Model-Based Episodic Memory Induces Dynamic
Hybrid Controls

Hung Le, Thommen Karimpanal George, Majid Abdolshah, Truyen Tran, Svetha Venkatesh
Applied Al Institute, Deakin University, Geelong, Australia
thai.le@deakin.edu.au

Abstract

Episodic control enables sample efficiency in reinforcement learning by recalling
past experiences from an episodic memory. We propose a new model-based
episodic memory of trajectories addressing current limitations of episodic control.
Our memory estimates trajectory values, guiding the agent towards good policies.
Built upon the memory, we construct a complementary learning model via a
dynamic hybrid control unifying model-based, episodic and habitual learning into
a single architecture. Experiments demonstrate that our model allows significantly
faster and better learning than other strong reinforcement learning agents across a
variety of environments including stochastic and non-Markovian settings.

1 Introduction

Episodic memory or “mental time travel” [6] allows recreation of past experiences. In reinforcement
learning (RL), episodic control (EC) uses this memory to control behavior, and complements forward
model and simpler, habitual (cached) control methods. The use of episodic memory' is shown to be
very useful in early stages of RL [29, 4] and backed up by cognitive evidence [42, 41]. Using only
one or few instances of past experiences to make decisions, EC agents avoid complicated planning
computations, exploiting experiences faster than the other two control methods. In hybrid control
systems, EC demonstrates excellent performance and better sample efficiency [36, 30].

Early works on episodic control use tabular episodic memory storing a raw trajectory as a sequence
of states, actions and rewards over consecutive time steps. To select a policy, the methods iterate
through all stored sequences and are thus only suitable for small-scale problems [29, 9]. Other
episodic memories store individual state-action pairs, acting as the state-action value table in tabular
RL, and can generalize to novel states using nearest neighbor approximations [4, 36]. Recent works
[35, 16, 30, 46] leverage both episodic and habitual learning by combining state-action episodic
memories with Q-learning augmented with parametric value functions like Deep Q-Network (DQN;
[34]). The combination of the “fast” non-parametric episodic and “slow” parametric value facilitates
Complementary Learning Systems (CLS) — a theory posits that the brain relies on both slow learning
of distributed representations (neocortex) and fast learning of pattern-separated representations
(hippocampus) [31].

Existing episodic RL methods suffer from 3 issues: (a) near-deterministic assumption [4] which is
vulnerable to noisy, stochastic or partially observable environments causing ambiguous observations;
(b) sample-inefficiency due to storing state-action-value which demands experiencing all actions
to make reliable decisions and inadequate memory writings that prevent fast and accurate value
propagation inside the memory [4, 36]; and finally, (c) assuming fixed combination between episodic
and parametric values [30, 16] that makes episodic contribution weight unchanged for different
observations and requires manual tuning of the weight. We tackle these open issues by designing

!The episodic memory in this setting is an across-lifetime memory, persisting throughout training.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

a novel model that flexibly integrates habitual, model-based and episodic control into a single
architecture for RL.

To tackle issue (a) the model learns representations of the trajectory by minimizing a self-supervised
loss. The loss encourages reconstruction of past observations, thus enforcing a compressive and
noise-tolerant representation of the trajectory for the episodic memory. Unlike model-based RL
[39, 13] that simulates the world, our model merely captures the trajectories.

To address issue (b), we propose a model-based value estimation mechanism established on the
trajectory representations. This allows us to design a memory-based planning algorithm, namely
Model-based Episodic Control (MBEC), to compute the action value online at the time of making
decisions. Hence, our memory does not need to store actions. Instead, the memory stores trajectory
vectors as the keys, each of which is tied to a value, facilitating nearest neighbor memory lookups
to retrieve the value of an arbitrary trajectory (memory read). To hasten value propagation and
reduce noise inside the memory, we propose using a weighted averaging write operator that writes to
multiple memory slots, plus a bootstrapped refine operator to update the written values at any step.

Finally, to address issue (c), we create a flexible CLS architecture, merging complementary systems
of learning and memory. An episodic value is combined with a parametric value via dynamic
consolidation. Concretely, conditioned on the current observation, a neural network dynamically
assigns the combination weight determining how much the episodic memory contributes to the
final action value. We choose DQN as the parametric value function and train it to minimize the
temporal difference (TD) error (habitual control). The learning of DQN takes episodic values into
consideration, facilitating a distillation of the episodic memory into the DQN’s weights.

Our contributions are: (i) a new model-based control using episodic memory of trajectories; (ii) a
Complementary Learning Systems architecture that addresses limitations of current episodic RL
through a dynamic hybrid control unifying model-based, episodic and habitual learning (see Fig. 1);
and, (iii) demonstration of our architecture on a diverse test-suite of RL problems from grid-world,
classical control to Atari games and 3D navigation tasks. We show that the MBEC is noise-tolerant,
robust in dynamic grid-world environments. In classical control, we show the advantages of the
hybrid control when the environment is stochastic, and illustrate how each component plays a crucial
role. For high-dimensional problems, our model also achieves superior performance. Further, we
interpret model behavior and provide analytical studies to validate our empirical results.

2 Background

2.1 Deep Reinforcement Learning

Reinforcement learning aims to find the policy that maximizes the future cumulative rewards of
sequential decision-making problems [40]. Model-based approaches build a model of how the
environment operates, from which the optimal policy is found through planning [39]. Recent model-
based RL methods can simulate complex environments enabling sample-efficiency through allowing
agents to learn within the simulated “worlds” [14, 23, 15]. Unlike these works, Q-learning [43] — a
typical model-free method, directly estimates the true state-action value function. The function is
defined as Q (s,a) = Ex [>, v'r¢ | s, a], where 1, is the reward at timestep ¢ that the agent receives
from the current state s by taking action a, followed policy 7. v € (0, 1] is the discount factor that
weights the importance of upcoming rewards. Upon learning the function, the best action can be
found as a; = argmax @ (s¢, a).
a

With the rise of deep learning, neural networks have been widely used to improve reinforcement
learning. Deep Q-Network (DQN; [34]) learns the value function Qg (s, a) using convolutional
and feed-forward neural networks whose parameters are 6. The value network takes an image
representation of the state s; and outputs a vector containing the value of each action a;. To train
the networks, DQN samples observed transition (s;, a, r¢, st+1) from a replay buffer to minimize
the squared error between the value output and target y, = r; + ymax Qj (s14+1,a) where Q) is the

target network. The parameter of the target network is periodically set to that of the value network,
ensuring stable learning. The value network of DQN resembles a semantic memory that gradually
encodes the value of state-action pairs via replaying as a memory consolidation in CLS theory [24].

/ Model-based Episodic Control ging y Learning \ TN
Trajectory

-
\ 4

o} q n
3.) i Episodic|Memory . O Current step
8 jectori Memory (3 Reward -
) recallloss e Mods Temporal 0 Writing step
<2 g j difference
g M‘:’r:;:ery 7] loss o Updating step
Q B N Read
! X T | — ‘ y Future step
7 (a1)
Trajectory Model 7;) h £\ e—

-)» Planning

Parametric Value Data flow

e
277 (@)
so,a0 Pl T A é ?"‘*) —— >
i s Huncton)y Leaming with
query reconstruction \\ 0 0 o)\ / backpropagation

(@) (b)

Figure 1: (a) Trajectorial Recall. The trajectory model reconstructs any past observation along the
trajectory given noisy preceding s-a pair as a cue. (b) Dynamic hybrid control with the episodic
memory at its core. The trajectory model, trained with TR loss (Eq. 1), encodes representations for
writing (Eq. 2) and updating (Eq. 4) the episodic memory. Model-based Episodic Control (MBEC)
plans actions (e.g. a; and as) and computes future trajectory representations (7’ (a1) and 7 (a2))
for reading the memory’s stored values. The read-out, together with the reward model, estimates the
episodic value Qpspec (Eq. 6). The Complementary Learning Systems (CLS) combines Q ysppc
and the traditional semantic Qg9 using dynamic consolidation conditioned on 7 (Eq. 7). The
parameters of the CLS are optimized with TD loss (Eq. 8; habitual control).

Experience replay is critical for DQN, yet it is slow, requiring a lot of observations since the replay
buffer only stores raw individual experiences. Prioritized Replay [37] improves replaying process
with non-uniform sampling favoring important transitions. Others overcome the limitation of one-step
transition by involving multi-step return in calculating the value [28, 18]. These works require raw
trajectories and parallel those using episodic memory that persists across episodes.

2.2 Memory-based Controls

Episodic control enables sample-efficiency through explicitly storing the association between returns
and state-action pairs in episodic memory [29, 4, 36]. When combined with Q-learning (habitual
control), the episodic memory augments the value function with episodic value estimation, which is
shown beneficial to guide the RL agent to latch on good policies during early training [30, 46, 20].

In addition to episodic memory, Long Short-Term Memory (LSTM; [19]) and Memory-Augmented
Neural Networks (MANNS; [10, 11]) are other forms of memories that are excel at learning long
sequences, and thus extend the capability of neural networks in RL. In particular, Deep Recurrent Q-
Network (DRQN; [17]) replaces the feed-forward value network with LSTM counterparts, aiming to
solve Partially-Observable Markov Decision Process (POMDP). Policy gradient agents are commonly
equipped with memories [33, 11, 38]. They capture long-term dependencies across states, enrich
state representation and contribute to making decisions that require reference to past events in the
same episode.

Recent works use memory for reward shaping either via contribution analysis [1] or memory attention
[21]. To improve the representation stored in memory, some also construct a model of transitions
using unsupervised learning [44, 13, 8]. As these memories are cleared at the end of the episode, they
act more like working memory with a limited lifespan [2]. Relational [45, 26] and Program Memory
[27] are other forms of memories that have been used for RL. They are all different from the notion
of persistent episodic memory, which is the main focus of this paper.

3 Methods

We introduce a novel model that combines habitual, model based and episodic control wherein
episodic memory plays a central role. Thanks to the memory storing trajectory representations, we
can estimate the value in a model-driven fashion: for any action considered, the future trajectory is
computed to query the episodic memory and get the action value. This takes advantage of model-
based planning and episodic inference. The episodic value is then fused with a slower, parametric
value function to leverage the capability of both episodic and habitual learning. Fig. 1 illustrates

Algorithm 1 MBEC++: Complementary reinforcement learning with MBEC and DQN.

1: D: Replay buffer; B: Trajectory buffer; C: Chunk buffer; M: Episodic memory; 7: Trajectory
model; 7, (s,a): Reward model; L: Chunk length

2: for each episode do

3 Initialize 7o =0; B=0;C =0

4 fort=1,T do

5: Observe state s;. Compute f5 (7;_1).

6: Select action a; < e-greedy policy using Q in Eq. 7

7 Observe reward ;. Move to next state s;1. Compute Ty To ([st, ad] ?t_l)

8: Add (s¢, ag, Ser1, 7, ?t,h ?t) and (s, a;) to D and B, respectively.

9: Refine memory: M < refine (s;, 71| M)
10: for (sy,ap,spy41,m, Ty —1, T) sampled from D do
11: Compute Q) (s, a) using sy, ay, Tv_1(Eq. 7)
12: Compute Q (s, a’) using sy 1, 7 Va' (Eq. 7)
13: Optimize £, wrt 6 and 3 (Eq. 8)

14: Compute L, using sy, ay, 74 (Eq. 5). Optimize L, wrt ¢
15: if t mod L == 0 then
16: Add (?t_l, r4) to C. Sample (s, ap) from B and optimize Ly, wrt ¢ and w (Eq. 1)
17: if t == T then
18: for each ?i e Cdo
19: Compute V (?z) = Z]T;f ’yj_iTjJrl. Write M < write (?i, V (?z) |M)

these components. We first present the formation of the trajectory representation and the episodic
memory. Next, we describe how we estimate the value from this memory and parametric Q networks.

3.1 Episodic Memory Stores Trajectory Representations

In this paper, a trajectory 7; is a sequence of what happens up to the time step ¢: 7, =
[(s1,a1), ..., (st,a¢)]. If we consider 7y as a piece of memory that encodes events in an episode, from
that memory, we must be able to recall any past event. This ability in humans can be examined
through the serial recall test wherein a previous item cues to the recall of the next item in a sequence
[7]. We aim to represent trajectories as vectors manifesting that property. As such, we employ a
recurrent trajectory network 7, to model T, = Ts ([s¢, ad] ?t,l) where 7, is implemented as an
LSTM [19] and ?t € RH is the vector representation of 7; and also the hidden state of the LSTM.

We train the trajectory model T4 to compute 7, such that it is able to reconstruct the next observation
of any past experience, simulating the serial recall test. Concretely, given a noisy version (8, ay) of
a query state-action (s, a) sampled from a trajectory buffer B at time step ¢’ < ¢, we minimize the
trajectorial recall (TR) loss as follows,

Ly =E (||y* (t) = [str41, at/+1]l|§) %

where y* (t) = G, (T ([51/,av], 71))» Gu is a reconstruction function, implemented as a feed-
forward neural network. The trajectory network 74 must implement some form of associative
memory, compressing information of any state-action query in the past in its current representation
¢ to reconstruct the next observation of the query, keeping the TR loss low (see a visualization in
Fig. 1 (a)). Appendix A.1 theoretically explains why the TR loss is suitable for episodic control.

Our goal is to keep the trajectory representation and its associated value as the key and value of an
episodic memory M = {M" MV}, respectively. M* € RV*H and M? € RV*!, where N is
the maximum number of memory slots. The true value of a trajectory T, is simply defined as the
value of the resulting state of the trajectory V' (7t) =V (st41) =E (Zz:ot_l fy"'rt+1+i>, T is the

terminal step. The memory stores estimation of the true trajectory values through averaging empirical
returns by our weighted average writing mechanism (see in the next section).

3.2 Memory Operators

Memory reading Given a query key 7, we read from the memory the corresponding value by
referring to neighboring representations. Concretely, two reading rules are employed

S e () S DI ()
read (?|M) = iENT ()E]’ENK(?)<M.I;’?>
max;e yw (7) My (b)

where (-) is a kernel function and N'X (-) retrieves top K. nearest neighbors of the query in M*.
The read-out is an estimation of the value of the trajectory 7 wherein the weighted average rule (a)
is a balanced estimation, while the max rule (b) is optimistic, encouraging exploitation of the best
local experience. In this paper, the two reading rules are simply selected randomly with a probability
of Preaq and 1 — preqq, respectively.

Memory writing Given the writing key 7 and its estimated value V/ (?), the write operator
write (?, 14 (?) |M) consists of several steps. First, we add the value to the memories M" if the

key cannot be found in the key memory MF (this happens frequently since key match is rare). Then,
we update the values of the key neighbors such that the updated values are approaching the written

value V (7) with speeds relative to the distances as Vi € N 5w (7) :

(MF,7)
Y senu) (MK T)

where «,, is the writing rate. Finally, the key can be added to the key memory. When it exceeds
memory capacity N, the earliest added will be removed. For simplicity, K,, = K, = K.

2)

MY M+ ay (V(7) = M)

We note that our memory writing allows multiple updates to multiple neighbor slots, which is unlike
the single-slot update rule [4, 36, 30]. Here, the written value is the Monte Carlo return collected from
t + 1 to the end of the episode 14 (?t) = zf:}f* 741144 Following [25], we choose to write the
trajectory representation of every L-th time-step (rather than every time-step) to save computation
while still maintaining good memorization. Appendix A.2 provides a mean convergence analysis of
our writing mechanism.

Memory refining As the memory writing is only executed after the episode ends, it delays the
value propagation inside the memory. Hence, we design the refine (s, i1 |M) operator that
tries to minimize the one-step TD error of the memory’s value estimation. As such, at an arbitrary
timestep ¢, we estimate the future trajectory if the agent takes action a using the trajectory model as
74 (a) = T4 ([s¢,a] , T+_1). Then, we can update the memory values as follows,

Q' = maxr, (s;,a) + yread (7} (a) M) (3) M < write (74_1,Q'|M) 4)
where 7, is a reward model using a feed-forward neural network. r, is trained by minimizing
Lre=E(r—r,(s,a))’ 5)

The memory refining process can be shown to converge in finite MDP environments.

Proposition 1. In a finite MDP (S, A, T, R), given a fixed bounded r, and an episodic memory M
with read (average rule) and write operations, the memory refine given by Eq. 4 converges to a fixed
point with probability 1 as long asy <1, Y% | vy = 00 and y_,° | az, , < .

Proof. See Appendix A.3. O

3.3 Model-based Episodic Control (MBEC)

Our agent relies on the memory at every timestep to choose its action for the current state s;. To
this end, the agent first plans some action and uses 7 to estimate the future trajectory. After that,

I — SoDgN. e MEC(RL o —— MPEC

80000

Random

8

°

2 60000 —— Worst
DQN
MBEC
MFEC

@

* 40000

Efficiency improvement
over random policy (%)

=
20000 2
o
e

-80

' 0% 50% ;“ C 20k 40k 60K 80K 100K 0 20k 40K 60K 80K 100K
Noise level Step Step
(a) (b) (c)
Figure 2: Maze navigation. (a) Noisy mode: number of steps required to complete 100 episodes
with different noise rates (lower is better). (b) Trap mode: average reward (upper) and number
of completed episodes (lower) over timesteps (higher is better). (c) Dynamic mode: efficiency

improvement over random policy across timesteps (higher is better).

it reads the memory to get the value of the planned trajectory. This mechanism takes advantage of
model-based RL’s planning and episodic control’s non-parametric inference, yielding a novel hybrid
control named Model-based Episodic Control (MBEC). The state-action value then is

QuBec (s,a) =74 (s,a) + yread (?’ (a) |IM) (6)
The MBEC policy then is 7 (s) = argmax Qv prc (S, a). Unlike model-free episodic control, we

a
compute on-the-fly instead of storing the state-action value. Hence, the memory does not need to
store all actions to get reliable action values.

3.4 Model-based Episodic Control Facilitates Complementary Learning Systems

The episodic value provides direct yet biased estimation from experiences. To compensate for that,
we can use a neural network Qg (s¢, a;) to give an unbiased value estimation [34], representing the
slow-learning semantic memory that gradually encodes optimal values. Prior works combine by a
weighted summation of the episodic and semantic value wherein the weight is fixed [30, 16]. We
believe that depending on the specific observations, we may need different weights to combine the
two values. Hence, we propose to combine the two episodic and semantic systems as

Q (st,a) = Qupec (st,ar) f5 (T i-1) + Qo (51, ar) (7)
where fg is a feed-forward neural network with sigmoid activation that takes the previous trajectory
as the input and outputs a consolidating weight for the episodic value integration. This allows
dynamic integration conditioned on the trajectory status. The semantic system learns to take episodic
estimation into account in making decisions via replaying to minimize one-step TD error,

2
L, :]E(r—i—'ymaa,uXQ(s’,a’) —Q(s,a)) (8)

Here we note that) ps e is also embedded in the target, providing better target value estimation in
the early phase of learning when the parametric model does not learn well. We follow [34] using a
replay buffer D to store (s, a, s’,) across episodes. Without episodic contribution, TD or habitual
learning is slow [16, 30]. Our episodic integration allows the agent to rely on MBEC whenever
it needs to compensate for immature parametric systems. Alg. 1 (MBEC++) summarizes MBEC
operations within the complementary learning system. The two components (MBEC and CLS) are
linked by the episodic memory as illustrated in Fig. 1 (b).

4 Results

In this section, we examine our proposed episodic control both as a stand-alone (MBEC) and within
a complementary learning system (MBEC++). To keep our trajectory model simple, for problems
with image state, it learns to reconstruct the feature vector of the image input, rather than the image
itself. The main baselines are DQN [34] and recent (hybrid) episodic control methods. Details of the
baseline configurations and hyper-parameter tuning for each tasks can be found in Appendix B.

—— DQN —oo MIEEE oo MBEC++ —:= MFEC NEC

CartPole MountainCar LunarLander
(stochastic state) (stochastic transition) (stochastic reward)

200
100
0
—100

-300

2K 4K 6K 8K 10K 0 20K 40K 60K 80K 100K 0 50K 100K 150K 200K
Step Step Step

Avg. Reward
=
IS)
o

Figure 3: Average reward over learning steps on representative stochastic classical control environ-
ments (higher is better, mean and std. over 10 runs).

4.1 Grid-world: 2D Maze Exploration

We begin with simple maze navigation to explore scenarios wherein our proposed memory shows
advantages. In this task, an agent is required to move from the starting point (0, 0) to the endpoint
(ne — 1,me — 1) in a maze environment of size n. X n.. In the maze task, if the agent hits the wall
of the maze, it gets —1 reward. If it reaches the goal, it gets +1 reward. For each step in the maze,
the agent get —0.1/n2 reward. An episode ends either when the agent reaches the goal or the number
of steps exceeds 1000. We create different scenarios for this task (n. = 3): noisy, trap and dynamic
modes wherein our MBEC is compared with both parametric (DQN) and memory-based (MFEC;
[4]) models (see Appendix B.2 for details and more results).

Noisy mode In this mode, the state is represented as the location plus an image of the maze. The
image is preprocessed by a pretrained ResNet, resulting in a feature vector of 512 dimensions (the
output layer before softmax). We apply dropout to the image vector with different noise levels. We
hypothesize that aggregating states into trajectory representation as in MBEC is a natural way to
smooth out the noise of individual states.

Fig. 2 (a) measures sample efficiency of the models on noisy mode. Without noise, all models can
quickly learn the optimal policy and finish 100 episodes within 1000 environment steps. However, as
the increased noise distracts the agents, MFEC cannot find a way out until the episode ends. DQN
performance reduces as the noise increases and ends up even worse than random exploration. By
contrast, MBEC tolerates noise and performs much better than DQN and the random agent.

Trap mode The state is the position of the agent plus a trap location randomly determined at the
beginning of the episode. If the agent falls into the trap, it receives a —2 reward (the episode does
not terminate). This setting illustrates the advantage of memory-based planning. With MBEC, the
agent remembers to avoid the trap by examining the future trajectory to see if it includes the trap.
Estimating state-action value (DQN and MFEC) introduces overhead as they must remember all
state-action pairs triggering the trap.

We plot the average reward and number of completed episodes over time in Fig. 2 (b). In this mode,
DQN always learns a sub-optimal policy, which is staying in the maze. It avoids hitting the wall and
trap, however, completes a relatively low number of episodes. MFEC initially learns well, quickly
completing episodes. However its learning becomes unstable as more observations are written into
its memory, leading to a lower performance over time. MBEC alone demonstrates stable learning,
significantly outperforming other baselines in both reward and sample efficiency.

Dynamic mode The state is represented as an image and the maze structure randomly changes
for each episode. A learnable CNN is equipped for each baseline to encode the image into a 64-
dimensional vector. In this dynamic environment, similar state-actions in different episodes can lead
to totally different outcomes, thereby highlighting the importance of trajectory modeling. In this case,
MFEC uses VAE-CNN, trained to reconstruct the image state. Also, to verify the contribution of TR
loss, we add two baselines: (i) MBEC without training trajectory model (no TRL) and (ii) MBEC
with a traditional model-based transition prediction loss (TPL) (see Appendix B.2 for more details).

We compare the models’ efficiency improvement over random policy by plotting the percentage of
difference between the models’ number of finished episodes and that of random policy in Fig. 2
(c). DQN and MFEC perform worse than random. MBEC with untrained trajectory model performs

= 20 —— MBEC (Kw=1) 100
g MBEC (Kw=3) 200
5 =
20.8 215
= i 400
g %10
&) e}
.0.6 < o1
:>>0 —— Episodic 5 oo
< Semantic ~ i ot
0 02] 4
5K 10K 25 50 75 100 o e & o
Step Episode © @

Figure 4: Cart Pole. (Left) Average contribution of episodic and semantic value estimations over
timesteps (see Appendix B.3 for contribution definition). The episodic influence is gradually replaced
by the semantic’s. (Middle) The difference (absolute error) between the stored and true value of
the starting state (mean and std. over 5 runs). (Right) Mountain Car. (a) Visualization of the car
moving uphill over 30 timesteps. Due to noise, the next state can be observed as the current state with
probability py.. (b) State and (c) trajectory spaces: the axes are the dimension of the trajectory vectors
7 projected into 2d space. Blue denotes the representation at noisy timestep and red the normal ones.
Fading color denotes earlier timesteps. (d) Value estimation by the episodic memory for the whole
2-d trajectory space.

poorly. MBEC with trajectory model trained with TPL shows better performance than random, yet
still underperforms our proposed MBEC with TRL by around 5-10%.

4.2 Stochastic Classical Control

In stochastic environments, taking correct actions can still lead to low rewards due to noisy observa-
tions, which negatively affects the quality of episodic memory. We consider 3 classical problems:
Cart Pole, Mountain Car and Lunar Lander. For each problem, we examine RL agents in stochastic
settings by (i) perturbing the reward with Gaussian (mean 0, std. o, = 0.2) or (ii) Bernoulli noise
(with probability p,. = 0.2, the agent receives a reward —r where r is the true reward) and (iii) noisy
transition (with probability p;, = 0.5, the agent observes the current state as its next state despite
taking any action). In this case, we compare MBEC++ with DQN, MFEC and NEC [36].

Fig. 3 shows the performances of the models on representative environments (full results in Appendix
B.3). For easy problems like Cart Pole, although MFEC learns quickly, its over-optimistic control is
sub-optimal in non-deterministic environments, and thus cannot solve the task. For harder problems,
stochasticity makes state-based episodic memories (MFEC, NEC) fail to learn. DQN learns in these
settings, albeit slowly, illustrating the disadvantage of not having a reliable episodic memory. Among
all, MBEC++ is the only model that can completely solve the noisy Cart Pole within 10,000 steps
and demonstrates superior performance in Mountain Car and Lunar Lander. Compared to MBEC++,
MBEC performs badly, showing the importance of CLS.

Behavior analysis The episodic memory plays a role in MBEC++’s success. In the beginning, the
agent mainly relies on the memory, yet later, it automatically learns to switch to the semantic value
estimation (see Fig. 4 (left)). That is because in the long run the semantic value is more reliable and
already fused with the episodic value through Eq. 7-8. Our write operator also helps MBEC++ in
quickly searching for the optimal value. To illustrate that, we track the convergence of the episodic
memory’s written values for the starting state of the stochastic Cart Pole problem under a fixed policy
(Fig. 4 (middle)). Unlike the over-optimistic MFEC’s writing rule using max operator, ours enables
mean convergence to the true value despite Gaussian reward noise. When using a moderate K,, > 1,
the estimated value converges better as suggested by our analysis in Appendix A.2. Finally, to verify
the contribution of the trajectory model, we examine MBEC++’s ability to counter noisy transition
by visualizing the trajectory spaces for Mountain Car in Fig. 4 (right). Despite the noisy states (Fig.
4 (right, b)), the trajectory model can still roughly estimate the trace of trajectories (Fig. 4 (right, c)).
That ensures when the agent approaches the goal, the trajectory vectors smoothly move to high-value
regions in the trajectory space (Fig. 4 (right, d)). We note that for this problem that ability is only
achieved through training with TR loss (comparison in Appendix B.3).

Ablation study We pick the noisy transition Mountain Car problem for ablating components and
hyper-parameters of MBEC++ with different neighbors (K), chunk length (L) and memory slots
(V). The results in Fig. 5 demonstrate that the performance improves as K increases, which is

Model All 25 games
Nature DQN 15.7/51.3 83.6/16.0

MFEC 85.0/45.4 77.7/40.9
NEC 99.8/54.6 106.1/53.3
EMDQN* 528.4/92.8 250.6/95.5
EVA - 172.2/39.2
ERLAM - 515.4/103.5

MBEC++ 654.0/117.2 518.2/133.4
Table 1: Human normalized scores (mean/median) at 10 million frames for all and a subset of 25
games. Baselines’ numbers are adopted from original papers and [46], respectively. * The baseline is
reported with 40 million frames of training. - The exact numbers are not reported.

120 gy 120 1o -120 [N=s00 S P —

' 7t
--- K=5 -—— L=10 Py --= N=3000 pre --- No TR Loss
—140 K=15 | 4 —140 L=50 pmtes! —140 N=30000 fhatr~rs’ —140 No update
o e o
/

Single write

_160 — TPLoss

—-180 /f/ -—

=200

i
—~160 / _ M —160 -160
- ~

Avg. Reward

-180 | 180

:
:
:
o
]
=200 =200

0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K 0 25K 50K 75K 100K
Step Step Step Step

—=180

=200

Figure 5: Noisy Transition Mountain Car: ablation study. Each plot varies one hyper-parameter or
ablated component while fixing others in default values (K = 15, L = 10, N = 3000).

common for KNN-based methods. We also find that using a too short or too long chunk deteriorates
the performance of MBEC++. Short chunk length creates redundancy as the stored trajectories will
be similar while long chunk length makes minimizing TR loss harder. Finally, the results confirm
that the learning of MBEC++ is hindered significantly with small memory. A too-big memory does
not help either since the trajectory model continually refines the trajectory representation, a too big
memory slows the replacement of old representations with more accurate newer ones.

We also ablate MBEC++: (i) without TR loss, (ii) with TP loss (iii), without multiple write (K, = 1)
and (iv) without memory update. We realize that the first two configurations show no sign of learning.
The last two can learn but much slower than the full MBEC++, justifying our neighbor memory
writing and update (Fig. 5 (rightmost)). More ablation studies are in Appendix B.6 where we find our
dynamic consolidation is better than fixed combinations and optimal p,.¢,q is 0.7.

4.3 Atari 2600 Benchmark

We benchmark MBEC++ against other strong episodic memory models in playing Atari 2600 video
games [3]. The task can be challenging with stochastic and partially observable games [23]. Our
model adopts DQN [34] with the same setting (details in Appendix B.4). We only train the models
within 10 million frames for sample efficiency.

Table 1 reports the average performance of MBEC++ and baselines on all (57) and 25 popular Atari
games concerning human normalized metrics [34]. Compared to the vanilla DQN, MFEC and NEC,
MBEC++ is significantly faster at achieving high scores in the early learning phase. Further, MBEC++
outperforms EMDQN even trained with 40 million frames and achieves the highest median score.
Here, state-action value estimations fall short in quickly solving complicated tasks with many actions
like playing Atari games as it takes time to visit enough state-action pairs to create useful memory’s
stored values. By contrast, when the models in MBEC++ are well-learnt (which is often within 5
million frames, see Appendix B.4), its memory starts providing reliable trajectory value estimation
to guide the agent to good policies. Remarkably, our episodic memory is much smaller than that of
others and our trajectory model size is insignificant to DQN’s (Appendix B.4 and Table 2).

In the subset testbed, MBEC++ demonstrates competitive performance against trajectory-utilized
models including EVA [16] and ERLAM [46]. These baselines work with trajectories as raw
state-action sequences, unlike our distributed trajectories. In the mean score metric, MBEC++ is
much better than EVA (nearly double score) and slightly better than ERLAM. MBEC++ agent

plays consistently well across games without severe fluctuations in performance, indicated by its
significantly higher median score.

We also compare MBEC++ with recent model-based RL approaches including Dreamer-v2 [15] and
SIMPLE [23]. The results show that our method is competitive against these baselines. Notably, our
trajectory model is much simpler than the other methods (we only have TR and reward losses and
our network is the standard CNN of DQN for Atari games). Appendix B.4 provides more details,
learning curves and further analyses.

4.4 POMDP: 3D Navigation

To examine MBEC++ on Partially-Observable Markov Decision Process (POMDP) environments,
we conduct experiments on a 3D navigation task: Gym Mini-World’s Pickup Objects [5]. Here, an
agent moves around a big room to collect several objects (41 reward for each picked object). The
location, shape and color of the objects change randomly across episodes. The state is the frontal
view-port of the agent and encoded by a common CNN for all baselines (details in Appendix B.5).

We train all models for only 2 million steps and report the results for a different number of objects in
Appendix’s Fig. 12. Among all baselines, MBEC++ demonstrates the best learning progress and
consistently improves over time. Other methods either fail to learn (DRQN) or show a much slower
learning speed (DQN and PPO). That proves our MBEC++ is useful for POMDP.

5 Conclusion

We have introduced a new episodic memory that significantly accelerates reinforcement learning
in various problems beyond near-deterministic environments. Its success can be attributed to: (a)
storing distributed trajectories produced by a trajectory model, (b) memory-based planning with
fast value-propagating memory writing and refining, and (c) dynamic consolidation of episodic
values to parametric value function. Our experiments demonstrate the superiority of our method to
prior episodic controls and strong RL baselines. One limitation of this work is the large number of
hyperparameters, which prevents us from fully tuning MBEC++. In future work, we will extend to
continuous action space and explore multi-step memory-based planning capability of our approach.

Our research aims to improve sample-efficiency of RL and can be trained with common computers.
Our method improves the performance in various RL tasks, and thus opens the chance for creating
better autonomous systems that work flexibly across sectors (robotics, manufacturing, logistics,
and decision support systems). Although we do not think there are immediate bad consequences,
we are aware of potential problems. First, our method does not guarantee safe exploration during
training. If learning happens in a real-world setting (e.g. self-driving car), the agent can make unsafe
exploration (e.g. causing accidents). Second, we acknowledge that our method, like many other
Machine Learning algorithms, can be misused in unethical or malicious activities.

ACKNOWLEDGMENTS

This research was partially funded by the Australian Government through the Australian Re-
search Council (ARC). Prof Venkatesh is the recipient of an ARC Australian Laureate Fellowship
(FL170100006).

References

[1] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes
Brandstetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. In
Advances in Neural Information Processing Systems, pages 13566—-13577, 2019.

[2] Alan D Baddeley and Graham Hitch. Working memory. In Psychology of learning and
motivation, volume 8, pages 47-89. Elsevier, 1974.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

10

[4] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

[5] Maxime Chevalier-Boisvert. gym-miniworld environment for openai gym. https://github.
com/maximecb/gym-miniworld, 2018.

[6] Yadin Dudai and Mary Carruthers. The janus face of mnemosyne. Nature, 434(7033):567-567,
2005.

[7] Simon Farrell. Temporal clustering and sequencing in short-term memory and episodic memory.
Psychological review, 119(2):223, 2012.

[8] Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adria Puigdomenech Badia,
Gavin Buttimore, Charlie Deck, Joel Z Leibo, and Charles Blundell. Generalization of rein-
forcement learners with working and episodic memory. In NeurIPS, 2019.

[9] Samuel J Gershman and Nathaniel D Daw. Reinforcement learning and episodic memory in
humans and animals: an integrative framework. Annual review of psychology, 68:101-128,
2017.

[10] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[11] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiniska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471-476, 2016.

[12] Joseph F Grcar. A matrix lower bound. Linear algebra and its applications, 433(1):203-220,
2010.

[13] David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in neural information processing systems, pages 2450-2462, 2018.

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555-2565. PMLR, 2019.

[15] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2020.

[16] Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, and Charles Blundell.
Fast deep reinforcement learning using online adjustments from the past. In Advances in Neural
Information Processing Systems, pages 10567-10577, 2018.

[17] Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps.
arXiv preprint arXiv:1507.06527, 2015.

[18] Frank S He, Yang Liu, Alexander G Schwing, and Jian Peng. Learning to play in a day: Faster
deep reinforcement learning by optimality tightening. In 5th International Conference on
Learning Representations, ICLR 2017, 2019.

[19] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[20] Hao Hu, Jianing Ye, Zhizhou Ren, Guangxiang Zhu, and Chongjie Zhang. Generalizable
episodic memory for deep reinforcement learning. arXiv preprint arXiv:2103.06469, 2021.

[21] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico
Carnevale, Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by
transporting value. Nature communications, 10(1):1-12, 2019.

[22] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural computation, 6(6):1185-1201, 1994.

11

[23] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[24] Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What learning systems do
intelligent agents need? complementary learning systems theory updated. Trends in cognitive
sciences, 20(7):512-534, 2016.

[25] Hung Le, Truyen Tran, and Svetha Venkatesh. Learning to remember more with less memoriza-
tion. arXiv preprint arXiv:1901.01347, 2019.

[26] Hung Le, Truyen Tran, and Svetha Venkatesh. Self-attentive associative memory. In Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 5682-5691, Virtual, 13-18 Jul 2020. PMLR.

[27] Hung Le and Svetha Venkatesh. Neurocoder: Learning general-purpose computation using
stored neural programs. arXiv preprint arXiv:2009.11443, 2020.

[28] Su Young Lee, Choi Sungik, and Sae-Young Chung. Sample-efficient deep reinforcement
learning via episodic backward update. In Advances in Neural Information Processing Systems,
pages 2112-2121, 2019.

[29] Ma4té Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In
Advances in neural information processing systems, pages 889—896, 2008.

[30] Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep g-
networks. arXiv preprint arXiv:1805.07603, 2018.

[31] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are comple-
mentary learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3):419,
1995.

[32] Francisco S Melo. Convergence of g-learning: A simple proof. Institute Of Systems and
Robotics, Tech. Rep, pages 1-4, 2001.

[33] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928—1937,
2016.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

[35] Daichi Nishio and Satoshi Yamane. Faster deep g-learning using neural episodic control.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 486—491. IEEE, 2018.

[36] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 2827-2836. JMLR.
org, 2017.

[37] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[39] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160-163, 1991.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

12

[41]

[42]

[43]

[44]

[45]

[46]

Endel Tulving. Episodic memory: From mind to brain. Annual review of psychology, 53(1):1-25,
2002.

Endel Tulving et al. Episodic and semantic memory. Organization of memory, 1:381-403,
1972.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279-292,
1992.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised
predictive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, [gor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Deep reinforcement learning
with relational inductive biases. In International Conference on Learning Representations,
2018.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement

learning with associative memory. In International Conference on Learning Representations,

2019.

13

