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ABSTRACT

Recently, multimodal large language models (MLLMs) have received much atten-
tion for their impressive capabilities. The evaluation of MLLMs is becoming crit-
ical to analyzing attributes of MLLMs and providing valuable insights. However,
current benchmarks overlook the problem of prompt sensitivity - minor prompt
variations may lead to significant performance fluctuations. Thus, inappropri-
ate prompts may obscure the models’ capabilities, underestimating the models’
performance. Moreover, different models have different preferences for different
prompts, and thus, using the same prompt for all models will cause evaluation
bias. This paper analyzes this deficiency in existing benchmarks and further in-
troduces a new evaluation framework named TP-Eval, which introduces a prompt
customization method to reduce evaluation biases and tap models’ potential. TP-
Eval will rewrite the original prompts to different customized prompts for different
models. In particular, we propose some well-designed modules for prompt cus-
tomization tailored to the scenario of MLLM evaluation. Extensive experiments
demonstrate the effectiveness of our approach to uncovering models’ capabilities,
and TP-Eval should benefit the community in developing more comprehensive
and convincing MLLM evaluation benchmarks.

1 INTRODUCTION
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(a) Example of prompt sensitivity in multi-modal benchmark.
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(b) Framework of TP-Eval.

Figure 1: (a) shows underestimation caused by unsuitable prompts in MMT-Bench, (b) shows our
proposed evaluation framework resolving this by customizing prompts.

Large language models (LLMs), such as ChatGPT, and Claude, are becoming a milestone in achiev-
ing artificial general intelligence (AGI). Recently, beyond text conversation, multimodal large lan-
guage models (MLLMs), like GPT-4o (Achiam et al. (2023)), Deepseek (Lu et al. (2024)), InternVL
(Chen et al. (2024)) and LLaVA (Liu et al. (2024a)), have received much attention for their im-
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pressive capabilities to understand multimodal inputs (this paper focuses on image and text). Subse-
quently, researchers present various benchmarks to evaluate their performance in different scenarios.
Most apply prompt-based benchmarking approaches to ask models multimodal questions and assess
their responses. For instance, MMT-Bench by Ying et al. (2024) comprehensively evaluates per-
formance in 162 general tasks spanning 32 categories. Meanwhile, MMMU by Yue et al. (2024)
encompasses six core disciplines drawn from university curricula and assesses performance on mul-
tidisciplinary tasks requiring domain-specific knowledge and meticulous reasoning. Convincing
benchmarking is crucial to analyze the attributes of models, provide valuable insights, and guide the
development of MLLMs.

Nevertheless, recent research (Zhan et al. (2022; 2023; 2024)) found that LLMs and MLLMs exhibit
pronounced sensitivity to prompt variations. Thus, minor modifications to questions in benchmarks
may lead to significant output differences. This makes prompt-based benchmarking unreliable since
models’ low accuracy may be owed to unsuitable prompts, not their inner capability. Furthermore,
many MLLMs’ benchmarks use simple and uniform prompts for all samples in a specific task,
which aggravates the problem and causes general underestimation. Additionally, different models
show various sensitivity to the same prompt changes, and existing evaluation frameworks fail to
consider such prompt-induced bias and may not be able to conduct a convincing comparison.

To address the aforementioned deficiencies, this paper introduces TP-Eval, a novel evaluation frame-
work for MLLMs that customizes optimal prompts for different models to fully tap their potential
during evaluation while mitigating the effects leading to performance underestimation by prompt
sensitivity. We posit that this framework enables researchers to assess the strengths and weaknesses
of various models more accurately. To ensure fairness across models while also managing labor
costs, it is essential for the prompt customization process to be automated. A relevant technique
is automatic prompt optimization, as exemplified by recent methods such as ProTeGi Pryzant et al.
(2023) and OPRO Yang et al. (2023), which employ an optimizer-scorer architecture. These methods
generate multiple candidate prompts and score them on a training set to identify the most effective
option.

Inspired by this, TP-Eval implements prompt customization through automatic prompt optimization
tailored to MLLMs’ evaluation. In particular, related prompt optimization methods consider text
only, while our prompt customization incorporates text with images. Moreover, the data scale of the
MLLM benchmark is usually limited (e.g., 20 validation samples per task in MMT-Bench) due to
the high construction cost, while related prompt optimization methods did not consider this few-shot
scenario and easily caused overfitting. Thus, our method introduces a novel error introspection from
wrong responses and employs some designs to limit the prompt semantic change. They significantly
improve the performance of our method.

We conduct extensive experiments to reveal the presence of prompt-induced underestimation and
bias in MLLM evaluation and demonstrate that the TP-Eval framework effectively mitigates these
issues. The primary contributions of this paper can be outlined as follows:

• We identify and analyze prompt design deficiencies in existing MLLMs’ benchmarks that
lead to underestimation and evaluation bias due to prompt sensitivity in MLLMs.

• We propose TP-Eval, a novel evaluation framework for MLLMs that customizes optimal
prompts for distinct models and makes it practical through automatic prompt optimization
tailored to MLLMs’ benchmarks.

• We conducted extensive experiments on advanced MLLM benchmarks and various
MLLMs to demonstrate the effectiveness of our method in alleviating the underestimation
bias in evaluation.

2 MULTIMODAL LARGE LANGUAGE MODEL EVALUATION

2.1 ANALYSIS FOR EXISTING BENCHMARKS

In order to comprehensively evaluate the overall reasoning capabilities of MLLMs, many bench-
marks have been proposed, encompassing a wide range of tasks that assess various aspects of model
performance. Some notable benchmarks are MMBench by Liu et al. (2024b), MMMU by Yue et al.
(2024), MM-Vet by Yu et al. (2023), SEED-Bench by Li et al. (2023) and MMT-bench by Ying et al.
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Prompt LLaVA DeepSeek

Is the person in the picture wearing a helmet? 0.65 0.79

Evaluate if the individual in the picture wearing adequate headgear

that provides safety and visibility to minimize interpretation ambiguity. 0.88 0.61

Is the individual in the picture wearing an adequate headgear

that provides safety and is visible to minimize interpretation ambiguity? 0.69 0.83

Table 1: Similar prompt changes have different effects on two models for helmet anomaly detection
task in MMT-Bench.

(2024). Unlike the prompts used in text-only benchmarks for LLMs, MLLMs’ benchmarks primar-
ily convey the majority of the question information through images. Additionally, considering the
substantial human effort required to design a specific textual prompt for each image, the prevail-
ing approach is to provide a simple prompt template or even an identical prompt for a given task,
like How many {<object>} are there in the image? for counting task and What
emotion is expressed in the artwork in the picture? for artwork emotion
recognition task.

However, extensive research demonstrates that LLMs are sensitive to minor modifications of tex-
tual prompts, so whether MLLMs are also sensitive to prompt design in existing benchmarks?
As shown in Fig. 1a, the original prompt Are there any similarities between the
two pictures? of the spot similarity task in MMT-bench will lead to an anomalous response
from the llava-1.5-7b, who answered Yes to all 180 questions, resulting in an extremely low accu-
racy rate. However, by slightly rephrasing the question, the model achieves nearly double accuracy.
This suggests that the model’s capability is underestimated due to inadequate prompt design. Fur-
ther investigation into the accuracy change brought from the phase Focus on visual cues
indicates that the model’s responsiveness to prompts is challenging to predict by humans, raising
questions about whether seemingly reasonable prompts in existing benchmarks can truly and accu-
rately assess the model’s capabilities.

Nevertheless, designing more suitable prompts for all models in benchmarks won’t solve this prob-
lem fundamentally since different MLLMs’ model architecture and training data are different, lead-
ing to different behaviors, preferences, and sensitivity to prompts. Previous research on prompt
engineering for LLMs has indicated that prompt design strategies effective for one model may prove
ineffective for another (Sclar et al. (2023)). Similar phenomena have also been observed in MLLMs.
An intuitive example can be found in Table 1 whereby customizing a more detailed prompt for
LLaVA will enhance the accuracy of the helmet anomaly detection task in MMT-Bench. How-
ever, this specific prompt declined DeepSeek’s accuracy significantly. When utilizing this prompt,
LLaVA’s performance will surpass that of DeepSeek, and subtle adjustments may reverse this out-
come, which implies that comparing the outputs of two models under an identical prompt may not
necessarily provide a valid performance ranking.

The above discussions regarding prompts indicate that the existing benchmarks and evaluation meth-
ods may not accurately assess the true capabilities of models or facilitate a reliable comparison of
their performance, and simplistic prompt templates in MLLM benchmarks exacerbate this issue.
Action should be taken to mitigate the influence of prompts on model evaluations.

2.2 IDEAL EVALUATION

The ideal evaluation should be able to evaluate the true capabilities of the model. However, due to the
significant performance influence caused by prompt design, how do we define the true capabilities
during evaluation? We argue that models’ true capabilities are performance under optimal prompts,
considering that users will also refine the prompts to get desirable responses when using MLLMs.
The optimal prompts should be derived from slight modifications from the benchmarks’ original
prompts while maintaining the semantic integrity of the task instructions. The optimal prompts
for different models may be identical or different. Therefore, we propose TP-Eval, an evaluation
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framework that customizes the best prompts for each model in each task, thereby tapping their
potential and uncovering their true capabilities.

Manual exploration of optimal prompts during evaluation is time-consuming and impractical. In-
spired by existing works on automatic prompt optimization for LLMs, we propose to use an au-
tomated prompt customizer to leverage original prompts from benchmarks and a few examples to
customize specific prompts for each MLLM under evaluation, thereby tapping their potential.

However, existing text-only prompt optimization methods are not applicable. On the one hand, the
data scale for multi-modal tasks is relatively small, especially for evaluation data, which necessitates
that the prompt customizer possesses a strong few-shot capability, which is overlooked by existing
methods. On the other hand, the desirable prompt customization requires a new framework to utilize
visual information beyond text, and the cost associated with calling MLLM APIs is prohibitively
high, making extensive calls impractical. Therefore, a novel prompt customization method tailored
specifically for multi-modal benchmarks is needed.

3 RELATED WORKS

3.1 RESEARCH ON PROMPT SENSITIVITY

Some studies have revealed that even minor prompt modifications, which have negligible impact
on human semantic understanding, can lead to significant shifts in the output of LLMs (Zhan et al.
(2022; 2023)). This property has been widely exploited in the creation of adversarial examples,
where small perturbations to the embeddings or input text can induce the model to generate in-
correct or misleading answers (Zhan et al. (2024)). This sensitivity allows minor adjustments to
questions in LLM benchmarks to significantly impact the final evaluation performance. Recent re-
search has begun exploring variations in prompt formatting to achieve better results (Sclar et al.
(2023)). Similar phenomena also occur for MLLM. However, addressing this deficiency in MLLM
benchmark design remains relatively underexplored. In this work, we provide a detailed analysis of
prompt design issues and introduce an effective evaluation framework with prompt customization to
avoid the above problems and bias from prompts.

3.2 PROMPT ENGINEERING & OPTIMIZATION

Prompt engineering seeks to identify effective prompts for LLMs to optimize their task performance.
To minimize manual effort, researchers have explored automatic prompt optimization, broadly cate-
gorized into continuous and discrete methods. Discrete methods directly optimize natural language
prompts using techniques such as reinforcement learning (Zhang et al. (2022)) or prompt editing
(Prasad et al. (2022)). In contrast, continuous methods (Lester et al. (2021); Li & Liang (2021)) per-
form optimization within the LLMs’ embedding space, enabling gradient-based approaches. Given
the unprecedented capabilities of LLMs, recent research has started leveraging them as prompt op-
timizers. For example, Yang & Li (2023) integrates LLMs with evolutionary algorithms to enhance
prompt optimization, while Yang et al. (2023); Pryzant et al. (2023) focuses on adapting concepts
and techniques from gradient-based model optimizers, including gradient descent (Pryzant et al.
(2023)) and momentum methods (Yang et al. (2023)), for LLM-based prompt optimization.

Our work follows discrete methods and employs MLLM as prompt optimizers. In particular, we
combine error introspection, semantic change, and accuracy as “pseudo-gradients” proposed by
Tang et al. (2024) to guide the MLLM optimizer in the multimodal scenario. We also introduce a
final re-ranking scheme for better performance.

4 METHOD

4.1 OVERVIEW

Fig. 1b illustrates the overall pipeline of TP-Eval, given the initial text prompts with a few examples
Dfew from the evaluation dataset for a task, and a MLLM MT to be evaluated. We introduce a
prompt customization method to obtain the optimal prompt p∗ for MT , then do an ideal evaluation
to maximize its potential on the original test set Dtest.
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Your task is to generate the instruction <PROMPT>.

Below are some previous instruction with their 
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Answer Analyzer

The current instruction is <PROMPT>.

But it gets the following examples wrong: 

<QUESTION> <IMAGE> 

<RAW ANSWER> <TRUE ANSWER> …

Give a brief reason why it got them wrong.

Figure 2: The overview of our automatic prompt customization structure.

We show the overall framework of our customization method in Fig. 2. Starting from the initial text
prompt p0 for a task from the multimodal evaluation dataset, we utilize GPT-4o mini as an optimizer
MO and a few examples Dfew (questions and answers) from the evaluation dataset to obtain an
optimal prompt p∗ for the MLLM MT . Specifically, we first feed p0 to a scorer, which consists
of the MT and an answer analyzer MA (GPT-4o mini), to output the scores and introspection.
Then we use these results to construct a well-designed meta-prompt for the optimizer MO to obtain
optimized prompts P1 = {p1, p2, · · · , pn}. We feed them to the scorer and iteratively run this
framework to collect N sets of optimized prompts {P1, P2, · · · , PN} with their scores. Finally, we
select the optimal prompt p∗ according to the scores. Please note that we will feed the corresponding
images to MT and corresponding images and answers to MA. We will introduce the details of the
prompt customization method in the following.

4.2 SCORER

In the i-th iteration, we feed the prompt set Pi (using p0 in the first iteration) to the scorer to obtain
the corresponding scores and introspection (i.e., pseudo gradient) of each prompt.

4.2.1 SCORE GENERATION

We first feed these prompts with corresponding images to MT to obtain models’ responses. Then
considering the variations of answers and most benchmarks apply choice questions, we use MA

(GPT4o-mini) extract choices and then compute the accuracy api
on Dfew for pi.

Using accuracy as a reward only may lead to drastic changes in the new prompt and destroy the
optimization. Thus we utilize a semantic similarity metric as proposed by Tang et al. (2024) to
limit the changes in each iteration. Specifically, we use BERT by Kenton & Toutanova (2019) to
extract the embedding of the current prompt pi and the original prompt p0, then calculate their cosine
similarity as spi

.

We combine api and spi as the final score cpi = αapi+(1−α)spi , where α is a weighting coefficient
to make a trade-off between optimization and original semantic meaning maintain.

4.2.2 INTROSPECTION GENERATION

We argue that scores are quantitative and not informative enough, especially in the few-shot exam-
ples, and thus, we introduce to employ additional introspection during optimization. Specifically, we
aim to help the optimizer better understand the deficiencies in the current prompt. To achieve this,
we represent introspection Ii on the incorrect responses in Dfew of MT under pi, allowing MO to
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explicitly reference the reasons for these errors when generating new prompts. We show the prompt
structure to generate introspection in Fig. 2 and the full prompt in the supplementary materials.

4.3 OPTIMIZER

We use the optimizer MO (GPT4o-mini) to generate a new prompt set Pi+1 from all history prompts
{P0, · · · , Pi}. Specifically, we design a meta-prompt as shown in Fig. 2 and complete it using K
prompts with Top-K scores from {P0, · · · , Pi}. We also feed their scores and introspection to the
optimizer. The meta prompt is composed of four parts: description, pseudo gradient (i.e., prompts
with their scores and introspection), examples (questions with ground-truth answers from Dfew),
and instruction. The description is used to describe the prompt optimization tasks. The pseudo
gradient and examples are used to provide information for the optimization. The instruction is
used to generate new prompts. In particular, to ensure smooth optimization and not overlook op-
timal prompts, we use a decaying edit distance You can only edit at most {counter}
words to limit the changes. Please note that for identical question benchmarks (e.g., MMMU),
we will add an initialized meaningless phrase and optimize it rather than the whole prompt, see the
experiments section for more details.

4.4 ITERATION

We use the above scorer-optimizer framework iterative to obtain N prompt set {P1, P2, · · · , PN}
with scores for each prompt. Then we select the optimal prompt from all history prompts.

In contrast to related prompt optimization methods using large-scale training data to obtain candidate
prompts and selecting the optimal prompt with the highest accuracy, MLLM evaluation can provide
only limited examples in the optimization. Thus, we have to consider the problem of overfitting
and bias in the few examples. The introduced semantic cosine similarity and decaying edit distance
can alleviate this problem. Moreover, in the selection of the optimal prompts, we employ a higher
weighting coefficient α∗ > α to re-compute each prompt’s score and select the prompt with the
highest score.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models. The MLLMs to be evaluated (i.e., MT ) are LLaVA-1.5-7B, DeepSeek-VL-7B,
Mini-InternVL-Chat-4B-V1-5. We use GPT-4o-mini for optimizer (MO) and answer
analyzer (MA).

Benchmarks. We use MMT-Bench and MMMU as the evaluation benchmarks. MMT-Bench is
designed for the evaluation of general capabilities, while MMMU is designed for multi-discipline
evaluation. Considering our limited resources, we select a subset of MMT-Bench as MMT-S, which
contains 83 tasks (19 categories). We use the development set and validation set of MMMU.

Settings of prompt optimization We evaluate our method in two settings: optimizing the
whole prompt or optimizing the newly added phrase. MMT-Bench follows the most prevalent
MLLM benchmark format, which uses the same prompt template within a task (e.g., How many
<object> are there in the image? for the task of object counting). Thus, we opti-
mize the whole prompt for each task in MMT-S. In MMMU, each question is identical, and thus we
add an initialized meaningless phrase Answer the questions about {task name} as the
prompt to be optimized and move the original prompt to <QUESTION> in the meta prompt.

Implementation details. For MMT-S, we utilize the officially designated validation set as Dfew,
which comprises approximately 10% of the total data, with roughly 20 samples per task. For
MMMU, we combine the development and validation sets and allocate half of the data as Dfew.
We follow VLMEvalKit by Duan et al. (2024) to implement the answer extraction module in MA.
The total optimization iteration N = 16, with each round generating three new prompts. In each
iteration, we select the top eight (i.e., K = 8) prompts for the meta prompt. We set the temperature
to 1.0 when generating new prompts. During the optimization phase, we set α to 0.8 to encourage
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the exploration of prompts that yield higher accuracy. In the final step, we set α∗ to 0.6 to select the
optimal prompt.

5.2 MAIN RESULTS

5.2.1 PERFORMANCE ANALYSIS

Model Original Score TP-Eval Score #Improved Task Ratio

LLaVA-1.5-7B 50.4 54.4 32 25.1%

DeepSeek-VL-7B 55.2 57.3 21 23.3%

Mini-InternVL-Chat-4B-V1-5 54.6 56.9 16 40.4%

Table 2: Overall result for MMT-S. All three models exhibited significant performance improve-
ments across a substantial number of tasks following prompt customization.
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Figure 3: Results of different models on MMT-S (L2-category). Three models showed varying im-
provement across different task types while performance gains differ between models, highlighting
the underestimation and bias introduced by original prompts and the effectiveness of our method.

MMT-Bench Table 2 shows the overall results of three open-source models’ re-evaluated perfor-
mance after prompt customization on MMT-S, where they exhibit varying degrees of improvement
and show hidden potential across different tasks. It was observed that 32 tasks could yield a perfor-
mance enhancement of 25.1% through prompt customization on LLaVA, ultimately leading to an
overall score improvement of 4%. With respect to DeepSeek and InternVL, the former demonstrated
a pronounced instruction-following capability during the experiments, while the latter exhibited a
tendency towards detailed problem analysis. These characteristics render both models more robust
to prompt changes, resulting in less accuracy improvement. The varying improvements suggest
that models having similar scores may experience shifts in their rankings when the prompt changes.
It also proves that prompt design flaws generally exist in MMT-Bench, resulting in a substantial
underestimation of models’ performance, while our evaluation method can tap their potential.

Fig. 3 shows more detailed L2-category level results of MMT-S. All three models did not demon-
strate significant improvements in relatively simple and easily comprehensible tasks like visual
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recognition, as well as in more challenging and complex tasks such as image retrieval. This out-
come is comprehensive since, for the former, the model completely understands what it should do,
and designing a more detailed prompt doesn’t help; for the latter, model performance is mainly con-
strained by its inner true ability rather than inadequate prompts. Furthermore, certain tasks, such as
anomaly detection, have been proven improvements across all three models, suggesting its general
prompt design flaws. In other tasks like multiple image analysis and localization tasks, models show
obvious otherness, where LLaVA and InternVL’s performances demonstrate significant enhance-
ments, but DeepSeek’s barely maintains. This also emphasizes the validity of our proposed TP-Eval
framework in mitigating bias and comparing model capabilities while ensuring fairness.

MMMU We conducted a comprehensive comparison of the results for all 30 tasks in MMMU. We
evaluated the performance with the original questions, with the addition of the initial prefix prompt,
and with the optimized prefix prompt on LLaVA. The results and improvements are summarized in
Fig. 4.

It is evident that even adding the domain-specific initial prefix prompt (i.e., task name) can ef-
fectively guide the model to focus on and respond within that specific domain, thereby mitigat-
ing underestimation, but they are still too simple and not optimal. Compared to the initial prefix
prompt, our optimized prefix prompts showed general performance improvements. Additionally,
due to the semantic similarity metric in scores and extensive question information incorporated in
the meta-prompt, the optimizer successfully generates prefix prompts with higher human readability
and strong generalization capabilities within the domain.
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Figure 4: Overall performance with different
prompt methods on MMMU with LLaVA. In most
cases, the results after optimization surpass those
achieved with the initial prompts, and they gener-
ally outperform the original questions as well.
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Figure 5: Result of applying optimized
prompts to other models. Applying cus-
tomized prompts from one model to another
yields performance changes that differ from
each model’s inherent characteristics.

5.2.2 OPTIMALITY ANALYSIS

Fig. 5 presents the overall results obtained from a hybridization of customization outcomes across
different models within MMT-S. It is evident that prompts optimized using a model itself as a scorer
yield superior performance. Notably, when prompts optimized on InternVL are applied to LLaVA
and DeepSeek-VL, their performance will decline. This outcome not only supports that the optimal
prompts proposed for one specific model may not be universally applicable, thereby underscoring
the necessity of customizing prompts to tap the models’ full potential but also indicates that our
method has indeed approached the objective of customization and can effectively support TP-Eval
framework.

5.2.3 ERROR ANALYSIS

Similar to many text-only prompt optimizations, our method, while ensuring an overall enhance-
ment in performance and a closer alignment with the true capability for evaluated models, may still
encounter optimization failures for a limited number of tasks. This can, in turn, result in a slight

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

performance deterioration when using optimized prompts. For instance, although LLaVA has an
overall improvement of 25% across 32 tasks, it also experiences an approximate 6% performance
decline on 6 tasks. We argue that a critical factor contributing to this is the relatively small size of
the validation set currently designated by the official multi-modal benchmarks, which may cause
overfitting on the training set. Despite our efforts to incorporate introspection mechanisms for more
effective utilization of few-shot data, and the implementation of re-ranking and meta-prompt design
strategies to mitigate overfitting, this challenge persists, but its impact remains relatively minor.

5.3 ABLATION STUDY

artwork_emotion_recognition helmet_anamaly_detection behavior_anamaly_detection
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Figure 6: Performance on whether to use intro-
spection or not.
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Figure 7: Influence of re-ranking. Both exces-
sively high and low α can lead to a reduction in
performance, and each model achieves optimal
performance with α ∈ [0.5, 0.6].

Introspection Fig. 6 illustrates the results of LLaVA in three tasks of MMT-S when introspection
is not incorporated. It is evident that the optimization results on both artwork emotion recognition
and helmet anomaly detection tasks are significantly inferior to those achieved with our method.
Notably, the latter even experiences a failure in optimization, resulting in a performance decline.
This underscores the effectiveness of integrating introspection to enhance the few-shot optimization
capability on multi-modal benchmarks. Furthermore, the figure indicates that the accuracy of be-
havior anomaly detection is better without introspection. This phenomenon arises from the prompt
explicitly designating choice A as normal and choice B as abnormal, disregarding the randomized
initial order of the choices presented in this task. This is an instance of semantic overfitting that
leads to misleadingly high performance. Thus, the introduction of introspection can also enhance
result interpretability.

Re-ranking parameter. Fig. 7 illustrates the impact of varying the proportion of accuracy dur-
ing the re-ranking phase on optimization results. As depicted, when setting the parameter to 0.8,
which in fact omits the re-ranking stage, leads to significant overfitting and ultimately degrades the
optimization outcomes. Conversely, a disproportionately low correctness ratio may result in the ex-
clusion of potentially optimal prompts, thereby underfitting and hindering the optimized prompts
from fully leveraging the model’s capabilities. Based on our experiments, we conclude that a value
between 0.5 and 0.6 is appropriate to ensure both effectiveness and coherence across the models.

5.4 ZERO-SHOT EXPLORATION

Considering that the task may suffer from extremely limited data availability or involve privacy con-
cerns that prevent the disclosure of answers, it becomes impractical to construct even one training
sample. In response, we propose an approach that leverages the robust In-Context Learning(ICL) ca-
pabilities of LLMs to extend our method to the zero-shot scenario. Specifically, we aim to optimize
prompts for a newly introduced task through the use of a selection of previously successfully opti-
mized examples, thereby facilitating zero-shot customizing. We anticipate that LLMs can discern
certain vocabulary, phrases, and reasoning patterns that the model under examination may prefer
from these ICL examples. A straightforward experiment result illustrating this observation can be
found in Table 3, where we select 3 tasks from all 32 MMT-S underestimated tasks for LLaVA as
targets and use the rest as ICL examples. We use this zero-shot ICL-based optimization fashion to
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refine the original prompts, which also enhances the original accuracy and is close to that of optimal
prompts learned by 20 examples.

Task name Original prompt Zero-shot Optimal prompt

helmet anomaly detection 0.65 0.86 0.92

artwork emotion recognition 0.3 0.33 0.41

spot similarity 0.23 0.42 0.52

Table 3: Zero-shot prompt optimization utilizing In-context Learning.

6 CONCLUSION

We investigated MLLM benchmarks and found that overly simplistic or unsuitable textual prompts
may lead to an underestimation of models’ capabilities. To address this issue, we propose an ideal
evaluation framework, TP-Eval, which customizes the most suitable task prompt for each model to
mitigate prompt-induced biases and tap the models’ potential. To achieve this goal, we drew on the
successful experiences of automatic prompt optimization on text-only LLMs and designed a prompt
optimization method tailored to the few-shot scenario of MLLM benchmarks. Our experiment re-
sults for three models on the MMT and MMMU indicate the effectiveness of our method.
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