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Abstract001

Visual question answering (VQA) requires002
vision-language models (VLMs) to reason over003
images and respond to questions that ask about004
diverse details and inferences of these images.005
Typically, VLMs use pre-trained vision en-006
coders to map visual inputs to feature repre-007
sentations, and fuse these representations with008
large language models (LLMs), which gener-009
ate responses to questions. However, these010
query-agnostic visual representations only re-011
flect a static set of features of the visual input,012
which hinders VLMs from robustly respond-013
ing to queries about out-of-distribution (OOD)014
features. To address this challenge, we pro-015
pose to fuse the query as additional context016
into early-stage vision encoding, enabling mod-017
els to learn context-aware visual representa-018
tions that can flexibly adapt to different queries.019
Our contextualized vision transformer, C-ViT,020
learns the early fusion of vision and context021
via a fine-grained curriculum learning scheme,022
based on a novel Contextual Vision-Inference023
Alignment (CVIA) dataset. We apply C-ViT to024
two VLM architectures, and results on both ar-025
chitectures demonstrate that C-ViT effectively026
improves reasoning robustness of VLMs, par-027
ticularly when generalizing to OOD VQA data.028

1 Introduction029

Visual question answering (VQA; Singh et al.,030

2019) requires vision-language models (VLMs) to031

reason over visual inputs (images) with text-based032

queries, and generate appropriate textual responses.033

To answer visual questions, VLMs typically use034

pre-trained vision encoders to convert visual inputs035

to feature representations. These features are then036

concatenated with query embeddings, to enable rea-037

soning across modalities via large language models038

(LLMs) (Liu et al., 2023a; Wang et al., 2024; Ghosh039

et al., 2024). However, the pre-trained vision en-040

coder does not receive the queries as contexts when041

constructing the visual feature representations. As042

Figure 1: Illustration of how our contextualized visual
representation dynamically adapts to different contexts
(queries). Heatmap areas with warmer colors indicate
image regions that the model puts more attention to
when responding to each query. LLaVA-1.5 with our
C-ViT contextual vision encoder shows more flexible at-
tention to image regions that are relevant to each query.

a result, current VLMs that rely on such context- 043

agnostic representations may fail to generalize to 044

out-of-distribution (OOD) queries (Mayilvahanan 045

et al., 2024b; Liu et al., 2024b; Abbasi et al., 2024), 046

which may require visual feature representations 047

that are more fine-grained than the ones yielded by 048

a query-agnostic visual encoder. 049

For example, as shown in Figure 1, to answer 050

question Q1, which asks about the season presented 051

in the image, the model must focus on the snow 052

at the bottom part of the image. In contrast, for 053

answering question Q2 that concerns the relation- 054

ship between the creatures, the model needs to 055

pay attention to the center of the image instead, 056

where two creatures are engaged in a fight. VLMs 057

with context-agnostic vision encoders such as CLIP 058

(Radford et al., 2021) only capture visual features 059

that are relevant to Q1, failing to extract features 060

that are useful for answering Q2. This loss of visual 061

information during early-stage encoding reduces 062
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the reasoning robustness of VLMs when encoun-063

tering various real-world input queries.064

In this work, we propose a Contextualized065

Vision Transformer (C-ViT) to overcome the limi-066

tations of context-agnostic visual representations,067

by incorporating the input query (as additional con-068

text) into the early stage of vision encoding. C-069

ViT’s early fusion of vision and query enables the070

learning of context-aware visual representations,071

which dynamically produce visual features that are072

more relevant to varied input queries, enhancing073

VLMs’ reasoning robustness, as seen in Figure 1.074

To facilitate the learning of contextualized visual075

representations, we introduce a Contextual Vision-076

Inference Alignment (CVIA) dataset along with its077

automatic generation pipeline. CVIA contains 10M078

image–context–inference triples, which form con-079

trastive learning samples on three difficulty levels080

(basic, easy and hard), according to the difficulty of081

discriminating the positive versus negatives and the082

number of negatives included per sample. Based on083

CVIA, we propose a three-stage curriculum learn-084

ing pipeline to train C-ViT, which progressively085

enhances the alignment of C-ViT’s context-aware086

vision encoding with the output inference corre-087

sponding to the context. Specifically, in the first088

two stages, to learn the alignment, C-ViT is trained089

on our contrastive learning data CVIA gradually090

from basic, easy to hard levels. While in the fi-091

nal stage, we finetune the entire VLM (i.e., LLM092

plugged with C-ViT) end-to-end on downstream093

VQA tasks, to further adapt C-ViT’s encoding into094

the LLM inference process.095

We evaluate C-ViT by integrating it into two096

leading VLM architectures: the encoder-decoder097

framework (Cho et al., 2021) and the decoder-only098

framework (Liu et al., 2024a). The models are099

benchmarked on a diverse set of vision-language100

tasks. Across all benchmarks, models equipped101

with C-ViT consistently outperform their baseline102

vision encoders, particularly in zero-shot settings.103

Our results highlight C-ViT’s robustness to domain104

shifts and its strong generalization to OOD contexts.105

This performance is attributed to C-ViT’s dynamic106

focus on contextually relevant regions of an image,107

as verified by our analysis in Section 6.3.108

2 Background: Early-fusion Vision109

Encoder110

Traditional late-fusion architectures (Bai et al.,111

2025; Chen et al., 2024b) combine visual features112

and text embeddings at the stage just before the 113

final LLM inference generation. In doing so, they 114

produce a context-agnostic image representation 115

that related only to image itself, constraining its 116

ability to extract task-specific details and, conse- 117

quently, hindering performance on complex vision- 118

language tasks (Li et al., 2024a). 119

In contrast, early-fusion architectures (Team, 120

2024) introduce contextual information at the early 121

stage of image feature processing, leading to dy- 122

namic vision representations that adapt to the ac- 123

companying context. By conditioning visual fea- 124

tures in context, early-fusion architectures exhibit 125

greater robustness and generalization ability, as ver- 126

ified in Section 5. 127

QA-ViT (Ganz et al., 2024) accomplishes early- 128

fusion by augmenting a frozen CLIP vision encoder 129

to form a conditional encoder, V (I) → V (I|Q). 130

The input question Q is encoded to produce 131

textual features FQ via the LLM’s text encoder. 132

At each self-attention block of the vision encoder, 133

these question features are concatenated with the 134

visual sequence FV , enabling a cross-modal at- 135

tention over the combined sequence. The output 136

corresponding to the visual sequence F ′
V Q is able 137

to capture context-aware vision features: 138

F ′
V Q = Attention(concat(FV , FQ))[0:M ] (1) 139

where M is the length of vision sequence. Finally, 140

the fused vision feature passes through both the 141

original projection P and a learnable gated pro- 142

jection Pg, maintaining the layer’s outputs with 143

minimal deviation at initialization while enabling a 144

residual learnable stream of information: 145

FV Q = P (F ′
V Q) + Pg(F

′
V Q) · tanh(β) (2) 146

In this work, we follow QA-ViT to build a early- 147

fusion contextual vision encoder C-ViT, and pro- 148

pose a method to seek stronger learning of contex- 149

tualized visual representations using C-ViT. 150

3 Contextualized Visual Representation 151

Learning 152

In this section, we propose a novel method for con- 153

textualized visual representation learning. First, 154

we introduce the Contextualized Vision Trans- 155

former (C-ViT), a vision encoder that integrates 156

contextual information from the early-stage of vi- 157

sion encoding. Next, we describe our Contextual 158

Vision–Inference Alignment dataset (CVIA), de- 159

signed to align C-ViT’s outputs with visual infer- 160

ences. Finally, we detail a curriculum learning 161
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Figure 2: An overview of our C-ViT architecture. C-
ViT consists a vision and a text encoder to process both
image and text inputs, jointly generating contextualized
visual representations. It enables cross-modal interac-
tion by injecting context features directly into each self-
attention layer.

pipeline that progressively increases sample diffi-162

culty throughout training.163

3.1 Contextualized Vision Transformer164

Building on QA-ViT architecture described in Sec-165

tion 2, we propose the Contextualized Vision Trans-166

former (C-ViT), a contextual vision encoder de-167

signed to early fuse the input context (query) with168

the visual features, as illustrated in Figure 2. Unlike169

late-fusion approaches, which combine modalities170

only at LLM input stage, C-ViT injects context171

features into the self-attention layers of the vision172

encoder. This allows rich cross-modal interactions,173

leading to a context-aware representation that pro-174

vides more effective feature extraction.175

C-ViT consists of two main components: a vi-176

sion encoder and a text encoder. The vision encoder177

is responsible for generating visual representations178

and the text encoder provides the contextual rep-179

resentations needed. The exact implementation of180

C-ViT can vary depending on the VLM architec-181

ture. Specifically, the text encoder can inherit the182

LLM’s encoder in an encoder-decoder architecture,183

while in a decoder-only setup, it’s initialized by a184

pretrained CLIP text encoder.185

Thanks to this flexibility, C-ViT functions as a186

plug-and-play module, supporting both encoder-187

decoder and decoder-only architectures.188

3.2 Contextual Vision-Inference Alignment189

Dataset190

Recent findings (Li et al., 2024b) suggest that vi-191

sion and language models learn similar representa-192

tions of the world, differing only in spatial distribu-193

tion. The cross-modality alignment mainly relies 194

on the vision-language connector in a VLM. Since 195

C-ViT modifies the original CLIP vision encoder 196

architecture by introducing new input and param- 197

eters, the original output distribution is disrupted. 198

As a result, we must retrain C-ViT to learn the cor- 199

rect representations. To support this, we propose 200

a Contextual Vision-Inference Alignment (CVIA) 201

dataset, which contains three types of samples and 202

supports curriculum contrastive learning. 203

Figure 3: An example from our CVIA. The dataset is
constructed for curriculum contrastive learning, contain-
ing positive samples paired with negative samples across
three difficulty levels: basic, easy, and hard. Each level
includes ten negative samples per positive instance.

The CVIA dataset categorizes samples into three 204

difficulty levels: basic, easy, and hard. Basic sam- 205

ples are obtained via random negative sampling 206

from the Cambrian dataset (Tong et al., 2024), 207

while easy and hard samples are generated by 208

our proposed data-augmentation strategies: neg- 209

ative image augmentation and negative context 210

augmentation, respectively. An example is illus- 211

trated in Figure 3. We further denote our dataset as 212

CVIAeasy or CVIAhard when the majority of its sam- 213

ples come from the easy or hard level, respectively. 214

Our design allows precise control over training dif- 215

ficulty by tuning the proportions of basic, easy, and 216

hard samples. Detailed implementations of these 217

strategies are provided in the following sections. 218

3.2.1 Negative Image Augmentation 219

For each sample, our objective is to identify a dif- 220

ferent image that yields a different visual inference 221

when paired with the same context. To achieve this, 222

we search for negative images within the Cambrian 223

dataset by computing CLIP embeddings and select- 224

ing those that have high cosine similarity scores 225

to the positive image. We then apply a two-round 226

verification with a VLM to ensure that the positive 227
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Figure 4: An overview of the three-stage curriculum learning pipeline. Stage 1 and Stage 2 use curriculum
contrastive learning to finetune C-ViT using CVIA dataset under two difficulty settings. Stage 3 use supervised
finetuning to finetune the entire VLM architecture.

inference is not a plausible answer for the negative228

images, and vice versa. Finally, we employ a LLM229

to rewrite each negative inference to eliminate any230

length-based shortcuts.231

We label the data produced by this strategy as232

"easy" negatives, since each positive sample can233

only be paired with exactly one negative in one234

contrastive batch, because there is no guarantee that235

different negatives will be mutually irrelevant. We236

include our detailed prompts for sampling negative237

images in Appendix B.1 and B.3.238

3.2.2 Negative Context Augmentation239

Negative context augmentation aims to pair each240

image with a diverse set of contexts. Although241

the Cambrian dataset includes several contexts per242

image, we enrich this pool by following prior work243

(Zhu et al., 2024) and implementing an automated244

questioning pipeline to generate additional negative245

contexts and their corresponding inferences.246

Our pipeline utilizes two separate VLMs: a ques-247

tioner, which formulates questions about the image,248

and an answerer, which provides the visual infer-249

ences. The pipeline proceeds in three levels (coarse-250

grained, fine-grained, and reasoning-required) of251

question generation. The questioner moves forward252

to the next level once no new questions can be gen-253

erated on the current topic. Additionally, we still254

deploy a LLM to complete the rewriting process to255

prevent shortcuts.256

We label the resulting samples as "hard" nega-257

tives, since each image can be paired with multiple,258

mutually irrelevant contexts, forcing the model to259

learn stronger discriminative capabilities when all260

negatives are included in the same contrastive batch.261

The detailed prompts for negative context sampling262

can be found in Appendix B.2.263

3.3 Curriculum Learning Pipeline 264

Curriculum learning (Wang et al., 2021) introduces 265

training samples in increasing order of difficulty, 266

enabling models to first master simpler examples 267

before tackling more complex ones. This gradual 268

progression has been shown to improve conver- 269

gence and final performance, particularly in trans- 270

fer learning scenarios where smoother adaptation 271

to new tasks is critical. 272

Inspired by this approach, we designed a three- 273

stage curriculum learning pipeline (Figure 4) with 274

two distinct training objectives: aligning visual fea- 275

tures with contextual understanding and enhancing 276

performance on downstream tasks. The first two 277

stages focus on curriculum contrastive learning, 278

training the model to align visual representations 279

with their corresponding contextual inferences. In 280

the final stage, we apply supervised finetuning to 281

the entire VLM, allowing us to evaluate its effec- 282

tiveness on downstream tasks. 283

We believe that this staged approach fosters a 284

strong generalization capability, enabling C-ViT 285

to function as a strong and flexible vision encoder 286

when plugged into a VLM. The detailed strategy 287

for each stage is described as follows. 288

3.3.1 Contrastive Learning Stages 289

Combined with C-ViT, we introduce a novel con- 290

trastive learning objective that requires three inputs: 291

image, context, and visual inference. The goal is 292

to align the visual representation, conditioned on 293

both the image and context, with the representation 294

of its corresponding visual inference. We employ 295

a two-stage training strategy that progressively in- 296

creases data difficulty while gradually unfreezing 297

model parameters, with a smooth transition from 298

the pretrained CLIP encoder to our new objective. 299

Stage One In the first stage, we train on 300

CVIAeasy. At this stage, the text encoder is kept 301
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frozen and only the newly added vision-encoder302

parameters are updated. This configuration enables303

the model to begin embedding contextual informa-304

tion into its visual representations while preserv-305

ing CLIP’s foundational encoding capabilities. By306

starting with simpler examples and limiting the307

scope of parameter updates, we reduce the risk of308

overfitting or shortcut learning, and ensure a stable309

shift from CLIP’s original contrastive objectives to310

our context-aware targets.311

Stage Two In the second stage, we train on312

CVIAhard. Here, we unfreeze the text encoder so it313

can fully participate in the joint contrastive objec-314

tive. This stage mainly focuses on distinguishing315

representations of the same image under different316

contexts, reinforcing the model’s ability to infer317

how context shapes visual interpretation. By gradu-318

ally increasing both data difficulty and model flexi-319

bility, our two-stage contrastive curriculum enables320

C-ViT to learn a rich, context-sensitive visual em-321

bedding, laying a robust foundation for subsequent322

downstream fine-tuning.323

3.3.2 Supervised Finetuning Stage324

In the third stage, we plug C-ViT into the VLM325

framework and perform supervised finetuning on326

downstream tasks. Unlike approaches such as327

LLaVA, which freeze the vision encoder at this328

point, we choose to keep C-ViT’s newly introduced329

parameters unfrozen. This decision stems from330

our belief that contrastive learning with our limited331

data size may not be sufficient for the model to332

fully master how to utilize contextual information.333

Continuing to finetune the vision encoder allows334

it to better fuse contextual information with visual335

features, ultimately improving its performance on336

downstream benchmarks.337

4 Experimental Setup338

In this section, we detail the model configurations339

and experimental settings used in our data augmen-340

tation, training, and experiments.341

4.1 VLM architecture342

We plug our C-ViT into two types of VLM archi-343

tectures: encoder-decoder and decoder-only. For344

the encoder-decoder setup, we use Flan-T5 (Chung345

et al., 2024) as the backbone language model and346

evaluate performance on four VQA benchmarks:347

TextVQA, VQA-v2 (Antol et al., 2015), ST-VQA348

(Biten et al., 2019), and VizWiz (Gurari et al.,349

2018). For the decoder-only architecture, we follow 350

the LLaVA-1.5 configuration and use Vicuna-1.5 351

(Zheng et al., 2023) as the backbone. We evaluate 352

our method on eight VQA benchmarks: TextVQA, 353

VQAv2, VizWiz, MME (Fu et al., 2023), POPE 354

(Li et al., 2023b), MMBench (Liu et al., 2024c), 355

ScienceQA (Lu et al., 2022) and SEED (Li et al., 356

2023a). For each architecture, we employ C-ViT 357

as the vision encoder and compare its performance 358

against two baselines: the original CLIP model 359

(Radford et al., 2021) and QA-ViT (see Section 2). 360

4.2 Data Construction 361

We used some specific models in the process of 362

building our CVIA dataset. We use MetaCLIP- 363

h14 (Xu et al., 2024) as vision encoder to gen- 364

erate vision embeddings for similarity calcula- 365

tion. MiniCPM-V-2.6 (Yao et al., 2024) is used in 366

both data augmentation pipeline for image filtering 367

and new context (query) generation. For rewrit- 368

ing the visual inference, we adopt Llama-3.1-70B 369

(Grattafiori et al., 2024). 370

4.3 Training Settings 371

For the contrastive learning stages (Stages 1 and 2), 372

we use 1 million samples from our CVIA dataset 373

for training, running for 10 epochs at each stage. 374

The data distribution in CVIAeasy consists of 40% 375

basic, 40% easy, and 10% hard samples. In con- 376

trast, CVIAhard is composed of 10% basic, 10% 377

easy, and 80% hard samples, emphasizing more 378

challenging instances. For fine-tuning the encoder- 379

decoder architecture, we follow the training strat- 380

egy of QA-ViT and apply LoRA (Hu et al., 2022). 381

We use the QA-ViT training data, excluding the 382

OCR-VQA dataset (Mishra et al., 2019), due to 383

partial unavailability. For the decoder-only archi- 384

tecture, we follow LLaVA-1.5, using the same data 385

as in LLaVA’s training process. 386

5 Results 387

Vision Encoder TextVQA VQAv2 ST-VQA VizWiz
CLIP-ViT 48.0 72.7 52.7 27.0
QA-ViT 49.7 73.2 54.5 27.6
C-ViT (ours) 51.2 74.8 55.3 29.1

Table 1: Evaluation results on Flan-T5-XL encoder-
decoder architecture. The vision encoders in both QA-
ViT and C-ViT are initialized with CLIP-ViT encoder
weights, while their text encoders are initialized with
Flan-T5-XL encoder weights.
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Vision Encoder TextVQA VQAv2 VizWiz MME POPE(rand/pop/adv) MMBench ScienceQA SEEDimg

CLIP-ViT 58.2 78.5 50.0 1510 87.3/86.1/84.2 64.3 66.8 66.1
QA-ViT 59.0 79.1 51.2 1518 88.0/87.2/85.3 65.1 67.0 66.2
C-ViT (ours) 60.8 80.0 52.1 1533 89.1/87.6/86.1 66.2 68.9 67.2

Table 2: Evaluation results on LLaVA-1.5 decoder-only architecture. All methods employ Vicuna-1.5-7B as the
initial LLM to be trained with the vision encoder. The vision encoders in both QA-ViT and C-ViT are initialized
with CLIP-ViT encoder weights, while their text encoders are initialized with the weights of CLIP’s text encoder.

5.1 Evaluation on Downstream Tasks388

We evaluate the effectiveness of our proposed C-389

ViT via plugging it into both encoder-decoder and390

decoder-only VLM architectures. We compare its391

performance against the late-fusion baseline and392

the QA-ViT method across a range of benchmarks.393

For the encoder-decoder architecture, we adopt394

Flan-T5 (Chung et al., 2024) as the base model395

and evaluate on four datasets, as shown in Table 1.396

For the decoder-only architecture, we use Vicuna-397

1.5 as the base model and compare our approach398

to LLaVA-1.5 following LLaVA evaluation bench-399

marks, including eight benchmarks (see Table 2).400

In both settings, our method consistently out-401

performs the baselines, demonstrating that our ap-402

proach, which provides contextualized vision rep-403

resentations, enhances model performance across404

various VQA tasks. Furthermore, when compared405

to other VLMs of similar parameter sizes but with406

different base models, C-ViT surpasses the base-407

lines on nearly all datasets (see Appendix C). More-408

over, the modular and decoupled design of C-ViT409

enables it to be a general-purpose strategy for im-410

proving vision-language tasks. This means that411

C-ViT is independent of the specific backbone ar-412

chitecture and can be used with any visual encoder.413

5.2 Generalization Ability on Zero-shot414

Datasets415

Vision Encoder M3CoT IllusionVQA
Comp S-L

CLIP-ViT 27.1 30.8 24.6
QA-ViT 35.5 31.6 23.3
C-ViT (ours) 38.2 31.7 27.9

Table 3: Evaluation results on M3CoT (Chen et al.,
2024a) and IllusionVQA (Shahgir et al., 2024) using the
same setup as in Table 2. In IllusionVQA, "Comp" and
"S-L" denote the Comprehension and Soft-Localization
tasks respectively.

We hypothesize that fusing contextual informa-416

tion directly into the vision encoder and training417

C-ViT via curriculum learning would yield more418

robust visual representations and, in turn, stronger 419

overall VLM performance. To test this, we eval- 420

uate our approach in a zero-shot setting on two 421

recent benchmarks: M3CoT, which emphasizes the 422

reasoning ability within the visual modality, and 423

IllusionVQA, which assesses a model’s behavior 424

on absurd or contradictory images. Results (see 425

Table 3) show that our method substantially outper- 426

forms the baselines, especially on M3CoT dataset 427

and the Soft-Localization (S-L) task in Illusion- 428

VQA. It demonstrates that context-aware vision 429

encoding confers strong generalization ability, re- 430

sponding well to OOD visual inputs. 431

6 Analysis 432

6.1 How curriculum learning effects the final 433

performance? 434

Vision Encoder TextVQA VizWiz
CLIP-ViT 40.2 23.7
C-ViT 45.1 26.2
w/o curriculum (data) 44.4 24.4
w/o curriculum (freeze) 44.5 24.9
w/o curriculum (unfreeze) 44.7 25.5

Table 4: Accuracy on the TextVQA and VizWiz dataset
with different contrastive learning strategy. The methods
uses Flan-T5-base as the backbone language model.

Given a model and a dataset, there are often mul- 435

tiple strategies to adapt the model to a target task. 436

In our experiments, we investigate the effect of cur- 437

riculum learning and compare it against standard 438

contrastive learning approaches (see Table 4). 439

We evaluated three different training configu- 440

rations without curriculum strategy. In the w/o 441

curriculum (data) setting, only samples labeled as 442

hard in CVIA were used during training. In the 443

w/o curriculum (freeze) setting, the text encoder 444

parameters remained frozen throughout training. In 445

contrast, for w/o curriculum (unfreeze), the text 446

encoder was set to be fully trainable. 447

All three configurations lead to performance 448

drops. The data setting causes the largest decline, 449

suggesting that the absence of easier examples hin- 450
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ders the model’s ability to learn robust alignments.451

Both the freeze and unfreeze settings also neg-452

atively impact performance. We attribute this to453

different causes: freezing limits adaptation due to454

insufficient trainable parameters, while unfreezing455

risks diminishing pretrained knowledge through456

excessive parameter updates.457

Overall, our experiments demonstrate that cur-458

riculum learning enables C-ViT to better balance459

the retention of pretrained knowledge with the460

adaptation to new tasks, resulting in improved per-461

formance on downstream evaluations.462

6.2 Stratified Performance Analysis463

Figure 5: Comparison of accuracy on fine-grained tasks
in MMBench. LR, AR, RR, FP-S, FP-C, and CP repre-
sent Logical Reasoning, Attribute Reasoning, Relation
Reasoning, Fine-grained Perception (Single-instance),
Fine-grained Perception (Cross-instance), and Coarse
Perception, respectively.

In this section, we investigate deeper into the spe-464

cific abilities that our C-ViT brings to a VLM. To465

this end, we evaluate C-ViT on MMBench, which466

is a benchmark that contains six subsets that eval-467

uate on different aspects of the multimodal under-468

standing. Figure 5 shows the detailed performance469

histogram across these subsets.470

As illustrated in the figure, C-ViT achieves sub-471

stantial improvements across all perception-related472

tasks, as well as in logical and relational reasoning473

tasks. These gains align with the core design of our474

context-aware approach. By introducing contex-475

tual information into the vision encoder at an early476

stage, the encoder is better equipped to produce477

semantically rich and context-relevant features, ul-478

timately leading to improved performance.479

However, an exception is observed in the at-480

tribute reasoning subset, where C-ViT demon-481

strates a drop in accuracy. Upon examining sam-482

ples from this subset, we find that many of the483

prompts contain abstract or vague phrasing, such484

as "The object shown in this figure:", which lacks 485

meaningful semantic content. As a result, C-ViT 486

struggles to effectively align the contextual infor- 487

mation with the visual input. Therefore, this leads 488

to the outcome that a well-trained C-ViT underper- 489

forms compared to the original CLIP. 490

6.3 Why do contextualized vision 491

representations lead to accurate answers? 492

In this section, we investigate why VLMs tend to 493

produce more accurate answers when using our 494

C-ViT to generate contextualized vision represen- 495

tations. Our hypothesis is that C-ViT effectively 496

emphasizes the relevant regions of an image that 497

are critical for answering a given question or for 498

supporting reasoning processes. 499

To investigate this hypothesis, we utilize Atten- 500

tion Rollout (Chefer et al., 2021) to visualize the 501

vision encoder’s attention through heatmaps. Atten- 502

tion Rollout computes a unified attention map by 503

recursively aggregating attention matrices across 504

all transformer layers. This process highlights the 505

contribution of each input (image) token to the final 506

output, offering insight into how contextual infor- 507

mation guides visual reasoning and why our C-ViT 508

performs better than all baselines. 509

Figure 6: An example from MMBench. We compare
attention heatmaps generated under the LLaVA-1.5 ar-
chitecture using CLIP, QA-ViT, and C-ViT. In these
heatmaps, the highlighted (red) regions indicate areas
with greater influence on the model’s output. Only our
C-ViT setting selects the correct answer.

Figure 6 well explains that after fusing con- 510

textual information, our C-ViT significantly ad- 511

justs its self-attention patterns compared to context- 512

agnostic image representations, even demonstrat- 513

ing a degree of visual reasoning ability. In this ex- 514

ample, the main objects in the image are a man and 515

a Honda car. Without specific contextual guidance, 516

it is natural for CLIP to focus on the man’s limbs, 517
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and even the car logo. However, these regions are518

not relevant to the correct answer. QA-ViT, without519

being explicitly trained to fuse contextual informa-520

tion, focuses on the man’s center of gravity and the521

wooden floor behind him. Although these features522

are somewhat related to the question, it fails to523

reach the correct answer. As a result, it concludes524

that all situations are equally plausible.525

In contrast, our C-ViT demonstrates a markedly526

different attention pattern. Compared to the two527

baselines, the attention shifts significantly toward528

the wooden floor and the junction where it meets529

the stone road. This shift suggests that our method530

is aware of the height difference between the two531

surfaces. Remarkably, we can infer that the high-532

lighted junction is the exact spot where the man’s533

right leg previously missed the step. With C-ViT,534

the VLM focuses on the correct visual cues, en-535

abling it to infer the reason for the man’s posture536

and movement, and to make the correct deduction537

that he is about to fall.538

This example provides strong evidence that con-539

textualized vision representations offer more ef-540

fective visual information to VLMs. By aligning541

attention with semantically relevant regions, they542

enhance the model’s reasoning process and lead to543

more accurate answers in vision-language tasks.544

7 Related Work545

Contrastive Learning for Vision Models with546

Language. Contrastive learning (Hadsell et al.,547

2006) is a form of an unsupervised learning method548

that aims to learn data representation by maximiz-549

ing the similarity between related samples and min-550

imizing the similarity between unrelated samples.551

Traditional vision models, such as convolutional552

neural networks (CNNs) (Szegedy et al., 2015; He553

et al., 2016) and Vision Transformers (ViTs) (Doso-554

vitskiy et al., 2021), are typically limited to pre-555

dicting predefined categories in classification tasks.556

Although many works (Chen et al., 2020; He et al.,557

2020) have attempted to enhance the capabilities of558

visual models through contrastive learning, CLIP559

(Radford et al., 2021) was the first to utilize it to560

align image and text modalities. CLIP consists of561

two parallel encoders for images and text. It learns562

a shared embedding space in which semantically563

aligned image-text pairs have high similarity scores.564

This multimodal alignment enables CLIP to gener-565

alize to novel visual concepts beyond the training566

categories (Mayilvahanan et al., 2024a).567

In this work, we modified the CLIP framework 568

so that the vision encoder can accept both vision 569

and associated text inputs. Therefore, our con- 570

trastive learning objective is adapted to align the 571

context-aware visual representation with its corre- 572

sponding visual inference. 573

Enhanced Vision Representation. Many stud- 574

ies have explored strategies for improving visual 575

representations (Li et al., 2021; Liu et al., 2023b; 576

Vyskočil and Picek, 2023; Shi et al., 2024) to sup- 577

port more efficient image encoding. For exam- 578

ple, BRAVE (Kar et al., 2024) generates its visual 579

representation by employing k independent vision 580

encoders and concatenating their outputs. This de- 581

sign enables the extraction of visual features from 582

multiple perspectives, thereby enriching the visual 583

representation space. However, the model may still 584

struggle (Geigle et al., 2023) when image-text in- 585

puts require features beyond the collective scope 586

of these encoders. 587

Chameleon (Team, 2024) adopts a different 588

structure by treating images as discrete tokens like 589

the text. It jointly embeds image and text tokens 590

into an auto-regressive language model, allowing 591

direct integration of visual and linguistic features. 592

Despite its elegance, this method suffers from infor- 593

mation loss during tokenization (Fan et al., 2024), 594

as discrete tokens can only capture a limited sub- 595

space of the continuous visual feature space. 596

QA-ViT, as introduced in Section 2, enhances 597

image representations by utilizing self-attention 598

layers to integrate context information. However, it 599

is only trained within the VLM architecture without 600

individual training of vision encoding, limiting the 601

model’s performance, as discussed in Section 3.2. 602

8 Conclusion 603

We propose C-ViT, a contextualized vision trans- 604

former that fuse context information into the early- 605

stage of visual encoding, enabling the model to 606

construct dynamic context-aware visual represen- 607

tations. To support effective learning of such con- 608

textual representations, we introduce a fine-grained 609

curriculum learning pipeline built upon our CVIA 610

dataset. Extensive experiments across two VLM 611

architectures demonstrate that C-ViT consistently 612

improves reasoning robustness and generalization, 613

particularly under OOD settings. Owing to its mod- 614

ular design, C-ViT can be integrated into a broad 615

range of VLMs, offering a principled approach to 616

enhancing VQA robustness in various scenarios. 617
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Limitations618

We acknowledge several limitations in our work.619

First, the dataset used for evaluation does not cover620

all domains, which may limit the ability of our621

method to specific or underrepresented fields. Sec-622

ond, both dataset construction and model evalu-623

ation use English as the main language, without624

consideration of multilingual scenarios. In addi-625

tion, due to constraints in data and computational626

resources, we finetuned C-ViT using an existing627

vision encoder rather than training it from scratch,628

which may affect the optimality of the final model.629
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A Implementation Details 906

A.1 Model in Dataset Construction 907

Negative Image augmentation We utilize the 908

full Cambrian dataset (10 million samples) to gen- 909

erate MetaCLIP embeddings and compute cosine 910

similarity scores, which takes approximately 4 911

hours. For visual inference and filtering, we employ 912

MiniCPM 2.6, requiring about 5 seconds to evalu- 913

ate each negative image. Rewriting is performed 914

using LLaMA-3.1 70B version, loaded in 4-bit pre- 915

cision, taking roughly 10 seconds per instance. All 916

models are run on 1 NVIDIA A100-SXM4 (80GB) 917

GPU. 918

Negative Context Augmentation We simultane- 919

ously load two independent MiniCPM 2.6 for ask 920

and answer on 1 NVIDIA A100-SXM4 (80GB) 921

GPU. On average, processing a single image takes 922

about 20 seconds. The rewriting configuration re- 923

mains the same as described above. 924

A.2 Model in Training 925

Contrastive Learning Stage In the contrastive 926

learning stage, we fine-tune C-ViT using a batch 927

size of 20 with the CLIP text encoder, and 80 with 928

the encoder module of Flan-T5 XL. We use a learn- 929

ing rate of 1e−4, a cosine learning rate scheduler 930

with warm-up step 300 and no weight decay. Train- 931

ing is based on 8 NVIDIA A100-SXM4 (80GB) 932

GPUs, with a total training time of approximately 933

5 hours. 934

Supervised Finetuning Stage For encoder- 935

decoder architecture, we finetune the VLM with 936

a batch size 4 for 2 epochs, with a fixed random 937

seed. We adopot the LoRA setting, with rank=128, 938

α=256 and a dropout rate of 0.05, using a learning 939

rate of 1e−4. The finetuning is also based on 8 940

NVIDIA A100-SXM4(80GB) GPUs, with training 941

time about 20 hours. 942
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For the decoder-only architecture, we largely943

follow the setup from LLaVA-1.5. The vision-944

language connector is pretrained with a total batch945

size of 256 and a learning rate of 1e−3, using a946

cosine learning rate scheduler with a warm-up ratio947

of 0.03 and with a fixed random seed. The full948

VLM is then fine-tuned with a total batch size of949

128 and a learning rate of 2e−5, again using a co-950

sine learning rate scheduler with a warm-up ratio of951

0.03 and a weight decay of 0. The pretraining and952

finetuning conducted based on 8 NVIDIA A100-953

SXM4(80GB) GPUs, with training time about 6,954

30 hours respectively.955

B CVIA Construction Details956

This section details the prompts used for data gen-957

eration in our CVIA construction pipelines.958

B.1 Visual Inference Generation and Filtering959

Prompts960

Table 5, 6 provides examples of the prompt used961

in negative image augmentation pipeline to guide962

VLM in generating visual inference and filtering963

out those invalid inferences.964

B.2 Ask-Answer Prompts965

Table 7, 8 illustrates the prompt framework used for966

generating context in different types (questioner)967

and its correlated visual inference (answerer).968

B.3 Rewrite Prompts969

The prompt used in rewriting the visual inferences970

are shown in Table 9.971

C Full Evaluation Results972

We report the performance of C-ViT in comparison973

with other VLM architectures of similar parameter974

sizes, as shown in 10. Our method achieves the975

best performance on most datasets.976

D Case Study977

Although contextualized vision representations of-978

ten help the model capture more effective features,979

they can sometimes misinterpret the context and980

extract misleading information. Take Fig. 7 as an981

example. While both vision encoders answer the982

question correctly, the attention heatmap of C-ViT983

reveals that it mistakenly focuses most on the in-984

conspicuous declaration text at the bottom of the985

image. This occurs because C-ViT falsely iden-986

tifies the text in the question as the key concept987

and then associates it with the text in the image, 988

leading it to believe that this text is relevant for 989

visual inference. Despite this misinterpretation, C- 990

ViT still produces the correct answer due to the 991

partial retention of the ability from the original 992

CLIP, which ensures that the model continues to 993

allocate some attention to the sushi. This example 994

highlights that C-ViT still requires improvement in 995

performing implicit reasoning based on contextual 996

information. At the same time, it also demonstrates 997

C-ViT’s strong ability to extract fine-grained image 998

details. 999

Figure 7: An example from MMBench. We compare
attention heatmaps generated under the LLaVA-1.5 ar-
chitecture using CLIP and C-ViT. In these heatmaps,
highlighted (red) regions indicate areas with greater in-
fluence on the model’s output. Although C-ViT answers
correctly, it focuses on the wrong region

E Augmented Data Analysis 1000

In this section, we present a analysis of the aug- 1001

mented data in CVIA. 1002

E.1 Negative Image Augmentation 1003

Figure 8: The average number of questions by type
generated by the context augmentation pipeline.
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role content

User Answer the question around 5 words. Do not
hallucinate if not sure. What kind of room am I
looking at?

MiniCPM 2.6 Kitchen
User Is the answer correct given the question and im-

age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You’re looking at a kitchen.

MiniCPM 2.6 Yes.

Table 5: An example of our prompts. When the model’s answer is "Yes," the image considered invalid.

role content

User Answer the question around 5 words. Do not
hallucinate if not sure. What kind of room am I
looking at?

MiniCPM 2.6 Living room
User Is the answer correct given the question and im-

age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You’re looking at a kitchen.

MiniCPM 2.6 No.

User Is the answer correct given the question and im-
age? Only answer yes or no, or no enough evi-
dence. Question: What kind of room am I looking
at? Answer: You’re looking at a living room.

MiniCPM 2.6 No.

Table 6: An example of our prompts. When the model answers two "No," the image is considered valid.
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role content

User I have an image. Ask me questions about the con-
tent of this image. Each time ask one question only
without giving an answer. Do not ask the same
question as before. I’ll put my answer beginning
with “Answer:”.

Questioner (MiniCPM 2.6) Describe this image in detail.
User Answer: ...

Next Question. Avoid asking yes/no questions.
Question should focus on border details.
Question:

Questioner What is the color of the walls in this kitchen?
... ...
User Answer: The kitchen’s color scheme and furniture ar-

rangement create a warm, inviting atmosphere. Light
neutral walls complement wooden cabinetry, while
beige counter tops add brightness without clashing
with decorative elements. Strategic furniture place-
ment enhances efficiency during meal prep, combin-
ing functionality with aesthetics to create a welcom-
ing space.
Next Question. Avoid asking yes/no questions.
Question should focus on reasoning.
Question:

Questioner How does the presence of a fruit bowl in this kitchen
setting contribute to its overall atmosphere and func-
tionality?

... ...

Table 7: An example of our prompts used with the questioner. Notice that we force the questioner to use "Describe
the image in detail" as the first question.
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role content

User Answer given questions. If you are not sure about
the answer, say you dont́ know honestly. Don’t
imagine any contents that are not in the image.
Question: Describe this image in detail. Answer:

Answerer (MiniCPM 2.6) The image shows a bright, functional kitchen with
wooden cabinets, light-colored countertops, and neu-
tral off-white walls. A white stove with a range hood
and a refrigerator are neatly integrated, while small
appliances like a coffee maker sit on the counters. In
the foreground, a wooden dining table is adorned
with a colorful fruit bowl. Natural light streams
through a window, enhancing the clean and inviting
atmosphere, complemented by simple ceiling light-
ing.

User Question: What is the color of the walls in this
kitchen? Answer should be around 48 words. An-
swer:

Answerer The kitchen walls are painted a light, neutral color
that complements the wooden cabinetry and beige
countertops. This choice creates an inviting atmo-
sphere, allowing furniture and decor to stand out
without clashing, while also reflecting natural light-
ing to enhance brightness and make the space feel
larger.

Table 8: An example of our prompts used with the answerer.
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role content
User Given the question, rewrite the answer to 5 words.

question: What kind of room am I looking at? an-
swer: Kitchen

Llama 3.1 It’s a kitchen room.

role content
User Given the question, rewrite the answer to 27

words. question: Are there any distinctive features
or components you can identify on the bus? answer:
The bus in the image has several distinctive features.
It is a modern coach-style vehicle, characterized by
its streamlined design and large windows that provide
ample visibility for passengers inside. The number
"3804" prominently displayed on it suggests this may
be part of an organized fleet or public transportation
system. Additionally, there are multiple doors visible
along one side which likely serve as entry points to
accommodate passenger boarding efficiently at stops
with limited space like urban areas where parking
might not allow buses full access from all sides.

Llama 3.1 The bus has a modern coach-style design, large win-
dows, and the number "3804" displayed prominently,
suggesting it’s part of an organized fleet or public
transportation system.

Table 9: Two examples of our prompts used to rewrite the visual inference.

Method LLM TextVQA VQAv2 POPE(rand/pop/adv) MME
InstructBLIP Vicuna-7B 50.1 - -/-/- 1294
IDEFICS LLaMA-7B 25.9 50.9 -/-/- -
Qwen-VL Qwen-7B 63.8 78.8 -/-/- -
Qwen-VL-Chat Qwen-7B 61.5 78.2 -/-/- 1488
LLaVA-1.5 Vicuna-7B 58.2 78.5 87.3/86.1/84/2 1511
LLaVA-1.5+C-ViT (ours) Vicuna-7B 60.8 80.0 89.1/87.6/86.1 1533

Method LLM MMBench VizWiz ScienceQA SEEDimg

InstructBLIP Vicuna-7B 36 34.5 60.5 58.8
IDEFICS LLaMA-7B 48.2 35.5 - 44.5
Qwen-VL Qwen-7B 38.2 35.2 67.1 62.3
Qwen-VL-Chat Qwen-7B 60.6 38.9 68.2 65.4
LLaVA-1.5 Vicuna-7B 64.3 50.0 66.8 66.1
LLaVA-1.5+C-ViT (ours) Vicuna-7B 66.2 52.1 68.9 67.2

Table 10: Evaluation results on eight VQA benchmarks. All baselines use CLIP-ViT as the vision encoder.
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For the negative image component, each image1004

in the Cambrian dataset finds 30 similar images1005

on average above the predefined similarity thresh-1006

old. However, only 15% of the positive images1007

yield over five negative images above this thresh-1008

old, which we used for data augmentation. After ap-1009

plying our filtering pipeline, approximately seven1010

negative images per positive image are remained1011

on average.1012

E.2 Negative Context Augmentation1013

The Cambrian dataset contains 3.9 million unique1014

images. Since we designed a basic batch size of1015

10, each image must be associated with at least 101016

distinct contexts. Our analysis shows that 12% of1017

the images (approximately 470,000) already satisfy1018

this requirement using existing data. For the re-1019

maining images, our pipeline generates on average1020

7.1 new contexts per image. The distribution of1021

these generated contexts is depicted in Figure 8.1022

Notably, the pipeline rarely generates contexts re-1023

lated to the image’s coarse-grained features. In-1024

stead, it mainly produces reasoning-based contexts.1025

It’s because the majority of existing context be-1026

longs to the factual questions, both coarse-grained1027

and fine-grained, making the model no longer ca-1028

pable of generating new factual questions. Overall,1029

70% of the images can obtain diverse contexts that1030

meet our requirements.1031
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