
Dynamic Low-rank Estimation for Transformer-based Language Models

Ting Hua1∗, Xiao Li2∗, Shangqian Gao1, Yenchang Hsu1, Yilin Shen1, Hongxia Jin1

1Samsung Research America, 2University of Michigan, Ann Arbor
1{ting.hua,s.gao1,yenchang.hsu,yilin.shen,hongxia.jin}@samsung.com

2{xlxiao}@umich.edu

Abstract

Matrix decomposition methods, such as
Singular Value Decomposition (SVD) and
its importance-weighted variants, have been
widely used for compressing Transformer-
based language models. While importance-
weighted decomposition methods alleviate the
strong assumption of equal importance for each
parameter in SVD, they still rely on two funda-
mental assumptions: 1) unchanged importance
distribution during further fine-tuning, 2) equal
importance across weight matrices in different
layers. Furthermore, these methods necessi-
tate a well-trained task-specific model as the
starting point and require additional fine-tuning
after compression. In this work, we proposed
RankDyna, a matrix decomposition method
that enables dynamic rank resource allocation
among matrices across different layers during
the training process. Starting from a general
pre-trained model, RankDyna accomplishes the
dual goals of compression and adaptation to the
downstream task, all within a single round of
fine-tuning. The extensive evaluations demon-
strate that RankDyna can outperform current
SOTA methods under various parameter budget
levels, and the advantage of RankDyna is fur-
ther enhanced with higher compression rates.

1 Introduction

Transformer-based language models (Devlin et al.,
2018; Waswani et al., 2017) have obtained signifi-
cant success in a variety of Natural Language Pro-
cessing tasks. However, these models are usually
pre-trained by the huge corpus with millions or
even billions of parameters, and hard to be de-
ployed to resource-constrained devices. There-
fore, the compression of the Transformer-based
language model have attracted extensive attentions.

The Transformer blocks are primarily built with
linear layers, which will convert the input features
into output features through a weight matrix. By

*These authors contributed equally to this work.

applying low-rank estimation methods (Golub and
Reinsch, 1971; Noach and Goldberg, 2020), the
large weight matrix in a layer can be decomposed
into two smaller matrices, resulting in the creation
of two reduced-size linear layers. Also, it is impor-
tant to note that matrix factorization technologies
are orthogonal to other compression approaches
such as Knowledge distillation (Sun et al., 2019;
Sanh et al., 2019; Jiao et al., 2019) or Quantization
(Shen et al., 2020; Zhao et al., 2021).

The standard SVD aims to minimize the recon-
struction error, which results in the removal of the
portion associated with small singular values. How-
ever, previous work have revealed that this objec-
tive does not always align with the objective of
preserving task performance (Hsu et al., 2022; Hua
et al., 2022). This is primarily due to the fact that
parameters have various influences on the overall
performance, whereas the standard SVD treats all
parameters as equally significant.

To tackle this issue, previous work FWSVD (Hsu
et al., 2022) and TFWSVD (Hua et al., 2022) at-
tempt to conduct low-rank estimation on the matrix
weighted by Fisher information. These approaches
need an already fine-tuned model as their start-
ing point to calculate importance scores based on
Fisher information, and often require an additional
round of fine-tuning to attain better performance.
Besides, they are based on the assumption that the
Fisher information of parameters, computed from
a fine-tuned task-specific model, can accurately
represent the importance distributions of those pa-
rameters. Additionally, they also assumed that
these importance distributions remain unchanged
throughout the additional round of fine-tuning.

In this paper, we propose a novel method called
RankDyna, which conducts low-rank estimation
throughout the fine-tuning process. Starting with
a full-rank matrix, RankDyna gradually reduces
the parameter budget level using a scheduler. At
each step, the least important singular groups are

removed based on their importance scores, which
are determined by the amount of impact they con-
tribute to the loss. RankDyna collectively evaluate
the importances of all singular groups within the
model, and therefore capable of assigning different
ranks to each matrix. The advantages of the pro-
posed RankDyna can be summarized as follows:
Dynamic tracking of importance for singular
groups. Previous importance-aware decomposi-
tion approaches aimed to optimize an objective
weighted by static importance assigned to each pa-
rameter. However, assuming that the importance
distribution of parameters remains unchanged dur-
ing fine-tuning is unrealistic. Unlike these meth-
ods, RankDyna can capture the dynamic changes
in importance associated with singular groups, thus
improving performance compared to the methods
based on the static importance assumption.
Better parameter allocation accross matrices.
The varying sensitivities of different layers in
Transformer models during compression are well-
established. Given a targeted model size budget,
previous work on low-rank estimation will assign
uniform ranks to all layers. In contrast, RankDyna
enables dynamical parameter allocation across lay-
ers by monitoring their importance variations, lead-
ing to significantly better compression outcomes.
Reduced computational and storage resources.
Unlike previous methods that rely on already fine-
tuned task-specific models, our approach begins
with a general pre-trained model. As a result, Rank-
Dyna only needs a single round of fine-tuning. This
significantly reduces the computational overhead
compared to methods that require two rounds of
fine-tuning. Previous approaches require factoriza-
tion for each fine-tuned task-specific model that
can be increasingly expensive when model size
gets larger1. In contrast, RankDyna only requires
a one-time factorization on the base model, which
can be shared across all downstream tasks.

2 Background

2.1 Matrix factorization
The matrix factorization methods can decompose a
large matrix W ∈ RM×N into smaller matrice:

W = UΣV ⊤ ≈ (UrΣr)V
⊤
r = PrQr, (1)

where U ∈ RM×l, V ∈ RN×l, and l is the rank of
matrix W . Σ is a diagonal matrix composed of non-

1For a weight matrix W ∈ RM×N , the computational
complexity of SVD is O(min(MN2,M2N))

zero singular values diag(σ1, , ..., σl), where σ1 ≥
σ2 ≥ · · ·σl > 0. Ur, Σr, and Vr are the truncated
matrices with rank r and serve as approximations
to the original matrix. In practice, it is common to
represent matrix W as the product of two smaller
matrices P ∈ RM×r and Q ∈ Rr×N , by setting
P = US and Q = V T . Given Equation (1), the
forward pass of a linear layer in the Transformer
can be rewritten as below:

h = Wx+ b = PQx+ b, (2)

where x is the input feature, b is the bias. The above
process can be implemented with two smaller liner
layers, whose weight matrix is equal to P and Q
correspondingly. The number of parameters in
the original weight matrix W is MN , and the
combined number of parameters in P and Q is
Nr+Mr. Therefore, by utilizing matrix factoriza-
tion techniques, we can reduce the model size by
NM − (Nr +Mr).

2.2 Related work

Transfomer-based language models (Waswani
et al., 2017; Devlin et al., 2018; Brown et al., 2020;
Raffel et al., 2020) have attracted significant atten-
tion and, as a result, there is a growing demand to
reduce their model size. Although matrix decompo-
sition approaches, such as LoRA-like models (Hu
et al., 2021; Zhang et al., 2023), have demonstrated
their effectiveness in adapting pre-trained models
to downstream tasks. The predominant focus of pre-
vious techniques for compressing language models
has been on knowledge distillation (Sanh et al.,
2019; Jiao et al., 2019), quantization (Shen et al.,
2020; Kim et al., 2021), and pruning (Sanh et al.,
2020; Xia et al., 2022). Only a few attempts have
been made in the direction of matrix decomposition
towards the goal of compressing language model.

The closest prior research direction to this paper
involves approaches that compress Transformer-
based language models using matrix factorization:
FWSVD (Hsu et al., 2022) and TFWSVD (Hua
et al., 2022). However, there exist at least two
inherent drawbacks in these methods that can po-
tentially cause performance bottlenecks. Firstly,
the importance of parameters is assumed to remain
static throughout the training process. Secondly,
a uniform rank budget is typically allocated to all
weight matrices. In contrast to these approaches,
our proposed RankDyna is capable of addressing
both challenges.

Another research direction related to our work
is the importance criteria for parameters. Using
the magnitudes of parameters as a measure of their
importance is a straightforward and intuitive ap-
proach (Zhu and Gupta, 2017; Renda et al., 2020).
However, this basic metric fails to quantify the
actual contributions of parameters toward the over-
all performance. A more reliable measurement is
sensitivity, which approximates the change in the
loss function resulting from the removal of a spe-
cific parameter (Molchanov et al., 2019; Sanh et al.,
2020), which is also the measurement adopted by
proposed RankDyna.

3 Methodology

In this section, we introduce RankDyna, a solution
that enables dynamic resource allocation by mon-
itoring changes in parameter importance during
fine-tuning. This approach effectively addresses
the above mentioned issues in previous work. As
an overview, we outline our proposed RankDyna
in Algorithm 1.

3.1 Problem statement

RankDyna aims to compress a pre-trained language
modelM by decomposing the weight matrices set
W in its linear layers 2. At the initial step (denoted
as step 0), the total number of ranks R(0) in all
matrices of modelM is computed as:

R(0) =
∑

W∈W
lW , (3)

where lW is the original rank number of matrix W .
Given the desired compression ratio c, the targeted
number of overall ranks R(T) after T steps of fine-
tuning is determined as follows:

R(T) =
⌈
c ·R(0)

⌉
, (4)

where ⌈·⌉ is the rounding up operator. Given a
targeted rank budget R(T), our task is to search for
the optimal resource allocation for modelM.

3.2 Singular group

Besides Equation (1), an alternative perspective
on matrix decomposition is to approximate W ∈

2For Transformer-based models, W includes various types
of weight matrices, such as Wq (query), Wk (key), Wv (value),
Wo (attention output),Wf1 (first FFN), and Wf2 (second
FFN).

RM×N as the sum of the singular groups:

W =

l∑
k=1

σkukv
⊤
k ≈

r∑
k=1

(σkuk)v
⊤
k =

r∑
k=1

(pk)q
⊤
k ,

(5)
where σk is the k-th singular value. uk and vk
are k-th columns in U and V . pk and qk are k-th
columns in P and Q. The approximation occurs
when the target rank r is less than the original rank
l. Note that, setting the k-th singular value σk to
zero will completely eliminate the effect of the
singular group ϕk = {uk, σk, v⊤k } in the recon-
struction process. Based on this observation, we
adopt singular group ϕk as the fundamental unit
for reconstructing the matrix W .

Algorithm 1: RankDyna
Input: Data set D, total training steps T ,
targeted compress ratio c.

1 for t = 1, ..., T do
2 Sample a mini-batch from D;
3 Calculate current rank R(t) through

Equation (12);
4 for each Φ(W)(t) in Φ(M)(t) do
5 for each ϕk in Φ(W)(t) do
6 Update gradients through

Equation (6) – (8);
7 Compute importance score

I(ϕ(t)
k) in Equation (9);

8 Update moving average score

Ī(ϕ(t)
k) in Equation (11);

9 Update global remained set Φ(M)(t)

and all the local remained set Φ(W)(t);

10 for each weight matrix W in ModelM do
11 Compute P and Q by singular groups in

Φ(W)(T) through Equation (5);

Output: Compressed model M̂

3.3 Iterative approximation
In this part, we discuss how to update singular
groups during the training. To start with, we initial-
ize U , Σ, and V by performing a standard Singular
Value Decomposition (SVD) on the weight matrix
W . At the t-th step, a stochastic gradient descent
step is taken to update elements in each singular
group. For Σk, the update of its only non-zero
element σk at step t can be described as follows:

σ
(t)
k ← σ

(t−1)
k − η∇σk

L, (6)

where η is the learning rate. For the i-th parame-
ter in vector uk or vk, the update at step t can be
denoted as:

u
(t)
k,i ← u

(t−1)
k,i − η∇uk,i

L. (7)

v
(t)
k,i ← v

(t−1)
k,i − η∇vk,iL. (8)

3.4 Importance score of singular-group

Unlike previous work that evaluates the importance
of individual parameters, our proposed RankDyna
estimates the importance changes for each singular
group as a whole. Specifically, the importance
score of a singular group is defined as follows:

I(ϕ(t)
k) = S(σ(t)

k) +

d1∑
i=1

S(u(t)k,i) +

d2∑
j=1

S(v(t)k,j),

(9)
where S(·) is a score function to measure the
change in loss if we remove a certain parameter, d1
and d2 represent the dimension of uk and vk respec-
tively. Given any parameter θ, the change in loss of
removing θ can be formulated by the second-order
Taylor series expansion (Le Cun et al., 1989):

S(θ) = |∆Lθ| = |L − L¬θ|

= |θ⊤∇θL+
1

2
θ⊤Hθ +O(||θ||3)|,

(10)

where L¬θ is the loss with parameter θ zeroed out,
and H is the Hessian matrix. The larger the value of
S(θ), the greater impact the parameter θ will have
on the loss L, indicating the higher importance.
Note that, the importance comparisons based on
S(θ) are not limited to parameters within the same
matrix or layer, but are applicable to any parameters
in modelM. More details about the calculation
can be found in Section 4.5.2.

Previous work (Zhang et al., 2022) has pointed
out that: the importance scores calculated using
Equation (10) may exhibit fluctuations, as they are
computed on randomly sampled mini-batches. In
practice, these fluctuations can be mitigated by ap-
plying the “momentum” scheme (Rumelhart et al.,
1986), where the next update is determined as a
weighted average of the current update and the pre-
vious score:

Ī(ϕ(t)
k) = β · Ī(ϕ(t−1)

k) + (1− β) · I(ϕ(t)
k) (11)

3.5 Rank allocation scheme
The approach for tracking changes in parameter
importance has been introduced in the previous
sections. In this part, we will discuss how to inte-
grate it with dynamic rank resource allocation.
Scheduler for adjusting rank budget. Inspired
by the sparsity scheduler widely used in pruning
(Zhu and Gupta, 2017; Sanh et al., 2020), we grad-
ually decrease the rank budget during training by
a dynamic scheduler. Specifically for our task, the
scheduler works as three stages. 1) Warm-up phase.
The initial t0 steps are considered the warm-up
phase, during which the current rank budget is kept
as R(0) in Equation (3). 2) Cool-down phase. The
last t1 steps are treated as the cool-down phase,
where the targeted rank budget R(T) computed in
Equation (4) has already been attained and is main-
tained till the end of training. 3) Adjusting phase.
The steps between t0 and t1 are adjusting phase,
where the current R(t) decreases as follows:

R(t) = R(T)+

⌈
(R(0) −R(T))(1− t− t0 − t1

T − t0 − t1
)3
⌉

(12)

Global rank allocation. To evaluate the impor-
tance differences among parameters across differ-
ent weight matrices, we maintain two sets of sin-
gular groups: 1) The local remaining set Φ(W),
which comprises all singular groups of weight ma-
trix W ; and 2) The global remaining set, which is
the union of all local remaining sets, denoted as
Φ(M). Initially, remaining set Φ(M)(0) contains
all singular groups in modelM, thus |Φ(M)(0)|
is equal to R(0). At step t, for any singular group
ϕ, if its importance score I(ϕ(t)) is not among the
top-R(t) of Φ(M)(t), RankDyna will remove ϕ
from both global remained set Φ(M)(t) and local
remained set Φ(W)(t).

4 Experiment

4.1 Tasks and datasets
RankDyna and baselines are evaluated on GLUE
benchmark (Wang et al., 2019) and the NER task
on the CoNLL-2003 dataset (Sang and De Meul-
der, 2003). Also, we reported the results of the
summarization task (ROUGE score) on SAMSUM
dataset, and language modeling task (Perplexity)
on the Wikitext2 and PTB datasets. More details
can be found in Appendix A.1.

4.2 Implementation details and baselines
We utilize pre-trained BERT (Devlin et al., 2018),
GPT-2 (Radford et al., 2019), and BART (Lewis

Table 1: Results of CoNLL and GLUE benchmark. All model sizes reported here exclude the embedding layer.
G-Avg represents the average of GLUE tasks, while A-Avg denotes the average of all tasks, including CoNLL.

Task #Param CoNLL CoLA MNLI MRPC QNLI QQP SST-2 STS-B G-Avg A-Avg

Bert_base 86.2M 94.1 56.2 84.7 87.4 91.3 87.8 93 88.5 84.1 85.4

SVD 43.1M 92.4 40.5 82.8 84.1 89.6 87.3 90.9 85.7 80.1 81.6
FWSVD 43.1M 93.2 49.4 83.0 88.0 89.5 87.6 91.2 87.0 82.2 83.6
TFWSVD 43.1M 94.2 52.2 83.4 89.0 90.3 86.9 91.1 88.5 83.1 84.4
RankDyna 43.1M 94.3 54.5 83.2 89.5 90.6 88.0 90.9 89.0 83.7 85.0

SVD 26.6M 92.8 19.3 81.0 82.0 86.6 86.9 89.2 80.6 75.1 77.3
FWSVD 26.6M 92.9 38.7 81.4 80.3 88.0 87.2 88.4 82.9 78.1 80.0
TFWSVD 26.6M 93.5 39.3 82.2 88.3 88.8 87.0 89.9 87.0 80.4 82.0
RankDyna 26.6M 93.3 49.1 82.5 88.0 89.2 87.5 90.7 88.3 82.1 83.6

SVD 13.9M 90.4 13.8 78.0 82.0 79.6 84.1 87.5 58.7 69.1 71.7
FWSVD 13.9M 3.5 18.7 78.2 78.6 82.3 84.5 88.9 67.9 71.3 62.8
TFWSVD 13.9M 91.9 21.4 79.1 85.0 84.3 85.9 89.0 86.0 75.8 77.8
RankDyna 13.9M 91.6 36.2 81.3 84.7 87.6 86.8 88.2 86.4 78.7 80.4

SVD 6.4M 87.4 0.0 71.6 74.7 65.8 79.8 84.3 22.7 57.0 60.8
FWSVD 6.4M 88.4 17.2 73.5 80.9 71.2 81.3 84.9 39.2 64.0 67.1
TFWSVD 6.4M 87.8 17.8 76.7 81.2 76.5 83.4 81.3 45.3 66.0 68.8
RankDyna 6.4M 88.4 21.3 79.2 82.1 85.5 86.1 87.5 83.3 75.0 76.7

et al., 2020) as the starting points for all models,
namely RankDyna, TFWSVD, FWSVD, and SVD.
For TFWSVD, FWSVD, and SVD, we first fine-
tune the base model using task-specific data for
8 epochs and then apply these low-rank factoriza-
tion methods to the obtained task-specific mod-
els. Finally, we conducted an additional round of
fine-tuning with 3 epochs. For RankDyna, we di-
rectly fine-tune the base model for 8 epochs on
each downstream task. More details can be found
in Appendix A.2.

4.3 Performance comparisons with SOTA

The results of GLUE tasks and one NER task
(CoNLL) are presented in Table 1. Our RankDyna
model, with 43.1M linear parameters, achieves a
G-Avg score of 83.7 and an A-Avg score of 85.0.
In fact, RankDyna not only surpasses the scores
of state-of-the-art (SOTA) compression methods
(SVD, FWVSD, TFWSVD) that require additional
fine-tuning, but also even beats the full-size Bert
base model in some tasks (e.g., QQP, STSB,
MRPC, and CoNLL) with half parameter budget.
This suggests that our RankDyna functions as both
a compression method and an adaptation approach.
This is not surprising, considering the proven effec-
tiveness of low-rank adapters like LoRA in fine-
tuning the general pre-trained model for down-
stream tasks (Hu et al., 2021).

RankDyna consistently yields good results on

Model R1 R2 RL

BART-base 52.1 27.3 43.5
SVD 45.3 21.3 37.5
FWSVD 47.0 22.6 38.8
TFWSVD 47.8 23.1 39.3
RankDyna 48.4 23.4 39.7

Table 2: Compressing BART model for summarization
task SAMSUM (Higher is better). By applying a desired
rank ratio of 0.2 across all methods, we reduce these
94.6M parameters to 37.1M.

all the tasks. Moreover, as the compression rate
increases, the advantage of RankDyna becomes
more apparent. Even under the limited budget of
6.4M linear parameters, our RankDyna is capa-
ble of maintaining a respectable G-Avg score of
75.0 and A-Avg score of 76.7. These scores are
comparable to the G-Avg score and A-Avg score
generated by other methods operating under a more
generous 13.9M parameter budget.

In most settings, the standard SVD method
shows the poorest performance. But it exhibits
greater stability compared to the two importance-
aware decomposition methods. TFWSVD is the
second-best performer in most cases. However,
this method heavily relies on a numerical optimiza-
tion process for matrix factorization, which may be
trapped in local optima (Hua et al., 2022). How-
ever, TFWSVD is the approach that requires the
most computation resources. More details about

Figure 1: Importance changes of singular groups. To simulate the starting points of FWSVD and TFWSVD, we
further fine-tune the Bert base model on the STSB dataset for 1200 steps. In the initial step, we sort the singular
groups within each weight matrix in descending order, based on their importance scores. We then select specific
groups (e.g., Group 1, 10, 40, 70 in this case) and monitor their relative importance positions throughout subsequent
steps. At step 200, we remove 80% of less important singular groups in Wq, Wk, Wv and Wf1 , and observe the
changes in importance of the singular groups in Wo and Wf2 .

(a) Layer 1, Wo

0 200 400 600 800 1000 1200
Steps

0

20

40

60

80

O
rd

er
 o

f i
m

po
rta

nc
e

(b) Layer 5, Wo

0 200 400 600 800 1000 1200
Steps

0

25

50

75

100

125

150

175

(c) Layer 12, Wo

0 200 400 600 800 1000 1200
Steps

0

100

200

300

400

(d) Layer 1, Wf2

0 200 400 600 800 1000 1200
Steps

0

20

40

60

80

100

O
rd

er
 o

f i
m

po
rta

nc
e

(e) Layer 5, Wf2

0 200 400 600 800 1000 1200
Steps

0

50

100

150

200

250

300

350

(f) Layer 12, Wf2

0 200 400 600 800 1000 1200
Steps

0

50

100

150

200

250

the training time can be found in Appendix A.3.
We have additional results on generation tasks,

such as summarization and language modeling.
Table 2 shows the performance of compressing
BART model on summarization dataset SAMSUM,
and Table 3 is the comparison of compressing
GPT-2 model through language modeling task on
dataset wiki2 and PTB. Generally, these results
show the similar patterns we observed in GLUE
dataset: our RankDyna can achieve the best perfor-
mance, TFWSVD is the second best performer, and
FWSVD shows consistently better performance
than traditional SVD.

4.4 Importance changes during fine-tuning

The two underlying assumptions held by pre-
vious importance-aware decomposition methods,
FWSVD and TFWSVD, are as follows: 1) Stable
assumption: The distribution of importance over
parameters is supposed to remain relatively stable
during the subsequent fine-tuning process. 2) Inde-
pendent assumption: The matrices are assumed to
be independent of each other.

As can be seen from Figure 1, the most impor-

Model wiki-2 PTB

GPT-2 20.9 21.4
SVD 124.7 79.6
FWSVD 121.6 72.2
TFWSVD 79.3 62.9
RankDyna 77.7 39.4

Table 3: Compressing GPT-2 model for language mod-
eling tasks. (Lower is better) By applying a rank ratio
of 0.2 for all methods, we reduced this parameter count
to 28.9M.

tant singular groups (such as Group 1 and 10) re-
main relatively stable throughout the entire pro-
cess. However, other groups, such as Group 40 and
Group 70, already exhibit fluctuation patterns be-
fore the removal of singular groups. These observa-
tions definitely contrast with the stable assumption
held by FWSVD and TFWSVD.

Furthermore, we observed significant fluctua-
tions in all matrices immediately after removing
unimportant singular groups in previous layers.
This observation suggests that the removal of singu-
lar groups in one weight matrix could trigger chain
reactions in the importance scores of subsequent

layers, demonstrating the invalidity of the indepen-
dent assumption held by FWSVD and SVD.

In contrast, the success of RankDyna does not
rely on these two assumptions, as we actively mon-
itor the dynamic changes in importance for all sin-
gular groups across different layers.

4.5 Ablation Study

4.5.1 Global vs. local rank allocation
In order to examine the impact of global rank allo-
cation, as discussed in Section 3.5, we introduce
a variant baseline approach. This approach selects
the top-R(t) singular groups within each matrix,
instead of utilizing the global allocation strategy
utilized by RankDyna.

Figure 2: Comparison of RankDyna (green line named
“global”) and its baseline variant (blue line named “lo-
cal”) with STSB task. The red dashed line in Figure 2b
represents the rank budget scheduler (Section 3.5).

0.05 0.075 0.1 0.125 0.15 0.175 0.2
Rank Ratio

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

P
ea

rs
on

 C
or

r.

Local
Global

(a) Different rank budget levels.

0 1000 2000 3000 4000 5000
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

Local
Global

0.2

0.4

0.6

0.8

1.0

R
an

k
R

at
io

Rank Ratio

(b) Training loss.

As shown in Figure 2a, the performance of Rank-
Dyna (global) consistently surpasses that of its vari-
ant baseline (local) across different parameter bud-
get levels. To further analyze the underlying factors
behind this phenomenon, we look into the trends
of loss changes shown in Figure 2b. Initially, both
methods exhibit similar behavior. However, as we
dynamically adjust the rank budgets, RankDyna
(global) starts to outperform the baseline (local)

by a significant margin. We also observed a slight
increase in the loss of the baseline (local) after re-
ducing the parameter budget, indicating that the
baseline may mistakenly delete important parame-
ters, resulting in a drop in performance.

4.5.2 Approximation of importance score
In this section, we examine different approxima-
tions of importance scores shown in Equation (10).
To conduct this investigation, we fist fine-tune the
base BERT model into task-specific models and
then calculate the different scores at the conver-
gence stage. The results shown in Table 4 indicate
that the second-order term in Equation (10) and the
Fisher information can be considered negligible
when compared to the first-order term. Specifically,
the magnitude of the first-order term in Equation
(10) (around E-05) is significantly larger than that
of the second-order term (around E-09) and the
Fisher information (around E-08). Therefore, in
this work, we use the first-order term to approxi-
mate the importance score shown in Equation (10).

Note that the scenario we studied here is
the trained task-specific model. FWSVD and
TFWSVD assume that the first-order term is zero
in such models, which leads to the utilization of
Fisher information as their importance score. How-
ever, our findings demonstrate that the first-order
term remains non-negligible, thereby challenging
the validity of solely relying on Fisher information
as the importance score.

4.6 Rank distribution over layers

Figure 3 shows the rank distributions generated by
RankDyna on MNLI with 13.9M and 6.4M linear
layer parameter budgets. The rank distributions of
the fixed assignment can be found in the Appendix.

RankDyna can effectively assign different ranks
to the weight matrices based on their importance
toward performance. Taking the 13.9M model as
an example, each weight matrix is supposed to be
assigned 77 ranks. Figure 3a illustrates that when
using RankDyna, the majority of weight matrices
are assigned ranks approximately around 77, while
only a small number of them attaining an exact
rank of 77. As the parameter budget decreases
from 13.9M to 6.4M, more deep green blocks (rep-
resenting matrices with low-rank assignments) ap-
pear. However, the most important matrices are
still assigned high ranks despite the tighter budget.

We have also observed that RankDyna tends to
allocate a greater portion of the budget to the front

Table 4: Comparison of first-order, second-order and empirical Fisher information importance score in trained
task-specific models. We fine-tune Bert model on different tasks for 6 epochs and calculate the average of importance
scores of the last 100 steps. The first-order and second-order term are the first and second term in Equation (10).
The definition and calculation of Fisher information can be found in Appendix.

CoNLL CoLA MRPC QNLI SST-2 STSB

First-order term 2.53E-05 2.84E-05 2.59E-05 2.74E-05 2.94E-05 2.50E-05
Second-order term 6.84E-09 7.30E-09 8.16E-09 5.16E-09 6.06E-09 8.07E-09
Fisher information 1.23E-08 1.17E-08 1.03E-08 9.83E-09 1.11E-08 1.03E-08

Figure 3: The resulting rank of each weight matrix when compressing Bert-base on MNLI with RankDyna. The
x-axis represents the layer index, while the y-axis represents different types of weight matrices.

(a) 13.9M linear parameters (equal to rank ratio 0.1)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

37 39 232 191 128 51 71 34 54 135 130 45

28 27 219 192 134 43 60 41 52 143 131 63

127 76 192 165 144 91 105 104 102 106 34 89

126 114 183 187 189 125 125 99 96 119 42 39

169 23 145 95 75 67 96 88 27 3 1 0

117 17 83 61 45 45 58 53 16 3 3 0 0

25

50

75

100

125

150

175

(b) 6.4M linear parameters (equal to rank ratio 0.05)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

33 25 192 103 72 21 11 24 35 57 110 34

25 20 175 93 63 19 12 25 31 55 109 51

98 33 76 78 64 42 14 68 75 72 23 71

103 51 110 93 88 57 19 59 67 81 32 32

120 3 6 25 31 17 31 67 0 3 1 0

76 4 8 11 21 7 20 42 0 3 2 0 0

25

50

75

100

125

150

175

layers. This trend is evident in both Figure 3a
and Figure 3b, where a higher number of ranks
is preserved in the front layers, particularly in the
attention matrices Q, K, and V. In contrast, more re-
dundant parameters are eliminated in the tail layers.
For instance, both Figure 3a and Figure 3b demon-
strate that the last FFN layers receive zero rank
allocations. This behavior aligns with the empiri-
cal observation presented in Q-BERT (Shen et al.,
2020) for the MNLI task.

4.7 Selection strategy

In standard SVD, only the portion associated with
large singular values will be kept in the compressed
model. It is already established that this selection
strategy may not necessarily align with the ultimate
objective of maintaining task performance. Then,
under the selection strategy of RankDyna, which
parameters are chosen as the important ones? Fig-
ure 4 illustrates the different selection strategies
conducted by SVD and RankDyna. As can be seen
from Figure 4a, only the singular-groups with the
largest singular values are treated as the important
ones under SVD. In contrast, RankDyna will pick
up more groups from those with larger singular
values, and at the same time, it will also choose
certain singular groups with smaller singular values
as long as they are important for the final perfor-
mance. The behavior of RankDyna demonstrates
a well-balanced objective that considers both the

Figure 4: Comparison of selection strategy of SVD and
RankDyna. Each bar here represents a subset containing
55 singular groups, sorted by the average singular values.
The colors denote the portion of singular groups that are
selected as the top important groups. The green color
represents the selection made by SVD, while the red
color indicates the selection made by RankDyna. The
matrix here is the Value matrix of the last layer in 26.6M
model fine-tuned on QNLI.

(a) SVD

0 2 4 6 8 10 12 14 16
Rank Group

0.0

0.5

1.0

1.5

2.0

Si
ng

ula
r V

alu
e Rank-based

(b) RankDyna

0 2 4 6 8 10 12 14 16

Rank Group
0.0

0.5

1.0

1.5

2.0

S
in

gu
la

r V
al

ue

Importance-based

numerical features of the weight matrix itself and
the model performance.

5 Conclusion

RankDyna provides a comprehensive solution for
compressing Transformer-based models. Through
the integration of importance tracking and dynamic
allocation of ranks across different layers, Rank-
Dyna addresses the unsolved issues left by the pre-
vious importance-aware decomposition methods.
Extensive results demonstrate that RankDyna out-
performs current state-of-the-art (SOTA) models
by a significant margin in terms of performance.

Limitations

The primary limitation of RankDyna lies in its po-
tential requirement for additional memory to keep
tracking the importance scores during fine-tuning.
For each weight matrix, an equivalent amount of
memory is needed to enable the computation of
importance scores. The need for additional mem-
ory is specific to the training phase only. During
inference, the compact models produced by Rank-
Dyna function similarly to models generated by
other matrix decomposition methods.

6 Ethical Statement

For our experiments, we used open datasets with-
out sensitive information, which have been widely
mentioned in previous work. No licenses are re-
quired for the GLUE dataset and CoNLL dataset.
In the implementation of our model, we do not
think there is an obvious issue that may lead to a
risk to ethics.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. volume 33, pages 1877–1901.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan, Chris Brockett, and Chris Quirk. 2005. Mi-
crosoft research paraphrase corpus. Retrieved March,
29(2008):63.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. page 70.

Gene H Golub and Christian Reinsch. 1971. Singular
value decomposition and least squares solutions. In
Linear algebra, pages 134–151. Springer.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Language model
compression with weighted low-rank factorization.
In International Conference on Learning Representa-
tions (ICLR).

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations(ICLR).

Ting Hua, Yen-Chang Hsu, Felicity Wang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Numerical opti-
mizations for weighted low-rank estimation on lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1404–1416.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International conference
on machine learning (ICML), pages 5506–5518.

Yann Le Cun, John S Denker, and Sara A Solla. 1989.
Optimal brain damage. In Proceedings of the 2nd
International Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 598–605.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. volume 19,
pages 313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations(ICLR).

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz.
2019. Pruning convolutional neural networks for re-
source efficient inference. In 5th International Con-
ference on Learning Representations, ICLR 2017-
Conference Track Proceedings.

Matan Ben Noach and Yoav Goldberg. 2020. Compress-
ing pre-trained language models by matrix decompo-
sition. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
884–889.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
volume 1, page 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. volume 21, pages 1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2020. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on
Learning Representations(ICLR).

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. volume 323, pages 533–536. Na-
ture Publishing Group UK London.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 33, pages 20378–20389.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform

for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.

A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones,
A Gomez, L Kaiser, and I Polosukhin. 2017. Atten-
tion is all you need. In NIPS.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL HLT 2018, pages
1112–1122. Association for Computational Linguis-
tics (ACL).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1513–1528.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations(ICLR).

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International Conference on Machine
Learning (ICML), pages 26809–26823.

Changsheng Zhao, Ting Hua, Yilin Shen, Qian Lou, and
Hongxia Jin. 2021. Automatic mixed-precision quan-
tization search of bert. In the Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI),
pages 3427–3433.

Michael H Zhu and Suyog Gupta. 2017. To prune,
or not to prune: exploring the efficacy of prun-
ing for model compression. In arXiv preprint
arXiv:1710.01878.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Appendix

A.1 Datasets
Two single-sentence tasks are included in our eval-
uation: CoLA (Warstadt et al., 2018) measured in
Matthew’s correlation, SST2 (Socher et al., 2013)
measured in classification accuracy. Three sentence
similarity tasks are considered: MRPC (Dolan
et al., 2005) measured in F-1 score, STS-B (Cer
et al., 2017) measured in Pearson-Spearman cor-
relation, QQP (Chen et al., 2018) measured in F-1
score. Also, three natural language inference tasks
are conducted: MNLI (Williams et al., 2018) mea-
sured in classification accuracy with the average of
the matched and mismatched subsets, QNLI (Ra-
jpurkar et al., 2016) measured in accuracy.

SAMSUM dataset contains staged chat conver-
sations and corresponding summaries made by lin-
guists (Gliwa et al., 2019), including 14,732 train-
ing examples and 819 test examples. The per-
formance is evaluated through Rounded ROUGE
values (R1/R2/RL). We evaluate language model-
ing task through metric perplexity on two popular
model datasets: PTB (Marcus et al., 1993) and
WikiText-2 (Merity et al., 2016).

A.2 Implementation details
The BERT model in this paper has 110 M param-
eters, out of which 94.6M correspond to the pa-
rameters in the linear layers. The BART model we
utilize comprises 133M parameters, out of which
94.6M correspond to the parameters in the linear
layers. The GPT-2 model we use has 117M param-
eters, and 81.0M parameters are associated with its
linear (Conv1D) layers.

Only the linear layers within the transformer
blocks are compressed in this study, and non-
Transformer modules, such as the token embedding,
remain uncompressed. The settings not explicitly
mentioned in this work utilize the default config-
urations of the HuggingFace Transformer library
(Wolf et al., 2020).

A.3 Training Time
RankDyna begins with a generic pre-trained model,
which can be reused across all downstream tasks.
In contrast, the other factorization methods men-
tioned in the paper (SVD, FWSVD, TFWSVD)
require a task-specific fine-tuned model for factor-
ization. Consequently, as the model size increases
and factorization becomes more computationally
expensive, RankDyna saves more computational

Table 5: Hyper-parameter setting for training Rank-
Dyna.

Dataset Batch Size Initial Final

CoNLL 16 500 2500
CoLA 32 500 1500
MNLI 32 5400 27000
MRPC 8 500 1500
QNLI 32 2000 12000
QQP 32 5400 27000
SST-2 16 500 1500
STSB 16 500 2500

resources by only requiring one base model that
can be applied to all tasks. Furthermore, unlike the
other methods that require two rounds of model
fine-tuning (one before compression and one after),
RankDyna accomplishes compression with only
one round of fine-tuning.

In comparison to SVD, FWSVD requires addi-
tional time to compute Fisher information for each
specific task. TFWSVD requires even more time as
it performs iterative calculations of decomposition.

A.4 Fisher information
Fisher information measures the amount of in-
formation that a given dataset D provides about
a model parameter w. However, obtaining pre-
cise values for Fisher information is generally in-
tractable due to the computational complexity. In
practice, the empirical Fisher information is esti-
mated as follows:

Iw = E

[(
∂

∂w
log p(D|w)

)2
]

≈ 1

|D|

|D|∑
i=1

(
∂

∂w
(di;w)

)2

= Îw.

(13)

Given a target task objective (e.g., cross-entropy
for a classification task), the estimated information
Îw accumulates the squared gradients over the train-
ing data di ∈ D. The parameters that cause large
absolute gradient of the task objective will have a
large value in Îw, and are considered important to
the target task.

B Training Details

We use a fixed β = 0.85 for importance score mo-
mentum calculation in Equation (11), and learning
rate 1E-04 throughout all experiments. We list addi-
tional hyper-parameter settings used by RankDyna
in Table 5.

Figure 5: In Section 4.6, we presented the rank distribution of RankDyna on the MNLI dataset. Here we provide a
demonstration of the rank allocation when assigning a uniform rank to each weight matrix. The rank distribution on
MNLI with the fixed assignment. The x-axis represents the layer index, while the y-axis represents different types
of weight matrices.

(a) 13.9M linear parameters (equal to rank ratio 0.1)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

77 77 77 77 77 77 77 77 77 77 77 77

77 77 77 77 77 77 77 77 77 77 77 77

77 77 77 77 77 77 77 77 77 77 77 77

77 77 77 77 77 77 77 77 77 77 77 77

77 77 77 77 77 77 77 77 77 77 77 77

77 77 77 77 77 77 77 77 77 77 77 77 0

25

50

75

100

125

150

175

(b) 6.4M linear parameters (equal to rank ratio 0.05)

1 3 5 7 9 11
W

q
W

k
W

v
W

o
W

f 1
W

f 2

38 38 38 38 38 38 38 38 38 38 38 38

38 38 38 38 38 38 38 38 38 38 38 38

38 38 38 38 38 38 38 38 38 38 38 38

38 38 38 38 38 38 38 38 38 38 38 38

38 38 38 38 38 38 38 38 38 38 38 38

38 38 38 38 38 38 38 38 38 38 38 38 0

25

50

75

100

125

150

175

Figure 6: The resulting rank of each weight matrix when compressing Bert-base on QNLI with RankDyna. The
x-axis represents the layer index, while the y-axis represents different types of weight matrices.

(a) 13.9M linear parameters (equal to rank ratio 0.1)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

45 169 283 227 122 39 59 17 67 160 114 50

32 139 256 227 115 33 52 17 61 164 118 59

177 139 211 210 176 69 105 31 126 44 14 30

164 185 204 232 190 110 132 32 102 49 14 2

215 52 161 63 64 57 42 48 7 2 1 0

132 37 80 43 35 38 31 34 8 2 3 0 0

25

50

75

100

125

150

175

(b) 6.4M linear parameters (equal to rank ratio 0.05)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

40 55 239 184 60 11 14 10 25 55 88 32

29 39 222 192 56 12 14 10 23 49 87 45

118 61 129 128 85 28 29 13 52 22 14 25

117 86 128 123 102 41 34 11 44 26 10 2

79 30 47 22 26 21 14 28 2 2 1 0

42 27 31 14 15 9 7 20 2 3 4 0 0

25

50

75

100

125

150

175

Figure 7: The resulting rank of each weight matrix when compressing Bert-base on QQP with RankDyna. The
x-axis represents the layer index, while the y-axis represents different types of weight matrices.

(a) 13.9M linear parameters (equal to rank ratio 0.1)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

44 167 342 238 169 77 14 2 35 109 75 21

35 151 325 232 178 82 15 2 35 116 78 36

174 176 236 209 162 80 36 2 61 66 18 49

164 202 209 205 173 100 33 4 49 61 10 2

200 148 172 131 72 51 16 35 3 2 1 0

126 78 82 71 40 31 9 21 2 2 1 0 0

25

50

75

100

125

150

175

(b) 6.4M linear parameters (equal to rank ratio 0.05)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

39 30 300 192 66 43 11 0 0 34 73 21

29 24 271 195 60 52 11 0 0 30 74 31

101 48 156 128 76 53 16 0 0 39 16 37

108 72 135 117 82 63 16 1 1 36 10 2

56 29 85 54 40 33 0 5 2 1 1 0

38 21 47 33 21 21 1 5 2 1 1 0 0

25

50

75

100

125

150

175

Figure 8: The resulting rank of each weight matrix when compressing Bert-base on STSB with RankDyna. The
x-axis represents the layer index, while the y-axis represents different types of weight matrices.

(a) 13.9M linear parameters (equal to rank ratio 0.1)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

147 272 399 186 92 28 12 2 4 20 29 17

123 223 373 180 86 27 13 2 3 16 28 16

310 249 234 169 133 65 61 7 17 26 6 41

256 220 167 164 147 94 64 1 12 21 3 21

260 285 151 26 37 44 22 20 11 6 2 3

127 94 65 30 19 40 12 22 18 11 19 20 0

25

50

75

100

125

150

175

(b) 6.4M linear parameters (equal to rank ratio 0.05)

1 3 5 7 9 11

W
q

W
k

W
v

W
o

W
f 1

W
f 2

82 158 339 70 43 11 5 2 5 10 16 13

69 134 316 59 27 11 7 2 2 9 14 9

251 173 120 63 62 44 20 4 17 6 8 20

197 161 107 79 81 52 27 2 8 7 6 8

76 53 66 12 21 17 4 5 2 5 1 2

42 42 43 12 13 16 5 5 2 5 4 10 0

25

50

75

100

125

150

175

