datasets
. 3 IllusionVQA
Vision Encoder | M°CoT Comp S-L
CLIP-ViT 27.1 30.8 24.6
QA-ViT 35.5 316 233
C-ViT (ours) 38.2 31.7 279

Table 3: Evaluation results on M3CoT (Chen et al.,
2024a) and IllusionVQA (Shahgir et al., 2024) using the
same setup as in Table 2. In [llusionVQA, "Comp" and
"S-L" denote the Comprehension and Soft-Localization
tasks respectively.

We hypothesize that fusing contextual informa-
tion directly into the vision encoder and training
C-ViT via curriculum learning would yield more

robust visual representations and, in turn, stronger
overall VLM performance. To test this, we eval-
uate our approach in a zero-shot setting on two
recent benchmarks: M3CoT, which emphasizes the
reasoning ability within the visual modality, and
IllusionVQA, which assesses a model’s behavior
on absurd or contradictory images. Results (see
Table 3) show that our method substantially outper-
forms the baselines, especially on M3CoT dataset
and the Soft-Localization (S-L) task in Illusion-
VQA. It demonstrates that context-aware vision
encoding confers strong generalization ability, re-
sponding well to OOD visual inputs.

6 Analysis

6.1 How curriculum learning effects the final

performance?
Vision Encoder TextVQA  VizWiz
CLIP-ViT 40.2 23.7
C-ViT 45.1 26.2
w/o curriculum (data) 444 24.4
w/o curriculum (freeze) 44.5 24.9
w/o curriculum (unfreeze) 44.7 25.5

Table 4: Accuracy on the TextVQA and VizWiz dataset
with different contrastive learning strategy. The methods
uses Flan-T5-base as the backbone language model.

Given a model and a dataset, there are often mul-
tiple strategies to adapt the model to a target task.
In our experiments, we investigate the effect of cur-
riculum learning and compare it against standard
contrastive learning approaches (see Table 4).

We evaluated three different training configu-
rations without curriculum strategy. In the w/o
curriculum (data) setting, only samples labeled as
hard in CVIA were used during training. In the
w/o curriculum (freeze) setting, the text encoder
parameters remained frozen throughout training. In
contrast, for w/o curriculum (unfreeze), the text
encoder was set to be fully trainable.

All three configurations lead to performance
drops. The data setting causes the largest decline,
suggesting that the absence of easier examples hin-



ders the model’s ability to learn robust alignments.
Both the freeze and unfreeze settings also neg-
atively impact performance. We attribute this to
different causes: freezing limits adaptation due to
insufficient trainable parameters, while unfreezing
risks diminishing pretrained knowledge through
excessive parameter updates.

Overall, our experiments demonstrate that cur-
riculum learning enables C-ViT to better balance
the retention of pretrained knowledge with the
adaptation to new tasks, resulting in improved per-
formance on downstream evaluations.

6.2 Stratified Performance Analysis

Fine-Grained Task Results on MMBench
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Figure 5: Comparison of accuracy on fine-grained tasks
in MMBench. LR, AR, RR, FP-S, FP-C, and CP repre-
sent Logical Reasoning, Attribute Reasoning, Relation
Reasoning, Fine-grained Perception (Single-instance),
Fine-grained Perception (Cross-instance), and Coarse
Perception, respectively.

In this section, we investigate deeper into the spe-
cific abilities that our C-ViT brings to a VLM. To
this end, we evaluate C-ViT on MMBench, which
is a benchmark that contains six subsets that eval-
uate on different aspects of the multimodal under-
standing. Figure 5 shows the detailed performance
histogram across these subsets.

As illustrated in the figure, C-ViT achieves sub-
stantial improvements across all perception-related
tasks, as well as in logical and relational reasoning
tasks. These gains align with the core design of our
context-aware approach. By introducing contex-
tual information into the vision encoder at an early
stage, the encoder is better equipped to produce
semantically rich and context-relevant features, ul-
timately leading to improved performance.

However, an exception is observed in the at-
tribute reasoning subset, where C-ViT demon-
strates a drop in accuracy. Upon examining sam-
ples from this subset, we find that many of the
prompts contain abstract or vague phrasing, such

as "The object shown in this figure:", which lacks
meaningful semantic content. As a result, C-ViT
struggles to effectively align the contextual infor-
mation with the visual input. Therefore, this leads
to the outcome that a well-trained C-ViT underper-
forms compared to the original CLIP.

6.3 Why do contextualized vision
representations lead to accurate answers?

In this section, we investigate why VLMs tend to
produce more accurate answers when using our
C-ViT to generate contextualized vision represen-
tations. Our hypothesis is that C-ViT effectively
emphasizes the relevant regions of an image that
are critical for answering a given question or for
supporting reasoning processes.

To investigate this hypothesis, we utilize Atten-
tion Rollout (Chefer et al., 2021) to visualize the
vision encoder’s attention through heatmaps. Atten-
tion Rollout computes a unified attention map by
recursively aggregating attention matrices across
all transformer layers. This process highlights the
contribution of each input (image) token to the final
output, offering insight into how contextual infor-
mation guides visual reasoning and why our C-ViT
performs better than all baselines.

CLIP

Q: What will happen next?

CUPQA. the man is gonna get up

B. the man is gonna walk back
cur@ c. the man is gonna fall
€. both AB, and

QA-ViT C-ViT (ours)

QaviT

Figure 6: An example from MMBench. We compare
attention heatmaps generated under the LLaVA-1.5 ar-
chitecture using CLIP, QA-ViT, and C-ViT. In these
heatmaps, the highlighted (red) regions indicate areas
with greater influence on the model’s output. Only our
C-ViT setting selects the correct answer.

Figure 6 well explains that after fusing con-
textual information, our C-ViT significantly ad-
justs its self-attention patterns compared to context-
agnostic image representations, even demonstrat-
ing a degree of visual reasoning ability. In this ex-
ample, the main objects in the image are a man and
a Honda car. Without specific contextual guidance,
it is natural for CLIP to focus on the man’s limbs,



and even the car logo. However, these regions are
not relevant to the correct answer. QA-ViT, without
being explicitly trained to fuse contextual informa-
tion, focuses on the man’s center of gravity and the
wooden floor behind him. Although these features
are somewhat related to the question, it fails to
reach the correct answer. As a result, it concludes
that all situations are equally plausible.

In contrast, our C-ViT demonstrates a markedly
different attention pattern. Compared to the two
baselines, the attention shifts significantly toward
the wooden floor and the junction where it meets
the stone road. This shift suggests that our method
is aware of the height difference between the two
surfaces. Remarkably, we can infer that the high-
lighted junction is the exact spot where the man’s
right leg previously missed the step. With C-ViT,
the VLM focuses on the correct visual cues, en-
abling it to infer the reason for the man’s posture
and movement, and to make the correct deduction
that he is about to fall.

This example provides strong evidence that con-
textualized vision representations offer more ef-
fective visual information to VLMs. By aligning
attention with semantically relevant regions, they
enhance the model’s reasoning process and lead to
more accurate answers in vision-language tasks.

7 Related Work

Contrastive Learning for Vision Models with
Language. Contrastive learning (Hadsell et al.,
2006) is a form of an unsupervised learning method
that aims to learn data representation by maximiz-
ing the similarity between related samples and min-
imizing the similarity between unrelated samples.
Traditional vision models, such as convolutional
neural networks (CNNs) (Szegedy et al., 2015; He
et al., 2016) and Vision Transformers (ViTs) (Doso-
vitskiy et al., 2021), are typically limited to pre-
dicting predefined categories in classification tasks.
Although many works (Chen et al., 2020; He et al.,
2020) have attempted to enhance the capabilities of
visual models through contrastive learning, CLIP
(Radford et al., 2021) was the first to utilize it to
align image and text modalities. CLIP consists of
two parallel encoders for images and text. It learns
a shared embedding space in which semantically
aligned image-text pairs have high similarity scores.
This multimodal alignment enables CLIP to gener-
alize to novel visual concepts beyond the training
categories (Mayilvahanan et al., 2024a).

In this work, we modified the CLIP framework
so that the vision encoder can accept both vision
and associated text inputs. Therefore, our con-
trastive learning objective is adapted to align the
context-aware visual representation with its corre-
sponding visual inference.

Enhanced Vision Representation. Many stud-
ies have explored strategies for improving visual
representations (Li et al., 2021; Liu et al., 2023b;
Vyskocil and Picek, 2023; Shi et al., 2024) to sup-
port more efficient image encoding. For exam-
ple, BRAVE (Kar et al., 2024) generates its visual
representation by employing k independent vision
encoders and concatenating their outputs. This de-
sign enables the extraction of visual features from
multiple perspectives, thereby enriching the visual
representation space. However, the model may still
struggle (Geigle et al., 2023) when image-text in-
puts require features beyond the collective scope
of these encoders.

Chameleon (Team, 2024) adopts a different
structure by treating images as discrete tokens like
the text. It jointly embeds image and text tokens
into an auto-regressive language model, allowing
direct integration of visual and linguistic features.
Despite its elegance, this method suffers from infor-
mation loss during tokenization (Fan et al., 2024),
as discrete tokens can only capture a limited sub-
space of the continuous visual feature space.

QA-VIiT, as introduced in Section 2, enhances
image representations by utilizing self-attention
layers to integrate context information. However, it
is only trained within the VLM architecture without
individual training of vision encoding, limiting the
model’s performance, as discussed in Section 3.2.

8 Conclusion

We propose C-ViT, a contextualized vision trans-
former that fuse context information into the early-
stage of visual encoding, enabling the model to
construct dynamic context-aware visual represen-
tations. To support effective learning of such con-
textual representations, we introduce a fine-grained
curriculum learning pipeline built upon our CVIA
dataset. Extensive experiments across two VLM
architectures demonstrate that C-ViT consistently
improves reasoning robustness and generalization,
particularly under OOD settings. Owing to its mod-
ular design, C-ViT can be integrated into a broad
range of VLMs, offering a principled approach to
enhancing VQA robustness in various scenarios.



Limitations

We acknowledge several limitations in our work.
First, the dataset used for evaluation does not cover
all domains, which may limit the ability of our
method to specific or underrepresented fields. Sec-
ond, both dataset construction and model evalu-
ation use English as the main language, without
consideration of multilingual scenarios. In addi-
tion, due to constraints in data and computational
resources, we finetuned C-ViT using an existing
vision encoder rather than training it from scratch,
which may affect the optimality of the final model.
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A Implementation Details

A.1 Model in Dataset Construction

Negative Image augmentation We utilize the
full Cambrian dataset (10 million samples) to gen-
erate MetaCLIP embeddings and compute cosine
similarity scores, which takes approximately 4
hours. For visual inference and filtering, we employ
MiniCPM 2.6, requiring about 5 seconds to evalu-
ate each negative image. Rewriting is performed
using LLaMA-3.1 70B version, loaded in 4-bit pre-
cision, taking roughly 10 seconds per instance. All
models are run on 1 NVIDIA A100-SXM4 (80GB)
GPU.

Negative Context Augmentation We simultane-
ously load two independent MiniCPM 2.6 for ask
and answer on 1 NVIDIA A100-SXM4 (80GB)
GPU. On average, processing a single image takes
about 20 seconds. The rewriting configuration re-
mains the same as described above.

A.2 Model in Training

Contrastive Learning Stage In the contrastive
learning stage, we fine-tune C-ViT using a batch
size of 20 with the CLIP text encoder, and 80 with
the encoder module of Flan-T5 XL. We use a learn-
ing rate of le~%, a cosine learning rate scheduler
with warm-up step 300 and no weight decay. Train-
ing is based on 8 NVIDIA A100-SXM4 (80GB)
GPUs, with a total training time of approximately
5 hours.

Supervised Finetuning Stage For encoder-
decoder architecture, we finetune the VLM with
a batch size 4 for 2 epochs, with a fixed random
seed. We adopot the LoRA setting, with rank=128,
a=256 and a dropout rate of 0.05, using a learning
rate of le™*. The finetuning is also based on 8
NVIDIA A100-SXM4(80GB) GPUs, with training
time about 20 hours.



For the decoder-only architecture, we largely
follow the setup from LLaVA-1.5. The vision-
language connector is pretrained with a total batch
size of 256 and a learning rate of le ™3, using a
cosine learning rate scheduler with a warm-up ratio
of 0.03 and with a fixed random seed. The full
VLM is then fine-tuned with a total batch size of
128 and a learning rate of 2e~°, again using a co-
sine learning rate scheduler with a warm-up ratio of
0.03 and a weight decay of 0. The pretraining and
finetuning conducted based on 8 NVIDIA A100-
SXM4(80GB) GPUs, with training time about 6,
30 hours respectively.

B CVIA Construction Details

This section details the prompts used for data gen-
eration in our CVIA construction pipelines.

B.1 Visual Inference Generation and Filtering
Prompts

Table 5, 6 provides examples of the prompt used
in negative image augmentation pipeline to guide
VLM in generating visual inference and filtering
out those invalid inferences.

B.2 Ask-Answer Prompts

Table 7, 8 illustrates the prompt framework used for
generating context in different types (questioner)
and its correlated visual inference (answerer).

B.3 Rewrite Prompts

The prompt used in rewriting the visual inferences
are shown in Table 9.

C Full Evaluation Results

We report the performance of C-ViT in comparison
with other VLM architectures of similar parameter
sizes, as shown in 10. Our method achieves the
best performance on most datasets.

D Case Study

Although contextualized vision representations of-
ten help the model capture more effective features,
they can sometimes misinterpret the context and
extract misleading information. Take Fig. 7 as an
example. While both vision encoders answer the
question correctly, the attention heatmap of C-ViT
reveals that it mistakenly focuses most on the in-
conspicuous declaration text at the bottom of the
image. This occurs because C-ViT falsely iden-
tifies the text in the question as the key concept

and then associates it with the text in the image,
leading it to believe that this text is relevant for
visual inference. Despite this misinterpretation, C-
VIiT still produces the correct answer due to the
partial retention of the ability from the original
CLIP, which ensures that the model continues to
allocate some attention to the sushi. This example
highlights that C-ViT still requires improvement in
performing implicit reasoning based on contextual
information. At the same time, it also demonstrates
C-ViT’s strong ability to extract fine-grained image
details.

Image

Q: Which can be the associated
text with this image posted on
twitter?

cLp QA: | painted a picture of sushi.

cvit )
It's a colorful and tasty scene.

Here is a text about third-
party content declaration.

~

CLIP C-ViT (ours)

Figure 7: An example from MMBench. We compare
attention heatmaps generated under the LLaVA-1.5 ar-
chitecture using CLIP and C-ViT. In these heatmaps,
highlighted (red) regions indicate areas with greater in-
fluence on the model’s output. Although C-ViT answers
correctly, it focuses on the wrong region

E Augmented Data Analysis

In this section, we present a analysis of the aug-
mented data in CVIA.

E.1 Negative Image Augmentation

Average Question Generation by Type

4
3
2
. [ . I

coarse-grained

-

fine-grained reasoning-required

Figure 8: The average number of questions by type
generated by the context augmentation pipeline.



role content

User Answer the question around 5 words. Do not

hallucinate if not sure. What kind of room am I
looking at?

MiniCPM 2.6 Kitchen

User Is the answer correct given the question and im-
age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You're looking at a kitchen.

MiniCPM 2.6 Yes.

Table 5: An example of our prompts. When the model’s answer is "Yes," the image considered invalid.

role content

User Answer the question around 5 words. Do not
hallucinate if not sure. What kind of room am I
looking at?

MiniCPM 2.6 Living room

User Is the answer correct given the question and im-
age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You're looking at a kitchen.

MiniCPM 2.6

User . . .

Is the answer correct given the question and im-
age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You're looking at a living room.

MiniCPM 2.6 No.

Table 6: An example of our prompts. When the model answers two "No," the image is considered valid.
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role content

User I have an image. Ask me questions about the con-
tent of this image. Each time ask one question only
without giving an answer. Do not ask the same
question as before. I’ll put my answer beginning
with “Answer:”.
Questioner (MiniCPM 2.6) Describe this image in detail.
User Answer: ...
Next Question. Avoid asking yes/no questions.
Question should focus on border details.
Question:
Questioner What is the color of the walls in this kitchen?

User Answer: The kitchen’s color scheme and furniture ar-
rangement create a warm, inviting atmosphere. Light
neutral walls complement wooden cabinetry, while
beige counter tops add brightness without clashing
with decorative elements. Strategic furniture place-
ment enhances efficiency during meal prep, combin-
ing functionality with aesthetics to create a welcom-
ing space.

Next Question. Avoid asking yes/no questions.
Question should focus on reasoning.
Question:

Questioner How does the presence of a fruit bowl in this kitchen
setting contribute to its overall atmosphere and func-
tionality?

Table 7: An example of our prompts used with the questioner. Notice that we force the questioner to use "Describe
the image in detail" as the first question.
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role

content

User

£ »

Answer given questions. If you are not sure about
the answer, say you donf know honestly. Don’t
imagine any contents that are not in the image.
Question: Describe this image in detail. Answer:

Answerer (MiniCPM 2.6)

The image shows a bright, functional kitchen with
wooden cabinets, light-colored countertops, and neu-
tral off-white walls. A white stove with a range hood
and a refrigerator are neatly integrated, while small
appliances like a coffee maker sit on the counters. In
the foreground, a wooden dining table is adorned
with a colorful fruit bowl. Natural light streams
through a window, enhancing the clean and inviting
atmosphere, complemented by simple ceiling light-
ing.

User

Question: What is the color of the walls in this
kitchen? Answer should be around 48 words. An-
swer:

Answerer

The kitchen walls are painted a light, neutral color
that complements the wooden cabinetry and beige
countertops. This choice creates an inviting atmo-
sphere, allowing furniture and decor to stand out
without clashing, while also reflecting natural light-
ing to enhance brightness and make the space feel
larger.

Table 8: An example of our prompts used with the answerer.
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role

content

User

Given the question, rewrite the answer to 5 words.
question: What kind of room am I looking at? an-
swer: Kitchen

Llama 3.1

It’s a kitchen room.

role

content

User

Given the question, rewrite the answer to 27
words. question: Are there any distinctive features
or components you can identify on the bus? answer:
The bus in the image has several distinctive features.
It is a modern coach-style vehicle, characterized by
its streamlined design and large windows that provide
ample visibility for passengers inside. The number
"3804" prominently displayed on it suggests this may
be part of an organized fleet or public transportation
system. Additionally, there are multiple doors visible
along one side which likely serve as entry points to
accommodate passenger boarding efficiently at stops
with limited space like urban areas where parking
might not allow buses full access from all sides.

Llama 3.1

The bus has a modern coach-style design, large win-
dows, and the number "3804" displayed prominently,
suggesting it’s part of an organized fleet or public
transportation system.

Table 9: Two examples of our prompts used to rewrite the visual inference.

Method LLM TextVQA VQA,, POPE(rand/pop/adv) MME
InstructBLIP Vicuna-7B 50.1 - -/-1- 1294
IDEFICS LLaMA-7B 25.9 50.9 -/-1- -
Qwen-VL Qwen-7B 63.8 78.8 -/-1- -
Qwen-VL-Chat Qwen-7B 61.5 78.2 -/-1- 1488
LLaVA-1.5 Vicuna-7B 58.2 78.5 87.3/86.1/84/2 1511
LLaVA-1.5+C-ViT (ours) Vicuna-7B 60.8 80.0 89.1/87.6/86.1 1533
Method LLM MMBench VizWiz ScienceQA  SEEDj;,
InstructBLIP Vicuna-7B 36 34.5 60.5 58.8
IDEFICS LLaMA-7B 48.2 35.5 - 44.5
Qwen-VL Qwen-7B 38.2 35.2 67.1 62.3
Qwen-VL-Chat Qwen-7B 60.6 38.9 68.2 65.4
LLaVA-1.5 Vicuna-7B 64.3 50.0 66.8 66.1
LLaVA-1.5+C-ViT (ours) Vicuna-7B 66.2 52.1 68.9 67.2

Table 10: Evaluation results on eight VQA benchmarks. All baselines use CLIP-ViT as the vision encoder.
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For the negative image component, each image
in the Cambrian dataset finds 30 similar images
on average above the predefined similarity thresh-
old. However, only 15% of the positive images
yield over five negative images above this thresh-
old, which we used for data augmentation. After ap-
plying our filtering pipeline, approximately seven
negative images per positive image are remained
on average.

E.2 Negative Context Augmentation

The Cambrian dataset contains 3.9 million unique
images. Since we designed a basic batch size of
10, each image must be associated with at least 10
distinct contexts. Our analysis shows that 12% of
the images (approximately 470,000) already satisfy
this requirement using existing data. For the re-
maining images, our pipeline generates on average
7.1 new contexts per image. The distribution of
these generated contexts is depicted in Figure 8.
Notably, the pipeline rarely generates contexts re-
lated to the image’s coarse-grained features. In-
stead, it mainly produces reasoning-based contexts.
It’s because the majority of existing context be-
longs to the factual questions, both coarse-grained
and fine-grained, making the model no longer ca-
pable of generating new factual questions. Overall,
70% of the images can obtain diverse contexts that
meet our requirements.
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