
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COSTA∗: COST-SENSITIVE TOOLPATH AGENT FOR
MULTI-TURN IMAGE EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-image models like Stable Diffusion and DALLE-3 still struggle with com-
plex multi-turn image editing. We study how to break down such a task into a
sequence of subtasks and address them by an agentic workflow (path) of AI tool
use with minimum costs. Conventional search algorithms require expensive ex-
ploration to find tool paths. While large language models (LLMs) possess prior
knowledge of subtask planning, their estimation of the quality and cost of tools is
usually inaccurate to determine which to apply in each subtask. Can we combine
the strengths of both LLMs and graph search to find cost-efficient tool paths? We
propose a three-stage approach “CoSTA∗” that leverages LLMs to create a subtask
tree that prunes a graph of AI tools for the given task, and then conducts A∗ search
on the small subgraph to find a tool path. To better balance the total cost and
quality, CoSTA∗ combines both metrics of each tool on every subtask to guide
the A∗ search. Each subtask’s output is evaluated by a vision-language model
(VLM), where a failure will trigger an update of the tool’s cost and quality on that
subtask. Hence, the A∗ search can recover from failures quickly to explore other
paths. Moreover, CoSTA∗ can automatically switch between modalities across
subtasks for a better cost-quality trade-off. We build a novel benchmark of chal-
lenging multi-turn image editing, on which CoSTA∗ outperforms state-of-the-art
image-editing models or agents in both cost and quality, and performs versatile
trade-offs upon user preference. Our dataset and a hosted demo can be found here.

1 INTRODUCTION

Text-to-Image models such as stable diffusion, FLUX, and DALLE (Ramesh et al., 2021) has been
widely studied to replace humans on image-editing tasks, which are time-consuming due to various
repetitive operations and trial-and-errors. While these models have exhibited remarkable potential
for generating diverse images and simple object editing, they usually struggle to follow composite
instructions that require multi-turn editing, in which a sequence of delicate adjustments are requested
to manipulate (e.g., remove, replace, add) several details (e.g., object attributes or texts) while keeping
other parts intact. For example, given an image, it is usually challenging for them to “recolor the
chalkboard to red while redacting the text on it and write “A CLASSROOM” on the top. Also, detect
if any children are in the image.”

Although a large language model (LLM) can decompose the above multi-turn composite task
into easier subtasks, and each subtask can be potentially learned by existing techniques such as
ControlNet, the required training data and computational costs are usually expensive. Hence, a
training-free agent that automatically selects tools to address the subtasks is usually more appealing.
However, finding an efficient and successful path of tool use (i.e., toolpath) is nontrivial, and as our
experiments demonstrate, current agents often fail to plan efficiently for complex, high-turn editing
tasks. While some subtasks are exceptionally challenging and may require multi-round trial-and-error
with advanced and costly AI models, various subtasks could be handled by much simpler, lower-cost
tools. Moreover, users with limited budgets usually prefer to control and optimize the trade-off
between quality and cost. However, most existing image-editing agents are not cost-sensitive, so the
search cost of their toolpaths can be highly expensive.

Despite the strong heuristic of LLMs on tool selection for each subtask, as shown in Figure 2,
they also suffer from hallucinations and may generate sub-optimal paths due to the lack of precise

1

https://storage.googleapis.com/costa-frontend/index.html

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 Detect the bench in
image while recoloring
it to pink. Also, remove

the cat for a clearer
view and recolor the

wall to yellow.

Update the closed
signage to open while

detecting the trash
can and pedestrian
crossing for better

scene understanding.
Also, remove the
people for clarity.

CoSTA* (ours) GenArtist MagicBrush CLOVAInstructPix2Pix INPUT

Detect the wooden
sign while replacing its

content to “SAFE
ZONE”. Also, replace
the cat in the image

with a dog.

Figure 1: Comparison of CoSTA∗ with State-of-the-Art image editing models/agents, which include
GenArtist (Wang et al., 2024b), MagicBrush (Zhang et al., 2024a), InstructPix2Pix (Brooks et al.,
2023), and CLOVA (Gao et al., 2024). The input images and prompts are shown on the left of the
figure. The outputs generated by each method illustrate differences in accuracy, visual coherence, and
the ability to multimodal tasks. Figure 8 shows examples of step-by-step editing using CoSTA∗with
intermediate subtask outputs presented. Some extra comparisons with the recent Gemini 2.0 Flash
can be seen in Figure 11.

knowledge for each tool and the long horizon of multi-turn editing. On the other hand, classical
search algorithms such as A∗ and MCTS can precisely find the optimal tool path after sufficient
exploration, if accurate estimates of per-step value/cost and high-quality heuristics are available.
However, they are not scalable to explore tool paths on a large-scale graph of many computationally
heavy models as tools, e.g., diffusion models. This motivates the question: Can we combine the
strengths of both methods in a complementary manner?

0.88

0.90

0.92

0.94

0.96

Qu
al

ity

54 56 58 60 62 64 66 68
Cost (seconds)

0.60
0.70

Pareto Front
Ours (= 0)
Ours (= 0.5)

Ours (= 1)
Ours (= 1.5)
Ours (= 2)

CLOVA
GenArtist

Instruct Pix2Pix
MagicBrush

Figure 3: CoSTA∗ with different cost-quality trade-
off coefficients α vs. four recent image-editing mod-
els/agents. CoSTA∗ achieves Pareto optimality and
dominates baselines on both metrics.

In this paper, we develop a novel agentic
mechanism “Cost-Sensitive Toolpath
Agent (CoSTA∗)” that combines both
LLMs and A∗ search’s strengths while
overcoming each other’s weaknesses to
find a cost-sensitive path of tool use for a
given task. As illustrated in Figure 2, we
propose a hierarchical planning strategy
where an LLM focuses on subtask planning
(each subtask is a subsequence of tool uses),
which decomposes the given task into a
subtask tree on which every root-to-leaf
path is a feasible high-level plan for the task.
This is motivated by the observations that
LLMs are more powerful on subtask-level
commonsense reasoning but may lack
accurate knowledge to decide which
specific tools to use per subtask. Then, a
low-level A∗ search is applied to the subgraph spanned by the subtask tree on a tool dependency
graph (TDG, with an example in Figure 4). It aims to find a toolpath fulfilling the user-defined
quality-cost trade-off. The subtask tree effectively reduces the graph of tools on which the A∗ search
is conducted, saving a significant amount of searching cost.

In CoSTA∗, we exploit available prior knowledge and benchmark evaluation results of tools, which
are underexplored in previous LLM agents, to improve both the planning and search accuracy. We
mainly leverage two types of prior information: (1) the input, output, and subtasks of each tool/model;
and (2) the benchmark performance and cost of each tool or model reported in the existing literature.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LLM

Input Image
Model Subtask

Supported Input Output

YOLO Object
Detection

Input
Image

Bounding
Box

LLM

Model Description
Table

Find
ToolPath

Benchmark
Quality &

Cost of Tools

Different Subtasks by colors

Tools colored by their subtasks

Input Image

Unexplored nodes

Searched toolpath Explored toolpath

ToolPath

 Tool Graph

LLM-only Planning
Low exploration cost, but LLM-planned path may fail

Search Algorithms (A*, MCTS, etc)
Expensive exploration cost, optimal path guarantee

 Target Image
Tools

Subtask Tree

ABC

... ...

Instruction
Recolor the person

red, replace the
cat with a dog, and

change “ABC” to
“DEF.”

Input

 Edited Image

 Edited Image
Search

Algorithm
of ToolPath

Tool Graph spanned by
Subtask Tree

Instruction Tool Dependency GraphInstruction

Tools

Prompt
Instruction

List of
Supported
Subtasks

Subtask Tree
(LLM-pruned)

Tool Subgraph
spanned by

Subtask Tree

Tool Dependency
Graph

A*
Search

Updated
Quality &

Cost of Tools

Intermediate
Step Image

Quality Check
by VLM

A* Search Steps: Explore tools based on their Quality & Cost

Fail Pass

 Edited Image

ToolPath

CoSTA*: Cost-Sensitive ToolPath Agent (ours)
LLM prunes the tool graph by high-level subtask planning, which reduces the exploration of A* search for a cost-sensitive toolpath.

Complex Image-Editing Tasks require to apply different tools for multiple steps, i.e., to find a tool path

DEF

DEF

DEF

Model Subtask Accuracy Time

YOLO Object
Detection

Benchmark
Table

... ...

Figure 2: Comparison of CoSTA∗ with other planning agents. LLM-only planning is efficient
but prone to failure and heuristics. Search algorithms like A∗ guarantee optimal paths but are
computationally expensive. CoSTA∗ balances cost and quality by first pruning the subtask tree using
an LLM, which reduces the graph of tools we conduct fine-grained A∗ search on.

Specifically, a sparse tool dependency graph (TDG) is built based on (1), where two tools are
connected if the first’s output is a legal input to the second in certain subtask(s). Moreover, the
information in (2) defines the heuristics h(x) in A∗ search, which combines both the cost and quality
with a trade-off coefficient α. We further propose an actual execution cost g(x) combining the
actual cost and quality in completed subtasks, and update it during exploration. By adjusting α, the
cost-sensitive A∗ search aims to find a toolpath aligning with user preference of quality-cost trade-off.

To examine the performance of CoSTA∗, we curate a novel benchmark for multi-turn image editing
with challenging, composite tasks. We compare CoSTA∗ with state-of-the-art image-editing models
or agents. As shown in Figure 3, CoSTA∗achieves advantages over others on both the cost and
quality, pushing the Pareto frontier of their trade-offs. In Figure 8, in several challenging multi-turn
image-editing tasks, only CoSTA∗ accomplishes the goals. Our main contributions and novelties
can be summarized as below (More detailed list of novelties and contributions can be found in
Appendix B with detailed motivations in Appendix P.):
• We propose a novel hierarchical planning agent CoSTA∗ that combines the strengths of LLMs and

graph search to find toolpaths for composite multi-turn image editing.
• CoSTA∗ addresses the quality-cost trade-off problem by a controllable cost-sensitive A∗ search and

employing a novel definition of the cost-quality formulation, and achieves the Pareto optimality
over existing agents.

• We are able to achieve great results on text-in-image editing tasks by supporting multimodality.
• We exploit prior knowledge of tools to improve the toolpath finding.
• We propose a new challenging benchmark for multi-turn image editing covering tasks of different

complexities.

2 RELATED WORK
Image Editing via Generative AI Image editing has seen significant advancements with the rise
of diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020), enabling highly realistic and
diverse image generation and modification. Modern approaches focus on text-to-image frameworks
that transform descriptive text prompts into images, achieving notable quality (Chen et al., 2023a;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input
Image

Magic
Brush

MiDaS

pix2pix

Real-
ESRGAN

Grounding
DINO

YOLO

Google
Cloud Vision

LLM
(GPT 4o)

Deblur
GAN

Stable
Diffusion

Group

SAM

DALL-E

Stable
Diffusion

Inpaint
CRAFT

Deep
Font

EasyOCR

LLM
(GPT 4o)

CLIP

DALL-E

Text
Redaction

Text Removal
by painting

Text Writing
using Pillow

Text Writing
using Pillow

(For Addition)

Stable Diffusion Group
SD 3, SD Search-and-Recolor, SD

Outpaint, SD Remove Background

Image Modality

Text Modality

All Prerequisites
Required

Stable
Diffusion

Erase

Stable
Diffusion

Erase

Figure 4: Tool Dependency Graph (TDG). A directed graph where nodes represent tools and edges
indicate dependencies. An edge (v1, v2) means v1’s output is a legal input of v2. It enables toolpath
search for multi-turn image-editing tasks with composite instructions.

Rombach et al., 2022b; Saharia et al., 2022) but often facing challenges with precise control over
outputs. To mitigate this controllability issue, methods like ControlNet (Zhang et al., 2023b) and
sketch-based conditioning (Voynov et al., 2022) refine user-driven edits, while layout-to-image
systems synthesize compositions from spatial object arrangements (Chen et al., 2023b; Li et al.,
2023b; Lian et al., 2024; Xie et al., 2023). Beyond text-driven editing, research efforts have also
focused on personalized generation and domain-specific fine-tuning for tasks such as custom content
creation or rendering text within images. However, current models still struggle with handling
complex prompts, underscoring the need for unified, flexible solutions (Brooks et al., 2023; Chen
et al., 2024; Parmar et al., 2023; Yang et al., 2022).

Large Multimodal Agents for Image Editing Recent advancements in multimodal large language
models (MLLMs) have significantly enhanced complex image editing capabilities (Wang et al.,
2024b; Huang et al., 2024; Zhang et al., 2024c; Huang et al., 2023; Zhang et al., 2024d; Yang et al.,
2024; Wang et al., 2024c). GenArtist (Wang et al., 2024b) introduces a unified system where an
MLLM agent coordinates various models to decompose intricate tasks into manageable sub-problems,
enabling systematic planning and self-correction. DialogGen (Huang et al., 2024) aligns MLLMs
with text-to-image (T2I) models, facilitating multi-turn dialogues that allow users to iteratively refine
images through natural language instructions. IterComp (Zhang et al., 2024c) aggregates preferences
from multiple models and employs iterative feedback learning to enhance compositional generation,
particularly in attribute binding and spatial relationships. SmartEdit (Huang et al., 2023) leverages
MLLMs for complex instruction-based editing, utilizing a bidirectional interaction module to improve
understanding and reasoning. These approaches build upon foundational works like BLIP-2 (Li et al.,
2023a), which integrates vision and language models for image understanding, and InstructPix2Pix
(Brooks et al., 2023), which focuses on text-guided image editing.

3 FOUNDATIONS OF COSTA∗

We present the underlying models, supporting data structures, and prior knowledge that CoSTA∗

relies on before explaining the design of the CoSTA∗ algorithm. Specifically, we describe the Model
Description Table, the Tool Dependency Graph, and the Benchmark Table.

3.1 MODEL DESCRIPTION TABLE

Table 1: Model Description Table (excerpt)
Model Supported Subtasks Inputs Outputs
YOLO (Wang et al., 2022) Object Detection Input Image Bounding Boxes
SAM (Kirillov et al., 2023a) Segmentation Bounding Boxes Segmentation Masks
DALL-E (Ramesh et al., 2021) Object Replacement Segmentation Mask Edited Image
Stable Diffusion Object Removal, Segmentation Mask Edited Image
Inpaint (Rombach et al., 2022a) Replacement, Recoloration
EasyOCR (Kittinaradorn et al., 2022) Text Extraction Text Bounding Box Extracted Text

We first construct a Model Descrip-
tion Table (MDT) that lists all special-
ized models (e.g., SAM, YOLO) and
the corresponding tasks they support
(e.g., image segmentation, object de-

tection). In this paper, we consider 24 models that collectively support 24 tasks, covering both
image and text modalities. The supported tasks can be broadly categorized into image editing tasks
(e.g., object removal, object recolorization) and text-in-image editing tasks (e.g., text removal, text
replacement). Our system allows for easy extension by adding new models and their corresponding
tasks to this table. The MDT also includes columns specifying the input dependencies and outputs of
each model. An excerpt of the MDT is shown in Table 1 to illustrate its structure, and full MDT is
available in Appendix (Table 18).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LLM

Replace the car with a small
delivery truck, change the STOP
sign to display “GO,” and remove
all pedestrians in the background.

List of
Supported
Subtasks

Input Image Instruction

Quality
Check by

VLM

Tool
Subgraph

Constructor

1. Subtask Tree Planning 2. Tool Subgraph Construction 3. Optimal Toolpath Search with A*

Tool
Dependency

Graph

Model
Description

Table

Object
Removal

Object
Replacement

Object
Removal

Tool Subgraph

Text
Editing

Text
Editing

Subtask Tree

Object
Removal

Object
Replacement

Text
Editing

Text Editing
Tool Subgraph

Object
Replacement

Tool Subgraph

Input

Quality
Check by

VLM

Quality
Check by

VLM

Quality
Check by

VLM

Pass Failed Pass Pass

Different Subtasks by colors

Tools colored by their subtasks
Input Image Optimal toolpathVisited Nodes

Figure 5: Three stages in CoSTA∗: (1) an LLM generates a subtask tree based on the input and
task dependencies; (2) the subtask tree spans a tool subgraph that maintains tool dependencies; and
(3) A∗ search finds the best toolpath balancing efficiency and quality.

3.2 TOOL DEPENDENCY GRAPH

Each tool in our library is a specialized model for a specific subtask, where some tools require the
outputs of other tools as inputs. To capture these dependencies, we construct a Tool Dependency
Graph (TDG). Formally, we define the TDG as a directed graph Gtd = (Vtd, Etd), where Vtd is the set
of tools, and Etd ⊆ Vtd × Vtd contains edges (v1, v2) if tool v2 depends on the output of v1. Figure 4
presents the full TDG, illustrating the dependencies between tools. This TDG can be automatically
generated based on the input-output specifications of each tool mentioned in the MDT, reducing the
need for extensive human effort (see Appendix G for a detailed explanation).

3.3 BENCHMARK TABLE FOR HEURISTIC SCORES

At its core, CoSTA∗ employs A∗ search over a network of interdependent tools to find the optimal
cost-sensitive path. This process relies on a heuristic function h(x) for each tool x. We initialize these
heuristic values using prior knowledge of execution time and quality scores obtained from existing
benchmarks or published studies (e.g., mAP score for YOLO (Wang et al., 2022)). Since not all
tools have sufficient benchmark data, we evaluate them over 137 instances of the specific subtask,
applied across 121 images from the dataset to handle missing values. These initial heuristics can
be derived either from such offline experiments or dynamically via a "cold start" approach where
the table is populated by aggregating real-time feedback (g(x)) from inference (Appendix Q). For
each tool-task pair (vi, sj), we define an execution time C(vi, sj) and a quality score Q(vi, sj). To
ensure comparability, quality values are normalized per subtask to a [0, 1] scale (See Appendix S for
rationale). The complete Benchmark Table (BT) is shown in Table 19.

4 COSTA∗: COST-SENSITIVE TOOLPATH AGENT

This section details our approach for constructing and optimizing a Tool Subgraph (TS) to efficiently
execute multimodal editing tasks. The methodology consists of three key stages: (1) generating a sub-
task tree, (2) constructing the TS, and (3) applying A∗ search to determine the optimal execution path.

First, as shown in Figure 5, an LLM infers subtasks and dependencies from the input image, prompt,
and the set of supported subtasks S , generating a subtask tree Gss. Then, this tree is transformed into
the Tool Subgraph Gts, where each subtask is mapped to a model subgraph within the TDG. This
ensures that model dependencies are maintained while incorporating task sequences and execution
constraints. Finally, A∗ search explores Gts to identify an optimal execution path by balancing
computational cost and output quality. It prioritizes paths based on a cost function f(x) = g(x)+h(x)
where g(x) represents real-time execution costs, and h(x) is the precomputed heuristic. A tunable
parameter α controls the tradeoff between efficiency and quality, allowing for adaptive optimization.
4.1 TASK DECOMPOSITION & SUBTASK TREE PLANNING

Given an input image x and prompt u, we employ an LLM π(·|fplan(x, u,S)) to generate a subtask
tree Gss = (Vss, Ess), where each node vi represents a subtask si, and each edge (vi, vj) denotes a
dependency. Here, fplan is a prompt template containing the input image, task description u, and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

supported subtasks S . The full prompt is detailed in Appendix W. The LLM infers task relationships,
forming a directed acyclic graph where each root-to-leaf path represents a valid solution.

The subtask tree encodes various solution approaches, accommodating different subtask orders and
workflows. Path selection determines an optimized workflow based on efficiency or quality. Part 1 of
Figure 5 (Subtask Tree Planning) illustrates an example where the LLM constructs a subtask tree
from an input image and prompt.

4.2 TOOL SUBGRAPH CONSTRUCTION

The TS, denoted as Gts = (Vts, Ets), represents the structured execution paths for fulfilling subtasks
in the Subtask Tree (ST) Gss. It is constructed by mapping each subtask node to a corresponding
model subgraph from the TDG Gtd.

The node set Vts consists of all models required for execution, ensuring that every subtask si ∈ S is
associated with a valid model:

Vts =
⋃
si∈S

M(si), (1)

where M(si) denotes the set of models that can perform subtask si, as listed in the MDT.

The edge set Ets represents dependencies between models, ensuring that each model receives the
necessary inputs from its predecessors before execution. These dependencies are derived from Gtd

by backtracking to identify required intermediate outputs:

Ets =
⋃
si∈S

Eti, (2)

where Eti contains directed edges between models in M(si) based on their execution dependencies.
The final tool subgraph Gts encapsulates all feasible execution paths while preserving dependencies
and logical consistency. Figure 5 (Tool Subgraph Construction) illustrates this transformation.

4.3 PATH OPTIMIZATION WITH A∗ SEARCH

The A∗ algorithm finds the optimal execution path by minimizing the cost function: f(x) =
g(x)+h(x) where g(x) is the actual execution cost, dynamically updated during execution, and h(x)
is the heuristic estimate, precomputed from benchmark values. Nodes are explored in increasing
order of f(x), ensuring an efficient tradeoff between execution time and quality.

4.4 HEURISTIC COST h(x)

The heuristic cost h(x) estimates the best-case execution cost from node x to a leaf node (excluding
the cost of x itself), factoring in both execution time and quality. Each node represents a tool-task
pair (vi, si), where vi is the tool and si is the subtask. For example, y = (YOLO,Object Detection)
ensures that y is inherently multivariate. The heuristic is defined as:

h(x) = min
y∈Neighbors(x)

[hC(y) + C(y)]α × [2−Q(y)× hQ(y)]
(2−α) (3)

where hC(y) represents the cost component of h(y) (initialized as 0 for leaf nodes), while hQ(y)
denotes the quality component (initialized as 1 for leaf nodes). C(y) and Q(y) correspond to the
benchmark execution time and quality of tool y, respectively, and α controls the tradeoff between
cost and quality. This heuristic propagates recursively, ensuring each node maintains the best possible
estimate to a leaf node.

4.5 ACTUAL EXECUTION COST g(x)

The actual execution cost g(x) is computed in real-time as execution progresses:

g(x) =

(
x∑

i=1

c(vi, si)

)α

×

(
2−

x∏
i=1

q(vi, si)

)2−α

(4)

where c(vi, si) represents the actual execution time (in seconds) of the tool-subtask pair (vi, si), and
q(vi, si) is the real-time validated quality score for the same pair.

The summation includes only nodes in the currently explored path. Each node is initialized with
g(x) = ∞, except the start node, which is set to zero. Upon execution, g(x) is updated to the
minimum observed value.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 Subtask

6 Subtasks

5 Subtasks

7 Subtasks

8 Subtasks

2 Subtasks

3 Subtasks

4 Subtasks

5

14

9

1510

9

10

9

6 Subtasks

5 Subtasks

7 Subtasks

8 Subtasks

2 Subtasks

3 Subtasks

4 Subtasks

9

6

64

5

6

4

Figure 6: Distribution of image-only (left) and text+image tasks (middle) in our proposed bench-
mark, and quality comparison of different methods on the benchmark (right). CoSTA∗ excels in
complex multimodal tasks and outperforms all the baselines.

If a node x fails the manually set quality threshold, it undergoes a retry mechanism with updated
hyperparameters. If successful, the new execution cost is accumulated in g(x). If a node fails all
retries, g(x) remains unchanged, and the path is not added back to the queue, ensuring failed paths
are deprioritized, but alternative routes exploring the same node remain possible. More information
about the execution is in Appendix O.

5 EXPERIMENTS

We evaluate CoSTA∗ on a curated dataset and the MagicBrush benchmark (Zhang et al., 2024a),
comparing it against baselines to assess its effectiveness in complex image and text-in-image editing.
(All experiments have been conducted on a single NVIDIA A100 GPU)

5.1 EXPERIMENTAL SETTINGS

Benchmark Dataset Our dataset consists of 121 manually curated images with prompts involving
1–8 subtasks per task (amounting to 550 total image manipulations or turns), ensuring comprehen-
sive coverage across both image and text-in-image modalities. It includes 81 tasks with image-only
edits and 40 tasks requiring multimodal processing. Figure 6 summarizes its even distribution, with
further details in Appendix H. We also evaluate CoSTA∗ on the MagicBrush (Zhang et al., 2024a)
and EMU-Edit (Sheynin et al., 2023) benchmarks for both single and multi-turn tasks (Appendix A).

Baselines We compare CoSTA∗ against agentic baselines such as VISPROG (Gupta & Kembhavi,
2023), GenArtist (Wang et al., 2024a), and CLOVA (Gao et al., 2024). These methods support
task orchestration but lack CoSTA∗’s A∗ path optimization, cost-quality tradeoff, and multimodal
capabilities. For InstructPix2Pix (Brooks et al., 2023) and MagicBrush (Zhang et al., 2024a), not
inherently designed for single-pass multi-turn instructions, we applied them iteratively for multi-step
edits, which could increase their execution time relative to specialized multi-step agents. We also
compare CoSTA∗ with latest closed-source models like Gemini 2.0 Flash (Gemini, 2024) and
GPT-4o (OpenAI, 2024) with detailed quantitative results in Appendix I.

5.2 EVALUATION METRICS

Table 2: Comparison of CLIP Similarity vs. Hu-
man Evaluation on 50 tasks.

Metric CLIP Score Human Acc.

Avg. (50 Tasks) 0.96 0.78

Human Evaluation To ensure a reliable as-
sessment of model performance, we employ hu-
man evaluation for accuracy measurement. Each
subtask si in task T is manually assessed and
assigned a score A(si): 1 if fully correct, 0 if
failed, and x ∈ (0, 1) if partially correct. Task-

level accuracy A(T) is computed as the mean of its subtasks, while overall accuracy Aoverall is
averaged over all evaluated tasks. For partial correctness (x), predefined rules are used to assign
values based on specific evaluation criteria. This structured human evaluation provides a robust
performance measure across all tasks (see Appendix F for a detailed explanation of the evaluation
process and the rules for assigning partial scores).

Human Evaluation vs. CLIP Scores While automatic metrics like CLIP similarity are common
for image/text editing, we use human evaluation for complex, multi-step, multimodal tasks. CLIP
often misses small but critical changes (e.g., missing bounding boxes) and struggles with semantic
coherence in multimodal tasks or tasks with multiple valid outputs. Our evaluation of 50 tasks with
intentional errors showed CLIP similarity scores (0.93-0.98) significantly higher than human accuracy
(0.7-0.8), highlighting CLIP’s limitations (Table 2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy comparison of CoSTA∗ with baselines across task types and categories. CoSTA∗

excels in complex workflows with A∗ search and a diverse set of tools. (All values are at α = 1.)
Task Type Task Category CoSTA∗ VisProg CLOVA GenArtist Instruct Pix2Pix MagicBrush

Image-Only Tasks

1–2 subtasks 0.94 0.88 0.91 0.93 0.87 0.92
3–4 subtasks 0.93 0.76 0.77 0.85 0.74 0.78
5–6 subtasks 0.93 0.62 0.63 0.71 0.55 0.51
7–8 subtasks 0.95 0.46 0.45 0.61 0.38 0.46

Text+Image Tasks
2–3 subtasks 0.93 0.61 0.63 0.67 0.48 0.62
4–5 subtasks 0.94 0.50 0.51 0.61 0.42 0.40
6–8 subtasks 0.94 0.38 0.36 0.56 0.31 0.26

Overall Accuracy
Image Tasks 0.94 0.69 0.70 0.78 0.64 0.67
Text+Image Tasks 0.93 0.49 0.50 0.61 0.40 0.43
All Tasks 0.94 0.62 0.63 0.73 0.56 0.59

CLIP in Feedback Loops vs. Dataset Evaluation CLIP is effective for real-time subtask
validation, as each subtask is assessed in isolation. In object detection, for instance, it evaluates only
the detected region against the expected label (e.g., ‘car’ or ‘person’), ensuring accurate verification.
However, for full-task evaluation, CLIP prioritizes global similarity, often missing localized errors,
making it unreliable for holistic assessment but useful for individual subtasks.

Table 4: Correlation Analysis of CLIP vs Human
Evaluation on 40 tasks, which indicates that
human evaluation is still necessary.

Metric Correlation Coefficient p-value

Spearman’s ρ 0.59 6.07× 10−5

Kendall’s τ 0.47 5.83× 10−5

Correlation Analysis We analyzed the corre-
lation between CLIP scores and human accuracy
across 40 tasks, finding weak agreement (Spear-
man’s ρ = 0.59, Kendall’s τ = 0.47). The low
correlation confirms CLIP’s inability to capture
nuanced inaccuracies, as visualized in Table 4
and the scatter plot in Appendix N.

Execution Cost (Time) The cumulative execution time, including feedback-based retries and
exploration of alternate models, is used to evaluate CoSTA∗’s efficiency.
5.3 MAIN RESULTS

Table 3 demonstrates that CoSTA∗ consistently outperforms baselines across all task categories. For
simpler image-only tasks (1–2 subtasks), CoSTA∗ achieves comparable accuracy, but as complexity
increases (5+ subtasks), it significantly outperforms baselines. This is due to its A* search integration,
which effectively refines LLM-generated plans, whereas baselines struggle with intricate workflows.

In text+image tasks, CoSTA∗ achieves much higher accuracy due to its extensive toolset for text
manipulation. Baselines, limited in tool variety, fail to perform well in multimodal scenarios.
Additionally, CoSTA∗’s dynamic feedback and retry mechanisms further enhance robustness across
diverse tasks, maintaining high-quality outputs. These results highlight its superiority in balancing
cost and quality over agentic and non-agentic baselines.

Table 5: Comparison of key features across methods, high-
lighting the capabilities supported by CoSTA∗, which are
absent in baselines and contribute to its superior performance.

Feature CoSTA∗ CLOVA GenArtist VisProg Instruct Pix2Pix
System Architecture Agent Based Agent Based Agent Based Agent Based End-to-End Model
Integration of LLM with A*
Path Optimization

✓ × × × ×

User-Defined Cost-Quality
Weightage & Tradeoff

✓ × × × ×

Multimodality Support ✓ × × × ×
Continual Learning/Tool Up-
dates

× ✓ × × ×

Feedback-Based Retrying and
Model Selection

✓ ✓ ✓ × ×

Single Pass Edit × × × × ✓

Figure 6 compares CoSTA∗ with base-
lines across task complexities. While
it shows marginal improvement in
simple tasks, its advantage becomes
pronounced in complex tasks (3+ sub-
tasks), attributed to its path optimiza-
tion and feedback integration. The
radar plot confirms CoSTA∗’s scalabil-
ity and multimodal capabilities, han-
dling both image-only and text+image
tasks effectively.

Pareto Optimality Analysis The Pareto front (Figure 3) shows CoSTA∗’s ability to balance cost
and quality by adjusting α. α = 2 prioritizes cost, while α = 0 maximizes quality. Baselines lack this
flexibility and fall short of the Pareto front due to lower quality at comparable costs, demonstrating
CoSTA∗’s superior cost-quality optimization. These results are the average improvements over the
entire dataset. The cost comparison of CoSTA∗ with the baselines is also available in Table 9.
Qualitative Results Figure 1 provides qualitative comparisons, illustrating CoSTA∗’s ability to
seamlessly handle multimodal tasks. Table 5 highlights its distinct advantages, including real-time
feedback, dynamic heuristic adjustments, and LLM integration with A∗ search—features lacking in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

baselines. We also present a qualitative comparison between CoSTA∗ and the very recent Gemini 2.0
Flash Preview Image Generation on a few tasks from our benchmark, in which our methods exhibit
significant advantages over Gemini. This comparison can be seen in Figure 11.

5.4 ABLATION STUDY

Table 6: Impact of core components on CoSTA∗’s
performance.

Configuration / Component Removed Average Accuracy
CoSTA∗ (Full Method) 0.94
no Real-time Feedback g(x) (h(x) only) 0.80
no Multimodality Support (Image-only
tools for text tasks)

0.48

no Model Description Table 0.85
no Tool Dependency Graph (TDG) 0.82

To understand the contribution of various com-
ponents in CoSTA∗, we conducted several ab-
lation studies, summarized in Table 6. These
studies evaluate the impact of real-time feedback
integration, multimodality support, the Model
Description Table (MDT), and the Tool Depen-
dency Graph (TDG). Furthermore, to ensure
a fair and comprehensive comparison with
baseline methods, additional ablation studies
restricting the tools and subtasks available to CoSTA∗ to only those supported by the baselines
are detailed in Appendix D. These appendix studies demonstrate that the performance improve-
ments of CoSTA∗ are not solely due to its broader toolset, but stem from its superior planning
capabilities. Appendix D also analyzes contributions of individual high-level components like
LLM-based planning versus A* search only, and impact of the cost-quality tradeoff mechanism.

Instruction
Replace "THIS IS A NICE STREEE" with

"THIS IS NOT A NICE STREEE"
CoSTA* DALL-E/

Stable Diffusion

Instruction
Remove the pedestrians, replace the cat

with a dog and the car with a red truck
Output (Only h(x)) Output (h(x) + g(x))

Figure 7: Qualitative comparison of image editing
tools vs. CoSTA∗ (top), highlighting multimodal
advantages; Comparison of h(x) vs. h(x) + g(x)
(bottom), demonstrating improved editing preci-
sion from real-time feedback

Feedback Integration with g(x) To isolate
the impact of real-time feedback (g(x)), we com-
pared our method against a variant relying solely
on static heuristics (h(x)-only). Static heuristics
may not always capture optimal tool choices in
diverse scenarios. As shown in Table 6, the full
CoSTA∗ method, by integrating g(x) to adapt
to actual tool performance, significantly boosted
accuracy compared to the h(x)-only approach.
An illustrative case, where a path guided by h(x)
alone is suboptimal but is effectively corrected
by the full CoSTA∗ with g(x) integration, is de-
picted in Figure 7 (bottom). This confirms that
real-time feedback substantially enhances path
selection and robustness within our framework.
Impact of Multimodality Support Compar-
ing CoSTA∗’s full multimodal capabilities on
text-related tasks against a version restricted to
only image-modality tools (e.g., DALL-E) re-
vealed a substantial accuracy drop (Table 6). CoSTA∗’s integration of specialized text-focused tools
ensures better visual and textual fidelity, leading to significantly improved results, as qualitatively
shown in Figure 7 (right).
Impact of Model Description Table (MDT) The Model Description Table (MDT, detailed in
Table 18) provides structured tool information (supported subtasks, inputs, outputs). Ablating the
MDT—providing the LLM only with model names and requiring it to infer capabilities—noticeably
decreased accuracy (Table 6). This underscores the MDT’s role in guiding the LLM for accurate
tool-subtask mapping and reducing planning errors.
Impact of Tool Dependency Graph (TDG) The Tool Dependency Graph (TDG, Figure 4),
defines valid tool sequences. Removing the TDG and requiring the LLM to infer these input/output
dependencies significantly lowered accuracy (Table 6). This highlights the TDG’s importance for
plan feasibility and efficiency by preventing exploration of invalid tool sequences, thus improving
CoSTA∗’s reliability.

6 CONCLUSIONS

In this paper, we present a novel image editing agent that leverages the capabilities of a large
multimodal model as a planner combined with the flexibility of the A* algorithm to search for an
optimal editing path, balancing the cost-quality tradeoff. Experimental results demonstrate that
CoSTA∗effectively handles complex, real-world editing queries with reliability while surpassing
existing baselines in terms of image quality. We believe that this neurosymbolic approach is a
promising direction toward more capable and reliable agents in the future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee. Character region
awareness for text detection, 2019.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis, 2023a.

Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
guidance, 2023b.

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor:
Zero-shot object-level image customization, 2024.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
8780–8794, 2021.

Zhi Gao, Yuntao Du, Xintong Zhang, Xiaojian Ma, Wenjuan Han, Song-Chun Zhu, and Qing Li.
CLOVA: A closed-loop visual assistant with tool usage and update. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp.
13258–13268. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01259.

Gemini. Gemini 2.0 flash, 2024.

Google Cloud. Google Cloud Vision API, 2024. URL https://cloud.google.com/vision.
Accessed: January 29, 2025.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 14953–14962. IEEE, 2023. doi: 10.1109/
CVPR52729.2023.01436.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Minbin Huang, Yanxin Long, Xinchi Deng, Ruihang Chu, Jiangfeng Xiong, Xiaodan Liang, Hong
Cheng, Qinglin Lu, and Wei Liu. Dialoggen: Multi-modal interactive dialogue system for multi-
turn text-to-image generation, 2024.

Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
Zhou, Chao Dong, Rui Huang, Ruimao Zhang, and Ying Shan. Smartedit: Exploring complex
instruction-based image editing with multimodal large language models, 2023.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks, 2018.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment anything. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pp. 3992–4003. IEEE, 2023a. doi: 10.1109/ICCV51070.2023.00371.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023b.

10

https://cloud.google.com/vision

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rakpong Kittinaradorn, Wisuttida Wichitwong, Nart Tlisha, Sumitkumar Sarda, Jeff Potter, Sam_S,
Arkya Bagchi, ronaldaug, Nina, Vijayabhaskar, DaeJeong Mun, Mejans, Amit Agarwal, Mijoo
Kim, A2va, Abderrahim Mama, Korakot Chaovavanich, Loay, Karol Kucza, Vladimir Gurevich,
Márton Tim, Abduroid, Bereket Abraham, Giovani Moutinho, milosjovac, Mohamed Rashad,
Msrikrishna, Nishad Thalhath, RaitaroHikami, and Shakil Ahmed Sumon. cwittwer/easyocr:
Easyocr, July 2022.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. Deblurgan:
Blind motion deblurring using conditional adversarial networks, 2018.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023a.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation, 2023b.

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
understanding of text-to-image diffusion models with large language models, 2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection, 2024.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models, 2022. URL https://arxiv.org/abs/
2211.09794.

OpenAI. Gpt-4o system card, 2024.

Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
Zero-shot image-to-image translation, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. CoRR, abs/2102.12092, 2021.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer, 2020.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
Sam 2: Segment anything in images and videos, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
10674–10685. IEEE, 2022a. doi: 10.1109/CVPR52688.2022.01042.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022b.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks, 2023.

11

https://arxiv.org/abs/2211.09794
https://arxiv.org/abs/2211.09794

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrey Voynov, Kfir Aberman, and Daniel Cohen-Or. Sketch-guided text-to-image diffusion models,
2022.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, 2022.

Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind
super-resolution with pure synthetic data. In IEEE/CVF International Conference on Computer
Vision Workshops, ICCVW 2021, Montreal, QC, Canada, October 11-17, 2021, pp. 1905–1914.
IEEE, 2021. doi: 10.1109/ICCVW54120.2021.00217.

Zhangyang Wang, Jianchao Yang, Hailin Jin, Eli Shechtman, Aseem Agarwala, Jonathan Brandt, and
Thomas S. Huang. Deepfont: Identify your font from an image, 2015.

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal LLM as an agent for
unified image generation and editing. CoRR, abs/2407.05600, 2024a. doi: 10.48550/ARXIV.2407.
05600.

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal llm as an agent for
unified image generation and editing, 2024b.

Zhenyu Wang, Enze Xie, Aoxue Li, Zhongdao Wang, Xihui Liu, and Zhenguo Li. Divide and
conquer: Language models can plan and self-correct for compositional text-to-image generation,
2024c.

Duo Wu, Jinghe Wang, Yuan Meng, Yanning Zhang, Le Sun, and Zhi Wang. Catp-llm: Empowering
large language models for cost-aware tool planning, 2025. URL https://arxiv.org/abs/
2411.16313.

Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion,
2023.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang
Wen. Paint by example: Exemplar-based image editing with diffusion models, 2022.

Zhengyuan Yang, Jianfeng Wang, Linjie Li, Kevin Lin, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. Idea2img: Iterative self-refinement with gpt-4v(ision) for automatic image design and
generation, 2024.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023a.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing, 2024a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models, 2023b.

Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan Wang,
Silvio Savarese, Stefano Ermon, Caiming Xiong, and Ran Xu. Hive: Harnessing human feedback
for instructional visual editing, 2024b. URL https://arxiv.org/abs/2303.09618.

Xinchen Zhang, Ling Yang, Guohao Li, Yaqi Cai, Jiake Xie, Yong Tang, Yujiu Yang, Mengdi Wang,
and Bin Cui. Itercomp: Iterative composition-aware feedback learning from model gallery for
text-to-image generation, 2024c.

Zhiyuan Zhang, DongDong Chen, and Jing Liao. Sgedit: Bridging llm with text2image generative
model for scene graph-based image editing, 2024d.

12

https://arxiv.org/abs/2411.16313
https://arxiv.org/abs/2411.16313
https://arxiv.org/abs/2303.09618

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A COMPARISON ON MAGICBRUSH AND EMU-EDIT BENCHMARKS

Comparison on MagicBrush To further validate the effectiveness of CoSTA∗, we conducted
experiments on the MagicBrush (Zhang et al., 2024a) benchmark. This benchmark provides a
standardized set of images and editing instructions for both single-turn and multi-turn image editing
tasks.

As shown in Table 7, CoSTA∗ consistently outperforms all baseline methods across all reported
metrics (L1↓, L2↓, CLIP-I↑, CLIP-T↑) for both single-turn and multi-turn settings. These superior
results can be attributed to CoSTA∗’s robust planning mechanism, which can leverage multiple tools
for the same subtask, and its automatic quality check at each step. This allows CoSTA∗ to select the
best performing tool for each subtask and dynamically recover if a chosen tool fails to produce a
satisfactory result. In contrast, other methods are often limited to single models or, like GenArtist,
may use a single predefined tool for each subtask. While GenArtist can revise a subtask if the LLM
initially chooses an incorrect one, it lacks the flexibility to select from different tools for the same
subtask or to switch tools if one underperforms. CoSTA∗’s ability to evaluate and choose among
multiple tool options for each step in the editing process leads to higher quality and more robust
editing outcomes.

Table 7: Quantitative Comparison on MagicBrush with existing image editing methods. Multi-turn
setting evaluates images that are iteratively edited on the previous source images in edit sessions.
CoSTA∗ demonstrates superior performance across all metrics. However, the improvement margin
over baselines is less pronounced here compared to our own benchmark, as MagicBrush contains
fewer highly complex tasks and a smaller proportion of multi-turn tasks (max 3 turns vs. up to 8 in
ours).

Settings Methods L1↓ L2↓ CLIP-I↑ CLIP-T↑

Single-turn

Null Text Inversion (Mokady et al., 2022) 0.0749 0.0197 0.8827 0.2737
HIVE (Zhang et al., 2024b) 0.1092 0.0341 0.8519 0.2752
InstructPix2Pix (Brooks et al., 2023) 0.1122 0.0371 0.8524 0.2764
MagicBrush (Zhang et al., 2024a) 0.0625 0.0203 0.9332 0.2781
SmartEdit (Huang et al., 2023) 0.0810 - 0.9140 0.3050
GenArtist (Wang et al., 2024b) 0.0536 0.0147 0.9403 0.3129
CoSTA∗ (Ours) 0.0512 0.0139 0.9465 0.3206

Multi-turn

Null Text Inversion (Mokady et al., 2022) 0.1057 0.0335 0.8468 0.2710
HIVE (Zhang et al., 2024b) 0.1521 0.0557 0.8004 0.2673
InstructPix2Pix (Brooks et al., 2023) 0.1584 0.0598 0.7924 0.2726
MagicBrush (Zhang et al., 2024a) 0.0964 0.0353 0.8924 0.2754
GenArtist (Wang et al., 2024b) 0.0858 0.0298 0.9071 0.3067
CoSTA∗ (Ours) 0.0825 0.0281 0.9143 0.3102

Comparison on Emu-Edit Benchmark We evaluated COSTA on the Emu-Edit benchmark to
test its generalization capabilities. As shown in Table 8, COSTA achieves the highest accuracy,
demonstrating its robust planning and execution framework.

Table 8: Performance comparison on the Emu-Edit benchmark.
Method Accuracy (Emu-Edit)
COSTA* 0.95
GenArtist 0.81
VisProg 0.70
CLOVA 0.72
Instruct Pix2Pix 0.64
MagicBrush 0.68

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B DETAILED NOVELTIES OF COSTA∗

This section provides a more detailed breakdown of the key novelties and contributions of the CoSTA∗

framework.

• Hierarchical Planning with LLM and A* Synergy:
– A primary novelty is the integration of LLM-based high-level planning with a low-level A*

graph search. This synergy leverages the LLM’s strength in commonsense reasoning for subtask
decomposition and search space pruning, while the A* search excels at finding optimal toolpaths
within the pruned graph, handling complex workflows and numerical evaluations where LLMs
might falter.

– This hierarchical approach mitigates the weaknesses of using either method in isolation: LLMs
alone can struggle with detailed, multi-tool planning and precise cost/quality estimation, while
A* search alone on a full tool graph can be computationally intractable for complex tasks.

• Advanced Tool Selection within Subtasks:
– Unlike methods that use a single, predefined tool per subtask, CoSTA∗’s planning method allows

for dynamic selection of the most suitable tool from multiple available options for each subtask
instance.

– This selection is not solely based on pre-defined heuristics but also considers real-time execution
data (actual cost and quality), allowing CoSTA∗ to choose a better-performing tool even if
another tool successfully completes the subtask but with a suboptimal cost-quality outcome for
the current specific case.

• Dynamic Cost-Quality Trade-off and Optimization:
– CoSTA∗ introduces a sophisticated mechanism for balancing execution cost and output quality,

a crucial aspect often overlooked in prior image editing agents.
– We employ a novel formulation for both heuristic (h(x)) and actual execution (g(x)) costs,

which dynamically incorporates both time and quality metrics. This allows for nuanced decision-
making and can achieve significant cost reductions (up to 20% in experiments) when cost is
prioritized.

– The framework includes a tunable coefficient (α) that allows users to explicitly define their
preference for the cost-quality trade-off, leading to versatile solutions on the Pareto front.

• Real-time Feedback and Adaptive Planning:
– Each subtask’s output is evaluated by a Vision-Language Model (VLM).
– If a tool fails or produces low-quality output, CoSTA∗ not only attempts retries but also updates

its internal cost and quality estimates for that tool-subtask pair. This adaptive learning allows the
A* search to quickly recover from failures and explore alternative, more promising toolpaths.

• Principled Use of Prior Knowledge (Benchmark Table):
– CoSTA∗ systematically collects and utilizes benchmark performance data (execution time and

quality scores) for various tools across different subtasks.
– This curated Benchmark Table (BT) serves as the foundation for initializing the heuristic scores

(h(x)) used in the A* search, providing empirically grounded guidance for tool selection from
the outset. This is a novel approach to leveraging prior tool knowledge in an agentic framework.

• Comprehensive Multimodality Support:
– CoSTA∗ is designed to handle complex tasks that require seamless integration of both image and

text editing tools.
– The framework can automatically switch between modalities across different subtasks within

a single editing workflow, optimizing for the best cost-quality trade-off by selecting the most
appropriate tool, regardless of its modality.

• Novel Benchmark for Complex Multi-Turn Editing:
– We contribute a new, challenging benchmark specifically designed for evaluating multi-turn

image editing agents. This benchmark includes tasks of varying complexities, with a higher
proportion of multi-turn scenarios (up to 8 turns) compared to some existing benchmarks,
facilitating more rigorous evaluation of sophisticated planning and execution capabilities.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C QUANTITATIVE COST COMPARISON

Cost-Quality Trade-off Comparison The results in Table 9 provide a detailed breakdown of the
cost (in seconds) and quality scores for COSTA at different α values compared to baseline methods,
reinforcing the Pareto optimality analysis shown in Figure 3.

Table 9: Detailed cost-quality comparison of COSTA with baseline models.
Method Quality Score Execution Cost (seconds)
Ours (α = 0) 0.956 67.7
Ours (α = 0.5) 0.949 65.1
Ours (α = 1) 0.927 58.2
Ours (α = 1.5) 0.902 54.2
Ours (α = 2) 0.889 53.1
CLOVA 0.570 61.2
GenArtist 0.862 65.7
Instruct Pix2Pix 0.520 67.2
MagicBrush 0.880 65.1

D ADDITIONAL ABLATION STUDIES

To provide a strictly fair and comprehensive comparison, and to further analyze the contribution of
different components of CoSTA∗, we conducted several additional ablation studies.

D.1 FAIR COMPARISON WITH RESTRICTED TOOLSET AND SUBTASKS

While the ability of CoSTA∗ to support a wider range of tools and subtasks is a notable advantage,
we performed ablation studies where the toolset and supported subtasks for CoSTA∗ were restricted
to only those available to the baseline methods (VisProg (Gupta & Kembhavi, 2023), CLOVA (Gao
et al., 2024), and GenArtist (Wang et al., 2024b)). This ensures that any observed performance
difference is primarily due to the planning and execution strategy rather than the breadth of available
tools.

As shown in Table 10 and Table 11, when the number of subtasks per task is low (1-2 subtasks),
CoSTA∗ achieves a relatively marginal improvement (approximately 1.7% compared to the average
of VisProg and CLOVA, and 0.4% compared to GenArtist). However, as the task complexity
increases (e.g., 7-8 subtasks), the performance advantage of CoSTA∗ becomes significantly more
pronounced, reaching approximately 33.5% against VisProg/CLOVA and 23.9% against GenArtist.
This substantial improvement in complex scenarios underscores the superior planning and decision-
making capabilities of CoSTA∗, which can efficiently navigate intricate multi-step editing tasks where
baseline methods often struggle or fail. These results verify that our superior performance is primarily
due to the method’s design.

Table 10: Fair comparison of CoSTA∗ with VisProg and CLOVA using a restricted toolset and subtask
list. Performance difference (Diff. w/ CoSTA∗) is calculated as the average of baselines vs. CoSTA∗.

Subtasks CoSTA∗ VisProg (Gupta & Kembhavi, 2023) CLOVA (Gao et al., 2024) Diff. w/ CoSTA∗

1-2 Subtasks 0.510 0.498 0.504 -1.7%
3-4 Subtasks 0.551 0.489 0.496 -10.6%
5-6 Subtasks 0.573 0.446 0.451 -21.7%
7-8 Subtasks 0.460 0.301 0.310 -33.5%

Overall Accuracy 0.525 0.436 0.446 -16.0%

We also re-evaluated CoSTA∗ by reducing its supported subtasks to those only supported by all
baselines collectively for a broader comparison. As shown in Table 12, our performance advantage
is approximately 9% on simpler tasks but increases to nearly 47% on more complex ones, further
confirming that the design of CoSTA∗ is key to its superior performance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 11: Fair comparison of CoSTA∗ with GenArtist using a restricted toolset and subtask list.
Performance difference (Diff. w/ CoSTA∗) is calculated as GenArtist vs. CoSTA∗.

Subtasks CoSTA∗ GenArtist (Wang et al., 2024b) Diff. w/ CoSTA∗

1-2 Subtasks 0.508 0.506 -0.39%
3-4 Subtasks 0.578 0.548 -5.21%
5-6 Subtasks 0.606 0.503 -17.11%
7-8 Subtasks 0.515 0.392 -23.89%

Overall Accuracy 0.553 0.495 -10.55%

Table 12: Fair comparison of CoSTA∗ with all baselines using a restricted subtask list common to all
while using our own toolset for these corresponding allowed subtasks. Difference with CoSTA∗ is
calculated as the average of all other baselines vs. CoSTA∗.

Subtasks CoSTA∗ VisProg (Gupta & Kembhavi, 2023) CLOVA (Gao et al., 2024) InstructPix2Pix (Brooks et al., 2023) MagicBrush (Zhang et al., 2024a) GenArtist (Wang et al., 2024b) Difference with CoSTA∗

1-2 Subtasks 0.550 0.498 0.504 0.497 0.501 0.506 -8.87%
3-4 Subtasks 0.632 0.489 0.496 0.477 0.503 0.548 -20.75%
5-6 Subtasks 0.654 0.446 0.451 0.390 0.402 0.503 -32.96%
7-8 Subtasks 0.599 0.301 0.310 0.274 0.315 0.392 -46.85%

Overall Accuracy 0.610 0.436 0.446 0.413 0.434 0.495 -27.08%

D.2 IMPACT OF CORE COMPONENTS

CoSTA∗ without A* Search (LLM-Only): To evaluate the contribution of the A* search component,
we compared CoSTA∗ with an LLM-only approach where the LLM is responsible for both high-level
subtask planning and low-level tool selection without the refinement of A* search. The results
in Table 13 clearly indicate that CoSTA∗, by integrating A* search, significantly outperforms the
LLM-only approach. This demonstrates that while LLMs are useful for high-level planning and
pruning the search space, they struggle with the intricacies of selecting optimal tools from a large
set, managing dependencies, incorporating heuristic costs, and handling failures robustly. These
results were obtained by providing all benchmark data and detailed tool information (dependencies,
inputs/outputs) directly to the LLM. If the LLM were to rely solely on its pre-existing knowledge
base without this explicit information, the performance would likely degrade further.

Table 13: Comparison of CoSTA∗ with an LLM-only planning approach.
Approach Accuracy
LLM-only Approach 0.73
CoSTA∗ 0.94

CoSTA∗ without LLM for Planning (A* Search Only): Conversely, we examined the scenario
where LLM-based high-level planning is removed, and A* search operates on a much larger, unpruned
tool graph. In this A*-search-only method, the size of the search tree can grow exponentially with the
number of subtasks, potentially involving over 100,000 nodes for complex tasks. This makes traversal
and finding an optimal path computationally prohibitive and inefficient. In contrast, CoSTA∗ with
LLM-based pruning effectively manages this complexity, typically maintaining only about 15-20
nodes in the active search queue. This highlights the critical role of the LLM in making the A* search
feasible and efficient for complex multi-turn editing.

CoSTA∗ without Cost/Quality Tradeoff: We also analyzed the impact of the cost-quality tradeoff
mechanism by evaluating CoSTA∗ when optimizing solely for cost (α = 2), solely for quality
(α = 0), and with a balanced approach (α = 1). The results are presented in Table 14.

These results demonstrate the importance of the cost-quality tradeoff in CoSTA∗. Optimizing solely
for one criterion (e.g., only cost) can lead to a noticeable compromise in the other (e.g., quality),
and vice-versa. The ability to balance these factors via the α parameter allows CoSTA∗ to adapt to
different user preferences and resource constraints effectively.

E STEP-BY-STEP EXECUTION OF TASKS IN FIGURE 1

To complement the qualitative comparisons presented in Figure 1, Figure 8 provides a visualization
of the step-by-step execution of selected subtasks within the composite task by CoSTA∗. This figure

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 14: Impact of the cost-quality tradeoff parameter α in CoSTA∗.
Focus Only Cost (α = 2) Only Quality (α = 0) Both (α = 1)
Quality Score 0.881 0.956 0.937
Cost (in seconds) 53.1 67.7 58.2

Input Final Output

Update the closed signage to open
while detecting the trash can and

pedestrian crossing for better scene
understanding. Also, remove the

people for clarity.

Subtask 1:
Text Replacement

Subtask 2:
Object Removal

Subtask 3:
Object Detection

Subtask 4:
Object Detection

Identify the author of the quote in
image while detecting the bench and
recoloring it to pink. Also, remove the
cat for a clearer view and recolor the

wall to yellow.

Subtask 1:
Question Answering based

on Text within the Image

Subtask 2:
Object Removal

Subtask 3:
Object Recoloration

Subtask 4:
Object Recoloration

Input Final Output

Output:
“The quote “Ask not what

your country can do for
you”, is from John F.

Kennedy. It is a famous line
from his inaugural address

on January 20, 1961.”

Subtask 5:
Object Detection

Detect the wooden sign while
replacing its content to “SAFE ZONE”.
Also, replace the cat in the image with

a dog.

Subtask 1:
Object Replacement

Subtask 2:
Object Detection

Subtask 3:
Text Replacement

Input Final Output

Figure 8: Step-by-step execution of editing tasks using CoSTA∗. Each row illustrates an input image,
the corresponding subtask breakdown, and intermediate outputs at different stages of the editing
process. This visualization highlights how CoSTA∗ systematically refines outputs by leveraging
specialized models for each subtask, ensuring greater accuracy and consistency in multimodal tasks.

highlights the intermediate outputs produced by each subtask, illustrating how complex image editing
operations are decomposed and executed sequentially.

By showcasing the incremental progression of subtasks, this visualization provides a clearer view of
how different intermediate outputs contribute to the final edited image. Rather than illustrating the
full decision-making process of CoSTA∗, the figure focuses on the stepwise transformations applied
to the image, offering a practical reference for understanding the effects of each subtask.

This breakdown highlights key transitions in tasks, demonstrating the intermediate results generated
at various stages. It provides insight into how each operation modifies the image, helping to better
interpret the qualitative comparisons presented in the main text.

F HUMAN EVALUATION FOR ACCURACY CALCULATION

To ensure reliable performance assessment, we conduct human evaluations for accuracy calculation
across all subtasks and tasks. Unlike automatic metrics such as CLIP similarity, human evaluation
accounts for nuanced errors, semantic inconsistencies, and multi-step dependencies that are often
missed by automated tools. This section outlines the evaluation methodology, scoring criteria, and
aggregation process.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 15: Predefined Rules for Assigning Partial Correctness Scores in Human Evaluation
Task Type Evaluation Criteria Assigned Score

Image-Only Tasks

Minor artifacts, barely noticeable distortions 0.9
Some visible artifacts, but main content is unaffected 0.8
Noticeable distortions, but retains basic correctness 0.7
Significant artifacts or blending issues 0.5
Major distortions or loss of key content 0.3
Output is almost unusable, but some attempt is visible 0.1

Text+Image Tasks

Text is correctly placed but slightly misaligned 0.9
Font or color inconsistencies, but legible 0.8
Noticeable alignment or formatting issues 0.7
Some missing or incorrect words but mostly readable 0.5
Major formatting errors or loss of intended meaning 0.3
Text placement is incorrect, missing, or unreadable 0.1

F.1 SUBTASK-LEVEL ACCURACY

Each subtask si in a task T is manually assessed by evaluators and assigned a correctness score A(si)
based on the following criteria:

A(si) =


1, if the subtask is fully correct
x, if the subtask is partially correct, where x ∈ {0.1, 0.3, 0.5, 0.7, 0.8, 0.9}
0, if the subtask has failed

(5)

Partial correctness (x) is determined based on predefined task-specific criteria. Table 15 defines the
rules used to assign these scores across different subtasks.

F.2 TASK-LEVEL ACCURACY

Task accuracy is computed as the mean correctness of its subtasks:

A(T) =
1

|ST |

|ST |∑
i=1

A(si) (6)

where ST is the set of subtasks in task T , ensuring that task accuracy reflects overall subtask
correctness.

F.3 OVERALL ACCURACY ACROSS TASKS

To evaluate system-wide performance, the overall accuracy is computed as the average of task-level
accuracies:

Aoverall =
1

|T |

|T |∑
j=1

A(Tj) (7)

where |T | is the total number of evaluated tasks.

G AUTOMATIC CONSTRUCTION OF THE TOOL DEPENDENCY GRAPH

The Tool Dependency Graph (TDG) can be automatically generated by analyzing the input-output
relationships of each tool. Each tool vi is associated with a set of required inputs I(vi) and a set of
produced outputsO(vi). We construct directed edges (vi, vj) wheneverO(vi)∩I(vj) ̸= ∅, meaning
the output of tool vi is required as input for tool vj .

These input-output relationships are explicitly listed in the Model Description Table (MDT), where
two dedicated columns specify the expected inputs and produced outputs for each tool. Using this
structured metadata, the TDG can be dynamically constructed without manual intervention, ensuring
that dependencies are correctly captured and automatically updated as the toolset evolves.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H DATASET GENERATION AND EVALUATION SETUP

Remove the pedestrians and
recolor the truck to green.

1-2 Subtasks

Remove the dog and recolor the
kite to blue while segmenting the
child finally expanding the image.

3-4 Subtasks

Replace the hiker with a giraffe
and segment the signboard while

detecting the giraffe, removing the
dog, upscaling the image, and

generating a caption for it.

5-6 Subtasks

Detect and identify the
building, replace the cat with

a dog, recolor the dog to
pink, segment the dog,

generate a caption describing
the landmark, upscale the

image for clarity, and expand
the image.

7-8 Subtasks

Detect the landmark and
replace the banner text with the
name of the landmark + “Open”.

2-3 Subtasks

Replace the billboard text with
“Grand Opening”, recolor the bird

to pink while also detecting the
bird, caption the image, and check if
the new caption matches the image.

4-5 Subtasks

Detect the lighthouse and recolor
both the boat to yellow and the
lighthouse to pink itself, while

extracting and redacting the text
on the boat, then outpaint the
horizon to extend the scene.

6-8 Subtasks

Figure 9: An overview of the dataset used for evaluation, showcasing representative input images
and prompts across different task categories. The top section presents examples from image-only
tasks, while the bottom section includes text+image tasks. These examples illustrate the diversity of
tasks in our dataset, highlighting the range of modifications required for both visual and multimodal
editing scenarios.

H.1 DATASET CONSTRUCTION FOR BENCHMARKING

To rigorously evaluate the effectiveness of our method, we constructed a diverse, large-scale dataset
designed to test various image editing tasks under complex, multi-step, and multimodal constraints.
The dataset generation process was carefully structured to ensure both realism and consistency in
task complexity.

H.1.1 AUTOMATIC PROMPT GENERATION & HUMAN CURATION

To simulate real-world image editing tasks, we first generated a diverse set of structured prompts
using a Large Language Model (LLM). These prompts were designed to cover a wide variety of
editing operations, including:

• Object replacement, addition, removal, and recoloration,

• Text-based modifications such as replacement, addition, and redaction,

• Scene-level changes, including background modification and outpainting.

While LLM-generated prompts provided an automated way to scale dataset creation, they lacked
real-world editing constraints. Thus, each prompt was manually curated by human annotators to
ensure:

1. Logical Feasibility: Ensuring that edits could be performed realistically on an image.

2. Complexity Diversity: Creating simple (1-2 subtasks) and complex (5+ subtasks) tasks
for a comprehensive evaluation.

3. Ensuring Clarity: Refining ambiguous phrasing or vague instructions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.1.2 IMAGE GENERATION WITH META AI

Once the curated prompts were finalized, image generation was performed using Meta AI’s genera-
tive model. Unlike generic image generation, our human annotators provided precise instructions
to ensure that:

• Every key element mentioned in the prompt was included in the generated image.
• The scene, object attributes, and text elements were visually clear for the intended edits.
• The images had sufficient complexity and diversity to challenge different image-editing

models.

For example, if a prompt requested “Replace the red bicycle with a blue motorcycle and remove
the tree in the background,” the generated image explicitly contained a red bicycle and a clearly
distinguishable tree, ensuring that subsequent edits could be precisely evaluated.

H.2 DATASET COMPOSITION & SUBTASK DISTRIBUTION

Our dataset comprises 121 total image-task pairs, with tasks spanning both image-only and
text+image categories. Each image-editing prompt is decomposed into subtasks, which are then
mapped to the supported models for evaluation.

0 10 20 30 40 50 60
Count

Object Detection
Object Segmentation

Object Addition
Object Removal

Background Removal
Landmark Detection
Object Replacement

Image Upscaling
Image Captioning
Changing Scenery

Object Recoloration
Outpainting

Depth Estimation
Image Deblurring

Text Extraction
Text Replacement

Text Removal
Text Addition

Text Redaction
Question Answering Based on Text

Keyword Highlighting
Sentiment Analysis

Caption Consistency Check
Text Detection

Su
bt

as
k

Figure 10: Distribution of the number of instances for each subtask in the dataset.

Figure 10 illustrates the distribution of subtasks across the dataset. This provides insights into:

• The relative frequency of each subtask.
• The balance between different categories (e.g., object-based, text-based, scene-based).

The dataset ensures adequate representation of each subtask, avoiding skew toward a specific category.
The most common subtasks in the dataset include Object Replacement, Object Recoloration, and
Object Removal, while rarer but complex operations like Keyword Highlighting remain crucial for
evaluation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 16: Average CLIP Similarity Scores for Outputs of Randomness-Prone Subtasks
Subtask Avg CLIP Score

Object Replacement 0.98
Object Recoloration 0.99
Object Addition 0.97
Object Removal 0.97
Image Captioning 0.92
Outpainting 0.99
Changing Scenery 0.96
Text Removal 0.98
QA on Text 0.96

I COMPARISON WITH RECENT CLOSED-SOURCE IMAGE EDITING MODELS

INPUT

Detect the wooden sign while
replacing its content to “SAFE
ZONE”. Also, replace the cat

in the image with a dog.

Update ‘closed’ signage to
‘open’ and detect trash can &
pedestrian crossing. Remove

the people for clarity.

Segment the dog, detect the
people, recolor the leaves to
red, and expand the image.

Detect the barn, remove the
cows, recolor the cock to

green, and expand the image.

Remove the dog, recolor the
kite to pink, segment the

child, and expand the image.

CoSTA*

Gemini 2.0
Flash Preview

Image
Generation

Figure 11: Comparison of CoSTA∗ with the Gemini 2.0 Flash Preview Image Generation on a few
tasks from our benchmark. These examples highlight CoSTA∗’s effectiveness in precisely handling
diverse operations like text manipulation, object replacement, etc., often with greater adherence to
the detailed instructions compared to Gemini.

Comparison with Gemini and GPT-4o We conducted further quantitative comparisons on our
evaluation benchmark with both Gemini 2.0 Flash and GPT-4o (with image editing). The results,
summarized in Table 17, show that COSTA’s structured, tool-based approach yields a significant
advantage in quality over these large generative models for complex editing tasks.

Table 17: Quantitative comparison with Gemini 2.0 and GPT-4o on our benchmark.
Method Average Quality Score
Ours 0.94
Gemini 2.0 0.81
GPT-4o (with image editing) 0.78

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

J CONSISTENCY IN COSTA* OUTPUTS

To assess robustness against randomness, we evaluated CoSTA* on subtasks prone to variability, such
as object replacement and recoloration, where outputs may slightly differ across executions (e.g.,
different dog appearances when replacing a cat). A set of 20 images per subtask was selected, and
each was processed multiple times. Outputs for each image were compared among each other using
CLIP similarity scores, measuring consistency. As summarized in Table 16, CoSTA* maintains high
similarity across runs, confirming its stability. Variability was negligible in most cases, except for
image captioning (0.92 similarity), where multiple valid descriptions naturally exist. These results
demonstrate that CoSTA* is highly consistent, with minimal impact from randomness.

Table 18: Model Description Table (MDT). Each model is listed with its supported subtasks, input
dependencies, and outputs.

Model Tasks Supported Inputs Outputs
Grounding DINO (Liu et al., 2024) Object Detection Input Image Bounding Boxes
YOLOv7 Object Detection Input Image Bounding Boxes
SAM (Kirillov et al., 2023b) Object Segmentation Bounding Boxes Segmentation Masks
DALL-E Object Replacement Segmentation Masks Edited Image
DALL-E Text Removal Text Region Bounding Box Image with Removed Text
Stable Diffusion Erase Text Removal Text Region Bounding Box Image with Removed Text
Stable Diffusion Inpaint Object Replacement, Object Recol-

oration, Object Removal
Segmentation Masks Edited Image

Stable Diffusion Erase Object Removal Segmentation Masks Edited Image
Stable Diffusion 3 Changing Scenery Input Image Edited Image
Stable Diffusion Outpaint Outpainting Input Image Expanded Image
Stable Diffusion Search & Recolor Object Recoloration Input Image Recolored Image
Stable Diffusion Remove Background Background Removal Input Image Edited Image
Text Removal (Painting) Text Removal Text Region Bounding Box Image with Removed Text
DeblurGAN (Kupyn et al., 2018) Image Deblurring Input Image Deblurred Image
LLM (GPT-4o) Image Captioning Input Image Image Caption
LLM (GPT-4o) Question Answering based on text,

Sentiment Analysis
Extracted Text, Font Style Label New Text, Text Region Bounding

Box, Text Sentiment, Answers to
Questions

Google Cloud Vision (Google Cloud, 2024) Landmark Detection Input Image Landmark Label
CRAFT (Baek et al., 2019) Text Detection Input Image Text Bounding Box
CLIP (Radford et al., 2021) Caption Consistency Check Extracted Text Consistency Score
DeepFont (Wang et al., 2015) Text Style Detection Text Bounding Box Font Style Label
EasyOCR (Kittinaradorn et al., 2022) Text Extraction Text Bounding Box Extracted Text
MagicBrush (Zhang et al., 2024a) Object Addition Input Image Edited Image with Object
pix2pix (Isola et al., 2018) Changing Scenery Input Image Edited Image
Real-ESRGAN (Wang et al., 2021) Image Upscaling Input Image High-Resolution Image
Text Writing using Pillow Text Addition New Text, Text Region Bounding

Box
Image with Text Added

Text Writing using Pillow Text Replacement, Keyword High-
lighting

Image with Removed Text Image with Text Added

Text Redaction (Code-based) Text Redaction Text Region Bounding Box Image with Redacted Text
MiDaS (Ranftl et al., 2020) Depth Estimation Input Image Image with Depth of Objects

K MODEL DESCRIPTION TABLE (MDT)

The full Model Description Table (MDT) provides a comprehensive list of all 22 specialized models
used in the CoSTA∗ pipeline for image and text-in-image editing. Each model is mapped to its
supported subtasks, input dependencies, and outputs, ensuring optimal tool selection for diverse
editing requirements. These structured input-output relationships enable the automatic construction
of the Tool Dependency Graph (TDG) by identifying dependencies between models based on their
required inputs and generated outputs. Unlike generic pipelines, CoSTA∗ utilizes targeted models to
enhance accuracy and efficiency in text-related visual tasks. Table 18 presents the complete MDT,
detailing the capabilities of each model across different task categories and their role in facilitating
automated dependency resolution.

L BENCHMARK TABLE (BT)

The Benchmark Table (BT) defines execution time and accuracy scores for each tool-task pair
BT (vi, sj), where vi is a tool and sj is a subtask. It serves as a baseline for A∗ search, enabling
efficient tool selection. Both execution time and accuracy scores are based on empirical evaluations
and published benchmarks (wherever available). For tools without prior benchmarks, evaluations on
137 instances of the specific subtask were conducted on 121 images from the dataset, with results
included in Table 19. Accuracy values are normalized with respect to max within each subtask on a
[0,1] scale for comparability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 19: Benchmark Table for Accuracy and Execution Time. Accuracy and execution time for each
tool-task pair are obtained from cited sources where available. For tools without prior benchmarks,
evaluation was conducted over 137 instances of the specific subtask on 121 images from the
dataset, ensuring a robust assessment across varied conditions. Manual evaluation refers to our own
evaluations on 137 instances of this subtask. The accuracy values for all models within a subtask are
normalized with respect to max. The rationale for normalizing these accuracy scores is explained in
Appendix S

Model Name Subtask Accuracy Time (s) Source
(Normalized within

Subtask)

DeblurGAN (Kupyn et al., 2018) Image Deblurring 1.00 0.8500 (Kupyn et al., 2018)
MiDaS (Ranftl et al., 2020) Depth Estimation 1.00 0.7100 Manual
YOLOv7 (Wang et al., 2022) Object Detection 0.82 0.0062 (Wang et al., 2022)
Grounding DINO (Liu et al., 2024) Object Detection 1.00 0.1190 Accuracy: (Liu et al., 2024), Time: Manual
CLIP (Radford et al., 2021) Caption Consistency Check 1.00 0.0007 Manual
SAM (Ravi et al., 2024) Object Segmentation 1.00 0.0500 Accuracy: Manual, Time: (Ravi et al., 2024)
CRAFT (Baek et al., 2019) Text Detection 1.00 1.2700 Accuracy: (Baek et al., 2019), Time: Manual
Google Cloud Vision (Google Cloud, 2024) Landmark Detection 1.00 1.2000 Manual
EasyOCR (Kittinaradorn et al., 2022) Text Extraction 1.00 0.1500 Manual
Stable Diffusion Erase Object Removal 1.00 13.8000 Manual
DALL-E Object Replacement 1.00 14.1000 Manual
Stable Diffusion Inpaint Object Removal 0.93 12.1000 Manual
Stable Diffusion Inpaint Object Replacement 0.97 12.1000 Manual
Stable Diffusion Inpaint Object Recoloration 0.89 12.1000 Manual
Stable Diffusion Search & Recolor Object Recoloration 1.00 14.7000 Manual
Stable Diffusion Outpaint Outpainting 1.00 12.7000 Manual
Stable Diffusion Remove Background Background Removal 1.00 12.5000 Manual
Stable Diffusion 3 Changing Scenery 1.00 12.9000 Manual
pix2pix (Isola et al., 2018) Changing Scenery (Day2Night) 1.00 0.7000 Accuracy: (Isola et al., 2018), Time: Manual
Real-ESRGAN (Wang et al., 2021) Image Upscaling 1.00 1.7000 Manual
LLM (GPT-4o) Question Answering based on Text 1.00 6.2000 Manual
LLM (GPT-4o) Sentiment Analysis 1.00 6.1500 Manual
LLM (GPT-4o) Image Captioning 1.00 6.3100 Manual
DeepFont (Wang et al., 2015) Text Style Detection 1.00 1.8000 Manual
Text Writing - Pillow Text Replacement 1.00 0.0380 Manual
Text Writing - Pillow Text Addition 1.00 0.0380 Manual
Text Writing - Pillow Keyword Highlighting 1.00 0.0380 Manual
MagicBrush (Zhang et al., 2023a) Object Addition 1.00 12.8000 Accuracy: (Zhang et al., 2023a), Time: Manual
Text Redaction Text Redaction 1.00 0.0410 Manual
Text Removal by Painting Text Removal (Fallback) 0.20 0.0450 Manual
DALL-E (Ramesh et al., 2021) Text Removal 1.00 14.2000 Manual
Stable Diffusion Erase (Rombach et al., 2022a) Text Removal 0.97 13.8000 Manual

M FAILURE CASE ANALYSIS AND LIMITATIONS

A key aspect of CoSTA∗’s robustness is its sophisticated planning mechanism, featuring A* search
and dynamic quality checks, designed to select the best available tool and recover from individual
tool failures by exploring alternatives. However, the final output quality is also contingent upon the
capabilities of the individual tools within its arsenal. There might be rare outlier cases or highly
specialized subtasks for which no currently integrated tool can produce a satisfactory result. For
instance, in the example conceptualized in Figure 12, CoSTA∗ correctly plans the sequence of
operations for a recoloring task. When a tool in the initial path like SD Inpaint fails, CoSTA∗’s A*
search, guided by updated cost-quality metrics, explores alternatives such as SD Search&Recolor. Yet,
even this alternative tool, despite being the next best option, cannot achieve a satisfactory outcome
for the specific challenging case, and the final edited image for this subtask does not meet the
desired quality. This illustrates that while our method intelligently navigates tool selection and failure
recovery, its ultimate success in every conceivable scenario is bounded by the collective efficacy
of the available tools. Furthermore, the overall effectiveness of CoSTA∗ also has a dependency on
the initial task decomposition provided by the LLM; while the currently employed LLM handles
our benchmark tasks well, exceptionally complex or ambiguous instructions beyond current LLM
reasoning capacities might lead to suboptimal initial plans.

Instruction
Recolor the ball to Dark Blue SD Inpaint SD Search&Recolor

Figure 12: Example of a rare failure case where no available tool in the CoSTA∗ arsenal could
satisfactorily complete a specific subtask, despite robust planning and retry mechanisms.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

N CORRELATION ANALYSIS OF CLIP SCORES AND HUMAN ACCURACY
We analyzed the correlation between CLIP similarity scores and human accuracy across 40 tasks
to assess CLIP’s reliability in evaluating complex image-text edits. The scatter plot (Figure 13)
illustrates the weak correlation, with Spearman’s ρ = 0.59 and Kendall’s τ = 0.47, indicating
that CLIP often fails to capture fine-grained inaccuracies. Despite assigning high similarity scores,
CLIP struggles with detecting missing objects, distinguishing between multiple valid outputs, and
recognizing context-dependent errors. Many instances where CLIP scored above 0.95 had human
accuracy below 0.75, reinforcing the need for human evaluation in multimodal tasks. These findings
highlight the limitations of CLIP as a standalone metric and emphasize the necessity of integrating
human feedback for more reliable assessment.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Human Evaluation Accuracy

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

CL
IP

 S
im

ila
rit

y
Sc

or
es

Scatter Plot: Human Evaluation Accuracy vs CLIP Scores
Task Data

Figure 13: Scatter plot of CLIP scores vs. human accuracy across 40 tasks. The weak correlation
(Spearman’s ρ = 0.59, Kendall’s τ = 0.47) highlights CLIP’s limitations in capturing nuanced
inaccuracies, particularly in complex, multi-step tasks.

O A* EXECUTION STRATEGY

CoSTA∗ initializes heuristic values using benchmark data and dynamically updates execution costs
based on real-time performance. The A∗ search iteratively selects the node with the lowest f(x),
explores its neighbors, and updates the corresponding values. If execution quality is below threshold,
a retry mechanism adjusts parameters and re-evaluates g(x) (Figure 14). The process continues
until a leaf node is reached. By integrating precomputed heuristics with real-time cost updates,
CoSTA∗ efficiently balances execution time and quality. This adaptive approach ensures robust
decision-making, outperforming existing agentic and non-agentic baselines in complex multimodal
editing tasks.

S

B
g(b) = ∞

C
g(c) = 10

D
g(d) = 9

S

B
g(b) = ∞

C
g(c) = 10

D
g(d) = 9

Iteration 1

t(b) = 1.5s
q(b) = 0.8

Quality Threshold
(Qt) = 0.92

Iteration 2

q(b) < Qt

Retry

CLOSED

OPEN

OPEN

Qt Pass

Qt Fail

OPEN

UNEXPLORED

Figure 14: Visualization of the Retry Mechanism

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

P DETAILED MOTIVATIONS AND CONTEXT FOR AGENT-BASED PLANNING IN
IMAGE EDITING

This section expands on the core motivations for employing an agentic, planning-based framework
like CoSTA∗ for complex image editing. The need for such systems is increasingly recognized,
with a growing body of work exploring agentic architectures to overcome the limitations of single-
model, end-to-end generation (Wang et al., 2024b; Gupta & Kembhavi, 2023; Gao et al., 2024).
We address why simple tool invocation is insufficient for this domain by discussing the challenges
of compositionality, the necessity of iterative refinement, and by contextualizing our search-based
approach with alternative planning paradigms.

P.1 THE CHALLENGE OF COMPOSITIONALITY AND TASK DEPENDENCIES

A primary motivation for an agentic approach is that user instructions for image editing are rarely
single, atomic actions. They are inherently compositional, often requiring a sequence of dependent
operations to achieve the desired result. Recognizing this, recent state-of-the-art methods like
GenArtist have been designed as agentic systems where a large multimodal model "coordinates
various models to decompose intricate tasks into manageable sub-problems, enabling systematic
planning".

For example, consider the prompt from our benchmark: "recolor the chalkboard to red while redacting
the text on it and write ’A CLASSROOM’ on the top.". A successful execution requires a specific
order of operations:

1. Text Detection & Redaction: First, the existing text must be identified and removed from
the chalkboard.

2. Object Recoloration: Only after the text is gone can the chalkboard’s surface be cleanly
recolored to red.

3. Text Addition: Finally, the new text can be written onto the newly colored surface.

This creates a natural dependency graph of subtasks that requires intelligent planning. This level of
structured, sequential reasoning goes beyond the capabilities of earlier systems focused on simpler
tool orchestration, such as VisProg (Gupta & Kembhavi, 2023), which lack the deep planning needed
for highly compositional instructions. An intelligent agent is therefore essential for inferring this
dependency graph from a natural language prompt and executing the subtasks in a valid order.

P.2 THE IMPERATIVE OF FAILURE RECOVERY AND ITERATIVE REFINEMENT

Generative AI tools are powerful but inherently stochastic and imperfect. Achieving high visual
quality and fine-grained fidelity (e.g., in rendering textures or delicate structures like fingers) in a
single generation step is a well-documented challenge. This has led to a paradigm shift towards
multi-step refinement processes. Recent work, such as Interleaving Reasoning Generation (IRG),
explicitly addresses this by proposing a framework that alternates between reasoning and generation
to iteratively refine an image through reflection. Similarly, other agentic frameworks like GenArtist
are built with "self-correction" capabilities to handle initial errors.

This recognized need for refinement and error correction motivates our agentic design. While IRG
uses a learned model to "reflect" on an image, COSTA* tackles this same fundamental challenge
through its search-based agentic framework. Our approach provides a robust mechanism for iterative
refinement driven by two key components:

1. Real-time Quality Validation: After each tool execution, a Vision-Language Model (VLM)
performs a quality check to verify if the subtask was completed successfully.

2. Dynamic Re-planning via A* Search: If the VLM check fails, the cost g(x) associated with
that failed toolpath is significantly increased. The A* search algorithm, always exploring
the path with the lowest total estimated cost, naturally and immediately discards the failed
path and pivots to explore the next-best alternative from its priority queue.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

This allows the agent to dynamically recover from unexpected tool failures, providing a robust,
search-based alternative to learned refinement models for achieving high-quality final outputs.

P.3 MODULARITY, EXTENSIBILITY, AND TRAINING-EFFICIENCY

A significant, practical advantage of agent-based frameworks like CoSTA∗ is their inherent training-
efficiency and modularity. Unlike monolithic end-to-end models that require extensive training on
massive, domain-specific datasets to learn new capabilities, our agentic approach is comparatively
inexpensive and far more adaptable.

Training-Efficiency. Our framework leverages a collection of pre-existing, specialized models
as tools. The core agent itself does not need to be trained from scratch on image editing tasks. It
orchestrates these expert tools, harnessing their power without incurring the prohibitive computational
cost of training a single, giant model to perform all functions. This makes the system lightweight
and accessible, as it builds upon the collective progress of the open-source community rather than
reinventing each capability.

Ease of Extensibility. The modular "plug-and-play" architecture ensures that the system can be
easily updated and extended. To support a new subtask or integrate a new, state-of-the-art tool, one
does not need to retrain the entire system. Instead, the process is simple: the new tool is added to
the Model Description Table and its performance metrics are added to the Benchmark Table. This
declarative change is trivial compared to the significant engineering effort required for monolithic
models, which would necessitate new data collection, architectural changes, and complete retraining
on huge datasets. This flexibility ensures that the agent can remain current and powerful over time
with minimal maintenance overhead.

P.4 COMPARISON WITH ALTERNATIVE PLANNING PARADIGMS: CATP-LLM

Recent works such as CATP-LLM (Wu et al., 2025) also explore cost-aware planning through a
learning-based approach. However, CoSTA∗ differs from them by being a search-based frame-
work which has several advantages for image editing domain:

• No Fine-Tuning Required: COSTA* works out-of-the-box by leveraging a general LLM
for high-level planning and A* search with pre-computed heuristics. In contrast, CATP-LLM
requires extensive offline reinforcement learning on a large, generated dataset to fine-tune
its policy model. Our approach is more lightweight, general, and easier to deploy.

• Superior Dynamic Recovery: Our A* framework provides more robust and efficient
online adaptability. When a tool fails its quality check, the path’s cost is updated, and the
search immediately and naturally pivots to the next-best alternative in its priority queue. A
pre-trained RL policy, like that in CATP-LLM, is less flexible in handling these real-time
execution failures without more complex re-planning mechanisms.

• Greater Extensibility: Integrating new tools into COSTA* is simple: one only needs to
add them to the Benchmark Table and Tool Dependency Graph. A learned approach like
CATP-LLM would likely require significant effort, including retraining its tool embeddings
and fine-tuning the entire policy model to accommodate new tools.

In summary, COSTA*’s search-based architecture offers a more practical, adaptable, and flexible
solution for cost-sensitive planning in the dynamic domain of image editing.

Q DYNAMIC CONSTRUCTION AND LOW OVERHEAD OF THE BENCHMARK
TABLE

A potential concern regarding our framework is that the Benchmark Table (BT), which provides
heuristic scores for the A* search, represents a significant, manually-intensive prerequisite. In this
section, we clarify that the BT is not a rigid overhead but rather a flexible component that can be
constructed dynamically with minimal manual effort, ensuring the practicality and scalability of the
COSTA* framework.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Q.1 DYNAMIC POPULATION VIA A “COLD START” INFERENCE PROCESS

The CoSTA∗ framework does not strictly require a fully populated, hand-crafted Benchmark Table to
function. Instead, it can be initialized using a "cold start" approach, making the BT an emergent
property of the system’s operation rather than a prerequisite.

The process is as follows:

1. Initialization with Placeholders: The system can begin with a naïve BT where all tool-task
pairs are assigned generic, placeholder values. For example, all quality scores (Q(vi, sj))
can be initialized to a uniform value (e.g., 0.8), and all execution costs (C(vi, sj)) can be
set to an average time derived from a few sample runs.

2. Automatic Updates During Inference: The core of our A* search is the real-time execution
cost, g(x), which is computed dynamically based on the actual performance of a tool on a
given subtask. This function captures the true quality score and execution time observed
during an inference pass.

3. Convergence to a Stable BT: By running the COSTA* pipeline multiple times (e.g., 100-
200 inference runs on a diverse set of tasks), the system naturally collects a rich set of these
real-time performance data points. These observed values can then be aggregated (e.g., by
averaging) to populate a new, empirically-grounded BT. The placeholder values are thus
replaced with stable, realistic heuristics derived from the system’s own experience.

This "inference-to-populate" mechanism demonstrates that the BT is not a static burden but can be
learned and refined automatically over time, effectively eliminating the need for extensive, upfront
manual experimentation.

Q.2 SEMI-AUTOMATED HEURISTIC COLLECTION FOR FASTER INITIALIZATION

For users who wish to start with a more informed BT without a "cold start" phase, the collection of
initial heuristic values can be largely automated, further reducing manual effort.

Automating Cost Collection. Many of the tools used in our pipeline are well-established open-
source models. Execution costs (or reasonable estimates thereof) can often be found in their respective
papers, repositories, or performance blogs. This information-gathering task can be delegated to a
modern Large Language Model with internet search capabilities. By providing the LLM with a list
of tools, it can be prompted to find and tabulate their typical execution times on standard hardware,
providing a strong baseline for the cost heuristics with minimal human intervention.

Minimizing Manual Quality Evaluation. The most labor-intensive part of creating the BT is
evaluating tool quality. However, extensive manual evaluation is only necessary in a specific scenario:
when multiple tools compete to perform the same subtask. In this case, manual evaluation helps
establish a relative performance ranking. For the many subtasks in our framework that are handled
by a single, specialized tool, the quality score is normalized to 1.0 by default, requiring no manual
evaluation. This targeted approach significantly reduces the scope of manual work to only a small
subset of the toolset.

In summary, the Benchmark Table should not be viewed as a rigid and costly prerequisite but
as a flexible, low-overhead component of the COSTA* framework that can be dynamically and
semi-automatically constructed.

R STABILITY UNDER RANDOM SEEDS

Protocol. We randomly selected N = 30 representative tasks from the full benchmark. To
probe stochastic variation we executed the COSTA * pipeline under five independent random seeds
s1, . . . , s5, keeping the data, prompts and evaluation code fixed and α = 1 for all cases. This
produced 30× 5 = 150 task–seed evaluations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Metric. For every seed we recorded the mean task accuracy âs. Let µ = 1
5

∑5
s=1 âs and σ =√

1
4

∑5
s=1(âs − µ)2. We summarise run-to-run variability with the coefficient of variation

CV =
σ

µ
× 100% = 0.43%.

Interpretation. This CV well below 1% signifies that random-seed stochasticity changes the
aggregate accuracy by less than one-half of one percent. Because each extra seed incurs another 150
high-cost task executions, we judged the current slice (150 runs) to balance computational budget
and statistical precision.

S RATIONALE FOR NORMALIZING BENCHMARK ACCURACY SCORES

A key aspect of our methodology is the normalization of benchmark accuracy scores for each tool
within its specific subtask category. This normalization is critical for the effective functioning of
the A∗ search algorithm when finding an optimal, cost-sensitive toolpath. Here, we elaborate on the
reasoning behind this design choice.

Our goal is to select the best available tool for each subtask that composes the optimal toolpath. The
primary reason for normalizing benchmark scores is to enable a fair comparison between tools
that are evaluated on different subtasks using different performance metrics (e.g., mAP for object
detection, CLIP score for image similarity) with vastly different natural scales. This is critical as we
need to compare different toolpaths, each composed of a sequence of tool calls.

For instance, a top-performing object detection model like Grounding DINO might achieve a mean
Average Precision (mAP) of 0.6, while a standard image editing model achieves a CLIP score of 0.95.
If not normalized, the A∗ search would unfairly favor the tool with the numerically higher score, even
if the 0.6 mAP represents a far superior relative performance for its specific task.

Consider this example:

• Path 1 uses a sequence of top-tier models for detection and recoloring, with benchmark
scores of 0.6 (mAP) and 0.96 (CLIP).

• Path 2 uses a single model that performs the task directly with a score of 0.95 (CLIP).

Without normalization, the agent would incorrectly view Path 2 as being of higher quality than
Path 1. By normalizing tools’ metrics for each subtask, we ensure the best tool for a given job is
always ranked highly (i.e., its score approaches 1.0). This allows the A∗ search to make a meaningful
comparison between diverse toolpaths, preventing the arbitrary scales of different metrics from
biasing its decisions. If we did not normalize the values, any path involving YOLO or Grounding
DINO would likely never be selected over a path without them, even if the former path is capable of
generating superior outputs.

A few other reasons for normalization include:

• Makes Relative Performance Gaps Explicit: Normalization highlights the relative drop in
quality between competing tools for a subtask. A small absolute difference between two
tools’ raw scores (e.g., 0.20 vs. 0.25) can represent a significant performance gap (20%
relative difference). Normalization ensures this relative shortfall is properly weighted in the
agent’s heuristic.

• Compatibility with Heuristic Formula: Our heuristic formula, which incorporates a
(2− Quality) term, is designed to operate on values within the [0, 1] range. Normalization
is therefore a technical necessity to ensure the mathematical stability and correctness of the
heuristic calculation.

T QUALITATIVE SCENARIOS OF COSTA’S ADVANTAGES OVER GENERATIVE
MODELS

While quantitative metrics demonstrate the superior performance of COSTA, a qualitative analysis
reveals common scenarios where our method’s structured, tool-based approach outperforms end-

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

to-end solutions like Gemini and GPT-4o. These scenarios highlight the benefits of explicit task
decomposition and specialized tool use.

Some common situations where our method shows a distinct advantage include:

• Complex Multi-Turn Instructions: For prompts with three or more sequential edits, large
generative models often miss steps, leaving the editing incomplete. COSTA’s structured
decomposition explicitly handles each instruction as a distinct subtask, ensuring high
reliability and completeness.

• Logical Sequences: GPT/Gemini often fail to devise a correct logical editing order where
one subtask builds upon another (e.g., replacing an object before recoloring it). This can
significantly reduce output quality or cause subtask failures. The intelligent planner in
COSTA* correctly identifies these dependencies and devises a logical ordering of subtasks.

• Text-in-Image Editing: COSTA* performs precise text manipulation while preserving
stylistic elements and background details by using specialized tools for text detection,
removal, and rewriting. In contrast, GPT/Gemini often struggle with this, failing to maintain
visual and textual consistency and sometimes introducing artifacts.

• Realistic Object Replacement: When replacing objects, generative models can sometimes
generate items with unrealistic sizes, lighting, or positions that appear unnatural. COSTA*
uses a more controlled process that often leads to more contextually appropriate and realistic
replacements.

• Integrity in Recoloration: COSTA* is designed to preserve an object’s original contents,
texture, and design during recoloring tasks. Generative models can fail on complex objects,
altering their shape or texture, as demonstrated in our qualitative comparisons in Figure 12.

• Context Preservation: COSTA* excels at preserving the overall image context by modify-
ing only the specified elements. In contrast, generative models may misunderstand prompts
and introduce unwanted artifacts or alter unrelated parts of the image, as seen in the third
example of Figure 12.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The complete source code for
the COSTA* agent is provided as supplementary material, accessible at the following anonymous
repository: https://anonymous.4open.science/r/CoSTAR-653A. This repository in-
cludes a detailed README.md file containing instructions for environment setup, dependency in-
stallation, and step-by-step guidance for running the experiments presented in the paper. We also
provide a demo notebook for quick visualization and testing of our pipeline. All key architectural
and algorithmic details are described in Section 4. Our experimental setup, evaluation metrics, and
the baselines used for comparison are detailed in Section 5. The construction and composition of
our novel benchmark dataset are thoroughly documented in Appendix H. Furthermore, the core data
structures required by our method, including the Model Description Table (MDT) and the Benchmark
Table (BT), are provided in full in Appendix K and Appendix L, respectively. Our human evaluation
protocol is outlined in Appendix F to ensure transparency in our assessment process.

U USE OF LARGE LANGUAGE MODELS

In compliance with the conference guidelines, we disclose the use of Large Language Models (LLMs)
in two distinct capacities for this work: (1) as a core architectural component of our proposed COSTA
agent, and (2) as a general-purpose tool for assisting with manuscript preparation.

LLM as a Core Research Component. An LLM is a fundamental part of the COSTA framework,
where it functions as the high-level planner. As detailed throughout the paper, particularly in Section
4, the LLM’s primary responsibility is to decompose complex, multi-turn image editing instructions
into a structured subtask tree. This decomposition intelligently prunes the vast search space, enabling
the subsequent low-level A∗ search to find an optimal toolpath efficiently. The specific model
employed for this planning task within our experiments was GPT-4o. This use is integral to our
research contribution and is described extensively in the main body of the paper.

29

https://anonymous.4open.science/r/CoSTAR-653A

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

LLM as a Writing and Assisting Tool. We also utilized Google’s Gemini as a general-purpose
assistant for writing and document preparation. Its role included refining language for clarity and
flow, checking for grammatical consistency, and rephrasing sentences. For all such uses, the human
authors directed the content generation, critically reviewed all outputs for accuracy, and edited the
text to ensure it faithfully represents our work.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

V ALGORITHMS

Algorithm 1: A* Search for Optimal Toolpath
Input: Tool Subgraph Gts, Benchmark Table BT , Tradeoff Parameter α, Quality Threshold
Output: Optimal Execution Path
Step 1: Initialize Search
Initialize Priority Queue Q;
Initialize g(x)←∞ for all nodes except root;
Precompute heuristic values for all nodes: foreach v in Gts do

h(v)← CalculateHeuristic(BT , v, α);
Initialize Start Node: Set Input Image as Root Node r;
g(r)← 0;
f(r)← h(r);
Push (f(r), [r]) into Q;
Mark r as Open;
while Q is not empty do

(f(x), current_path)← Pop(Q);
x← LastNode(current_path);
if x is a leaf node then

return current_path
foreach neighbor y in Neighbors(x) do

c(y)← CalculateActualCost(y);
q(y)← CalculateActualQuality(y);
g(y)new ← ComputeExecutionCost(g(x), c(y), q(y), α);
if QualityCheck(y) ≥ Quality Threshold then

g(y)← Min(g(y)new, g(y));
else

g(y)new2 ← RetryMechanism(y);
if QualityCheck(y) ≥ Quality Threshold then

g(y)final ← g(y)new + g(y)new2;
g(y)← Min(g(y)final, g(y));

else
continue; Node remains unexplored

f(y)← g(y) + h(y);
Push (f(y), current_path + [y]) into Q;

Step 2: Output Optimal Path
Terminate when the lowest-cost valid path is found;
return Optimal Path;

Algorithm 2: Tool Subgraph Construction
Input: Image x, Prompt u, Tool Dependency Graph Gtd, Model Description Table MDT ,

Supported Subtasks S
Output: Tool Subgraph Gts

Step 1: Generate Subtask Tree
Gss ← GenerateSubtaskTree(LLM, x, u, S);
Step 2: Build Tool Subgraph (TG)
Initialize Gts;
foreach subtask si ∈ Vss do

Ti ← GetModelsForSubtask(MDT , si);
Gti ← BacktrackDependencies(Gtd, Ti);
Replace si in Gss with Gti to construct Gts;

return Gts;

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

W LLM PROMPT FOR GENERATING SUBTASK TREE

You are an advanced reasoning model responsible for decomposing a given image editing
task into a structured subtask tree. Your task is to generate a well-formed subtask tree
that logically organizes all necessary steps to fulfill the given user prompt. Below are
key guidelines and expectations:

W.1 UNDERSTANDING THE SUBTASK TREE

A subtask tree is a structured representation of how the given image editing task should be
broken down into smaller, logically ordered subtasks. Each node in the tree represents an
atomic operation that must be performed on the image. The tree ensures that all necessary
operations are logically ordered, meaning a subtask that depends on another must appear after
its dependency.

W.2 STEPS TO GENERATE THE SUBTASK TREE

1. Step 1: Identify all relevant subtasks needed to fulfill the given prompt.
2. Step 2: Ensure that each subtask is logically ordered, meaning operations dependent

on another should be placed later in the path.
3. Step 3: Each subtask should be uniquely labeled based on the object it applies to

and follow the format (Obj1→ Obj2) where Obj1 is replaced with Obj2. In case of
recoloring, use (Obj→ new color), while for removal, simply include (Obj) as the
object being removed.

4. Step 4: A tree may involve multiple correct paths where subtasks are independent
of each other. In such cases, a subtask may appear twice in different parts of the
tree. Number such occurrences distinctly, e.g., Subtask1(1), Subtask1(2),
ensuring clarity.

5. Step 5: Some tasks may have multiple valid approaches. For example, replacing a
cat with a pink dog can be done in two ways:

• Object Replacement (Cat → Pink Dog)
• Object Replacement (Cat → Dog) → Object
Recoloration (Dog → Pink Dog)

W.3 LOGICAL CONSTRAINTS & DEPENDENCIES

• Ensure proper ordering, e.g., if an object is replaced and then segmented, segmenta-
tion must follow replacement.

• Operations should be structured logically so that every subtask builds upon the
previous one.

W.4 SUPPORTED SUBTASKS

Below is the complete list of available subtasks: Object Detection, Object Segmentation,
Object Addition, Object Removal, Background Removal, Landmark Detection, Object Re-
placement, Image Upscaling, Image Captioning, Changing Scenery, Object Recoloration,
Outpainting, Depth Estimation, Image Deblurring, Text Extraction, Text Replacement, Text
Removal, Text Addition, Text Redaction, Question Answering Based on Text, Keyword
Highlighting, Sentiment Analysis, Caption Consistency Check, Text Detection
You must strictly use only these subtasks when constructing the tree.

W.5 EXPECTED OUTPUT FORMAT

The model should output the subtask tree in structured JSON format, where each node
contains:

• Subtask Name (with object label if applicable)
• Parent Node (Parent subtask from which it depends)
• Execution Order (Logical flow of tasks)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

W.6 EXAMPLE INPUTS & EXPECTED OUTPUTS

W.6.1 EXAMPLE 1
Input Prompt: “Detect the pedestrians, remove the car and replacement the cat with rabbit
and recolor the dog to pink.”
Expected Subtask Tree:
"task": "Detect the pedestrians, remove the car and replacement

the cat with rabbit and recolor the dog to pink",
"subtask_tree": [

{
"subtask": "Object Detection (Pedestrian)(1)",
"parent": []

},
{

"subtask": "Object Removal (Car)(2)",
"parent": ["Object Detection (Pedestrian)(1)"]

},
{

"subtask": "Object Replacement (Cat -> Rabbit)(3)",
"parent": ["Object Removal (Car)(2)"]

},
{

"subtask": "Object Replacement (Cat -> Rabbit)(4)",
"parent": ["Object Detection (Pedestrian)(1)"]

},
{

"subtask": "Object Removal (Car)(5)",
"parent": ["Object Replacement (Cat -> Rabbit)(4)"]

},
{

"subtask": "Object Recoloration (Dog ->

Pink Dog)(6)",
"parent": ["Object Replacement (Cat -> Rabbit)(3)",

"Object Removal (Car)(5)"]
}

]

W.6.2 EXAMPLE 2
Input Prompt: “Update the closed signage to open while detecting the trash can and
pedestrian crossing for better scene understanding. Also, remove the people for clarity.”
Expected Subtask Tree:
"task": "Update the closed signage to open while detecting the

trash can and pedestrian crossing for better scene

understanding. Also, remove the people for clarity.",

"subtask_tree": [
{

"subtask": "Text Replacement (CLOSED -> OPEN)(1)",
"parent": []

},
{

"subtask": "Object Detection (Pedestrian Crossing)(2)",
"parent": ["Text Replacement (CLOSED -> OPEN)(1)"]

},

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

{
"subtask": "Object Detection (Trash Can)(3)",
"parent": ["Text Replacement (CLOSED -> OPEN)(1)"]

},
{

"subtask": "Object Detection (Pedestrian Crossing)(4)",
"parent": ["Object Detection (Trash Can)(3)"]

},
{

"subtask": "Object Detection (Trash Can)(5)",
"parent": ["Object Detection (Pedestrian Crossing)(2)"]

},
{

"subtask": "Object Removal (People)(6)",
"parent": ["Object Detection (Pedestrian Crossing)(4)",

"Object Detection (Trash Can)(5)"]
}

]

W.7 FINAL TASK

Now, using the given input image and prompt, generate a well-structured subtask tree
that adheres to the principles outlined above.

• Ensure logical ordering and clear dependencies.
• Label subtasks by object name where needed.
• Structure the output as a JSON-formatted subtask tree.

Input Details:
• Image: input_image
• Prompt: User Prompt

• Supported Subtasks: (See the list above)
Now, generate the correct subtask tree. Before you generate the tree, ensure that for
every possible path, all required subtasks are included and none are skipped.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

X LLM PROMPT FOR GETTING BOUNDING BOX AND TEXT FOR
REPLACEMENT

You are given an image containing text, where each word has associated bounding box
coordinates. The existing text and their corresponding bounding boxes are as follows:

• "THIS": (281,438,502,438,502,494,281,494)
• "IS": (533,437,649,440,647,497,531,493)
• "A": (667,444,734,444,734,492,667,492)
• "NICE": (214,504,810,502,811,649,214,651)
• "STREET": (68,674,915,640,924,859,77,893)

The user wants to replace this text with:

"THIS IS NOT A NICE STREET"

X.1 YOUR TASK

You must determine which words in the image should be removed and which words need
to be rewritten to ensure a smooth transition to the new text. The goal is to maintain spatial
coherence while ensuring that the updated text fits naturally within the image.

X.2 GUIDELINES FOR TEXT REPLACEMENT

1. Identify Words to Remove:
• Any word that needs to be replaced or modified should be marked for removal.
• If the new text introduces an additional word, the surrounding words should

also be removed and rewritten to maintain proper spacing.
2. Determine Placement for New Words:

• If a word or phrase is being replaced (e.g., "GOOD BOY" → "BAD GIRL"),
use a single bounding box that covers the area of both words instead of providing
separate locations.

• If new words need to be inserted, ensure that adjacent words are also rewritten
to provide sufficient space for readability.

• If the new text is longer than the original, adjust placements accordingly:
– Remove and rewrite words from the next or previous line if needed.
– If necessary, split the updated text into two separate lines and provide

distinct bounding boxes for each.
3. Bounding Box Adjustments:

• If text placement changes, the bounding box should be expanded or shifted to
accommodate the new words.

• Ensure that all bounding boxes align with the natural flow of the text in the
image.

X.3 EXAMPLE CASE FOR CLARITY

Input Scenario:
Original Text: "I AM A GOOD BOY" Replacement Text: "I AM A BAD GIRL"
Expected Output:

• Remove: "GOOD" and "BOY"
• Write: "BAD GIRL"

• Bounding Box for "BAD GIRL": (Bounding box covering the area where "GOOD
BOY" was originally written)

If "BAD GIRL" doesn’t fit naturally within the same space, adjust the bounding box or split
it into multiple lines.

35

	Introduction
	Related Work
	Foundations of CoSTA*
	Model Description Table
	Tool Dependency Graph
	Benchmark Table for Heuristic Scores

	CoSTA*: Cost-Sensitive Toolpath Agent
	Task Decomposition & Subtask Tree Planning
	Tool Subgraph Construction
	Path Optimization with A* Search
	Heuristic Cost h(x)
	Actual Execution Cost g(x)

	Experiments
	Experimental Settings
	Evaluation Metrics
	Main Results
	Ablation Study

	Conclusions
	Comparison on MagicBrush and EMU-Edit Benchmarks
	Detailed Novelties of CoSTA*
	Quantitative Cost Comparison
	Additional Ablation Studies
	Fair Comparison with Restricted Toolset and Subtasks
	Impact of Core Components

	Step-by-Step Execution of Tasks in Figure 1
	Human Evaluation for Accuracy Calculation
	Subtask-Level Accuracy
	Task-Level Accuracy
	Overall Accuracy Across Tasks

	Automatic Construction of the Tool Dependency Graph
	Dataset Generation and Evaluation Setup
	Dataset Construction for Benchmarking
	Automatic Prompt Generation & Human Curation
	Image Generation with Meta AI

	Dataset Composition & Subtask Distribution

	Comparison with recent Closed-Source Image Editing Models
	Consistency in CoSTA* Outputs
	Model Description Table (MDT)
	Benchmark Table (BT)
	Failure Case Analysis and Limitations
	Correlation Analysis of CLIP Scores and Human Accuracy
	A* Execution Strategy
	Detailed Motivations and Context for Agent-Based Planning in Image Editing
	The Challenge of Compositionality and Task Dependencies
	The Imperative of Failure Recovery and Iterative Refinement
	Modularity, Extensibility, and Training-Efficiency
	Comparison with Alternative Planning Paradigms: CATP-LLM

	Dynamic Construction and Low Overhead of the Benchmark Table
	Dynamic Population via a ``Cold Start'' Inference Process
	Semi-Automated Heuristic Collection for Faster Initialization

	Stability under Random Seeds
	Rationale for Normalizing Benchmark Accuracy Scores
	Qualitative Scenarios of COSTA's Advantages Over Generative Models
	Use of Large Language Models
	Algorithms
	LLM Prompt for Generating Subtask Tree
	Understanding the Subtask Tree
	Steps to Generate the Subtask Tree
	Logical Constraints & Dependencies
	Supported Subtasks
	Expected Output Format
	Example Inputs & Expected Outputs
	Example 1
	Example 2

	Final Task

	LLM Prompt for Getting Bounding Box and Text for Replacement
	Your Task
	Guidelines for Text Replacement
	Example Case for Clarity

