From Vision to Action: Enabling Real-World Agentic
VLMs

Aravilli Atchuta Ram
Visa Inc
ataravil @visa.com

Abstract

Mobile and desktop task automation using agentic vision-language models (VLMs)
faces critical safety challenges: processing sensitive Ul screenshots containing per-
sonally identifiable information (PII), generating potentially harmful GUI actions,
and operating autonomously without human oversight. Current approaches like
VisionTasker rely on post-execution validation or lack generation-time safety guar-
antees entirely. We present SafeAgent-MCP, a framework combining semantic-
constrained decoding with context-aware entity detection for generation-time
safety and Model Context Protocol (MCP) for dynamic policy management. Our
system enforces three constraint types: (1) Entity-level blocking using context-
aware semantic entity recognition to prevent PII leakage from screenshots, (2)
Action-space constraints via NVIDIA NIM structured generation restricting dan-
gerous GUI operations, and (3) Policy-aware refusal leveraging OpenAl’s gpt-oss-
safeguard for reasoning-based safety validation. SafeAgent-MCP provides the first
systematic safety framework for production GUI automation agents combining
modular semantic entity recognition with industry-standard constrained generation
infrastructure.

1 Introduction

1.1 Motivation and Problem

Agentic vision-language models (VLMs) for mobile and desktop automation represent a rapidly
advancing frontier in human-computer interaction. Systems like VisionTasker [Song et al.| [2024] suc-
cessfully automate complex, real-world tasks on Android smartphones. While emerging frameworks
target industrial software GUI automation [Lin et al.l2025]]. These agents process Ul screenshots
to understand interface states and generate executable actions including clicks, text inputs, and
navigation commands.

However, current agentic VLM systems operate with zero generation-time safety guarantees. They
must process screenshots that often contain PII and credentials, yet can freely verbalize or copy this
content before any safeguards apply. At the same time, they may issue destructive actions (e.g., file
deletion, unauthorized access) because the action space is not restricted during decoding, and existing
defenses rely on brittle post-hoc filters such as regex-based rules or after-the-fact plan validation,
which are costly, over-block legitimate cases (e.g., public DNS addresses), and remain vulnerable to
simple reformulations.

1.2 Our Contributions

We propose SafeAgent-MCP, providing generation-time safety for agentic VLMs through three
innovations:

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: VLM4RWD.

Semantic Entity
Recognition

Context-Aware NVIDIA NIM
y| Detection \ Guided VLM
+ PII detection Constrained . GPT-0SS-

User Task Generation Safeguard SAFE ACTION
mcpPoLIcY | =4 or

SERVER | ... tion grammarmmer Safe description Reasoning-Based —p REFUSAL
"""" Validation

Entity Specs Audit loggea
Action Grammar Safety decision
Policies

UI Screenshot entity specs

safety policy

Figure 1: SafeAgent-MCP architecture.

(1) Semantic-Constrained Decoding Architecture: We integrate context-aware semantic entity
recognition with NVIDIA NIM’s structured generation API [NVIDIA Corporation, |2025] to block
PII tokens during VLM decoding. Unlike regex-based approaches, our framework uses semantic
understanding to distinguish between sensitive instances and benign mentions, preventing over-
blocking while maintaining robust safety.

(2) Policy-Aware Safety Reasoning: We leverage OpenAl’s gpt-oss-safeguard [OpenAll 2025], a
20B parameter reasoning model, to evaluate Ul contexts against developer-defined safety policies at
inference time, enabling nuanced decisions that pattern matching cannot capture.

(3) MCP-Based Dynamic Policy Management: Building on Model Context Protocol [[Anthropic,
2024]), we implement a centralized policy server allowing runtime policy updates without agent
redeployment—critical for production systems where threat landscapes evolve rapidly.

2 Related Work

Agentic VLMs for GUI Automation—Song et al.|[2024] introduced vision-based UI understanding
with LLM task planning for mobile automation. [Lin et al.|[2025]] extended this to industrial soft-
ware using exploration-based learning with multi-layered safety. Both systems validate plans after
generation, lacking generation-time prevention of unsafe outputs.

Structured Generation for VLMs—NVIDIA NIM [NVIDIA Corporation, 2025] enables JSON
schema, regex, and grammar constraints for VLM outputs. HuggingFace’s Outlines and vLLM’s
guided decoding [Willard and Louf, |2023]] provide similar capabilities. These tools enforce syntactic
correctness but lack semantic safety integration.

PII Detection and Privacy—Traditional approaches use regex patterns (Presidio [Microsoft, 2023]])
or fixed-label NER models (BERT-NER [Devlin et al., 2019]]). Zero-shot entity recognition enables
arbitrary entity types at inference time. RECAP [Rajgarhia et al.,2025]] combines pattern matching
with context-aware models. Existing systems detect PII in static text, not during generation.

LLM Safety Classifiers—OpenAlI’s gpt-oss-safeguard [OpenAl, 2025]] introduced reasoning-based
safety classification where developers provide policies at inference time. Recent work applied
grammar-based constraints for secure code generation, but lacks adaptation for multimodal VLMs.

3 SafeAgent-MCP Framework

3.1 Architecture Overview

SafeAgent-MCP uses a three-tier architecture: (1) an MCP policy server that stores entity types, action
grammars, and safety rules; (2) a semantic-constrained decoder that combines context-aware entity
detection with structured generation; and (3) a policy-aware executor that performs context-level
safety validation.

3.2 MCP Policy Server

The MCP policy server maintains three specification types: entity constraints, action constraints,
and safety policies. Entity constraints define blocked entity types per domain (for example, account
numbers and credit cards in banking, or medical record IDs and prescription numbers in healthcare).
Action constraints define context-free grammars that limit safe operations such as click, scroll,
and read, while forbidding actions such as delete, uninstall, and format. Safety policies
provide natural-language rules for reasoning-based safety classification, for example, “Allow reading
notification text, but refuse copying or sharing.”

3.3 Semantic-Constrained Decoding

SafeAgent-MCP integrates context-aware semantic entity recognition with structured generation to
prevent sensitive entity leakage through three stages.

3.3.1 Stage 1: Context-Aware Entity Detection

Instead of regex patterns that block surface forms, the framework performs semantic entity recognition
using contextual embeddings. Given OCR text and domain-specific entity types from the policy
server, the system identifies entities based on semantic context. The entity detection module is
pluggable, so practitioners can integrate zero-shot NER systems or fine-tuned privacy classifiers. This
design distinguishes sensitive instances (for example, “my credit card is 4532-1234-5678-9012")
from benign mentions (for example, “Visa cards start with 4”), avoiding over-blocking of legitimate
information such as “the IP address of Google’s DNS is 8.8.8.8”. Adversarial reformulations (for
example, spelling out digits) are mitigated using semantic representations and attack patterns that are
continuously updated in the policy server.

3.3.2 Stage 2: Dynamic Constraint Synthesis

Rather than static pattern matching, SafeAgent-MCP synthesizes constraints conditioned on detected
entities and intent. For each sensitive entity instance, entity-specific blocklists construct token-level
exclusions for the exact value and common reformulations, preventing leakage of particular secrets
while allowing generic discussion of the entity type. In addition, contextual semantic constraints use
entity embeddings to filter candidate tokens whose similarity to detected PII exceeds a threshold,
capturing paraphrased leakage that simple pattern matching would miss. The constraint synthesis
process adapts to entity type, domain, and task intent (for example, information retrieval versus
sensitive data operations).

3.3.3 Stage 3: Intent-Aware Constrained Generation

A lightweight intent classifier analyzes the user task before applying constraints. For legitimate
information queries such as “find public DNS servers” or “look up store contact info”, constraints
apply only to entities visually detected in screenshots that correspond to user private data, not to
public information retrieved from knowledge sources. For sensitive data tasks involving forms,
banking apps, or healthcare Uls, all instances of specified entity types are constrained, since PII
leakage risk outweighs potential utility. This three-stage design aims to avoid over-blocking, remain
robust to reformulation, and support practical deployment through domain-specific tuning.

3.4 Action-Space Constraints via Grammar-Based Generation

For task planning, grammar-based constraints limit the action vocabulary. The policy server provides
context-free grammars that encode safe operations for specific Ul states, and the language model
is restricted to sequences that parse under the provided grammar. This prevents entire classes of
dangerous commands, even in the presence of prompt injection attempts.

3.5 Policy-Aware Safety Reasoning

Before executing generated actions, a reasoning-based safety model receives the developer-provided
safety policy, the current UI description, and the planned action sequence. It outputs a binary SAFE
or UNSAFE judgment together with a structured rationale. This allows the system to handle nuanced

Algorithm 1 SafeAgent-MCP Execution

Require: Screenshot S, user task 7', app domain D
Ensure: Executed action A or refusal reason R

. Ehocked < PolicyServer.GetEntityConstraints(D)
Toer < ExtractText(S)

intent < Classifylntent(T', D)

Flietected < SemanticEntityRecognition(zocr, Fblocked)
constraints <— SynthesizeConstraints(Fgetected, tntent)
u < VLM.GenerateWithConstraints(.S, constraints)
G action < PolicyServer.GetActionGrammar(w)

Apext < LLM.GenerateWithGrammar(u, T, G action)
9: Piagery < PolicyServer.GetSafetyPolicy(T")

10: r < SafetyModel.Classify(Pfety , %, Anext)

11: if r.conclusion == SAFE then

12: Execute(Apext)

13: return A,

14: else

15 Log(r)

16: return R {refusal with reasoning}

17: end if

PRI AR

cases that grammars alone cannot capture, such as distinguishing between reading and sharing the
same Ul element or between local and remote data transfers. If the action is classified as UNSAFE,
the system logs the reasoning for audit and returns a structured refusal; if SAFE, execution proceeds.

3.6 End-to-End Workflow

Algorithm [T|summarizes the SafeAgent-MCP pipeline.

This workflow provides multi-layer safety: semantic entity recognition reduces PII leakage, grammar
constraints restrict the action space, and reasoning-based models add a final semantic validation layer
before execution.

4 Limitations and Future Work

SafeAgent-MCP represents a step toward safer agentic VLMs, but several limitations and open
challenges remain. Current semantic entity recognition operates on OCR text only; extending
the framework with vision models for visual PII (faces, IDs, sensitive charts) would enable truly
multimodal constraints. While constraints are enforced via regex- and grammar-based mechanisms,
formal methods for constrained decoding could strengthen guarantees on which unsafe behaviors
are provably excluded. The added latency (on the order of hundreds of milliseconds per step) is
acceptable for many GUI tasks but may require distillation, parallelization, or lighter safety models
for latency-critical deployments. Finally, like all safety systems, SafeAgent-MCP can be further
hardened against sophisticated adversarial attacks through adversarial training, semantic stealth
detection, and learning-based constraint synthesis.

5 Conclusion

We introduced SafeAgent-MCP, a framework that combines semantic-constrained decoding, context-
aware entity detection, structured generation, reasoning-based safety classification, and MCP-based
dynamic policy management for safe agentic VLM deployment. By reducing PII leakage during
generation, restricting the action vocabulary via grammars, and applying context-aware safety checks,
Safe Agent-MCP offers a practical, modular safety layer compatible with existing GUI automation
infrastructure. As agentic VLMs move from prototypes to production systems that handle sensitive
user data, such generation-time safety mechanisms become essential infrastructure.

LLM Contribution Statement

LLMs were used to polish manuscript writing and gather related work. Framework design, algorithm
development, and all research contributions are by the authors.

References

Anthropic. Model context protocol. Anthropic Documentation, 2024. URL https://www,
anthropic.com/news/model-context-protocol.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 4171-4186, 2019.

Liangtao Lin, Zhaomeng Zhu, Tianwei Zhang, and Yonggang Wen. Inframind: A novel exploration-
based gui agentic framework for mission-critical industrial management. arXiv preprint
arXiv:2509.13704, 2025.

Microsoft. Presidio: Context aware, pluggable and customizable pii anonymization, 2023. URL
https://microsoft.github.io/presidio/.

NVIDIA Corporation. Structured generation for vision-language models. NVIDIA NIM Documen-
tation, 2025. URL https://docs.nvidia.com/nim/vision-language-models/latest/
structured-generation.htmll

OpenAl. Introducing gpt-oss-safeguard. OpenAl Blog, October 2025. URL https://openai. com/
index/introducing-gpt-oss-safeguard/,

Harshit Rajgarhia, Suryam Gupta, Asif Shaik, Gulipalli Praveen Kumar, Y Santhoshraj, Sanka
Nithya Tanvy Nishitha, and Abhishek Mukherji. An evaluation study of hybrid methods for
multilingual pii detection. arXiv preprint arXiv:2510.07551, 2025.

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile
task automation using vision based ui understanding and 1lm task planning. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, pages 1-17, 2024.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023.

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://microsoft.github.io/presidio/
https://docs.nvidia.com/nim/vision-language-models/latest/structured-generation.html
https://docs.nvidia.com/nim/vision-language-models/latest/structured-generation.html
https://openai.com/index/introducing-gpt-oss-safeguard/
https://openai.com/index/introducing-gpt-oss-safeguard/

	Introduction
	Motivation and Problem
	Our Contributions

	Related Work
	SafeAgent-MCP Framework
	Architecture Overview
	MCP Policy Server
	Semantic-Constrained Decoding
	Stage 1: Context-Aware Entity Detection
	Stage 2: Dynamic Constraint Synthesis
	Stage 3: Intent-Aware Constrained Generation

	Action-Space Constraints via Grammar-Based Generation
	Policy-Aware Safety Reasoning
	End-to-End Workflow

	Limitations and Future Work
	Conclusion

