
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNSUPERVISED MULTIPLE KERNEL LEARNING FOR
GRAPHS VIA ORDINALITY PRESERVATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning effective graph similarities is crucial for tasks like clustering, yet se-
lecting the optimal kernel to evaluate such similarities in unsupervised settings
remains a major challenge. Despite the development of various graph kernels, de-
termining the most appropriate one for a specific task is particularly difficult in the
absence of labeled data. Existing methods often struggle to handle the complex
structure of graph data and rely on heuristic approaches that fail to adequately cap-
ture the global relationships between graphs. To overcome these limitations, we
propose Unsupervised Multiple Kernel Learning for Graphs (UMKL-G), a model
that combines multiple graph kernels without requiring labels or predefined lo-
cal neighbors. Our approach preserves the topology of the data by maintaining
ordinal relationships among graphs through a probability simplex, allowing for a
unified and adaptive kernel learning process. We provide theoretical guarantees
on the stability, robustness, and generalization of our method. Empirical results
demonstrate that UMKL-G outperforms individual kernels and other state-of-the-
art methods, offering a robust solution for unsupervised graph analysis.

1 INTRODUCTION

Graphs are ubiquitously used to represent structured data in diverse domains such as bioinformat-
ics, chemoinformatics, and social networks. Learning a semantically meaningful similarity between
graphs is crucial as it captures the essential characteristics and functional properties that distinguish
one graph from another. For example, in bioinformatics, the secondary structure of a protein can
be regarded as a graph where nodes are atoms and edges are chemical bonds. Learning seman-
tic similarities between such graphs enables more effective graph-level tasks, such as determining
enzymatic activity, where subtle structural variations play a key role.

Kernel methods are naturally suited to measuring graph similarity. Graph kernels with the R-
convolution framework recursively break down graphs into substructures — like paths (Borgwardt
& Kriegel, 2005), graphlets (Shervashidze et al., 2009), walks (Vishwanathan et al., 2010), and
subtrees (Shervashidze et al., 2011) — and then compare these substructures between two graphs
(Kriege et al., 2018). In addition, there are other types of graph kernels developed from the prin-
ciples of optimal assignment (Fröhlich et al., 2005; Kriege et al., 2016), optimal transport distance
(Togninalli et al., 2019; Chen et al., 2022), and maximum mean discrepancy (Sun & Fan, 2023).

Given the abundance of graph kernels, it is not straightforward to determine which one is the most
suitable for a specific task and dataset. Some works try to determine the expressiveness of candidate
kernels theoretically (Kriege et al., 2018; Oneto et al., 2017). However, it is still not clear which
one would empirically perform the best in a novel setting, where graphs are not labeled and are
different from those encountered in previous studies. In reality, the performance of graph kernels
varies on a case-by-case basis (Kriege et al., 2020). For instance, the Weisfeiler-Lehman (WL)
kernels are theoretically less expressive than the Shortest Path (SP) graph kernels as WL kernels fail
to distinguish connectivity (Kriege et al., 2018). However, empirically, WL kernels perform better
in terms of classification accuracy in certain chemical compound datasets (Kriege et al., 2020).
Similarly, the simple Random Walk (RW) kernels outperform Graphlet kernels (Borgwardt et al.,
2020), even though RW kernels cannot identify triangle freeness (Kriege et al., 2018). There are
several possible reasons for this phenomenon ranging from the match between the graph kernels
and the graph structure in a particular dataset to the number of isomorphic graphs in the dataset that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

belong to different classes (Nikolentzos et al., 2021). Given that no single graph kernel dominates
all downstream tasks, an intriguing question emerges:

Is it possible to ensemble individual graph kernels and perform well in an unsupervised setting?

If so, then we can achieve better performance in graph-level tasks by learning the optimal kernel
values in a data-driven manner. To solve this problem, an intuitive solution is to learn an optimal
kernel from multiple graph kernels. Previous studies in Multiple Kernel Learning (MKL) provide
a supervised framework to learn the kernel directly from data (Gönen & Alpaydın, 2011). Specif-
ically, MKL leverages pre-specified weak kernels and labels of data points to obtain the optimal
kernel as a weighted combination of the weak ones. It is worthwhile to note that the existing MKL
algorithms fail in the unsupervised setting (e.g., graph-level clustering, which is common in many
real-world graph applications (Ju et al., 2023)). Although there exists an unsupervised algorithm for
MKL (Zhuang et al., 2011) based on the locality preserving principle, it is designed for Euclidean
data. This limits its applicability for graphs, a more complex, non-Euclidean data type that captures
both individual node features and their pairwise relationships. Noticing these limitations, Mariette
& Villa-Vialaneix (2018) proposes sparse-UMKL, which aims to preserve local geometry by con-
structing k-nearest neighbors. However, this method falls short in practice, as its heuristic approach
to approximating neighbors leads to poor generalization in empirical experiments. In summary,
given the current algorithms, we conclude the following for unsupervised MKL: ① preserving the
data topology is essential, and ② achieving effective generalization for graph data remains a sig-
nificant challenge. These insights motivate us to directly leverage the ordinal relationship between
graphs using kernel values, without the need for learning explicit graph representations.

In this work, we develop a simple yet effective approach to learning an optimal kernel for graphs
in an unsupervised manner and name it Unsupervised Multiple Kernel Learning for Graphs
(UMKL-G; illustrated in Figure 1). Our proposed method automates the procedure to select and

Ordinal Relationships
 Preserve

…
…

w/o labels

with hyperparameters

Kernel Weights

Blue Red

① Input ② UMKL-G

Figure 1: Overview of the UMKL-G Model. The model starts with N input graphs, which are
processed through M multiple graph kernels with configurable hyperparameters. The learnable
kernel weights w combine the kernels into an optimal composite kernel k̃ while preserving the
ordinal relationships between graphs. Each graph is represented as a point on the simplex, where
Q is the initial probability distribution of graph similarities and P is the powered distribution that
emphasizes stronger relationships. The goal is to adjust the positions of these points in the simplex
to preserve both local and global graph structures inferred from k̃, ensuring effective performance in
tasks such as clustering. As an illustration, the probability simplex ∆N (N = 3) at the center shows
the optimization process, indicated by the direction of the arrow.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

combine different types of graph kernels as well as configure their respective hyperparameters. Our
empirical results show the composite graph kernel learned by UMKL-G has better performances
compared to individual kernels and state-of-the-art baseline algorithms in the graph-level clustering
task. The main contributions of this work are summarized as follows:

• We propose UMKL-G, an efficient unsupervised method that combines multiple graph ker-
nels by preserving topological structures through ordinal relationships of the kernel values.

• We provide theoretical guarantees and their empirical validation, such as Lipschitz continu-
ity for smooth optimization, robustness to kernel perturbations, and generalization stability,
ensuring that the algorithm effectively adapts to diverse, noisy, and unseen data.

• We empirically evaluate UMKL-G, showing its effectiveness over individual graph kernels
and three state-of-the-art baselines on eight benchmark datasets.

2 RELATED WORK

Graph Kernels. Much existing research on graph kernels can be seen as feature engineering efforts,
focusing on identifying the most suitable graph aspects for defining graph similarity (Borgwardt
et al., 2020). The initial wave of graph kernels, termed as R-convolution, concentrated on decom-
posing graphs into smaller, easily comparable substructures. For instance, random walk kernels, in-
troduced by Gärtner et al. (2003), count matching random walks in two graphs; shortest path kernels
invented by Borgwardt & Kriegel (2005) count pairs of shortest paths with the same length; graphlet
kernels developed by Shervashidze et al. (2009) further contributed by counting occurrences of small
subgraphs, efficiently capturing local structures; and Weisfeiler-Lehman (WL) graph kernels pro-
posed by (Shervashidze et al., 2011), iteratively refine node labels to capture larger substructures,
enhancing their discriminative power by capturing edge attributes and multi-resolution structures.
Additionally, the concept of optimal matching has been explored in various graph kernels, ranging
from the optimal assignment kernel (Fröhlich et al., 2005) to the Weisfeiler-Lehman optimal assign-
ment kernel (Kriege et al., 2016). A notable trend in recent research has been the modification of
Weisfeiler-Lehman (WL) kernels using Wasserstein distances (Togninalli et al., 2019; Chen et al.,
2022). Togninalli et al. (2019) integrate the Wasserstein distance into the WL framework, allowing
for a more refined comparison of graphs, particularly those with continuous node attributes. Chen
et al. (2022) propose a novel concept of WL distance, a polynomial-time computable metric that
is more sensitive to subtle graph differences than traditional WL methods. Deep-learning-inspired
graph kernels, such as deep graph kernels by Yanardag & Vishwanathan (2015), combine traditional
methods with neural networks to learn latent substructure representations, and GCN-based kernels
(Ye et al., 2020) integrate graph convolutional networks to capture complex, high-level features. Sun
& Fan (2023) propose a deep graph kernel using maximum mean discrepancy (MMD-GK) that inte-
grates graph kernel learning with graph neural networks, achieving promising performance in graph
classification and clustering tasks. In this abundance of graph kernels, each kernel has its strengths
and limitations (Borgwardt et al., 2020), both of which are the results of an inherent trade-off be-
tween exhaustive feature extraction and computational feasibility. Additionally, many graph kernels
are restricted by the attributes of graphs they can handle, e.g., Weisfeiler-Lehman (WL) kernels
struggle to distinguish node and edge attributes. In this study, we utilize graph kernels regardless
of their time complexity or graph assumptions, provided their kernel matrices can be precomputed.
In this study, we concentrate on non-deep kernels, but our method applies to other graph kernels
without any loss of generality.

Multiple Kernel Learning. Multiple Kernel Learning (MKL) (Lanckriet et al., 2004) aims to learn a
linear combination of a set of predefined weak kernels to identify a good kernel for a given problem.
MKL algorithms have been developed for supervised, semi-supervised and unsupervised learning.
In the supervised framework, MKL algorithms are supported by several theoretical results that bound
the difference between the true error and the empirical margin error (or, estimation error) (Gönen &
Alpaydın, 2011). Beyond the supervised framework, there is a growing interest in exploring MKL
approaches for unsupervised scenarios since Zhuang et al. (2011). Most methods seek a kernel that
minimizes the distortion between all training data or that minimizes the approximation of the orig-
inal data in the kernel embedding (Lin et al., 2010; Zhuang et al., 2011). Their methods presume
that the learned kernel values coincide with the pseudo-ground truth of the data’s geometry. (In pre-
serving the topological structure in an unsupervised setting, it is intuitive and appealing to consider

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the ground truth—the true underlying relationships or labels in the data—similar to its role in super-
vised learning. However, since such ground truth is unavailable in unsupervised settings, we assume
a pseudo-ground truth, such as estimated similarity measures or inferred geometric structures that
approximate the inherent relationships among data points.) In addition, they assume that the data is
represented as numerical vectors so that it can be directly computed in the input space using the Eu-
clidean distance. Unfortunately, such unsupervised methods are not applicable when the inputs are
graphs, which are not naturally represented as vectors. Furthermore, no explicit kernel embeddings
exist for those graph kernels that are not R-convolution. Mariette & Villa-Vialaneix (2018) intro-
duced sparse-UMKL, which preserves local geometry by constructing a k-nearest neighbor graph
for each kernel as a pseudo-ground truth of the data’s underlying structure. However, this method
struggles in practice due to its heuristic approximation of local geometry and a rigid objective func-
tion, resulting in poor generalization in experiments. Rather than explicitly constructing the local
geometry, we tackle the unsupervised multiple kernel learning problem for graphs by learning the
complete connectivity on a probability simplex. In this approach, the pseudo-ground truth of the
topology is implicitly inferred from the data.

3 BACKGROUND

Before introducing our method, we first present relevant background and notations.

Multiple Kernel Learning for Graphs. Let G := {G1, · · · , GN} denote a set of N graphs and
K := {k(1), · · · , k(M)} denote a set ofM graph kernels, where each graph kernel k(m) is a function
k(m) : G × G → [0, 1]. With learnable weights w = (w1, · · · , wm, · · · , wM) ∈ RM , where∑

m wm = 1 and wm ≥ 0 for all m, the pairwise kernel value k̃ij between any pair of graphs
Gi, Gj ∈ G over a set of graph kernels K is defined as a weighted sum of the individual kernel
values. Denoting kij = (k(1)(Gi, Gj), · · · , k(M)(Gi, Gj)) ∈ RM , we have

k̃ij := k̃ij(w) = w⊤kij =

M∑
m=1

wm · k(m)(Gi, Gj) (1)

Probability Simplex. Each point on probability simplex ∆N represents a probability distri-
bution over a finite number of mutually exclusive events and can be represented by N non-
negative numbers that sum to 1. We define an N -probability simplex as the collection of points
∆N := {(x1, · · · , xN) ∈ RN |

∑N
i=1 xi = 1, xi ≥ 0 ∀i}. When N = 2, this space is a line, when

N = 3 it is a filled-in triangle, and when N = 4 it is a solid tetrahedron.

4 METHOD: UMKL-G

In unsupervised multiple kernel learning (MKL), it is crucial to preserve the topology of data because
this maintains the intrinsic structural properties and relationships between data points. This is even
more important in our case, where each data point represents the complex structure of a graph.
Adhering to this first principle, we treat all kernel values {k̃ij} as the pseudo-ground truth structure,
without explicitly constructing local geometry for data reconstruction, i.e., graphs in this context.
Instead, our method focuses on preserving the data structure through ordinal relationships, through
which the pseudo-ground truth is implicitly learned. Specifically, we utilize all kernel values k̃ij to
construct a probability simplex space among the graphs. This strategy ensures that the local topology
of the data is maintained while learning the weights w within this space.

4.1 PRESERVING TOPOLOGY

Inspired by Agarwal et al. (2007) and Vankadara et al. (2023), we preserve the topology between
graphs by maintaining the order of the similarity between graphs. Specifically, we focus on the
ordinal relationship that, according to the learned composite kernel k̃ij , graph Gi is more similar to
Gj than to graph Gr for any triplet (i, j, r).
Definition 1. (Ordinal Relationship) Consider the graph Gi where its similarities to Gj and Gr

are respectively given by the learned kernel values k̃ij(w) and k̃ir(w). The ordinal relationship

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

between Gj and Gr with respect to Gi are preserved if, for any weights w:

k̃ij(w) > k̃ir(w)

More generally, preserving ordinal relationships for all pairs of graphs ensures that for any graphGi,
its most similar graphs remain consistent within the learned kernel space. This approach maintains
the local neighborhood structure around each graph, preserving the data’s intrinsic topology.

4.2 GRAPHS ON A PROBABILITY SIMPLEX

To define a feasible probability simplex, we consider a probability space over the set of graphs
G := {G1, · · · , GN}. The sample space Ω is the set of all ordered pairs of graphs, Ω = G × G.
The σ-algebra E represents the events over the graph pairs and the probability measure P assigns
probabilities to each pair based on its graph kernel value, which measures the similarity between
two graphs. For each fixed graph Gi, the event of selecting a similar graph Gj from G is denoted as
(Gi, Gj), where the similarity between Gi and Gj is quantified by their kernel value, i.e.,

qij := qij (w) =
k̃ij(w)∑N

j′=1 k̃ij′(w)
. (2)

where
∑

j qij = 1 and qij ≥ 0 for all j, ensuring the axioms of a probability measure are satisfied.
The probabilities qij are thus normalized kernel values determined via learned weights w, reflecting
the relative similarity between Gi and all other graphs in G.

Given the probability measure above, each graph could be represented as a point in the probability
simplex ∆N , where Gi is associated with the point qi = (qi1 , · · · , qij , · · · , qiN) ∈ RN . This
representation preserves ordinal relationships since qij > qir if and only if k̃ij > k̃ir. Overall, we
define a set of the probability simplex vectors as Q = {qi}Ni=1 ⊂ ∆N .

4.3 TARGET P : POWERED KERNELS

To effectively preserve the ordinal relationships among graphs, we capture key neighborhood struc-
tures by amplifying the stronger similarities between graphs towards a set of target probabilities.
Specifically, we define a target probability with powered kernel values to reflect these relationships.

Definition 2. (Powered Kernel) The target probability is transformed through powered kernel values

p
(o)
ij

=
k̃oij∑
j′ k̃

o
ij′

, (3)

where the power parameter o ∈ N+. On the same probability simplex ∆N , another set of probability
simplex vectors is defined as P (o) = {p(o)

i }Ni=1 ⊂ ∆N , where p
(o)
i = (p

(o)
i1
, · · · , p(o)iN

) ∈ RN .

Note that Q ≜ P (1) (with o = 1) is a special case. For simplicity, we denote P as P (o) for an
arbitrary parameter o. When the kernel values are raised to a power o > 1, for k̃ij > k̃ir, the
powered kernel values will emphasize the stronger similarity by a greater amount than the weaker
similarity, i.e., k̃oij ≫ k̃oir. By emphasizing the larger kernel values, we ensure that the ordinal
relationships between graphs are preserved (Theorem 1), while focusing on the more significant
relationships between graphs (Theorem 2). Details of these proofs are provided in Appendix B.

Theorem 1. (Ordinality Preservation) Let k̃ij and k̃ir represent the kernel values between graph
Gi and graphs Gj and Gr, respectively. If the ordinal relationship k̃ij > k̃ir holds, then for any
power o > 1, the corresponding probabilities in the powered kernel distribution satisfy p(o)ij

> p
(o)
ir
.

In the same probability simplex space ∆N , the target probability P is less uniform compared to the
original Q, which leads to a concentration of probability mass on fewer components for each vector
pi. As such, the concentration effect of the powered kernel is formalized as follows.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2. (Concentration Effect) For any graph Gi and any o > 1, the entropy of the powered
kernel distribution p

(o)
i is strictly less than the entropy of the original distribution qi, i.e.,

H(p
(o)
i) < H(qi). (4)

The concentration effect suggests that raising the kernel values to a power o > 1 enhances the
contrast between significant and insignificant relationships. Thus, compared to Q, the probability
simplex vectors P are more reflective of the underlying structure between graphs. By emphasizing
the most meaningful connections, P becomes a more accurate representation of the data’s inherent
geometry. Consequently, by transforming the original probabilities Q towards the target ones P , we
implicitly learn a pseudo-ground truth structure k̃, which represents the enhanced composite kernel
that reveals the more meaningful patterns in the data.

4.4 OBJECTIVE FUNCTION

To preserve the topological structure during the learning of the weights w, we employ the Kullback-
Leibler (KL) divergence. This divergence quantifies the difference between two probability distribu-
tions, P and Q, enabling us to align the learned distribution with the underlying graph relationships
while minimizing the distortion of ordinal relationships. Specially, we use the reverse divergence:

L(o) = KL(Q∥P) =
∑
i,j

(
qij log qij − qij log p

(o)
ij

)
, (5)

which measures how much information is lost when P is used to approximate Q. This formulation
includes a negative entropy term, qij log qij , which plays a crucial role in regularizing the learned
distribution Q. When minimizing L(o), the entropy term penalizes highly concentrated distributions
and encourages Q to spread its probability mass more evenly across all graphs. This prevents any
single graph from dominating the distribution excessively.

In addition, the reverse divergence tends to be more sensitive to cases whereQ has a high probability
and P assigns a low probability, thereby encouraging the learned distribution Q to avoid assigning
high probabilities to regions not covered by P . By minimizing the divergence, we ensure that the
learned distributionQ closely approximates the target distribution P , thus preserving the topological
properties of the original graph data.

4.5 PROPOSED ALGORITHM

In this section, we summarize the overall algorithm and how these objective functions are integrated
into the learning process. The inputs are groups ofN graphs G := {G1, · · · , GN}, M graph kernels
K := {k(m)}Mm=1, initial weights w(0) = (1

M , · · · , 1
M) ∈ RM , and the power hyperparameter o. As

outlined in Algorithm 1, our goal is to learn the optimal weights w for combining the graph kernels.
Since the composite kernel value is defined in Eq. 1, where the weights must satisfy the condition∑

m wm = 1 andwm ≥ 0 ∀m, we incorporate a projection step (see Algorithm 2 in Appendix D) to
ensure these conditions are met. Specifically, we project the weights onto the unit simplex, ensuring
that the composite kernel retains the properties of the original kernels, such as being positive semi-
definite. Although there are other methods to ensure unit simplex and non-negativity of weights,
our method is efficient with a computational complexity dominated by the sorting step, which is
O(M logM). In addition, the algorithm provides an optimal projection in terms of the Euclidean
distance from the original vector to the simplex. It ensures the smallest adjustment needed to project
the vector onto the simplex. We provide a more detailed discussion in Appendix D. Once the optimal
weights w are learned, the resulting composite kernel k̃ can be directly applied to various machine
learning tasks, both supervised and unsupervised.

4.6 THEORETICAL ANALYSIS

To support the robustness and effectiveness of UMKL-G, we provide a detailed theoretical analysis.
Specifically, we establish three key properties: (1) Lipschitz continuity of the gradient of the objec-
tive function L(o) (Theorem 3), ensuring smooth optimization and convergence; (2) robustness to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Unsupervised Multiple Kernel Learning for Graphs (UMKL-G)

Input : Unlabeled graphs G = {G1, · · · , GN}, base kernels K = {k(1), · · · , k(M)}, initial
weights w0 = (1

M , · · · , 1
M), power hyperparameter o.

Output: Kernel weights w
Initialize weights w = w0;
while not converged do

for each pair of graphs (Gi, Gj) in G do
k̃ij =

∑M
m=1 wm · k(m)(Gi, Gj) // Compute the pairwise kernel value

for each graph Gi in G do

qi =

(
k̃i1∑N

j=1 k̃ij
, · · · , k̃iN∑N

j=1 k̃ij

)
// Compute the reference Q

p
(o)
i =

(
k̃o
i1∑N

j=1 k̃o
ij

, · · · , k̃o
iN∑N

j=1 k̃o
ij

)
// Compute the target P

Update weights w by minimizing L(o):
w = w +∆w // ∆w depends on the optimizer;

Project w onto the unit simplex using Algorithm 2;
return w

kernel perturbations (Theorem 4), guaranteeing the reliability of the solution even in the presence of
noise or slight inaccuracies in kernel computation; and (3) generalization and stability (Theorems 5
and 6), showing the capability of the proposed algorithm to perform well on unseen data. Detailed
proofs for these results are provided in Appendix B.
Theorem 3. For the set of graphs G with N = |G| and the graphs Gi, Gj ∈ G, let ∥kij∥ ≤ Kmax

(kij is defined for Eq. 1), 0 < α ≤
∑

j k̃ij ≤ β, and 0 < δ ≤ qij ≤ γ < 1. Denote ψ1 as N
α2 ,

ψ2 as β+N
α3 , and ψ3 as γ

δ . The gradient of the objective function L(o) is Lipschitz continuous with a
constant L, such that for any w,w′ ∈ RM : ∥∇wL(o)(w)−∇wL(o)(w′)∥ ≤ L∥w −w′∥ with

L = C1 ·N2(1 + γN) ·K2
max, (6)

where the constant C1 =
(
1 + (o− 1) log δ−1 + log(Nδ−o) + γ

)
· ψ1 + (1 + (o − 1)δ−1 + (o +

(2o− 1)ψo
3)ψ

o−1
3 δ−1) · ψ2.

This result ensures that the gradient of the objective function is Lipschitz continuous, which implies
that small changes in the weight vector w lead to proportionally small changes in the gradient. This
property is crucial for the stability of UMKL-G, allowing for controlled and predictable updates
during the optimization process.

Next, we show that UMKL-G is robust to kernel perturbations. Specifically, small variations in the
kernel values, whether due to noise, computational inaccuracies, or differences in graph properties,
only result in limited changes in the optimal solution.
Theorem 4. Let the perturbed kernel values be k′

ij = kij + ∆kij , where ∥∆kij∥ ≤ η for any
graphs Gi and Gj . Assume

∑
j′ k̃ij′ ≥ α, δ ≤ qij ≤ γ and ∥w∥ ≤ σ. Denote O(w) = 0 as the

optimal condition. The magnitude of its change ∆O due to the kernel perturbations is bounded by

|∆O| ≤ C2 · η, (7)

where the constant C2 =
(
(o− 1)δ + oγo−1δo + o

)
ασ(1 + γN).

This result demonstrates that the optimal solution of UMKL-G is robust to small perturbations in
the kernel values, ensuring stability even under minor fluctuations in kernel computation.

Before assessing the generalization of UMKL-G, we first define uniform stability for the algo-
rithm. Let G ∈ XN be a training set of size N . Our algorithm is symmetric with respect to G,
meaning it does not depend on the order of elements in G. Thus, the modified training set G\r is
created by removing any r-th element from G, where r ∈ {1, · · · , N}. Specifically, we denote
G\r = {G1, . . . , Gr−1, Gr+1, . . . , GN}. Since the loss function L(o) is Lipschitz continuous, as a
consequence of Theorem 3, UMKL-G is also uniformly ω-stable, as shown below:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 5. Denote AG as the output of our unsupervised learning algorithm UMKL-G after train-
ing on G. UMKL-G is uniformly ω-stable with respect to the loss function L(o) if for any Gi ∈ X ,
the following holds:

∀G ∈ XN , max
i=1,··· ,N

∣∣∣L(o)(Gi, AG)− L(o)(Gi, AG\r)
∣∣∣ ≤ ω. (8)

Using UMKL-G’s uniform ω-stability and applying Corollary 1 from Abou-Moustafa & Schuur-
mans (2015), we derive the following generalization bounds for our algorithm:

Theorem 6. Denote A as the algorithm UMKL-G, which is uniformly ω-stable, ∀G ∈ X , and
∀G ∈ GN . Then, for any N ≥ 1, and any δ ∈ (0, 1), the following bounds hold with probability at
least 1− δ over any G,

(i) R(AG) ≤ R̂EMP(AG) + 2ω + (4Nω + c)

√
log(1/δ)

2N
, (9)

(ii) R(AG) ≤ R̂LOO(AG) + ω + (4Nω + c)

√
log(1/δ)

2N
, (10)

where R̂LOO(AG) =
1
N

∑N
i=1 L(o)(Gi, AG\i(Gi)), is the leave-one-out (LOO) error estimate.

These bounds provide a guarantee that UMKL-G generalizes well from the training set to unseen
data, ensuring consistent performance even in the absence of labeled data. With the aforementioned
theoretical foundations of UMKL-G established, it is also important to understand how our method
compares to existing approaches in the field of unsupervised multiple kernel learning.

4.7 CONNECTION TO BASELINES (PARTIAL)

Our proposed method shares a foundational goal with previous methods, such as UMKL (Zhuang
et al., 2011) and sparse-UMKL (Mariette & Villa-Vialaneix, 2018), which is to preserve the local
geometry of the data. These methods have laid significant groundwork in unsupervised multiple
kernel learning. In UMKL, the authors propose two main principles: first, for each data point xi,
the optimal kernel should minimize the approximation error ∥xi−

∑
j kijxj∥2; second, the method

should minimize the distortion over all training data,
∑

ij kij∥xi − xj∥2, where kij = k(xi,xj).
Similarly, sparse-UMKL aims to approximately preserve the local geometry of the data by building
k-nearest neighbor graphs for each kernel and defining a weight matrix based on these graphs.
Despite their innovative approaches, both UMKL and sparse-UMKL have limitations in handling
graph data and achieving satisfactory empirical performances (see Section 5 for details).

Feature UMKL sparse-UMKL UMKL-G (Ours)

Objective Function minµ,D
1
2∥X(I −K ◦D)∥2F

+γ1 tr(K ◦D ◦M) + γ2∥D∥1,1
minb tr(WK) + λ∥b∥1,
K =

∑M
m=1 bmKm

minw L
(o) = KL(Q∥P),

Qij =
k̃ij∑
j′ k̃ij′

, Pij =
k̃o
ij∑

j′ k̃
o
ij′

Beyond Euclidean ✗ ✓ ✓
Global Topology ✗ ✗ ✓
Theoretical Guarantees ✓ ✗ ✓

Topology Preservation Local reconstruction (D) k-NN graph heuristics (W) Ordinal relationships
Algorithm Alternating minimization Quadratic programming solver KL divergence
Complexity O(I · (MN2 +N3)) O(I · (MN2 logN +M3)) O(I · (MN2 +M logM))

Table 1: Comparison of UMKL, sparse-UMKL, and UMKL-G.

In Table 1, we highlight the key features of UMKL-G in comparison to the baselines. A detailed
analysis can be found in Appendix E.

5 EXPERIMENTS

In this study, we evaluate UMKL-G in a common unsupervised task—graph-level clustering.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 DATASETS AND SETUPS

Datasets. We include eight benchmark datasets in our experiments, encompassing diverse types of
graph data (Kersting et al., 2016). These datasets are BZR, COX2, DD, DHFR, ENZYMES, IMDB-
BINARY, MUTAG, and PTC FM, as described in Table 5 (Appendix F). Each dataset presents
unique characteristics, suitable for testing the robustness and generalizability of our approach.

Configurations. We evaluate our algorithm exhaustively on six state-of-the-art graph kernels with
various hyperparameters, as shown in Table 6 (Appendix F). For each dataset, the number of base
kernels is 30, i.e., M = 30. Besides, we set the power hyperparameters o to {2, 3, 4} to inspect
its concentration effect. As for the initial weights, we set them uniformly as 1/M by default. For
the baseline methods, UMKL and sparse-UMKL, we trained a Graph Convolutional Network (GCN)
(Kipf & Welling, 2016) with 10 layers to represent the graphs in vector form. To learn the composite
kernel, we explored two approaches: (1) pre-training the GCN to produce fixed graph representa-
tions, followed by freezing the GCN parameters during kernel weight updates, and (2) co-training
the GCN and kernel weights simultaneously. In the following sections, we report the superior perfor-
mance obtained from our two approaches. We also consider a set of neighborhood hyperparameters
k ∈ {10, 50, 100} for sparse-UMKL. In all experiments, we use the Adam optimizer (Kingma &
Ba, 2015) at 1e-3 initial learning rate and 1e-4 weight decay. The total epochs is set to 500 across
all methods. We also include a simple baseline, AverageMKL, where each weight is set to 1/M .

Evaluation Metrics. We evaluate the empirical performance of our method with three commonly
used metrics: clustering accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted
Rand Index (ARI), as defined in Appendix F. These metrics provide a comprehensive evaluation of
the clustering performance and the preservation of the topology.

5.2 RESULTS

Overall, we conducted two experiments, comparing (a) the proposed UMKL-G algorithm with base-
lines, (b) the proposed UMKL-G algorithm and base graph kernels. All of the findings support the
superiority of our method, as highlighted below. Please see the supplements in Appendix G.

UMKL-G consistently outperforms the baseline methods across all datasets. Overall, our pro-
posed method demonstrates remarkable improvements in clustering performance. The performance
comparison presented in Table 2 underscores the effectiveness of UMKL-G across all metrics. This
is evident across various domains, including chemical compounds, biological data, social networks,
and protein structures. By focusing on ordinal relationships among graphs, UMKL-G more effec-
tively preserves the intrinsic relationships within the data. This approach maintains the relative
ordering of similarities, capturing both local and global structural features more accurately than the
baseline methods.

Table 2: Comparison with Baseline Methods. The best score is in bold. The second best is under-
lined.

Method BZR COX2 DD DHFR

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AverageMKL 0.7341 0.0041 0.0307 0.6167 0.0000 -0.0016 0.5764 0.0060 0.0172 0.6495 0.0000 -0.0021
UMKL 0.7341 0.0041 0.0307 0.6167 0.0000 -0.0016 0.5764 0.0060 0.0172 0.6495 0.0000 -0.0021
sparse-UMKL (k = 10) 0.7400 0.0040 0.0299 0.6200 0.0001 -0.0010 0.5750 0.0059 0.0170 0.6480 0.0001 -0.0020
sparse-UMKL (k = 50) 0.7415 0.0042 0.0305 0.6180 0.0000 -0.0015 0.5770 0.0061 0.0175 0.6498 0.0000 -0.0022
sparse-UMKL (k = 100) 0.7420 0.0041 0.0306 0.6175 0.0000 -0.0016 0.5768 0.0060 0.0172 0.6592 0.0000 -0.0021

UMKL-G 0.9432 0.0279 0.0812 0.8009 0.0045 0.0247 0.5815 0.0098 0.0224 0.6984 0.0111 0.0180

Method ENZYMES IMDB-BINARY MUTAG PTC FM

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AverageMKL 0.2617 0.0539 0.0220 0.5470 0.0152 0.0083 0.5585 0.1468 0.1946 0.8825 0.0208 0.0343
UMKL 0.2567 0.0517 0.0199 0.5470 0.0152 0.0083 0.5585 0.1469 0.1947 0.8729 0.0208 0.0343
sparse-UMKL (k = 10) 0.2570 0.0520 0.0201 0.5485 0.0153 0.0084 0.5590 0.1475 0.1950 0.8320 0.0210 0.0345
sparse-UMKL (k = 50) 0.2580 0.0518 0.0200 0.5475 0.0154 0.0085 0.5595 0.1470 0.1948 0.8373 0.0211 0.0344
sparse-UMKL (k = 100) 0.2575 0.0521 0.0198 0.5480 0.0151 0.0082 0.5588 0.1468 0.1946 0.8528 0.0209 0.0342

UMKL-G 0.2983 0.0648 0.0399 0.5590 0.0159 0.0132 0.8455 0.2950 0.3389 0.8825 0.0394 0.0637

UMKL-G can beat the base graph kernels across all metrics. As demonstrated in Figure 2a,
UMKL-G, indicated by the dashed grey lines, consistently surpasses the base graph kernels on the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DHFR dataset. The base kernels, such as VH, SP, and various iterations of WLOA and WL, exhibit
varying degrees of performance. While some kernels achieve relatively high accuracy, they fall
short in other metrics such as NMI and ARI, indicating an imbalance in capturing the overall data
structure. This trend is consistent across other benchmark datasets, as Figures 3-8 show.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

GS_4

GS_5

GS_6

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

ACC

0.000 0.002 0.004 0.006 0.008 0.010

GS_4

GS_5

GS_6

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

NMI

−0.0050.000 0.005 0.010 0.015

GS_4

GS_5

GS_6

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

ARI

(a) Comparison with Base Graph Kernels. The bar plots repre-
sent the performance metrics for different kernels. The dashed
grey lines indicate the performances of UMKL-G.

(b) Learned Kernel Weights of UMKL-G.

Figure 2: Performance on the DHFR dataset. Kernel names are shown with hyperparameters.

UMKL-G can automatically select graph kernels and their hyperparameters. This capability
is evident from the learned weights, which indicate the relative importance of each kernel in the clus-
tering task. As shown in Figure 2b, by assigning higher weights to more relevant kernels, UMKL-G
effectively prioritizes the kernels that best capture the underlying structure of the data. This auto-
matic weighting and selection process not only streamlines the model tuning but also enhances the
performance by leveraging the strengths of multiple kernels as shown in the previous finding.

UMKL-G performances are insensitive to the hyperparameter (o = 2 is enough). We provide
full experimental results in Figure 10 in Appendix G, where UMKL-G reaches a stable performance
across all power o. The concentration effect is insensitive to the hyperparameter setting.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose UMKL-G, an unsupervised algorithm for combining multiple graph ker-
nels by focusing on ordinal relationships to preserve the topological structure between graphs. With-
out the need to learn a separate graph representation, UMKL-G leverages the concentration effect of
powered kernels to maintain the relative ordering of similarities among graphs, effectively captur-
ing both local and global structural features. Moreover, we provide theoretical analysis guarantees
to ensure the convergence, robustness, and generalization of our method, reinforcing its reliability
in practical applications. Empirically, UMKL-G significantly outperforms two baseline algorithms
adapted from GCNs, highlighting its robustness and efficacy in handling graph data where the base-
lines fall short.

In the future, our work can be extended to other domains by developing UMKL-X, where “X”
represents various types of unstructured data. This extension would involve integrating different
types of similarity measures suitable for diverse data structures, thereby broadening the applicability
and impact of our approach. Additionally, exploring the scalability and efficiency of UMKL-G on
larger datasets and in real-world applications could further validate and enhance its utility.

REFERENCES

Karim T Abou-Moustafa and Dale Schuurmans. Generalization in unsupervised learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 300–
317. Springer, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David Kriegman, and Serge Be-
longie. Generalized non-metric multidimensional scaling. In Artificial Intelligence and Statistics,
pp. 11–18. PMLR, 2007.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, Bastian Rieck, et al.
Graph kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine
Learning, 13(5-6):531–712, 2020.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-
lehman meets gromov-wasserstein. In International Conference on Machine Learning, pp. 3371–
3416. PMLR, 2022.

Holger Fröhlich, Jörg K Wegner, Florian Sieker, and Andreas Zell. Optimal assignment kernels for
attributed molecular graphs. In Proceedings of the 22nd international conference on Machine
learning, pp. 225–232, 2005.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning Theory and Kernel Machines: 16th Annual Conference on Learning The-
ory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003.
Proceedings, pp. 129–143. Springer, 2003.

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of Machine
Learning Research, 12:2211–2268, 2011.

Wei Ju, Yiyang Gu, Binqi Chen, Gongbo Sun, Yifang Qin, Xingyuming Liu, Xiao Luo, and Ming
Zhang. Glcc: A general framework for graph-level clustering. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 4391–4399, 2023.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels
and applications to graph classification. Advances in neural information processing systems, 29,
2016.

Nils M Kriege, Christopher Morris, Anja Rey, and Christian Sohler. A property testing framework
for the theoretical expressivity of graph kernels. In IJCAI, pp. 2348–2354, 2018.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I Jordan.
Learning the kernel matrix with semidefinite programming. Journal of Machine learning re-
search, 5(Jan):27–72, 2004.

Yen-Yu Lin, Tyng-Luh Liu, and Chiou-Shann Fuh. Multiple kernel learning for dimensionality
reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1147–1160,
2010.

Jérôme Mariette and Nathalie Villa-Vialaneix. Unsupervised multiple kernel learning for heteroge-
neous data integration. Bioinformatics, 34(6):1009–1015, 2018.

11

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29), 2018.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943–1027, 2021.

Luca Oneto, Nicolo Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, and Davide An-
guita. Measuring the expressivity of graph kernels through statistical learning theory. Neurocom-
puting, 268:4–16, 2017.

Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. Advances in neural
information processing systems, 28, 2015.

Yan Sun and Jicong Fan. Mmd graph kernel: Effective metric learning for graphs via maximum
mean discrepancy. In The Twelfth International Conference on Learning Representations, 2023.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. Advances in neural information processing systems,
32, 2019.

Leena Chennuru Vankadara, Michael Lohaus, Siavash Haghiri, Faiz Ul Wahab, and Ulrike
Von Luxburg. Insights into ordinal embedding algorithms: A systematic evaluation. Journal
of Machine Learning Research, 24(191):1–83, 2023.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374,
2015.

Wei Ye, Omid Askarisichani, Alex Jones, and Ambuj Singh. Learning deep graph representations
via convolutional neural networks. IEEE Transactions on Knowledge and Data Engineering, 34
(5):2268–2279, 2020.

Jinfeng Zhuang, Jialei Wang, Steven CH Hoi, and Xiangyang Lan. Unsupervised multiple kernel
learning. In Asian Conference on Machine Learning, pp. 129–144. PMLR, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendices

A Motivation and Intuition Behind P 14

B Proof of Theorems 15

C Algorithm 2 24

D Theorem and Proof for Algorithm 2 24

E Connection to Baselines (Full) 26

F Description of Benchmark Datasets 27

F.1 Datasets . 27

F.2 Base Kernels . 27

F.3 Evaluation Metrics . 27

G Empirical Results 29

G.1 UMKL-G v.s. Base Kernels . 29

G.2 Learned Weights from UMKL-G . 33

G.3 Sensitivity Analysis . 34

G.4 Convergence Analysis . 37

G.5 Robustness to Perturbation . 38

G.6 Generalization . 40

G.7 Visualization of Learning Trajectory . 41

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MOTIVATION AND INTUITION BEHIND P

To address the intuition behind why the target P provides a more accurate representation of the data’s
inherent geometry, we include the following example. As explained in Theorem 2, the concentration
effect ensures that P has lower entropy compared to Q, as illustrated in Figure 1, where P (red
points) spreads further outside Q (blue points). This implies that P focuses more on the most
meaningful connections and identifies nearest neighbors in a soft manner. By raising kernel values
to a power o > 1, P magnifies the differences between highly similar and less similar graphs, which
is crucial for capturing the essential structure of the data.
To make this intuition clear, consider an example with N = 5 graphs and their pairwise kernel
similarities computed using a graph kernel (e.g., Weisfeiler-Lehman kernel). The symmetric kernel
matrix K̃ is defined as:

K̃ =


1.0 0.8 0.3 0.2 0.1
0.8 1.0 0.4 0.3 0.2
0.3 0.4 1.0 0.7 0.6
0.2 0.3 0.7 1.0 0.9
0.1 0.2 0.6 0.9 1.0

 (11)

where each element k̃ij represents the similarity between graphs Gi and Gj .
To emphasize differences in similarities, we raise the kernel values to a power o = 5. For G1, the
original probability distribution q1 = (q11 , q12 , q13 , q14 , q15) is computed as q1 =

k̃1j∑5
j=1 k̃1j

=

(0.4167, 0.3333, 0.1250, 0.0833, 0.0417). After raising the kernel values to the power o = 5,

the new powered distribution p
(5)
1 = (p

(5)
11
, p

(5)
12
, p

(5)
13
, p

(5)
14
, p

(5)
15

) becomes p
(5)
1 =

k̃o
1j∑5

j=1 k̃o
1j

=

(0.7516, 0.2463, 0.0018, 0.0002, 0.0000).
In q1, the probabilities are distributed more evenly among the graphs, whereas in p

(5)
1 , the prob-

ability is heavily concentrated on p(5)11
and p(5)12

. This highlights how P helps G1 find its nearest
neighbor G2 by reducing the influence of less similar graphs (G3, G4, G5).
In analogy, P creates a ”soft cut” of the fully connected network among all graphs, accurately
representing the data’s inherent geometry. Importantly, the relative ordering of similarities re-
mains unchanged: p(5)11

> p
(5)
12

> p
(5)
13

> p
(5)
14

> p
(5)
15

, q11 > q12 > q13 > q14 > q15 , and
k̃11 > k̃12 > k̃13 > k̃14 > k̃15.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREMS

Proof of Theorem 1

Proof. For a given i, if k̃ij ∈ [0, 1] represents the similarity between graphs Gi and Gj , then for qij ,

the distribution is qij =
k̃ij∑
j′ k̃ij′

, and for p(o)ij
with o > 1, the distribution is: p(o)ij

=
k̃o
ij∑

j′ k̃
o
ij′

. For

any ordinal relationship k̃ij > k̃ir and any power o > 1, we have k̃oij > k̃oir. By normalizing,

k̃oij∑
j′ k̃

o
ij′

>
k̃oir∑
j′ k̃

o
ij′

,

which implies that p(o)ij
> p

(o)
ir

. Hence the relationship between (Gi, Gj) and (Gi, Gr) as reflected

in k̃ij > k̃ir is preserved by the probabilities p(o)ij
> p

(o)
ir

.

Proof of Theorem 2

Proof. The entropy of the distribution qi is given by

H(qi) = −
N∑
j=1

qij log qij . (12)

Note that qij =
k̃ij∑
j′ k̃ij′

and p(o)ij
=

k̃o
ij∑

j′ k̃
o
ij′

for some integer o ∈ N+. From the definition of qij ,

we can write k̃ij = qij
∑

j′ k̃ij′ and thus

p
(o)
ij

=
(qij

∑
j′ k̃ij′)

o∑
j′(qij′

∑
j′′ k̃ij′′)

o

=
qoij (
∑

j′ k̃ij′)
o∑

j′ q
o
ij′
(
∑

j′′ k̃ij′′)
o

=
qoij∑
j′ q

o
ij′

.

(13)

Thus, the entropy of p(o)
i can be expressed as

H(p
(o)
i) = −

N∑
j=1

qoij∑
j′ q

o
ij′

log

(
qoij∑
j′ q

o
ij′

)

=

−o
N∑
j=1

qoij
So

log qij

+ logSo

(14)

where So =
∑N

j=1 q
o
ij

. To analyze the behavior of the entropy for o ≥ 1, we will compute the

first-order derivative of H(p
(o)
i) with respect to o:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

∂

∂o
H(p

(o)
i) =

∂

∂o

−o
N∑
j=1

qoij
So

log qij

+
∂

∂o
logSo

= −
N∑
j=1

qoij
So

log qij − o

N∑
j=1

(
qoij log qij

So
−
qoij
∑N

j′=1 q
o
ij′

log qij′

S2
o

)
log qij +

1

So

N∑
j=1

qoij log qij

= −o
N∑
j=1

(
qoij log qij

So
−
qoij
∑N

j′=1 q
o
ij′

log qij′

S2
o

)
log qij

= − o

S2
o

 N∑
j′=1

qoij′

N∑
j=1

qoij
(
log qij

)2 − N∑
j=1

qoij log qij

N∑
j′=1

qoij′ log qij′

 .

(15)

By the Cauchy-Schwarz inequality, we have N∑
j=1

qoij log qij

2

<

 N∑
j′=1

qoij′

 N∑
j=1

qoij
(
log qij

)2 . (16)

Thus, for o > 1, the derivative
∂

∂o
H(p

(o)
i) < 0, (17)

meaning that the entropy decreases as o increases. Since H(p
(o)
i) = H(qi) when o = 1, the

following inequality holds for any graph Gi for o > 1,

H(p
(o)
i) < H(qi). (18)

Proof of Theorem 3

Proof. As p(o)ij
=

qoij∑
j′ q

o
i
j′

(see Eq. 13), the loss function L(o)(w) can be represented as

L(o)(w) =
∑
i,j

(
qij log qij − qij log

(
qoij∑
j′ q

o
ij′

))

=
∑
i,j

−qij log qo−1
ij

+ qij log
∑
j′

qoij′

 .

(19)

Its gradient with respect to the learnable parameters w is

∇wL(o) =
∑
i,j

−∇w

(
qij log q

o−1
ij

)
+∇w

qij log∑
j′

qoij′


=
∑
i,j

−(o− 1)(log qij + 1) + log
∑
j′

qoij′ + qij
1∑

j′ q
o
ij′

∑
j′

oqo−1
ij′

∇wqij

=
∑
i,j

−(o− 1)(log qij + 1) + log
∑
j′

qoij′ + o · qij

∑
j′ q

o−1
ij′∑

j′ q
o
ij′

∇wqij .

(20)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Given k̃ij = w⊤kij , we denote qij := qij (w) =
w⊤kij

Zi(w) , where Zi(w) =
∑

j′ k̃ij′ =
∑

j′ w
⊤kij′ .

The gradient of qij with respect to w is

∇wqij =
kijZi(w)−w⊤kij

∑
j′ kij′

[Zi(w)]2

=
kij

Zi(w)
− qij

∑
j′ kij′

Zi(w)

= Zi(w)−1

kij − qij
∑
j′

kij′

 .

(21)

Since we are interested in bounding the difference between the gradient of L(o) at w and w′, i.e.,
∥∇wL(o)(w) − ∇wL(o)(w′)∥, in which each term involves a sum of the form ∇wL(o)(w) =∑

i,j Ti,j(w), where

Ti,j(w) =

(
−(o− 1)

(
log qij (w)

Zi(w)
+

1

Zi(w)

)
+

log
∑

j′ q
o
ij′
(w)

Zi(w)
+ o ·

qij (w)

Zi(w)

∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

)kij − qij (w)
∑
j′

kij′

 .

(22)
① Let’s focus on bounding the difference in the term

log qij (w)

Zi(w) , which is

log qij (w)

Zi(w)
−

log qij (w
′)

Zi(w′)
=

(
log qij (w)

Zi(w)
−

log qij (w)

Zi(w′)

)
+

(
log qij (w)

Zi(w′)
−

log qij (w
′)

Zi(w′)

)
= log qij (w)

(
1

Zi(w)
− 1

Zi(w′)

)
+

1

Zi(w′)

(
log qij (w)− log qij (w

′)
)

= log qij (w)
Zi(w

′)− Zi(w)

Zi(w)Zi(w′)
+

1

Zi(w′)

(
log qij (w)− log qij (w

′)
)
.

(23)

Since Zi(w
′)− Zi(w) =

∑
j′

(
w′⊤kij′ −w⊤kij′

)
, we have

|Zi(w
′)− Zi(w)| ≤ ∥w −w′∥

∑
j′

∥kij′∥ ≤ ∥w −w′∥NKmax, (24)

whereN is the number of graphs andKmax is the maximum norm of ∥kij∥ among all i, j.
Therefore, we have∣∣∣∣log qij (w)

Zi(w
′)− Zi(w)

Zi(w)Zi(w′)

∣∣∣∣ ≤
(
log δ−1

)
NKmax

α2
∥w −w′∥, (25)

where α > 0 is the lower bound for all Zi(w) and | log qij | ≤ log δ−1, where δ > 0 is the
lower bound for all qij (w). According to the Mean Value Theorem, we have

∣∣log qij (w)− log qij (w
′)
∣∣ ≤ ∣∣qij (w)− qij (w

′)
∣∣

δ
. (26)

Recall that qij (w) =
w⊤kij

Zi(w) . The difference between qij (w) and qij (w
′) is

qij (w)− qij (w
′) =

w⊤kijZi(w
′)−w′⊤kijZi(w)

Zi(w)Zi(w′)
(27)

For the numerator, since w′⊤kij = k̃ij ≤ 1, we have∣∣w⊤kijZi(w
′)−w′⊤kijZi(w)

∣∣ ≤ ∣∣w⊤kij −w′⊤kij

∣∣Zi(w
′) +w′⊤kij |Zi(w

′)− Zi(w)|
≤ Kmax∥w −w′∥β + ∥w −w′∥NKmax,

(28)
where β is the upper bound for all Zi(w).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Thus, we have ∣∣qij (w)− qij (w
′)
∣∣ ≤ β +N

α2
Kmax∥w −w′∥. (29)

The upper bound of the full second term is∣∣∣∣ 1

Zi(w′)

(
log qij (w)− log qij (w

′)
)∣∣∣∣ ≤ β +N

α3δ
Kmax∥w −w′∥. (30)

To sum up ①, we denote α−2N as ψ1 and denote β+N
α3 as ψ2. We have∣∣∣∣ log qij (w)

Zi(w)
−

log qij (w
′)

Zi(w′)

∣∣∣∣ ≤ (ψ1

(
log δ−1

)
+ ψ2δ

−1
)
Kmax∥w −w′∥. (31)

② We have the bound for the difference in the term 1
Zi(w) as below.

(
1

Zi(w)
− 1

Zi(w′)

)
=
Zi(w

′)− Zi(w)

Zi(w)Zi(w′)

≤ α−2∥w −w′∥NKmax

= ψ1Kmax∥w −w′∥.

(32)

③ Next, we focus on bounding the difference in the term
log

∑
j′ q

o
i
j′
(w)

Zi(w) , which is

log
∑

j′ q
o
ij′
(w)

Zi(w)
−

log
∑

j′ q
o
ij′
(w′)

Zi(w′)
=

(
log
∑

j′ q
o
ij′
(w)

Zi(w)
−

log
∑

j′ q
o
ij′
(w)

Zi(w′)

)
+

(
log
∑

j′ q
o
ij′
(w)

Zi(w′)
−

log
∑

j′ q
o
ij′
(w′)

Zi(w′)

)
(33)

As | log
∑

j′ q
o
ij′
| ≤ log(Nδ−o), the first term is bounded as∣∣∣∣∣ log

∑
j′ q

o
ij′
(w)

Zi(w)
−

log
∑

j′ q
o
ij′
(w)

Zi(w′)

∣∣∣∣∣ ≤ log(Nδ−o)NKmax

α2
∥w −w′∥ (34)

For the second term, we use the Mean Value Theorem to get∣∣∣∣∣ log
∑

j′ q
o
ij′
(w)

Zi(w′)
−

log
∑

j′ q
o
ij′
(w′)

Zi(w′)

∣∣∣∣∣ ≤o
∣∣∣∑j′ q

o−1
ij′

∣∣∣ ∣∣qij (w)− qij (w
′)
∣∣

αNδo

≤oγ
o−1(β +N)Kmax

α3δo
∥w −w′∥,

(35)

where γ < 1 is the upper bound of all qij .

To sum up ③, we denote γ
δ as ψ3. We have∣∣∣∣∣ log

∑
j′ q

o
ij′
(w)

Zi(w)
−

log
∑

j′ q
o
ij′
(w′)

Zi(w′)

∣∣∣∣∣ ≤ (ψ1 log(Nδ
−o) + oψ2ψ

o−1
3 δ−1

)
Kmax∥w −w′∥ (36)

④ Then, let’s focus on bounding the difference in the term
qij (w)

Zi(w)

∑
j′ q

o−1
i
j′

(w)∑
j′ q

o
i
j′
(w) , which is

qij (w)

Zi(w)

∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

−
qij (w

′)

Zi(w′)

∑
j′ q

o−1
ij′

(w′)∑
j′ q

o
ij′
(w′)

=

(
qij (w)

Zi(w)
−
qij (w

′)

Zi(w′)

) ∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

+
qij (w

′)

Zi(w′)

(∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

−
∑

j′ q
o−1
ij′

(w′)∑
j′ q

o
ij′
(w′)

)
.

(37)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Eq.37 can be split into two terms
A(w) =

(
qij (w)

Zi(w) − qij (w
′)

Zi(w′)

) ∑
j′ q

o−1
i
j′

(w)∑
j′ q

o
i
j′
(w)

B(w) =
qij (w

′)

Zi(w′)

(∑
j′ q

o−1
i
j′

(w)∑
j′ q

o
i
j′
(w) −

∑
j′ q

o−1
i
j′

(w′)∑
j′ q

o
i
j′
(w′)

) (38)

By using the bounds in Eq. 24 and 29, we have

qij (w)

Zi(w)
−
qij (w

′)

Zi(w′)
=

(
qij (w)

Zi(w)
−
qij (w)

Zi(w′)

)
+

(
qij (w)

Zi(w′)
−
qij (w

′)

Zi(w′)

)
=qij (w)

(
1

Zi(w)
− 1

Zi(w′)

)
+

1

Zi(w′)

(
qij (w)− qij (w

′)
)

=qij (w)
Zi(w

′)− Zi(w)

Zi(w)Zi(w′)
+

1

Zi(w′)

(
qij (w)− qij (w

′)
)
.

≤ (ψ1γ + ψ2)Kmax∥w −w′∥.

(39)

For any o ∈ N+,
∑

j′ q
o−1
i
j′

(w)∑
j′ q

o
i
j′
(w) ≤ 1. Thus, we bound the term A(w) as

|A(w)| ≤ (ψ1γ + ψ2)Kmax∥w −w′∥. (40)

For the term B(w), we formulate it as

qij (w
′)

Zi(w′)

(
C(w)

D(w)
− C(w′)

D(w′)

)
=
qij (w

′)

Zi(w′)
· C(w)D(w′)− C(w′)D(w)

D(w)D(w′)
, (41)

where C(w) =
∑

j′ q
o−1
ij′

(w), D(w) =
∑

j′ q
o
ij′
(w). It is obvious to observe that the

denominator is bounded by
D(w)D(w′) ≥ N2δ2o. (42)

And the numerator can be expressed as follows

C(w)D(w′)− C(w′)D(w)

=
∑
j′

∑
k′

(
qo−1
ij′

(w)qoik′ (w
′)− qo−1

ij′
(w′)qoik′ (w)

)
=
∑
j′

∑
k′

((
qo−1
ij′

(w)− qo−1
ij′

(w′)
)
qoik′ (w

′) + qo−1
ij′

(w′)
(
qoik′ (w

′)− qoik′ (w)
))

,

(43)
which would be bounded using

∣∣∣qo−1
ij′

(w)− qo−1
ij′

(w′)
∣∣∣ ≤ (o− 1)γo−2 · αψ2Kmax∥w −w′∥,∣∣∣qoik′ (w

′)− qoik′ (w)
∣∣∣ ≤ oγo−1 · αψ2Kmax∥w −w′∥

(44)

Thus, the numerator can be bounded as follows

|C(w)D(w′)− C(w′)D(w)| ≤ N2(2o− 1)γ2o−2αψ2Kmax∥w −w′∥, (45)

which allows us to bound the entire term B(w) by

|B(w)| ≤ (2o− 1)γ2o−1ψ2Kmax

δ2o
∥w −w′∥. (46)

To sum up ④, we have∣∣∣∣∣qij (w)

Zi(w)

∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

−
qij (w

′)

Zi(w′)

∑
j′ q

o−1
ij′

(w′)∑
j′ q

o
ij′
(w′)

∣∣∣∣∣ ≤ (ψ1γ + ψ2 + (2o− 1)ψ2ψ
2o−1
3 δ−1

)
Kmax∥w −w′∥.

(47)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

⑤ Lastly, we obtain an upper bound for the term kij − qij (w)
∑

j′ kij′

Since qij (w) ≤ γ for any w, we have∣∣∣∣∣∣kij − qij (w)
∑
j′

kij′

∣∣∣∣∣∣ ≤ |kij |+

∣∣∣∣∣∣max(qij (w))
∑
j′

kij′

∣∣∣∣∣∣ ≤ (1 + γN)Kmax, (48)

which is irrelevant to w and could be treated as a constant.

Combing the steps ① ② ③ ④ ⑤, we obtain the upper bound of ∥∇wL(o)(w)−∇wL(o)(w′)∥ as∣∣∣∣∣∣
∑
i,j

(Ti,j(w)− Ti,j(w
′))

∣∣∣∣∣∣ ≤ C ·N2(1 + γN) ·K2
max∥w −w′∥, (49)

where we denote the constantC =
(
1 + (o− 1) log δ−1 + log(Nδ−o) + γ

)
·ψ1+(1+(o−1)δ−1+

(o+ (2o− 1)ψo
3)ψ

o−1
3 δ−1) · ψ2. Hence, the Lipschitz constant L for the gradient of w is

L = C ·N2(1 + γN) ·K2
max. (50)

Proof of Theorem 4

Proof. Recall that the probability qij is defined as qij =
k̃ij(w)
Zi(w) =

w⊤kij∑
j′ w

⊤kij′
, where Zi(w) =∑

j′ w
⊤kij′ . Given a small perturbation ∆kij ∈ RM with its magnitude ∥∆kij∥ ≤ η, the new

kernel becomes k′
ij = kij +∆kij , and the perturbed probability q′ij becomes

q′ij =
w⊤(kij +∆kij)∑
j′ w

⊤(kij′ +∆kij′)

=
w⊤kij +w⊤∆kij∑

j′(w
⊤kij′ +w⊤∆kij′)

(51)

Then, the change in the probability qij due to the perturbation is given by ∆qij = q′ij − qij :

∆qij =
w⊤kij +w⊤∆kij∑

j′(w
⊤kij′ +w⊤∆kij′)

− w⊤kij∑
j′ w

⊤kij′

=
w⊤∆kij∑

j′(w
⊤kij′ +w⊤∆kij′)

+
w⊤kij∑

j′(w
⊤kij′ +w⊤∆kij′)

− w⊤kij∑
j′ w

⊤kij′

=
w⊤∆kij∑

j′(w
⊤kij′ +w⊤∆kij′)

−w⊤kij

∑
j′ w

⊤∆kij′∑
j′(w

⊤kij′ +w⊤∆kij′)
∑

j′(w
⊤kij′)

=
w⊤∆kij

Zi(w) +
∑

j′ w
⊤∆kij′

− qij ·
∑

j′ w
⊤∆kij′

Zi(w) +
∑

j′ w
⊤∆kij′

(52)

Since
∑

j′ w
⊤∆kij′ ≥ 0, the magnitude of the change ∆qij satisfies that

|∆qij | ≤
∣∣∣∣w⊤∆kij
Zi(w)

∣∣∣∣+
∣∣∣∣∣qij ·

∑
j′ w

⊤∆kij′

Zi(w)

∣∣∣∣∣ . (53)

Given that Zi(w) ≥ α, ∥w∥ ≤ σ, and 0 < δ ≤ qij ≤ γ < 1, we can bound |∆qij | as

|∆qij | ≤ασ(∥∆kij∥+ γ
∑
j′

∥∆kij′∥)

≤ασ(1 + γN) · η
(54)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Based on the gradient ∇wL in Equation 22, the optimal condition O(w) is expressed as

O(w) = −(o− 1)(log qij (w) + 1) + log
∑
j′

qoij′ (w) + oqij (w)

∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

= 0 (55)

To analyze how this condition is affected by the perturbation, we bound the change in O(w) due to
the change in qij (w) as

|∆O| ≤(o− 1)
∣∣∆ log qij (w)

∣∣+
∣∣∣∣∣∣∆ log

∑
j′

qoij′ (w)

∣∣∣∣∣∣+
∣∣∣∣∣∆
(
oqij (w)

∑
j′ q

o−1
ij′

(w)∑
j′ q

o
ij′
(w)

)∣∣∣∣∣
≤(o− 1)

∣∣∣∣∆qijqij

∣∣∣∣+
∣∣∣∣∣
∑

j′ o · q
o−1
ij′

·∆qij′∑
j′ qij′

∣∣∣∣∣+ ∣∣o ·∆qij ∣∣
≤(o− 1)δ|∆qij |+ oγo−1δo|∆qij |+ o|∆qij |
≤
(
(o− 1)δ + oγo−1δo + o

)
ασ(1 + γN) · η

=C · η,

(56)

where C =
(
(o− 1)δ + oγo−1δo + o

)
ασ(1 + γN).

Proof of Theorem 5

Proof. With the algorithm AG\r , each q
\r
ij

=
k̃ij∑

j′ ̸=r k̃ij′
is deviated from qij =

k̃ij∑
j′ k̃ij′

in the

original algorithm AG . Based on Eq.19, we have the following losses on graph Gi when processed
by the algorithm AG and AG\r , respectively:

L(o)(Gi, AG) =
∑
j

−qij log qo−1
ij

+ qij log
∑
j′

qoij′

 (57)

L(o)(Gi, AG\r) =
∑
j ̸=r

−q\rij log(q
\r
ij
)o−1 + q

\r
ij

log
∑
j′ ̸=r

(q
\r
ij′
)o

 (58)

Taking the difference between the equations above, we obtain its magnitude as∣∣∣L(o)(Gi, AG)− L(o)(Gi, AG\r)
∣∣∣

=

∣∣∣∣∣∣−qir log qo−1
ir

+ qir log
∑
j′

qoij′ +
∑
j ̸=r

−qij log qo−1
ij

+ qij log
∑
j′

qoij′ + q
\r
ij

log(q
\r
ij
)o−1 − q

\r
ij

log
∑
j′ ̸=r

(q
\r
ij′
)o

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
−qir log qo−1

ir
+ qir log

∑
j′

qoij′︸ ︷︷ ︸
T1(i)

+
∑
j ̸=r

(
q
\r
ij

log(q
\r
ij
)o−1 − q

\r
ij

log qo−1
ij

)
︸ ︷︷ ︸

T2(i)

+
∑
j ̸=r

(
q
\r
ij

log qo−1
ij

− qij log q
o−1
ij

)
︸ ︷︷ ︸

T3(i)

+
∑
j ̸=r

qij log∑
j′

qoij′ − q
\r
ij

log
∑
j′

qoij′


︸ ︷︷ ︸

T4(i)

+
∑
j ̸=r

q\rij log
∑
j′

qoij′ − q
\r
ij

log
∑
j′ ̸=r

(q
\r
ij′
)o


︸ ︷︷ ︸

T5(i)

∣∣∣∣∣∣∣∣∣∣∣
≜ |T1(i) + T2(i) + T3(i) + T4(i) + T5(i)|

(59)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For simplification, we define T1(i), T2(i), T3(i), T4(i), and break down each term as follows.

T1(i) ≜ −qir log qo−1
ir

+ qir log
∑
j′

qoij′ = −(o− 1)qir log qir + qir log
∑
j′

qoij′

= −(o− 1)
k̃ir∑
j′ k̃ij′

log

(
k̃ir∑
j′ k̃ij′

)
+

k̃ir∑
j′ k̃ij′

log
∑
j′

(
k̃ij′∑
j′′ k̃ij′′

)o

= −(o− 1)
k̃ir∑
j′ k̃ij′

log

(
k̃ir∑
j′ k̃ij′

)
+

k̃ir∑
j′ k̃ij′

log

(∑
j′ k̃

o
ij′

(
∑

j′ k̃ij′)
o

)
(60)

T2(i) ≜
∑
j ̸=r

(
q
\r
ij

log(q
\r
ij
)o−1 − q

\r
ij

log qo−1
ij

)
= (o− 1)

∑
j ̸=r

q
\r
ij

(
log(q

\r
ij
)− log qij

)

= (o− 1)
∑
j ̸=r

q
\r
ij

· log

(
q
\r
ij

qij

)

= (o− 1)

∑
j ̸=r k̃ij∑
j′ ̸=r k̃ij′

· log

(
1 +

k̃ir∑
j′ ̸=r k̃ij′

)

= (o− 1) log

(
1 +

k̃ir∑
j′ ̸=r k̃ij′

)
(61)

T3(i) ≜
∑
j ̸=r

(
q
\r
ij

log qo−1
ij

− qij log q
o−1
ij

)
=
∑
j ̸=r

(
q
\r
ij

− qij

)
log qo−1

ij

= (o− 1)
∑
j ̸=r

k̃ij

(
1∑

j′ ̸=r k̃ij′
− 1∑

j k̃ij′

)
log

(
k̃ij∑

j′ ̸=r k̃ij′

)

= (o− 1)
k̃ir(∑

j′ ̸=r k̃ij′
)(∑

j k̃ij′
) log

∑
j′ ̸=r

k̃ij′

∑
j ̸=r

(
−k̃ij log k̃ij

)
(62)

T4(i) ≜
∑
j ̸=r

qij log∑
j′

qoij′ − q
\r
ij

log
∑
j′

qoij′

 =
∑
j ̸=r

(
qij − q

\r
ij

)
log
∑
j′

qoij′

=
∑
j ̸=r

k̃ij

(
1∑

j′ ̸=r k̃ij′
− 1∑

j k̃ij′

)
log

(
(
∑

j′ k̃ij′)
o∑

j′ k̃
o
ij′

)

=

(∑
j ̸=r k̃ij

)
k̃ir(∑

j′ ̸=r k̃ij′
)(∑

j k̃ij′
) log

(
(
∑

j′ k̃ij′)
o∑

j′ k̃
o
ij′

)

=
k̃ir∑
j k̃ij′

log

(
(
∑

j′ k̃ij′)
o∑

j′ k̃
o
ij′

)
(63)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

T5(i) ≜
∑
j ̸=r

q\rij log
∑
j′

qoij′ − q
\r
ij

log
∑
j′ ̸=r

(q
\r
ij′
)o

 =
∑
j ̸=r

q
\r
ij

log
∑
j′

qoij′ − log
∑
j′ ̸=r

(q
\r
ij′
)o


=
∑
j ̸=r

q
\r
ij

log

∑
j′ q

o
ij′∑

j′ ̸=r(q
\r
ij′
)o

= log

∑
j′ k̃

o
ij′/(

∑
j′′ k̃ij′′)

o∑
j′ ̸=r k̃

o
ij′/(

∑
j′′ ̸=r k̃ij′′)

o

= log

∑
j′ k̃

o
ij′∑

j′ ̸=r k̃
o
ij′

− log
(
∑

j′ k̃ij′)
o

(
∑

j′ ̸=r k̃ij′)
o

= log

(
1 +

k̃oir∑
j′ ̸=r k̃

o
ij′

)
− o · log

(
1 +

k̃ir∑
j′ ̸=r k̃ij′

)
(64)

Therefore, the maximal magnitude of the difference among all graphs {G1, · · · , GN} is

max
i=1,··· ,N

∣∣∣L(o)(Gi, AG)− L(o)(Gi, AG\r)
∣∣∣

=max
i
T1(i) + max

i
T2(i) + max

i
T3(i) + max

i
T4(i)−min

i
T5(i)

(65)

Denote ρu as the upper bound and ρl as lower bound of k̃ij for all i, j ∈ {i, · · · , N}, i.e., 0 ≤ ρl ≤
k̃ij ≤ ρu ≤ 1. Therefore, each maximum or minimum term above has the following bound. (Note:
We use −x log x ≤ e−1 for T1(i) and T3(i)).



maxi T1(i) ≤ (o− 1)e−1 +N−1ρuρ
−1
l

(
o log ρu − (o− 1) logN − o log ρ−1

l

)
maxi T2(i) ≤ (o− 1) log(1 + (N − 1)−1ρuρ

−1
l)

maxi T3(i) ≤ (o− 1)(N − 1)−1N−1ρuρ
−2
l log ((N − 1)ρu) (N − 1)e−1

maxi T4(i) ≤ N−1ρuρl
(
o log ρu + (o− 1) logN − o log ρ−1

l

)
mini T5(i) ≥ 2o log N

N−1 + 2o log ρ−1
l − 2o log ρu

(66)

Hence, we can define the ω-stability as below:

ω : = (o− 1)e−1 +N−1ρuρ
−1
l

(
o log ρu − (o− 1) logN − o log ρ−1

l

)
+ (o− 1) log(1 + (N − 1)−1ρuρ

−1
l)

+ (o− 1)(N − 1)−1N−1ρuρ
−2
l log ((N − 1)ρu) (N − 1)e−1

+N−1ρuρl
(
o log ρu + (o− 1) logN − o log ρ−1

l

)
+ 2o log

N

N − 1
+ 2o log ρ−1

l − 2o log ρu.

(67)

Also, the algorithm UMKL-G is stable as ωN ∝ 1
N .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C ALGORITHM 2

Algorithm 2: Projecting Weights onto the Unit Simplex
Input : Vector w
Output: Projected vector w
Sort w in descending order: wsorted;
Initialize cumulative sum: S = 0;
for i = 1 to M do

Update cumulative sum: S = S +wsorted[i];
Compute λ[i] = S−1

i // Adjustment of each element to a unit simplex

for i = 1 to M − 1 do
if λ[i] ≥ wsorted[i+ 1] then

α = λ[i] // Assign the threshold to the first λ that satisfies the condition

break
if i =M then

α = λ[M − 1] // If no break occurs, use the last λ

w = max(w − α, 0);
return w

D THEOREM AND PROOF FOR ALGORITHM 2

Theorem 7. The Algorithm 2 projects any vector x ∈ RM onto the unit simplex ∆M−1, ensuring
that the projected vector w satisfies: ①

∑M
i=1 wi = 1, ② wi ≥ 0 for all i, ③ smallest adjustment in

terms of the Euclidean distance needed to project the vector onto the simplex.

Proof. The unit simplex in RM is defined as:

∆M−1 = {w ∈ RM |
M∑
i=1

wi = 1 and wi ≥ 0 for all i}.

Let x ∈ RM be the original vector, and let w ∈ RM be the projected vector. The Algorithm 2
involves the following steps:

① Sort x in descending order to get xsorted.

② Compute the cumulative sum and the normalized difference to 1

λa[i] =

∑i
j=1 xsorted[j]− 1

i
.

③ Find the largest i such that λa[i] ≥ xsorted[i+ 1] and set α = λa[i].

④ Project x onto the simplex by setting

wi = max(xi − α, 0).

We show that the resulting w satisfies the properties of the unit simplex as follows.

Sum of Projected Elements.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The sum of the projected elements is

M∑
i=1

wi =

k∑
i=1

(xi − α) +

M∑
i=k+1

0 =

k∑
i=1

xi − kα.

Since α = λa[k] =
∑k

j=1 xj−1

k , we have

kα =

k∑
j=1

xj − 1.

Therefore,
M∑
i=1

wi =

k∑
i=1

xi − (

k∑
j=1

xj − 1) = 1.

Non-negativity.

By definition of the projection step is

wi = max(xi − α, 0),

which ensures that all wi ≥ 0.

Optimality in Euclidean Distance.

The optimality of the projection in terms of Euclidean distance can be shown by solving
the following optimization problem:

min
w

∥w − x∥22 subject to
M∑
i=1

wi = 1 and wi ≥ 0 for all i.

This is a constrained quadratic optimization problem, which can be solved using the
method of Lagrange multipliers and the optimizality condition are give by the KKT con-
ditions: wi = max(xi − λ, 0). With λ = α in the Algorithm 2, it provides the optimal
projection in terms of the Euclidean distance from the original vector to the simplex. This
ensures the smallest adjustment needed to project the vector onto the simplex.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E CONNECTION TO BASELINES (FULL)

Our proposed method shares a foundational goal with previous methods, such as UMKL (Zhuang
et al., 2011) and sparse-UMKL (Mariette & Villa-Vialaneix, 2018), which is to preserve the local
geometry of the data. These methods have laid significant groundwork in unsupervised multiple
kernel learning. In UMKL, the authors propose two main principles: first, for each data point xi,
the optimal kernel should minimize the approximation error ∥xi−

∑
j kijxj∥2; second, the method

should minimize the distortion over all training data,
∑

ij kij∥xi − xj∥2, where kij = k(xi,xj).
Similarly, sparse-UMKL aims to approximately preserve the local geometry of the data by building
k-nearest neighbor graphs for each kernel and defining a weight matrix based on these graphs.
Despite their innovative approaches, both UMKL and sparse-UMKL have limitations in handling
graph data and achieving satisfactory empirical performances (see Section 5 for details).

Feature UMKL sparse-UMKL UMKL-G (Ours)

Objective Function minµ,D
1
2∥X(I −K ◦D)∥2F

+γ1 tr(K ◦D ◦M) + γ2∥D∥1,1
minb tr(WK) + λ∥b∥1,
K =

∑M
m=1 bmKm

minw L
(o) = KL(Q∥P),

Qij =
k̃ij∑
j′ k̃ij′

, Pij =
k̃o
ij∑

j′ k̃
o
ij′

Beyond Euclidean ✗ ✓ ✓
Global Topology ✗ ✗ ✓
Theoretical Guarantees ✓ ✗ ✓

Topology Preservation Local reconstruction (D) k-NN graph heuristics (W) Ordinal relationships
Algorithm Alternating minimization Quadratic programming solver KL divergence
Complexity O(I · (MN2 +N3)) O(I · (MN2 logN +M3)) O(I · (MN2 +M logM))

Table 3: Comparison of UMKL, sparse-UMKL, and UMKL-G.

While our method aligns with these foundational principles, it also introduces a novel perspective
by focusing on ordinal relationships to preserve the topology of the data. Unlike UMKL, which pri-
marily focuses on minimizing approximation errors, our approach leverages the concentration effect
of powered kernels to maintain the local and global topology more effectively. Moreover, compared
to sparse-UMKL, which builds k-nearest neighbor graphs for each kernel, our method avoids the
need for explicitly constructing local graphs, thereby reducing the computational complexity and
potential inaccuracies introduced by thresholding kernel values to obtain the nearest neighbors. Our
method also differs in its handling of unsupervised learning for graph data. Whereas traditional
UMKL and sparse-UMKL are designed primarily for vector data and rely on approximating local
geometry — which can be sensitive to noise, struggle with high-dimensional data, require careful
tuning of parameters like k, and often fail to capture global structural patterns — our method oper-
ates directly on probability simplices. By focusing on ordinal relationships, we avoid the limitations
of local approximations and achieve a more robust and holistic preservation of both local and global
topological features.

Dataset N UMKL-G (seconds) UMKL (seconds) sparse-UMKL (seconds)
MUTAG 188 15.9384 30.9085 21.3190
PTC FM 344 18.8914 39.5487 23.4447
BZR 405 23.5574 45.8796 29.4764
COX2/DHFR 467 28.9875 71.0475 33.3794
ENZYMES 600 30.2123 93.4008 39.9868
IMDB-BINARY 1000 43.4140 199.1917 48.4064
DD 1113 43.5285 819.8227 51.8620

Table 4: Runtime comparison of UMKL-G and baselines across benchmark datasets.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F DESCRIPTION OF BENCHMARK DATASETS

F.1 DATASETS

1. BZR: A dataset consisting of graphs representing chemical compounds classified based on
their bioactivity against a certain protein.

2. COX2: Another chemical compound dataset, where the task is to predict the inhibition of
the COX2 enzyme.

3. DD: A large dataset of protein structures, where the goal is to classify proteins into enzymes
and non-enzymes.

4. DHFR: This dataset includes graphs representing compounds tested for their ability to in-
hibit dihydrofolate reductase.

5. ENZYMES: Contains graphs of protein tertiary structures categorized into six enzyme
classes.

6. IMDB-BINARY: A social network dataset where the task is to classify movies into two
genres based on their actor/actress co-appearance networks.

7. MUTAG: A dataset of chemical compounds labeled according to their mutagenic effect on
a specific bacterium.

8. PTC FM: Contains chemical compounds labeled based on their carcinogenicity in male
rats.

Table 5: Description of the Benchmark Datasets.

Dataset BZR COX2 DD DHFR ENZYMES IMDB-BINARY MUTAG PTC FM

Num. of graphs 405 467 1178 467 600 1000 188 349
Num. of graph labels 2 2 2 2 6 2 2 2

Dim. of node attributes 3 3 / 3 18 / / /
Avg. number of nodes 35.75 41.22 284.32 42.43 32.63 19.77 17.93 14.11
Avg. number of edges 38.36 43.45 715.66 44.54 62.14 96.53 19.79 14.48

Label Proportion 319/86 365/102 691/487 461/295 1/1/1/1/1/1 500/500 125/63 206/143

F.2 BASE KERNELS

Table 6: Description of the Base Graph Kernels.

Graph Kernel Abbr. Kernel Function Hyperparameter Values

Random Walk
(Gärtner et al., 2003) RW kRW (Gi, Gj) =

∑|V×|
p,q=1[

∑∞
l=0 λ

lAl
×]pq λ 0.1, 0.5, 0.8

Shortest Path
(Borgwardt & Kriegel, 2005) SP kSP (Si, Sj) =

∑
ei∈Ei

∑
ej∈Ej

kwalk(1)(ei,ej) – –

Graphlet Sampling
(Pržulj, 2007) GS kWLOA(Gi, Gj) = f⊤Gi

fGj ; fG,i = #(graphleti ⊑ G) k 4, · · · , 8

Vertex Histogram
(Sugiyama & Borgwardt, 2015) VH kV H(Gi, Gj) = ⟨fi,fj⟩ – –

Weisfeiler-Lehman Subtree
(Kriege et al., 2016) WL kWL(Gi, Gj) = ⟨ϕ(Gi), ϕ(Gj)⟩; ϕ(G) = (c0(G, σ01), · · · , ch(G, σh|Σh|)) h 1, · · · , 10

Weisfeiler-Lehman Optimal Assignment
(Kriege et al., 2016) WLOA kWLOA(Gi, Gj) = kkB(Vi, Vj); k(v, v

′) =
∑h

i=0 δ(τi(v), τi(v
′) h 1, · · · , 10

F.3 EVALUATION METRICS

Clustering Accuracy (ACC) measures the maximum one-to-one correspondence between true la-
bels and predicted cluster labels. The Hungarian algorithm is used to determine the optimal map-
ping.

ACC =
1

n

n∑
i=1

I{ytrue,i = map(ypred,i)}, (68)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Normalized Mutual Information (NMI) quantifies the similarity between the ground truth and
predicted cluster assignments based on mutual information and entropy.

NMI(Ytrue, Ypred) =
2 · I(Ytrue;Ypred)

H(Ytrue) +H(Ypred)
, (69)

where I(·) denotes the mutual information and H(·) represents the entropy.

Adjusted Rand Index (ARI) measures the similarity between the clustering results and ground
truth labels, adjusting for chance. It is computed as:

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai

2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai

2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai

2

)∑
j

(
bj
2

)]
/
(
n
2

) , (70)

where nij is number of samples in both ground truth cluster i and predicted cluster j, ai is number
of samples in ground truth cluster i, bj is number of samples in predicted cluster j, and n is total
number of samples.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G EMPIRICAL RESULTS

G.1 UMKL-G V.S. BASE KERNELS

0.0 0.2 0.4 0.6 0.8
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

ACC

0.0000.0050.0100.0150.0200.025
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

NMI

−0.02 0.00 0.02 0.04 0.06 0.08
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

ARI

Figure 3: Comparison with Individual Base Kernels on the BZR dataset. The bar plots represent
the performance metrics for different kernels. The dashed grey lines indicate the performances of
UMKL-G. Kernel names are shown with their respective hyperparameters.

0.0 0.2 0.4 0.6 0.8

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

RW_0.8

SP

VH

ACC

0.000 0.001 0.002 0.003 0.004 0.005

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

RW_0.8

SP

VH

NMI

−0.06 −0.04 −0.02 0.00 0.02

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

RW_0.8

SP

VH

ARI

Figure 4: Comparison with Individual Base Kernels on the COX2 dataset. The bar plots represent
the performance metrics for different kernels. The dashed grey lines indicate the performances of
UMKL-G. Kernel names are shown with their respective hyperparameters.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6

GS_4

GS_5

GS_6

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

ACC

0.000 0.002 0.004 0.006 0.008 0.010

GS_4

GS_5

GS_6

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

NMI

0.000 0.005 0.010 0.015 0.020

GS_4

GS_5

GS_6

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

SP

VH

ARI

Figure 5: Comparison with Individual Base Kernels on the DD dataset. The bar plots represent
the performance metrics for different kernels. The dashed grey lines indicate the performances of
UMKL-G. Kernel names are shown with their respective hyperparameters.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

GS_4

GS_5

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

ACC

0.00 0.01 0.02 0.03 0.04 0.05 0.06

GS_4

GS_5

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

NMI

0.00 0.01 0.02 0.03 0.04

GS_4

GS_5

GS_7

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

RW_0.1

RW_0.5

ARI

Figure 6: Comparison with Individual Base Kernels on the ENZYMES dataset. The bar plots repre-
sent the performance metrics for different kernels. The dashed grey lines indicate the performances
of UMKL-G. Kernel names are shown with their respective hyperparameters.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

ACC

0.0 0.1 0.2 0.3 0.4
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

NMI

0.0 0.1 0.2 0.3 0.4
GS_4
GS_5
GS_6
GS_7
GS_8
WL_1
WL_2
WL_3
WL_4
WL_5
WL_6
WL_7
WL_8
WL_9
WL_10

WLOA_1
WLOA_2
WLOA_3
WLOA_4
WLOA_5
WLOA_6
WLOA_7
WLOA_8
WLOA_9
WLOA_10
RW_0.1
RW_0.5
RW_0.8

SP
VH

ARI

Figure 7: Comparison with Individual Base Kernels on the MUTAG dataset. The bar plots represent
the performance metrics for different kernels. The dashed grey lines indicate the performances of
UMKL-G. Kernel names are shown with their respective hyperparameters.

0.0 0.2 0.4 0.6 0.8

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

ACC

0.00 0.01 0.02 0.03 0.04

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

NMI

0.00 0.01 0.02 0.03 0.04 0.05 0.06

GS_4

GS_5

GS_6

GS_7

GS_8

WL_1

WL_2

WL_3

WL_4

WL_5

WL_6

WL_7

WL_8

WL_9

WL_10

WLOA_1

WLOA_2

WLOA_3

WLOA_4

WLOA_5

WLOA_6

WLOA_7

WLOA_8

WLOA_9

WLOA_10

ARI

Figure 8: Comparison with Individual Base Kernels on the PTC FM dataset. The bar plots represent
the performance metrics for different kernels. The dashed grey lines indicate the performances of
UMKL-G. Kernel names are shown with their respective hyperparameters.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

G.2 LEARNED WEIGHTS FROM UMKL-G

(a) BZR (b) COX2

(c) DD (d) DHFR

(e) ENZYMES (f) IMDB-BINARY

(g) MUTAG (h) PTC FM

Figure 9: Learned Kernel Weights of UMKL-G on All Benchmark Datasets. Kernel names are
shown with their respective hyperparameters.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G.3 SENSITIVITY ANALYSIS

In this section, we provide the full sensitivity analysis of hyperparameter o and initial weight w in
the following tables, where we initialize the weights using four different methods:

1. Each weight is set to 1/M (default).

2. 1− λ/
∑
λ, where λ = λ[k+1] − λ[k] represents the difference between consecutive eigenvalues

of the Laplacian matrix derived from each base kernel. Here, k is the presumed number of groups
in the dataset.

3. λ/
∑
λ, where λ is defined as above.

4. Weights are drawn randomly from a Dirichlet distribution.

Table 7: Sensitivity Analysis on BZR Dataset.

o Initial w ACC NMI ARI

2 1/M 0.9432 0.0279 0.0811
2 1− λ/

∑
λ 0.9432 0.0279 0.0811

2 λ/
∑
λ 0.9580 0.0260 0.0787

2 Random 0.9418 0.0309 0.0859

3 1/M 0.9432 0.0279 0.0811
3 1− λ/

∑
λ 0.9432 0.0279 0.0811

3 λ/
∑
λ 0.9580 0.0260 0.0787

3 Random 0.9418 0.0309 0.0859

4 1/M 0.9432 0.0279 0.0812
4 1− λ/

∑
λ 0.9432 0.0279 0.0811

4 λ/
∑
λ 0.9580 0.0260 0.0787

4 Random 0.9418 0.0309 0.0859

Table 8: Sensitivity Analysis on COX2 Dataset.

o Initial w ACC NMI ARI

2 1/M 0.8009 0.0045 0.0247
2 1− λ/

∑
λ 0.8009 0.0045 0.0247

2 λ/
∑
λ 0.7580 0.0046 0.0247

2 Random 0.8009 0.0045 0.0247

3 1/M 0.8009 0.0045 0.0247
3 1− λ/

∑
λ 0.8009 0.0045 0.0247

3 λ/
∑
λ 0.7580 0.0046 0.0247

3 Random 0.8009 0.0045 0.0247

4 1/M 0.8009 0.0045 0.0247
4 1− λ/

∑
λ 0.8009 0.0045 0.0247

4 λ/
∑
λ 0.7580 0.0046 0.0247

4 Random 0.8009 0.0045 0.0247

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 9: Sensitivity Analysis on DHFR Dataset.

o Initial w ACC NMI ARI

2 1/M 0.6984 0.0111 0.0180
2 1− λ/

∑
λ 0.6984 0.0111 0.0180

2 λ/
∑
λ 0.6653 0.0111 0.0180

2 Random 0.6865 0.0115 0.0187

3 1/M 0.6984 0.0111 0.0180
3 1− λ/

∑
λ 0.6984 0.0111 0.0180

3 λ/
∑
λ 0.6653 0.0111 0.0180

3 Random 0.6865 0.0115 0.0187

4 1/M 0.6984 0.0111 0.0180
4 1− λ/

∑
λ 0.6984 0.0111 0.0180

4 λ/
∑
λ 0.6653 0.0111 0.0180

4 Random 0.6865 0.0115 0.0187

Table 10: Sensitivity Analysis on ENZYMES Dataset.

o Initial w ACC NMI ARI

2 1/M 0.2983 0.0645 0.0396
2 1− λ/

∑
λ 0.2983 0.0646 0.0393

2 λ/
∑
λ 0.2833 0.0662 0.0352

2 Random 0.3050 0.0670 0.0400

3 1/M 0.2983 0.0645 0.0396
3 1− λ/

∑
λ 0.2983 0.0641 0.0393

3 λ/
∑
λ 0.2833 0.0662 0.0338

3 Random 0.3050 0.0669 0.0398

4 1/M 0.2983 0.0648 0.0399
4 1− λ/

∑
λ 0.2983 0.0650 0.0393

4 λ/
∑
λ 0.2833 0.0662 0.0346

4 Random 0.3050 0.0669 0.0398

Table 11: Sensitivity Analysis on IMDB-BINARY Dataset.

o Initial w ACC NMI ARI

2 1/M 0.5590 0.0159 0.0132
2 1− λ/

∑
λ 0.5590 0.0239 0.0132

2 λ/
∑
λ 0.5620 0.0174 0.0147

2 Random 0.5600 0.0239 0.0137

3 1/M 0.5590 0.0159 0.0132
3 1− λ/

∑
λ 0.5590 0.0239 0.0132

3 λ/
∑
λ 0.5620 0.0174 0.0147

3 Random 0.5600 0.0239 0.0137

4 1/M 0.5590 0.0159 0.0132
4 1− λ/

∑
λ 0.5580 0.0239 0.0128

4 λ/
∑
λ 0.5620 0.0174 0.0147

4 Random 0.5600 0.0239 0.0137

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 12: Sensitivity Analysis on MUTAG Dataset.

o Initial w ACC NMI ARI

2 1/M 0.8455 0.2950 0.3389
2 1− λ/

∑
λ 0.8455 0.2950 0.3389

2 λ/
∑
λ 0.8239 0.1743 0.2533

2 Random 0.8340 0.2469 0.3020

3 1/M 0.8455 0.2950 0.3389
3 1− λ/

∑
λ 0.8455 0.2950 0.3389

3 λ/
∑
λ 0.8239 0.1743 0.2533

3 Random 0.8340 0.2469 0.3020

4 1/M 0.8455 0.2950 0.3389
4 1− λ/

∑
λ 0.8455 0.2950 0.3389

4 λ/
∑
λ 0.8239 0.1743 0.2533

4 Random 0.8340 0.2469 0.3020

Table 13: Sensitivity Analysis on PTC FM Dataset.

o Initial w ACC NMI ARI

2 1/M 0.8825 0.0394 0.0637
2 1− λ/

∑
λ 0.8825 0.0394 0.0637

2 λ/
∑
λ 0.9112 0.0396 0.0637

2 Random 0.8711 0.0394 0.0637

3 1/M 0.8825 0.0394 0.0637
3 1− λ/

∑
λ 0.8825 0.0394 0.0637

3 λ/
∑
λ 0.9112 0.0396 0.0637

3 Random 0.8711 0.0394 0.0637

4 1/M 0.8825 0.0394 0.0637
4 1− λ/

∑
λ 0.8797 0.0394 0.0637

4 λ/
∑
λ 0.9112 0.0396 0.0637

4 Random 0.8711 0.0394 0.0637

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

2 3 4
o

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
tr
ic

BZR

Type

ACC

NMI

ARI

2 3 4
o

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
tr
ic

COX2

Type

ACC

NMI

ARI

2 3 4
o

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
e
tr
ic

DD

Type

ACC

NMI

ARI

2 3 4
o

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
tr
ic

DHFR

Type

ACC

NMI

ARI

2 3 4
o

0.05

0.10

0.15

0.20

0.25

0.30

M
e
tr
ic

ENZYMES

Type

ACC

NMI

ARI

2 3 4
o

0.0

0.1

0.2

0.3

0.4

0.5

M
e
tr
ic

IMDB-BINARY

Type

ACC

NMI

ARI

2 3 4
o

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
e
tr
ic

MUTAG

Type

ACC

NMI

ARI

2 3 4
o

0.0

0.2

0.4

0.6

0.8

M
e
tr
ic

PTC_FM

Type

ACC

NMI

ARI

Figure 10: Sensitivity Analysis of Parameter o Across All Benchmark Datasets.

G.4 CONVERGENCE ANALYSIS

In this section, we demonstrate the smooth convergence plots, which validate Theorem 3.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

L
o
s
s

+2.438e3 BZR

0 100 200 300 400 500

Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

L
o
s
s

+2.877e3 COX2

0 100 200 300 400 500

Epochs

8339

8340

8341

8342

8343

8344

8345

8346

L
o
s
s

DD

0 100 200 300 400 500

Epochs

5018.6

5018.8

5019.0

5019.2

5019.4

L
o
s
s

DHFR

0 100 200 300 400 500

Epochs

3848

3850

3852

3854

3856

L
o
s
s

ENZYMES

0 100 200 300 400 500

Epochs

6950

7000

7050

7100

7150

L
o
s
s

IMDB-BINARY

0 100 200 300 400 500

Epochs

990.7

990.8

990.9

991.0

991.1

991.2

L
o
s
s

MUTAG

0 100 200 300 400 500

Epochs

2050

2052

2054

2056

2058

2060

2062

L
o
s
s

PTC_FM

Figure 11: Training Losses Across All Benchmark Datasets.

G.5 ROBUSTNESS TO PERTURBATION

In this section, we provide the robustness analysis across all datasets, where we perturb the base
kernels by adding Gaussian noise N (0, σ2). As the tables show below, noise perturbations have
negligible effects on performance across datasets, which validate Theorem 4.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 14: Evaluation of Perturbation N (0, σ2) in Base Kernels on BZR Dataset.

σ ACC NMI ARI

0.01 0.9432 0.0279 0.0811
0.001 0.9432 0.0279 0.0811

– 0.9432 0.0279 0.0812

Table 15: Evaluation of Perturbation N (0, σ2) in Base Kernels on COX2 Dataset.

σ ACC NMI ARI

0.01 0.8030 0.0045 0.0247
0.001 0.8030 0.0045 0.0247

– 0.8009 0.0045 0.0247

Table 16: Evaluation of Perturbation N (0, σ2) in Base Kernels on DD Dataset.

σ ACC NMI ARI

0.01 0.5823 0.0100 0.0215
0.001 0.5815 0.0099 0.0224

– 0.5815 0.0098 0.0224

Table 17: Evaluation of Perturbation N (0, σ2) in Base Kernels on DHFR Dataset.

σ ACC NMI ARI

0.01 0.7037 0.0109 0.0173
0.001 0.6997 0.0111 0.0180

– 0.6984 0.0111 0.0180

Table 18: Evaluation of Perturbation N (0, σ2) in Base Kernels on ENZYMES Dataset.

σ ACC NMI ARI

0.01 0.2967 0.0620 0.0373
0.001 0.2983 0.0650 0.0399

– 0.2983 0.0648 0.0399

Table 19: Evaluation of Perturbation N (0, σ2) in Base Kernels on IMDB-BINARY Dataset.

σ ACC NMI ARI

0.01 0.5590 0.0159 0.0132
0.001 0.5590 0.0159 0.0132

– 0.5590 0.0159 0.0132

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 20: Evaluation of Perturbation N (0, σ2) in Base Kernels on MUTAG Dataset.

σ ACC NMI ARI

0.01 0.8455 0.3028 0.3514
0.001 0.8455 0.2950 0.3389

– 0.8455 0.2950 0.3389

Table 21: Evaluation of Perturbation N (0, σ2) in Base Kernels on PTC FM Dataset.

σ ACC NMI ARI

0.01 0.8825 0.0394 0.0637
0.001 0.8825 0.0394 0.0637

– 0.8825 0.0394 0.0637

G.6 GENERALIZATION

In this section, we demonstrate the generalizability of our methods on those unseen data, by splitting
out 20% test data. As the tables show below, test performances are closely aligned with those on the
full dataset, empirically validating the theoretical bounds in Theorem 6.

Table 22: Generalization Evaluation on BZR Dataset.

Dataset ACC NMI ARI

Test 0.9407 0.0329 0.0886
All 0.9432 0.0279 0.0812

Table 23: colorblue Generalization Evaluation on DD Dataset.

Dataset ACC NMI ARI

Test 0.5658 0.0076 0.0148
All 0.5815 0.0098 0.0224

Table 24: Generalization Evaluation on COX2 Dataset.

Dataset ACC NMI ARI

Test 0.8043 0.0048 0.0258
All 0.8009 0.0045 0.0247

Table 25: Generalization Evaluation on DHFR Dataset.

Dataset ACC NMI ARI

Test 0.7053 0.0125 0.0193
All 0.6984 0.0111 0.0180

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 26: Generalization Evaluation on ENZYMES Dataset.

Dataset ACC NMI ARI

Test 0.3063 0.0785 0.0422
All 0.2983 0.0648 0.0399

Table 27: Generalization Evaluation on IMDB-BINARY Dataset.

Dataset ACC NMI ARI

Test 0.5550 0.0152 0.0112
All 0.5590 0.0159 0.0132

Table 28: Generalization Evaluation on MUTAG Dataset.

Dataset ACC NMI ARI

Test 0.8392 0.1289 0.1756
All 0.8455 0.2950 0.3389

Table 29: Generalization Evaluation on PTC FM Dataset.

Dataset ACC NMI ARI

Test 0.8853 0.0568 0.0747
All 0.8825 0.0394 0.0637

G.7 VISUALIZATION OF LEARNING TRAJECTORY

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 12: UMAP (McInnes et al., 2018) Visualization of the Learning Trajectory of Q on the DD
Dataset with target P (o). Each point represents a graph with colors indicating the local connectivity
at the initial stage (i.e., epoch = 0). Time points are illustrated at various epochs to depict the
progression over time.

42

	Introduction
	Related Work
	Background
	Method: UMKL-G
	Preserving Topology
	Graphs on a Probability Simplex
	Target P: Powered Kernels
	Objective Function
	Proposed Algorithm
	Theoretical Analysis
	Connection to Baselines (Partial)

	Experiments
	Datasets and Setups
	Results

	Conclusion and Future Work
	Appendices
	blue Motivation and Intuition Behind P
	Proof of Theorems
	Algorithm 2
	Theorem and Proof for Algorithm 2
	Connection to Baselines (Full)
	Description of Benchmark Datasets
	Datasets
	Base Kernels
	blueEvaluation Metrics

	Empirical Results
	UMKL-G v.s. Base Kernels
	Learned Weights from UMKL-G
	blueSensitivity Analysis
	Convergence Analysis
	Robustness to Perturbation
	blueGeneralization
	Visualization of Learning Trajectory

