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Abstract
Recent work on inference-time alignment has
established the benefits of increasing inference-
time computation in language models, but
naively scaling compute through techniques like
Best-of-N sampling can cause performance to de-
grade due to reward hacking. Toward a theoreti-
cal understanding of how to best leverage addi-
tional computation, we formalize inference-time
alignment as improving a pre-trained policys re-
sponses for a prompt of interest, given access to
an imperfect reward model. We analyze the per-
formance of inference-time alignment algorithms
in terms of (i) response quality, and (ii) compute,
and provide new results that highlight the impor-
tance of the pre-trained policys coverage over
high-quality responses for performance and com-
pute scaling: (1) We show that Best-of-N align-
ment with an ideal N can achieve optimal perfor-
mance under stringent notions of coverage, but
provably suffers from reward hacking when N
is large, and fails to achieve tight guarantees un-
der more realistic coverage conditions; (2) We
introduce InferenceTimePessimism, a new al-
gorithm which mitigates reward hacking through
deliberate use of inference-time compute, imple-
menting pessimism in the face of uncertainty; we
prove that its performance is optimal and scaling-
monotonic, i.e., does not degrade as N increases.
We complement our theoretical results with ex-
periments that demonstrate the practicality of our
algorithm across a variety of tasks and models.

1. Introduction
Inference-time computation has emerged as a new axis
for scaling in language models, which has led to dramatic
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improvements in their capabilities (Brown et al., 2024;
Snell et al., 2024; Wu et al., 2024b; OpenAI, 2024b;
DeepSeek-AI, 2025) and played a central role in recent
AI breakthroughs (Chollet et al., 2024). While there are
a multitude of ways in which additional computation can
be utilized during inference—e.g., to generate long chains
of thought (Wei et al., 2022; Li et al., 2024b), have the
model rate or correct its own responses (Zheng et al., 2023;
Wu et al., 2024a), or implement planning and search (Yao
et al., 2024; Zhang et al., 2024)—even exceedingly simple
methods like Best-of-N (parallel) sampling can provide
significant performance gains (Lightman et al., 2023;
Brown et al., 2024), and enjoy provable representational
benefits (Huang et al., 2024a). Such algorithms are also
widely used throughout post-training for frontier models
(DeepSeek-AI, 2025; Yang et al., 2024a), and thereby
serve as a cornerstone of fine-tuning and inference.

Toward developing a deeper understanding of the algorith-
mic landscape for inference-time computation, in this pa-
per, we focus on the problem of inference-time alignment:
given a task and a reward model that is a proxy for task
performance, how can we best use inference-time computa-
tion to improve the quality of a response chosen from many
candidates generated by the base model? The Best-of-N
heuristic is one of the most widely used inference-time
alignment methods, and proceeds by generating N can-
didate responses for a given prompt, then returning the
response with the highest reward under a reward model
(Stiennon et al., 2020; Nakano et al., 2021; Touvron et al.,
2023; Gao et al., 2023; Eisenstein et al., 2023; Mudgal
et al., 2024). While attractive in its simplicity, Best-of-N
and related heuristics are known to suffer from reward
overoptimization or reward hacking when N increases
(Gao et al., 2023; Stroebl et al., 2024; Chow et al., 2024;
Frick et al., 2024). While one might hope that increasing
computation to generate a larger number of candidates
will increase the likelihood of selecting a high-quality
response, reward model errors at the tail of the response
distribution can cause Best-of-N to return generations with
high (modeled) reward, but poor task performance.

This overoptimization phenomenon raises two fundamen-
tal questions, which we investigate in this paper: (1) what
is the extent to which the imperfect reward model limits
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the performance of inference-time alignment methods;
and (2) can more deliberate algorithm design lead to
performance gains that scale monotonically with increased
computation? Beyond guiding practical interventions for
inference-time alignment, answers to these questions con-
tribute to a foundational understanding of inference-time
computation more broadly.

Our framework. To address the questions above, we pose
inference-time alignment1 as the task of extracting a high-
quality response ŷ for a prompt x from a pre-trained lan-
guage model, or base policy πref : X → ∆(Y), that maps a
prompt x to a distribution over responses y ∈ Y . The qual-
ity of the response ŷ is determined by an underlying true
reward function r⋆ : X × Y → [0, Rmax], that expresses,
for example, the correctness of a math proof or the help-
fulness of a chat response. The algorithm designer does
not know r⋆ and instead uses an imperfect reward model r̂
(e.g., one learned from preference-based feedback (Chris-
tiano et al., 2017; Ouyang et al., 2022; Wang et al., 2024b))
to maximize performance as follows. Using black-box ac-
cess to πref and r̂, i.e., sampling queries y ∼ πref(· | x) and
evaluation queries r̂(x, y) and πref(y | x), we aim to pro-
duce a response ŷ that approximately maximizes the true
reward (thereby minimizing regret to the optimal policy),

r⋆(x, ŷ) ≈ max
y∈Y

r⋆(x, y). (1)

This formulation presents two central questions:

Q1: Regret. How close to optimal can we make the
reward r⋆(x, ŷ) in Eq. (1), as a function of the quality
of the model r̂?

Q2: Compute. What is the computational cost—measured
by the number of sampling queries y ∼ πref(· | x),
and evaluation queries r̂(x, y) and log πref(y | x)
used by the algorithm—required for optimal reward?

Note that while our goal is to maximize the true reward
r⋆, the quality of the reward model r̂ creates an inherent,
information-theoretic barrier to optimizing r⋆, since the lat-
ter unobserved. Intuitively, we should not be able to maxi-
mize quality under r⋆ if r̂ is highly inaccurate.

1.1. Contributions
We show that Best-of-N alignment and related heuristics
may fail to achieve optimal regret, but that more sophis-
ticated use of inference-time computation—namely, to
extract additional information from the reward model and
quantify its uncertainty—can mitigate overoptimization,
and achieve optimal regret and compute scaling.

Statistical framework & necessity of coverage (Sec. 2).
1Following prior work (e.g., Rafailov et al. (2023); Ye et al.

(2024)), we adopt contextual bandit/reinforcement learning termi-
nology, interpreting the language model as a policy.

Our formal framework, summarized above, reformulates
inference-time alignment as a statistical problem via query
complexity. This allows us to derive fundamental limits on
the performance of any inference-time alignment algorithm.
We show that the best possible reward one can achieve, ir-
respective of computational cost, is determined by the base
policy’s coverage over high-quality responses, along with
the mean-squared error of r̂. This serves as a skyline for
our investigation into improved algorithmic interventions.

Tight analysis of BoN-Alignment (Sec. 3). Within our
framework, we offer the first theoretical analysis of the
regret of Best-of-N alignment (BoN-Alignment). We show
that BoN-Alignment can achieve optimal regret under a
stringent notion of coverage (“uniform” or L∞-type) when
N is tuned appropriately, but:

1. provably suffers from overoptimization, degrading in
performance once N scales past a critical threshold;
and

2. fails to achieve tight guarantees under weaker notions
of coverage (“average-case” or L1-type), thereby
falling short of the skyline established in Section 2.

Optimal algorithm: InferenceTimePessimism (Sec. 4).
Motivated by the shortcomings of Best-of-N, we introduce
an improved algorithm, InferenceTimePessimism. We
prove that InferenceTimePessimism:

1. is regret-optimal, in the sense that it can achieve the
best possible reward in our framework, thereby match-
ing the skyline in Section 2; and

2. is scaling-monotonic, in the sense that it is guaran-
teed to avoid overoptimization beyond a certain point
(determined by the regularization parameter), even as
N →∞.

To achieve this, our algorithm uses a novel rejection
sampling scheme to implement χ2-regularization—which
is known to mitigate overoptimization via the principle
of pessimism in the face of uncertainty (Huang et al.,
2024b)—purely at inference time. Beyond achieving
optimal regret, we show that InferenceTimePessimism
uses near-optimal compute under our framework.

Empirical evaluation (Sec. 5). To demonstrate the
benefits of InferenceTimePessimism, we compare the
algorithm to BoN-Alignment across several tasks, base
policies, and reward models. As predicted by our theory,
BoN-Alignment degrades in performance as computation
increases (via N ), while InferenceTimePessimism is
scaling-monotonic and does not suffer from this character-
istic overoptimization phenomenon (Figure 1). We also ob-
serve several instances where InferenceTimePessimism
outperforms BoN-Alignment in terms of maximal reward
achieved when the computational budget is untuned,
demonstrating the robustness of our algorithm. Ap-
pendix B contains further empirical results, including
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Figure 1. Comparison between performance of BoN-Alignment (dashed lines) and InferenceTimePessimism algorithm (solid lines) on
GSM8K with reward model OASST as r̂ and several different choices of πref . Left: BoN-Alignment initially improves accuracy over πref , but
eventually degrades as N increases, while InferenceTimePessimism is monotone, as predicted by our theory. Right: BoN-Alignment
overoptimizes the reward model, with high r̂ but lower accuracy as N increases, whereas InferenceTimePessimism stops increasing r̂
with N beyond a certain threshold determined by a regularization parameter.

examinations of the reward model’s tail behavior and
demonstrations of InferenceTimePessimism’s robustness
to choice of hyperparameter.

1.2. Related Work
To our knowledge, our work provides the first theoretical
framework for understanding and mitigating overoptimiza-
tion in inference-time alignment. Various works have
analyzed specific properties of the Best-of-N alignment
algorithm (Yang et al., 2024b; Beirami et al., 2024;
Mroueh, 2024) such as tradeoffs between reward and
KL-divergence, but do not ultimately provide guarantees
on performance when the estimated reward model and
true reward are mismatched. We focus on analyzing
Best-of-N specifically because it is the most widely used
and foundational inference-time alignment technique, but
other algorithms (Welleck et al., 2024) including variants
of rejection sampling (Khanov et al., 2024; Chen et al.,
2024; Shi et al., 2024; Liu et al., 2024a; Jinnai et al., 2024)
and Monte-Carlo Tree Search (Feng et al.; Yao et al., 2024;
Zhang et al., 2024), are also used in practice.

Our work is also closely related to research on offline align-
ment at training time (Christiano, 2014; Ouyang et al.,
2022; Rafailov et al., 2023), which involves fitting a re-
ward model r̂ (typically through pairwise feedback), and
then maximizing it using RL. A growing body of theoret-
ical works on offline alignment provide theoretical guar-
antees for mitigating reward overoptimization that—like
our work—depend on notions of coverage for the base pol-
icy (Zhu et al., 2023; Zhan et al., 2023a; Li et al., 2023b;
Xiong et al., 2024; Liu et al., 2024b; Cen et al., 2024; Fisch
et al., 2024; Ji et al., 2024; Huang et al., 2024b). Our formu-
lation for inference-time alignment can be viewed as a vari-
ant of this problem that abstracts away the reward model
training; in particular, we take r̂ as given and ask how to
achieve the best possible performance on a per-instance

basis, with respect to the true reward r⋆ and the prompt
x ∈ X .

Our algorithm, InferenceTimePessimism, is closely
related to χPO (Huang et al., 2024b), a training-
time offline alignment algorithm that aims to miti-
gate overoptimization via regularization with the χ2-
divergence. InferenceTimePessimism also leverages χ2-
regularization, but implements this purely at inference-time
via a novel rejection sampling scheme.See Appendix A.1
for a detailed discussion of connections to offline
alignment.Finally, our analysis draws on the treatment of
approximate rejection sampling in Block & Polyanskiy
(2023), which tightly characterizes the performance of
rejection sampling with unbounded likelihood ratios.

2. Inference-Time Alignment Framework
In this section, we formally introduce our inference-time
alignment framework, then use it to prove lower bounds
that highlight the necessity of coverage. In our frame-
work, the algorithm designer begins with a base policy
πref : X → ∆(Y), which is a conditional distribution
mapping prompts x ∈ X to distributions over responses
y ∈ Y , and πref(y | x) is the probability that the base
policy generates a response y given the prompt x.2 The
algorithm designer also has access to an imperfect reward
model r̂ : X × Y → [0, Rmax], where Rmax ≥ 1, and the
reward label r̂(x, y) estimates the quality of the response y
for the prompt x. This serves as a proxy for the true reward
model r⋆ : X × Y → [0, Rmax], which is unknown.

Given the base policy πref , the reward model r̂, and a

2The motivating special case is autoregressive language mod-
eling, where Y = VH for a vocabulary space V and sequence
length H , and πref has the autoregressive structure πref(y1:H |
x) =

∏H
h=1 πref(yh | y1:h−1, x) for y = y1:H ∈ Y .
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prompt x ∈ X , the goal is to produce a high quality
response ŷ ∈ Y as measured by the true reward r⋆, in the
sense that the following inference-time regret is small.

Regπ⋆(ŷ ;x) := J(π⋆ ;x)− J(ŷ ;x) ≤ ε, (2)

Here, π⋆ can be viewed as a comparator policy with
high reward, and J(π;x) := Ey∼π(·|x)[r

⋆(x, y)] denotes
the expected reward under r⋆ for any policy π. When
the response ŷ is chosen by a randomized algorithm
A, we use π̂A(· | x) to denote the conditional distribu-
tion over responses induced by A, and write regret as
Regπ⋆(π̂ ;x) := J(π⋆ ;x)− J(π̂A ;x).

In applications, the base policy πref represents a language
model trained in some manner. The true reward r⋆ can
represent the extent to which y agrees with human pref-
erence, passes a proof checker, or passes a unit test suite.
The reward model r̂ can be an open source reward model,
a model trained by the algorithm designer themselves, or
even derived directly from πref itself (Wang et al., 2022;
Huang et al., 2024a; Song et al., 2024).

Reward model quality versus regret. There is no hope
of making the regret in Eq. (2) small without requirements
on the fidelity of the reward model r̂. For a prompt x ∈ X ,
we measure the quality of r̂ via the expected squared error
with respect to r⋆, where responses are drawn by the base
policy πref :

ε2RM(x) := Ey∼πref(·|x)

[
(r̂(x, y)− r⋆(x, y))

2
]
. (3)

Empirically and in theory, one can minimize Eq. (3) by
fitting r̂ to rewards or human preference data for responses
generated from πref (cf. Appendix A.1), which is already
standard in post-training pipelines. As our focus is on
inference-time interventions, we simply abstract the reward
model training step away and assume we have a reward
model r̂ with error ε2RM, as defined in Eq. (3). We aim to
understand how small we can make the regret in Eq. (2) as
a function of the reward model quality ε2RM, and what algo-
rithmic interventions are required to achieve this (cf. Q1).

Remark 2.1. In practice, the reward estimation error in
Eq. (3) may not be the tightest notion of reward error, and
thus our bounds may be conservative. Nevertheless, it is ar-
guably the most common formulation of reward mismatch
(Zhu et al., 2023; Zhan et al., 2023a; Xiong et al., 2024;
Gao et al., 2024; Huang et al., 2024b), and serve as a foun-
dation for future investigations into other notions of error.

Measuring computational efficiency via query complexity.
The next question we consider (cf. Q2) is how much com-
putation is required to minimize the inference-time regret
in Eq. (2) for a given prompt x. To allow for computational
understanding that is agnostic to the architecture or
description of πref and r̂, we draw inspiration from Huang

et al. (2024a) and abstract it as a statistical problem, where
computational efficiency is quantified via the number
of samples and labels queried from the base policy and
reward model.

Definition 2.2 (Sample-and-evaluate framework). In the
sample-and-evaluate framework, the algorithm designer
does not have explicit access to the base policy πref or the
reward model r̂. Instead, they access πref and r̂ through
sample-and-evaluate queries: For a given prompt x ∈ X ,
they can sample N responses y1, y2, . . . yN ∼ πref(· | x)
and observe the likelihood πref(yi | x) and reward model
value r̂(x, yi) for each such response. The efficiency of the
algorithm is measured by the total number of queries N .

This is a natural statistical abstraction for computation—
analogous to oracle/query complexity in optimization
(Nemirovski et al., 1983; Traub et al., 1988; Raginsky &
Rakhlin, 2011; Agarwal et al., 2012), and learning theory
(Blum et al., 1994; Kearns, 1998; Feldman, 2012; 2017)—
and encompasses Best-of-N alignment and other schemes
such as rejection sampling (Khanov et al., 2024; Chen et al.,
2024; Shi et al., 2024; Liu et al., 2024a; Jinnai et al., 2024).

2.1. A Skyline: The Necessity of Coverage
To motivate our main algorithmic results, and as a step to-
ward answering question Q1, we begin by proving a lower
bound on the best possible regret one can hope to achieve,
as determined by the reward model’s error ε2RM(x). This
lower bound highlights the importance of the base policy’s
coverage, defined formally for a comparator policy π⋆ via

Cπ
⋆

(x) := Ey∼π⋆(·|x)

[
π⋆(y | x)
πref(y | x)

]
. (4)

Proposition 2.3 (Necessity of coverage). Fix a prompt x ∈
X , and πref : X → ∆(Y). For any alignment algorithm A
and any 16 ≤ C⋆ ≤ maxπ:X→∆(Y) Cπ(x), there exists a
reward function r⋆ and reward model r̂ satisfying Eq. (3)
and comparator policy π⋆ with Cπ⋆

(x) ≤ C⋆ such that

J(π⋆;x)− J(π̂A;x) ≥
1

4
·
√

C⋆ · ε2RM(x).

Coverage in the sense of Eq. (4) plays a central role in the
theoretical study of offline alignment (Zhu et al., 2023;
Zhan et al., 2023a; Li et al., 2023b; Xiong et al., 2024; Liu
et al., 2024b; Cen et al., 2024; Fisch et al., 2024; Ji et al.,
2024; Huang et al., 2024a;b), and Proposition 2.3 shows
that it plays a similar role for inference-time alignment. Re-
cent works show that standard language models can indeed
exhibit favorable coverage over desirable responses in stan-
dard tasks of interest, which translate to performance gains
at inference time (Brown et al., 2024; Snell et al., 2024;
Wu et al., 2024b). In the remainder of the paper, we will
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Algorithm 1 Best-of-N Alignment (BoN-Alignment)
input: Prompt x, queries N , reference policy πref ,
reward model r̂

1: Draw ŶN = (y1, . . . , yN ) ∼ πref(· | x) i.i.d.
2: Query r̂ for reward labels (r̂(x, y1), . . . , r̂(x, yN ))
3: return response y = argmaxyi∈ŶN

r̂(x, yi)

explore the extent to which this skyline can be achieved—
through existing techniques, or through new interventions.

Additional notation. We adopt standard big-oh notation,
and write f ≲ g as shorthand for f = O(g) and f = Õ(g)
to denote f = O(g · max{1, polylog(g)}).

3. Understanding Best-of-N Alignment
As our first result, we give a sharp analysis of Best-of-N
alignment, highlighting the role of coverage in determining
its scaling properties and (sub-) optimality.

3.1. A Sharp Analysis of Best-of-N Alignment
In Algorithm 1 we display the Best-of-N algorithm for an
input prompt x ∈ X . BoN-Alignment draws N candidate
responses y1, . . . , yN ∼ πref(· | x) i.i.d., and returns the
response y ∈ ŶN that has the largest reward under the
reward model r̂. Next, for a fixed prompt x and sample
size parameter N , let π̂BoN(x) ∈ ∆(Y) denote the policy
corresponding to the distribution over responses output by
BoN-Alignment, which is a random variable depending on
draws of candidate ŶN ∼ πref . which, given x ∈ X , draws
N responses y1, . . . , yN ∼ πref(· | x) i.i.d., and returns the
response ŷ = argmaxyi

r̂(x, yi). Our main guarantee for
BoN-Alignment bounds the regret in terms of the sample
size N , the coverage coefficient Cπ⋆

(x), and the reward
model error ε2RM(x).

Theorem 3.1 (Guarantee for BoN-Alignment). For any
prompt x ∈ X , reward model error ε2RM(x) ∈ (0, 1],
and comparator π⋆, whenever N ≥ c · Cπ⋆

(x) ·
log(Rmax/εRM(x)) for a sufficiently large constant c, the
BoN-Alignment policy π̂BoN satisfies

J(π⋆;x)− J(π̂BoN;x) (5)

≲ Rmax ·
Cπ⋆

(x) log(Rmax/εRM(x))

N
+
√
N · ε2RM(x).

In particular, as long as N ≍
(

Rmax·Cπ⋆
log(Rmax/εRM(x))
εRM(x)

) 2
3

,3

J(π⋆;x)− J(π̂BoN;x) (6)

≲
(
Rmax · Cπ

⋆

(x) · ε2RM(x) · log(Rmax/εRM(x))
)1/3

.

3We use N ≍ □ to indicate that C1□ ≤ N ≤ C2 · □ for any
sufficiently large absolute constants C1 ≤ C2.

The main regret bound in Eq. (5) has two terms of interest.

The first, which scales as roughly Cπ⋆
(x)

N , decreases as the
sample size increases, and reflects the extent to which the
set of responses y1, . . . , yN ∼ πref(· | x) contains enough
information to compete with π⋆. Intuitively, as N grows,
there is a higher probability of drawing a response that,
under the true reward r⋆, is at least as good as one from the
comparator π⋆. However, r⋆ is not available to the learner,
who instead evaluates response quality using the imperfect
proxy r̂. There becomes a greater risk of overfitting to
errors in r̂ as N increases, and candidates are drawn from
the tail of the base distribution where r̂ is more error-prone.
The cost of this overoptimization is expressed in the second
term of Eq. (5),

√
N · ε2RM(x), which increases with sample

size and leads to arbitrarily large regret as N is scaled.

Because sample size is the only parameter in
BoN-Alignment, it plays dual, but opposing, roles in
both performing regularization (smaller N to stay on-
support) and increasing response quality (larger N to draw
good responses). The optimal choice of N must balance
gains in quality with risk of overoptimization and be large
but not too large, which leads to the second guarantee
in Theorem 3.1. Eq. (6) resembles the idealized lower
bound in Proposition 2.3 but has a slower rate, scaling with
ε
2/3
RM (x) instead of εRM(x).4 The following result shows that

this dependence is in fact tight.

Theorem 3.2 (Lower bound for BoN-Alignment). For
any εRM ∈ (0, 1

4 ] and N ≳ 1, there exists a problem
instance with εRM(x) ≤ εRM and comparator policy π⋆ with
Cπ⋆

(x) = Õ(1), such that, for any x ∈ X , BoN-Alignment
has regret

J(π⋆ ;x)− J(π̂BoN ;x) ≥ Ω̃

(√
N · ε2RM

)
. (7)

Further, for all N ∈ N, there exists a problem instance sat-
isfying the same conditions such that BoN-Alignment has

J(π⋆ ;x)− J(π̂BoN ;x) ≥ Ω̃
(
ε
2/3
RM

)
. (8)

Eq. (7) shows that the regret indeed grows as N is scaled,
and is an algorithm-dependent lower bound that reflects
the consequences of overfitting in BoN-Alignment. This
is a serious concern since, when scaling N in practice,
it may be impossible to know the sample size beyond
which overoptimization occurs, especially on a per-prompt
basis. Then, building on Eq. (7), the bound in Eq. (8)
shows that ε

2/3
RM (x) is the best possible error achievable

by BoN-Alignment, which matches the upper bound in

4The bound in Eq. (6) is larger than the bound in Proposi-
tion 2.3 in the non-trivial regime where (Cπ⋆

(x) · ε2RM(x))1/2 ≤
Rmax.
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Eq. (6). In other words, irrespective of the amount of
computation, BoN-Alignment may fail to achieve the
optimal skyline for regret in Proposition 2.3.

The suboptimality stems from the dual role of N , which
serves as the regularizer, but is only a weak one at best.
In particular, N cannot be safely increased to sample bet-
ter candidates without disproportionately increasing the
risk of overfitting. This insight motivates the algorithms
we develop in Section 4, which mitigate overoptimization
through a more refined form of regularization and use of
inference-time computation.

Remark 3.3 (Proof technique). The lower bound in
Eq. (7) is algorithm-specific, and the construction exposes
the cost of overfitting to errors in r̂, specifically, for
responses with small probability under πref that are drawn
when N is relatively large. To prove Eq. (8), we first
leverage an information-theoretic argument showing that
if N ≪ poly

(
Cπ⋆

(x), 1
ε2RM(x)

)
, no algorithm can extract

enough information to compete with π⋆. Combining this
regime with the one in Eq. (7) yields Eq. (8).

3.2. Stronger Guarantees under Uniform Coverage
Per Theorem 3.2, the regret of BoN-Alignment must
scale with ε

2/3
RM (x) in general. However, it does

enjoy tighter guarantees when a stronger form of
coverage—the uniform coverage coefficient—is bounded:
Cπ⋆

∞ (x) := supy∈Y
π⋆(y|x)
πref(y|x) .

Theorem 3.4 (BoN-Alignment under uniform coverage).
For any x ∈ X and comparator policy π⋆, if N ≥ Cπ⋆

∞ (x),
the BoN-Alignment policy π̂BoN satisfies

J(π⋆;x)− J(π̂BoN;x)

≲ Rmax · exp(−N/Cπ⋆

∞ (x)) +
√
N · ε2RM(x) .

In particular, as long as N ≍ Cπ⋆

∞ log(Rmax/εRM(x)),

J(π⋆;x)− J(π̂BoN;x) ≲
√

Cπ⋆
∞ (x) · ε2RM(x) · log(Rmax/εRM(x)).

When we are willing to pay for uniform coverage, the re-
gret of BoN-Alignment scales as

√
ε2RM(x), which matches

the statistical rate in the skyline of Proposition 2.3. This
suggests that BoN may already be sufficient in some cases,
at least when it is possible to tune N optimally; we revisit
this point empirically in Section 5. Generally, however, we
expect that Cπ⋆

∞ (x)≫ Cπ⋆

(x), making Theorem 3.4 highly
suboptimal relative to the skyline. For example, softmax
policies, which are normalized exponentials of the logits,
can have exponentially large Cπ⋆

∞ , while Cπ⋆

is Õ(1). This
is (loosely) the case in the lower bound construction of The-
orem 3.2, where πref is an exponential policy, and is up-
weighted by an exponential multiplier to form a π⋆ that is
more sharply peaked on r⋆.

Algorithm 2 InferenceTimePessimism

input: Prompt x, reference policy πref , reward
model r̂, query size N , regularization coeff. β > 0.

1: Draw ŶN := (y1, . . . , yN )
i.i.d.∼ πref(· | x).

2: Using ComputeNormConstant (Algorithm 3), compute
normalization constant λ̂(x) such that

1

N

∑
y∈ŶN

relu
(
β−1

(
r̂(x, y)− λ̂(x)

))
= 1. (9)

3: Sample resp. y ∼ RejectionSamplingN,M (w ;πref , x)

(Algorithm 5), where M := Rmax−λ̂(x)
β and

w(y | x) := relu
(
β−1

(
r̂(x, y)− λ̂(x)

))
.

4: return: response y.

4. Inference-Time Pessimism
We now present InferenceTimePessimism, an optimal
inference-time alignment method that implements a
statistically sound regularizer purely at inference time. In
contrast to BoN-Alignment, InferenceTimePessimism
separates the scaling parameter (N ) from the regularization
parameter, and is thereby able to achieve the performance
skyline in Proposition 2.3. It is, as a result, also scaling-
monotone—as N is increased, it does not overfit or lose
performance. We first give an algorithm overview, then
state the main theoretical guarantee.

4.1. The Inference-Time Pessimism Algorithm
The InferenceTimePessimism algorithm is displayed in
Algorithm 2. For a regularization parameter β > 0, the
algorithm is designed to sample from the distribution

πχ
β (y | x) := πref(y | x) · relu

(
β−1(r̂(x, y)− λ(x))

)
, (10)

where relu(z) := max{z, 0}, and λ(x) is a normalization
constant chosen such that∑

y∈Y
πref(y | x) · relu

(
β−1(r̂(x, y)− λ(x))

)
= 1. (11)

The distribution in Eq. (10) is the exact solution to the
χ2-regularized reinforcement learning objective: defining
Dχ2(π(x) ∥ πref(x)) =

1
2 Ey∼πref(·|x)

[( π(y|x)
πref(y|x) − 1

)2]
=

1
2 (C

π(x)− 1) as the χ2-divergence, we have

πχ
β (x) = argmax

p∈∆(Y)

{
Ey∼p[r̂(x, y)]− β ·Dχ2(p ∥ πref(x))

}
.

As we discuss in the sequel, the χ2-regularizer adapts to the
uncertainty in the reward model r̂(x, y), so that the regular-
ized policy in Eq. (10) implements pessimism in the face of
uncertainty, a principle from offline reinforcement learning
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that carries strong guarantees (Jin et al., 2021; Rashidine-
jad et al., 2021; Huang et al., 2024b). In particular, Huang
et al. (2024b) showed that χ2-regularization at training time
can achieve the skyline in Proposition 2.3; our method im-
plements similar regularization but at inference-time, and
attains those same guarantees.

The pessimistic χ2-regularization prevents the algorithm
from overfitting to potentially misleading responses,
e.g., those in the tail of the base distribution for which
πref(y | x) is small and r̂(x, y) is erroneously estimated
to be large. The parameter β > 0 controls the degree of
pessimism, with small values inducing a greedier policy,
and large values inducing a conservative, heavy-tailed
distribution over responses. For any choice of β, however,
there is a set performance level the algorithm will never
drop below, even as N →∞.

To (approximately) sample from the optimal χ2-
regularized policy in Eq. (10), Algorithm 2 proceeds
in two steps. First, since the normalization constant
λ(x) in Eq. (11) is unknown, the algorithm computes
an approximate normalizer λ̂(x). It draws N responses
ŶN := (y1, . . . , yN )

i.i.d.∼ πref(· | x) and uses them to
solve Eq. (9), an empirical approximation to Eq. (11). This
is accomplished via the dynamic programming subroutine
in ComputeNormConstant (Algorithm 3), in O(N logN)
time. See Appendix C for details.

Next, InferenceTimePessimism generates samples from
(approximately) the policy in Eq. (10) using classical
rejection sampling (Von Neumann, 1963; Block & Polyan-
skiy, 2023); see Algorithm 5 in Appendix D. Given
a rejection sampling threshold M > 0, the algorithm
draws another set of responses ŶN = y1, . . . , yN . For
each response i, it samples a Bernoulli random variable
ξi ∼ Ber

(
relu(β−1(r̂(x,yi)−λ̂(x)))

M ∧ 1
)

, and returns yi as
the final response if ξi = 1. By the heavy-tailed nature
of the idealized χ2-regularized distribution in Eq. (10), a
rejection threshold of M ≈ Rmax

β is sufficient. Accounting
for both the normalization constant computation and re-
jection sampling phase, a total of N = Õ

(
Rmax

β

)
samples

ensures that the response distribution of Algorithm 2 is a
good approximation of Eq. (10).

4.2. Theoretical Guarantees
We now bound the regret for InferenceTimePessimism,
which achieves the skyline rate of Proposition 2.3 with
coverage coefficient Cπ⋆

(x).

Theorem 4.1 (Guarantee for InferenceTimePessimism).
For any β > 0 and ε2RM(x) ∈ (0, 1], if N ≥
c · Rmax

β log
(

Rmax

β·εRM(x)

)
for a sufficiently large constant c,

InferenceTimePessimism satisfies

J(π⋆;x)− J(π̂Pes;x) (12)

≲
√
Cπ⋆(x) · ε2RM(x) + β · Cπ

⋆

(x) + β−1 · ε2RM(x).

Setting β ≍
√

ε2RM(x)

Cπ⋆ (x)
, as long as N ≳ Ω̃

(√
R2

max·Cπ⋆ (x)

ε2RM(x)

)
,

we have

J(π⋆;x)− J(π̂Pes;x) ≲
√
Cπ⋆(x) · ε2RM(x). (13)

On the statistical side, for any choice of the regularization
parameter β > 0, the regret bound in Eq. (12) balances
overoptimization (reflected in the term β−1 · ε2RM(x)) with
bias (reflected in the term β · Cπ⋆

(x)). Choosing β to
balance these terms leads to the regret bound in Eq. (13),
which matches the lower bound in Proposition 2.3 up to ab-
solute constants, showing that InferenceTimePessimism
is regret-optimal.

Computationally, achieving the regret bound in Eq. (12) re-
quires N ≥ Ω̃

(
Rmax

β

)
. In contrast to Best-of-N (Theo-

rem 3.1), InferenceTimePessimism is robust to overopti-
mization, in the sense that for any fixed β > 0, the guaran-
tee in Eq. (12) holds for all N sufficiently large, and there
is no risk of dropping below the bound on the right-hand
side of Eq. (12) as we scale computation; we refer to this
property as scaling-monotonicity.

Lower bounds and compute-optimality.
InferenceTimePessimism requires N ≥
Ω̃
(√
Cπ⋆(x) · Rmax

εRM(x)

)
samples to achieve the optimal

regret bound Eq. (13), where β ≍
√

ε2RM(x)

Cπ⋆ (x)
. The following

result shows that the εRM(x)
−1 dependence is necessary for

any algorithm in the sample-and-evaluate framework.

Theorem 4.2 (Query complexity lower bound). For any
εRM ∈ (0, 1/4] and N ≲ 1

εRM
, there exists a problem instance

with Rmax = 1, εRM(x) ≤ εRM, and a comparator policy π⋆

with Cπ⋆

(x) = Cπ⋆

= Õ(1) such that any algorithm A
using at most N sample-and-evaluate queries must have

J(π⋆)− J(π̂A) = Ω̃(1/N).

This result implies that any algorithm achieving the lower
bound in Proposition 2.3 requires N ≳ 1

εRM(x)
, which is

matched by the guarantee for InferenceTimePessimism
(Theorem 4.1). Moreover, when N ≲ 1

εRM(x)
, the regret

can be even larger than the reward estimation error εRM,
since 1

N ≥ εRM. We remark that the computational cost
here is comparable (though slightly larger) than the cost of
achieving the sub-optimal bound in Eq. (6) using Best-of-N
(roughly N ≳ ε−1

RM (x) versus N ≳ ε
−2/3
RM (x)).
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Figure 2. Compute-normalized comparison of InferenceTimePessimism (solid lines) and BoN-Alignment (dashed lines) on GSM8K
with OASST as r̂, as a function of regularization parameter β. We run BoN-Alignment with N = 213 and run InferenceTimePessimism
until rejection sampling accepts (capped to N = 213). Left: InferenceTimePessimism can improve significantly over BoN-Alignment
for large N due to the reward overoptimization. Center: Number of responses required for InferenceTimePessimism to accept an
answer decreases as β increases, as predicted by our theory. Right: Estimated reward r̂ for InferenceTimePessimism decreases as β
increases.

Parameter tuning and practicality. As presented
in Algorithm 2, InferenceTimePessimism has two
parameters, β and N , compared to the single param-
eter N used by BoN-Alignment. This separation
enables the optimal and scale-monotonic guarantees for
InferenceTimePessimism, and we also view it as a
beneficial feature from a practical perspective: by using
two parameters, we achieve a clear separation between
tuning the computational budget (through N ) and tuning
the statistical performance (through β). While to achieve
Eq. (13) β must be chosen based on potentially unknown
parameters (Cπ⋆

(x) and ε2RM(x)), this represents a meaning-
ful improvement over BoN-Alignment, which cannot be
tuned to achieve Eq. (13) even when these parameters are
known (Theorem 3.2). This is because BoN-Alignment
conflates computational and statistical considerations in its
single parameter N .

Empirically, we find that for any fixed choice of β,
InferenceTimePessimism is robust to overfitting when
computation and sample size is increased, with perfor-
mance essentially monotonic as N grows (Figure 10), as
predicted by the guarantee in Eq. (12). Because of this
robustness, it is easier to tune the parameter β, which
we also find is important to achieve strong performance;
further discussion and practical guidance is provided in
Section 5. Altogether, we believe it is most natural to in-
terpret InferenceTimePessimism as a “single-parameter”
algorithm where only β needs to be tuned, and N is as
large as the computational budget allows.

Overview of analysis. The proof of Theorem 4.1, and has
three parts. First, we show that the idealized χ2-regularized
distribution in Eq. (10) achieves the regret bound in
Eq. (12). This follows the same reasoning as the analysis
of training-time interventions based on χ2-regularization
in Huang et al. (2024b), and uses the property that for any
function ∆(x, y) (we use ∆(x, y) = |r̂(x, y)− r⋆(x, y)|)

and policy π, Eπ[∆(x, y)] ≲√
(1 +Dχ2(π(x) ∥ πref(x))) · Ey∼πref(x)[∆

2(x, y)].

Of course, we cannot sample from πχ
β itself because

the distribution depends on the “true” normalization
constant λ(x) in Eq. (11). To address this, we prove a
robustness result showing that, given a λ̂ that approxi-
mately normalizes the distribution in Eq. (10), the policy

π̃χ
β (y | x) =

πref(y|x)·relu(β−1(r̂(x,y)−λ̂))∑
y′∈Y πref(y′|x)·relu(β−1(r̂(x,y′)−λ̂))

achieves a

regret bound that matches Eq. (12) up to absolute constants.
From here, a concentration argument implies that the
λ̂(x) computed in Eq. (9) is an approximate normalizer
whenever N ≳ Rmax

β , with high probability.

Finally, we leverage analysis for rejection sampling to

show that, as long as N ≳ maxy∈Y
π̃χ
β (y|x)

πref(y|x) log(1/δ), the
rejection sampling procedure will terminate and return y ∼
π̃χ
β (· | x) with probability at least 1 − δ. Critically, due to

the heavy-tailed nature of the χ2-regularizer, this density ra-

tio is bounded as
π̃χ
β (y|x)

πref(y|x) ≲
Rmax

β , which yields the claimed
query complexity bound. This observation highlights an
important computational benefit of χ2-regularization that
goes beyond its statistical benefits, illustrated below.

Remark 4.3 (Comparison to KL-regularization). Liu et al.
(2023); Li et al. (2024a) use rejection sampling to simulate
samples from the KL-regularized distribution:

πKL
β (y | x) := argmax

p∈∆(Y)

{Ey∼p[r̂(x, y)]− β ·DKL(p ∥πref(x))},

which satisfies This has two issues. First, as shown by
Huang et al. (2024b), this distribution can fail to achieve
the guarantee in Eq. (13), no matter how β is chosen.
Second, the density ratio is exponential in general, i.e.
πKL
β (y|x)

πref(y|x) ≥ exp
(

Rmax

β

)
, which means that N ≳ exp

(
Rmax

β

)
sample-and-evaluate queries are required to simulate it
with rejection sampling.
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Table 1. Performance of πref =Phi-3-Mini (% Lift in Accuracy over πref ).

Task OASST GEMMA-RM LLAMA-RM ARMO-RM

GSM8K (Pessimism) 0.87± 0.94 5.61± 0.92 12.03± 0.90 12.44± 0.88
GSM8K (BoN) −5.61± 1.13 4.10± 1.08 12.12± 0.95 13.12± 0.96
MMLU (Pessimism) −0.71± 4.76 14.29± 5.24 24.48± 5.55 21.12± 5.58
MMLU (BoN) −5.61± 5.50 7.57± 6.05 25.41± 6.10 16.20± 6.42
MATH (Pessimism) 3.41± 3.84 18.36± 4.02 41.47± 4.30 26.72± 3.98
MATH (BoN) 3.32± 3.98 15.36± 4.27 41.74± 4.35 21.72± 4.19

5. Experiments
In this section, we complement our theoretical results with
a suite of experiments that investigate the practicality of
InferenceTimePessimism, and compare its performance
to that of BoN-Alignment. We consider three standard
tasks: the test split of the elementary school math dataset
GSM8K (Cobbe et al., 2021); math and chemistry splits
of MMLU (Hendrycks et al., 2020), and the test split of
the advanced math problems dataset MATH (Hendrycks
et al., 2021). We also present a preliminary study with
AlpacaEval-2.0 (Li et al., 2023a) in Appendix B. We
consider four reward models in increasing order of size:
OASST (1.4B) (Köpf et al., 2024), GEMMA-RM (2B) (Dong
et al., 2023), LLAMA-RM (3B) (Yang et al., 2024c), and
ARMO-RM (7B) (Wang et al., 2024a). Finally, for each
task we consider a subset of four policies for the base
model: GEMMA-2-2B (Team et al., 2024), LLAMA-3-3B
(Dubey et al., 2024), Mistral-7B (Jiang et al., 2023), and
Phi-3-Mini (Abdin et al., 2024). For each task-policy-
reward triplet, and each prompt, we generate a large
number of responses (20K) and conduct experiments by
bootstrapping subsamples of this large set. In all cases,
we reuse the same samples for normalization constant
estimation as for the rejection sampling step.

To produce Figure 1, we compare the performance
of InferenceTimePessimism (with tuned β) and
BoN-Alignment for a range of N in terms of both
true reward (accuracy) and estimated reward (r̂ is
OASST) on GSM8K, defaulting to BoN-Alignment if
InferenceTimePessimism does not terminate. As we
scale N , we observe the characteristic dip (e.g., Gao et al.
(2023)) in accuracy of BoN-Alignment in the left panel;
from the right panel, we can infer that this is caused by
reward overoptimization. On the other hand, we find that
the accuracy of InferenceTimePessimism monotonically
increases with N , as predicted by Theorem 4.1. To
further investigate the effect that regularization has on
InferenceTimePessimism, in Figure 2, we fix a compute
budget of N = 213 and compare the performance of
BoN-Alignment to InferenceTimePessimism as we vary
the regularization parameter β. As we increase β, we see
that InferenceTimePessimism leads to improved true
reward (Left), a smaller computational budget (Center)
and significantly less reward overoptimization (Right).

Table 1 collects similar results across all tasks GSM8K,
MMLU, and MATH and reward models OASST, GEMMA-RM,
LLAMA-RM, and ARMO-RM, with Phi-3-Mini as the base
policy πref . We use a fixed computational budget,
and compare the naïve BoN-Alignment for N = 213

with InferenceTimePessimism for the best β (see
Appendix B for further details). Here, we find that
InferenceTimePessimism tends to have higher average
performance than BoN-Alignment, although in many
instances this difference is not statistically significant; we
suspect this is because, when r⋆ is binary (as it is in all
tasks we use), there is no separation between Cπ⋆

and
Cπ⋆

∞ when π⋆ is the optimal policy (uniform over the set
of correct answers); thus, we are in the regime where
Theorem 3.4 predicts near-optimal performance for BoN.
However, a different story may emerge under more refined
evaluation metrics, such as the correctness of proofs
in addition to the final answer. Here we should expect
Cπ⋆

∞ ≫ Cπ⋆

, and we leave evaluation in more realistic
environments to future work. For the sake of space, we
defer further empirical results to Appendix B, including
plots and tables analogous to Figures 1 and 2 and Table 1
for other policies, tasks, and rewards (Appendix B.2) as
well as additional experiments (Appendix B.3).

6. Conclusion
Our results reveal the interplay between coverage, scal-
ing, and optimality in inference-time alignment, and high-
light the benefits of deliberate compute scaling. Beyond
providing optimal algorithms (InferenceTimePessimism)
and insights into the performance of BoN-Alignment, our
framework can serve as starting point toward a founda-
tional understanding of inference-time computation more
broadly. In particular, our work raises a number of in-
teresting directions for future research, including mov-
ing beyond the worst-case assumption on r̂ and design-
ing inference-aware training procedures that optimize for
InferenceTimePessimism at generation time.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Part I

Additional Discussion and Results

A. Additional Related Work
In this section, we discuss additional related work in greater detail.

Theoretical analysis of inference-time alignment. Inference-time alignment has received limited theoretical investigation
so far. Most notably, various works have analyzed specific properties of the Best-of-N alignment algorithm (Yang et al.,
2024b; Beirami et al., 2024; Mroueh, 2024) such as tradeoffs between reward and KL-divergence, but do not ultimately
provide guarantees on downstream performance in the presence of mismatch between the estimated reward model and true
reward. Our theoretical framework—which abstracts the role of the base policy through sample-and-evaluate access—is
inspired by Huang et al. (2024a), who used a similar framework to give guarantees for the complementary problem of
language model self-improvement, but our specific problem formulation and techniques are quite different.

Empirical algorithms for inference-time alignment. Empirically, the Best-of-N alignment heuristic (Stiennon et al.,
2020; Nakano et al., 2021; Touvron et al., 2023; Gao et al., 2023; Eisenstein et al., 2023; Mudgal et al., 2024) is perhaps the
most widely used inference-time alignment heuristic; specific works that have observed the overoptimization phenomenon
for Best-of-N include Gao et al. (2023, Figure 1), Chow et al. (2024, Figure 3), Frick et al. (2024, Figure 7), and Stroebl
et al. (2024). There are also other algorithms based on more sophisticated variants of Best-of-N or other techniques such
as rejection sampling (Liu et al., 2023; Chen et al., 2024; Chakraborty et al., 2024; Xu et al., 2024; Shi et al., 2024; Qiu
et al., 2024; Jinnai et al., 2024; Zhao et al., 2024), though few of these works are explicitly designed to address these issue
of over-optimization. For example, most algorithms based on inference-time search, such as Monte-Carlo Tree Search
(MCTS) and relatives (Feng et al.; Yao et al., 2024; Zhang et al., 2024), are designed with the complementary goal of
maximizing a fixed reward function of interest given exact access, and do not account for overoptimization or mismatch
between the reward function and task performance. Specific algorithms that make use of rejection sampling include Liu
et al. (2023); Li et al. (2024a); Xiong et al. (2024); Zhao et al. (2024); Khaki et al. (2024), though the specific distributions
these works aim to sample from are quite different from that used in InferenceTimePessimism. See also Welleck et al.
(2024) for a survey of inference-time algorithms.

Other related but complementary line of work include (1) distilling inference-time procedures into policies, thereby giving
training time procedures (Amini et al., 2024; Sessa et al., 2024; Gui et al., 2024; Pace et al., 2024), and (2) designing
“inference-aware” training procedures which change the training process to optimize performance of downstream inference-
time such as Best-of-N (Balashankar et al., 2024; Chow et al., 2024).

A.1. Connection to Offline (Training-Time) Alignment
As discussed in Section 1.2, our problem formulation and algorithms are closed related to a growing body of research
on theoretical algorithms for offline alignment (Zhu et al., 2023; Zhan et al., 2023a; Li et al., 2023b; Xiong et al., 2024;
Liu et al., 2024b; Cen et al., 2024; Fisch et al., 2024; Ji et al., 2024; Huang et al., 2024b; Rashidinejad & Tian, 2024),
which give training-time interventions that enjoy robustness to reward model overoptimization under various notions of
coverage. In particular, our InferenceTimePessimism algorithm can be viewed as implementing an “idealized” version
of the χ2-regularized RLHF algorithms introduced by Huang et al. (2024b) at inference-time.

Our formulation of inference-time alignment can be viewed as a variant of the offline alignment problem that abstracts
away the process of training the reward model. Rather than concerning ourselves with the details of training r̂ from Dpref

to minimize Eq. (3), we take r̂ as a given (in the process, abstracting away the dataset Dpref), and ask how to achieve the
best possible regret on a per-instance basis, both with respect to the reward model r̂ itself, and with respect to the prompt
x ∈ X (which is arbitrary and fixed, rather than assumed to be i.i.d. as x ∼ ρ). Naturally, our algorithms and analyses can
be combined with any reward estimation procedure that minimizes Ex∼ρ

[
ε2RM(x)

]
from Dpref to derive end-to-end sample

complexity guarantees for offline alignment.

Online alignment. A complementary line of theoretical research which is somewhat less related to our work studies
alignment with online feedback (Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu & Sun, 2023; Zhan
et al., 2023b; Chen et al., 2022; Wang et al., 2023; Du et al., 2024; Das et al., 2024; Ye et al., 2024; Xie et al., 2024; Cen
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et al., 2024; Xiong et al., 2024; Gao et al., 2024; Chang et al., 2024; Song et al., 2024), where feedback from the true
reward model r⋆(x, y) is available.

B. Further Empirical Results
In this section, we expand on the experiments discussed in Section 5. We begin by providing a complete description of
our expeirmental setup in Appendix B.1, before proceeding to expand the breadth of empirical results reported in the main
body to more policies, tasks, and reward models in Appendix B.2. We continue by conducting a further investigation
into the robustness of InferenceTimePessimism to the regularization parameter β as well as a distributional study of the
estimated rewards r̂ sampled from πref in Appendix B.3. Finally, we present preliminary results for the AlpacaEval-2.0
task in Appendix B.4.

B.1. Further Experimental Details
As we summarized in the main text, we conduct an extensive empirical suite by considering many tasks, reference policies,
and estimated reward models. We now detail each of these in turn. The four tasks we consider are the following:

1. GSM8K: We consider the test split of the popular grade-school math dataset introduced in Cobbe et al. (2021). This
dataset consists of about 1K short math word problems. We prompt all of our policies with Chain of Thought (CoT)
prompting (Wei et al., 2022) but do not include any example demonstrations, i.e., we are zero-shot. We measure
correctness in the sense that we assign r⋆(x, y) = 1 if the resulting policy gets the correct mathematical answer and
r⋆(x, y) = 0 otherwise.

2. MMLU: We consider the college math and college chemistry splits of the MMLU dataset introduced in Hendrycks et al.
(2020). This dataset consists about 100 questions each of math and chemistry at the college level with multiple choice
answers. Again, we use CoT with zero-shot prompting for all policies. Correctness is measured in the sense that the
resulting policy gets the correct multiple-choice answer.

3. MATH: We consider the randomly sampled set of 512 questions from the test split of the MATH dataset introduced in
Hendrycks et al. (2021). This dataset consists of hard mathematics problems. As above, we use CoT and zero-shot
prompting, with correctness measured in the sense that the resulting policy gets the correct mathematical answer.

4. AlpacaEval-2.0: For a small subset of our policies and rewards, we consider the AlpacaEval-2.0 task introduced in
Li et al. (2023a), with 128 randomly sampled questions. This task is a challenging LM benchmark where we compare
a policy’s generation to that of a benchmark LM, and define r⋆ according to win rate against an evaluator LM. In
order to collect a denser signal, we compare win rate against generations sampled from πref for each πref we evaluate.
We use GPT-4o-mini (OpenAI, 2024a) as our evaluator.

For each of our tasks, we consider a subset of the following four reward models for use as the estimated reward r̂:

1. OASST: the OpenAssistant reward model based on Pythia-1.4b (Köpf et al., 2024).

2. GEMMA-RM: a reward model based on Gemma-2-2b (Dong et al., 2023).

3. LLAMA-RM: a reward model based on Llama-3-3b (Yang et al., 2024c).

4. ARMO-RM: a reward model based on Llama-3-8b (Wang et al., 2024a).

Finally, we consider the following policies for πref :

1. GEMMA-2-2B: the Gemma-2-2b model introduced in Team et al. (2024).

2. LLAMA-3-3B: the Llama-3-3b model introduced in Dubey et al. (2024).

3. Mistral-7B: the Mistral-7b model introduced in Jiang et al. (2023).

4. Phi-3-Mini: the Phi-3-mini model (3.8b parameters) introduced in Abdin et al. (2024).

5. Phi-3-Small: the Phi-3-small model (7b parameters) introduced in Abdin et al. (2024).

In all of our experiments, for each prompt in each task and each policy, we generate about 20K responses sampled with
temperature 1 from the chosen πref . For a given number M of replicates (M = 50 in all tasks except for AlpacaEval-2.0,
where M = 5 due to resource constraints), we then bootstrap M subsets of N samples each from this large set and run our
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algorithm on these subsampled responses. We define the accuracy of a given algorithm on a prompt as the average number
of correct answers produced over the number of replicates; an exception to this is AlpacaEval-2.0, where we measure
the win rate according to the evaluator LM. The reported accuracy of a policy is given by the average accuracy over all
prompts in the task, and the standard error is estimated by marginalizing over the prompts in the task. As stated in the main
body, in all cases for fixed N , we use the same N samples to estimate the normalization constant (Algorithm 3) as we do
to run the rejection sampling.

In what follows, we first present additional plots for the experiments described in Section 5, omitted from the main body
for the sake of space (Appendix B.2), then describe results of additional experiments (Appendices B.3 and B.4).

B.2. Results for Further Policies and Tasks
We complement Figures 1 and 2 as well as Table 1 with analogous figures and tables for the remaining tasks, reward
models, and policies described above. First, we investigate how the compute budget N affects performance and
estimated reward of the response in GSM8K (Figure 3), MMLU (Figure 4), and MATH (Figure 5). In all cases, we see that
InferenceTimePessimism is essentially monotonic in compute budget, as predicted by our theory. In some cases, we see
monotonicity in the performance of BoN-Alignment, which is consistent with the observation (e.g., Figure 9) that some
(task, policy) pairs appear to be more in-distribution for some rewards (such as ARMO-RM) than others; for such cases, we
expect BoN-Alignment to perform well.

We also display the effect of the regularization parameter β on performance, average compute, and estimated r̂ for each
of GSM8K (Figure 6), MMLU (Figure 7), and MATH (Figure 8); we again compare our performance to BoN-Alignment with
the same compute budget of N = 213. To be precise, we fix N and compare the naïve BoN-Alignment approach with
this large N to InferenceTimePessimism where we use all N samples to estimate the normalization constant and then
run rejection sampling until acceptance for each fixed β and prompt; in this case all prompts across all tasks, policies,
reward models, and β’s terminate within the N samples. As discussed in Section 5, increasing β leads to a smaller average
required responses before rejection sampling terminates as well as a smaller estimated reward r̂.

Finally, we display analogues of Table 1 for the remaining policies we consider: For each of Phi-3-Small (Table 2),
Mistral-7B (Table 3), and LLAMA-3-3B (Table 4), we compare the performance of compute-normalized BoN-Alignment
with N = 213 to InferenceTimePessimism on GSM8K, MMLU, and MATH (with the exception of LLAMA-3-3B, where we
only consider the first two tasks) for our four reward models. We continue to find that the performance of BoN-Alignment
with properly tuned N and InferenceTimePessimism is similar, which we believe is caused by the fact that Cπ⋆

= Cπ⋆

∞
when r⋆ is binary and π⋆ is uniform over the set of correct answers; by Theorem 3.4, BoN-Alignment will perform
near-optimally in this regime.

20 22 24 26 28 210 212
N

20
15
10

5
0
5

10

% Li
ft in 

Accu
racy

 over
 ref

(a) OASST

20 22 24 26 28 210 212
N

5
0
5

10
15
20
25
30

% Li
ft in 

Accu
racy

 over
 ref

(b) GEMMA-RM

20 22 24 26 28 210 212
N

10
0

10
20
30
40
50
60
70

% Li
ft in 

Accu
racy

 over
 ref

(c) LLAMA-RM

20 22 24 26 28 210 212
N

10
0

10
20
30
40
50
60
70

% Li
ft in 

Accu
racy

 over
 ref

(d) ARMO-RM

20 22 24 26 28 210 212
N

25
0

25
50
75

100
125
150
175

Estim
ated

 Rew
ard (

r)

Llama (3B)Phi-3 MiniPhi-3 SmallMistral (7B)

(e) OASST

20 22 24 26 28 210 212
N

20
0

20
40
60
80

100
120

Estim
ated

 Rew
ard (

r)

(f) GEMMA-RM

20 22 24 26 28 210 212
N

20
0

20
40
60
80

100
120

Estim
ated

 Rew
ard (

r)

(g) LLAMA-RM

20 22 24 26 28 210 212
N

100
1020304050607080

Estim
ated

 Rew
ard (

r)

(h) ARMO-RM

Figure 3. Comparison of InferenceTimePessimism (solid lines) and BoN-Alignment (dashed lines) in accuracy and estimated reward
r̂ for GSM8K for four reward models and choices of πref .
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Figure 4. Comparison of InferenceTimePessimism (solid lines) and BoN-Alignment (dashed lines) in accuracy and estimated reward
r̂ for MMLU for four reward models and choices of πref .
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Figure 5. Comparison of InferenceTimePessimism (solid lines) and BoN-Alignment (dashed lines) in accuracy and estimated reward
r̂ for MATH for four reward models and choices of πref .

Table 2. Performance of πref = Phi-3-Small (% Lift in Accuracy over πref ).

Task OASST GEMMA-RM LLAMA-RM ARMO-RM

GSM8K (Pessimism) 0.25± 0.88 1.29± 0.97 5.43± 0.93 4.79± 0.84
GSM8K (BoN) −3.06± 1.21 1.19± 1.08 5.71± 0.95 5.87± 0.93
MMLU (Pessimism) −2.18± 5.37 7.61± 5.31 14.47± 5.60 6.74± 5.52
MMLU (BoN) −3.65± 5.66 5.67± 5.76 14.12± 5.64 8.27± 5.84
MATH (Pessimism) −1.93± 3.22 9.94± 3.40 20.23± 3.54 12.71± 3.37
MATH (BoN) −4.85± 3.45 5.27± 3.66 19.99± 3.61 8.39± 3.56
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Figure 6. Compute-normalized comparison for N = 213 between BoN-Alignment and InferenceTimePessimism on GSM8K for four
reward models and choices of πref , as a function of regularization β.

Table 3. Performance of πref = Mistral-7B (% Lift in Accuracy over πref ).

Task OASST GEMMA-RM LLAMA-RM ARMO-RM

GSM8K (Pessimism) 4.15± 1.77 25.41± 1.87 57.30± 1.77 53.19± 1.77
GSM8K (BoN) −12.10± 1.96 22.46± 2.08 58.31± 1.86 63.69± 1.76
MMLU (Pessimism) 1.28± 7.26 14.56± 7.66 35.01± 9.16 24.63± 8.21
MMLU (BoN) −1.70± 8.84 12.71± 9.92 37.43± 9.70 22.23± 9.89
MATH (Pessimism) 10.32± 6.51 46.15± 8.43 129.58± 11.55 91.41± 9.42
MATH (BoN) −20.13± 8.26 47.49± 9.12 133.13± 12.15 102.10± 10.32

Table 4. Performance of πref = LLAMA-3-3B (% Lift in Accuracy over πref ).

Task OASST GEMMA-RM LLAMA-RM ARMO-RM

GSM8K (Pessimism) 5.20± 1.33 14.38± 1.32 27.54± 1.28 29.66± 1.18
GSM8K (BoN) −4.35± 1.94 11.45± 1.78 27.43± 1.52 30.49± 1.44
MMLU (Pessimism) 16.82± 10.21 21.77± 9.89 46.55± 10.49 46.87± 7.94
MMLU (BoN) 16.82± 10.44 20.48± 10.42 44.13± 10.71 52.86± 10.54
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Figure 7. Compute-normalized comparison for N = 213 between BoN-Alignment and InferenceTimePessimism on MMLU for four
reward models and choices of πref , as a function of regularization β.
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Figure 8. Compute-normalized comparison for N = 213 between BoN-Alignment and InferenceTimePessimism on MATH for four
reward models and choices of πref , as a function of regularization β.
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B.3. Further Experiments
We performed several additional experiments to (i) validate the basic modeling assumptions in our inference-time alignment
framework—particularly the assumed reward model accuracy bound in Eq. (3);, and (ii) probe the behavior and robustness
of InferenceTimePessimism, and. We begin by examining the distribution of the reward model scores r̂(x, y) under πref ,
then explore the robustness of InferenceTimePessimism to the choice of regularization parameter β. we also present
preliminary results on the AlpacaEval-2.0 task in Appendix B.4.

Reward distribution under πref . In order to get a more fine-grained sense for the extent to which reward overoptimization
is a problem, in Figure 9 we plot the distribution of the reward model value r̂(x, y) for a single representative prompt
from GSM8K for all GEMMA-2-2B-generated responses, according to each of our four reward models, and conditioned on
whether or not the response is correct. The more separated the distributions are, and the further to the right the correct
(blue) distribution is, the better the reward model is at estimating the true reward. As we see, ARMO-RM is by far the
best reward model in this respect. In particular, one reason to expect that would not observe reward overoptimization in
BoN-Alignment for ARMO-RM with this task is the fact that the maximal value in the support of the incorrect distribution is,
empirically, strictly smaller than that of the correct distribution; thus for sufficiently large N , BoN-Alignment will always
choose the correct answer, at least for the prompt we visualize. This observation is consistent with our theoretical results,
but suggests that in some cases our assumptions may be too pessimistic; indeed, InferenceTimePessimism may be overly
conservative in situations where r̂ already underestimates r⋆ by a large margin (since pessimism, or under-estimating the
true reward value, is precisely what the regularization in InferenceTimePessimism is designed to enforce).
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Figure 9. Distribution of estimated rewards of responses generated by GEMMA-2-2B on GSM8K prompt number 100 conditioned on whether
or not the response is correct for (a) OASST, (b) GEMMA-RM, (c) LLAMA-RM, and (d) ARMO-RM. Greater separation of the distributions with
the correct (blue) further to the right than incorrect (orange) indicates the reward model is more informative.

Robustness of InferenceTimePessimism to β. In addition to the theoretical suboptimality under general notions of
coverage, the central drawback to BoN-Alignment is the lack of monotonicity, requiring careful tuning of the computa-
tional budget N in order to avoid over-optimization. In Figure 10, we plot the accuracy of InferenceTimePessimism
on Mistral-7B generations for a representative subset of the tasks and reward models r̂ we consider, evaluating the ef-
fect of the regularization parameter β on performance. We find (Figures 10(a) and 10(c)) that InferenceTimePessimism
experiences less over-optimization than BoN-Alignment fairly robustly across a range of β values, though tuning β is typ-
ically required to avoid over-optimization entirely. We also observe that in some cases, where the reward model remains
in-distribution for all task responses, BoN-Alignment is monotonic without further interventions (Figures 10(b) and 10(d)).

Note that for small values of the regularization β, we do observe a small dip in performance for InferenceTimePessimism
(cf. Figures 10(a) and 10(c)). This is caused by our heuristic of defaulting to BoN-Alignment when no responses are
accepted by rejection sampling in InferenceTimePessimism, which is more likely to occur when the computational
budget N is small relative to the inverse of regularization 1/β according to our theory (Lemma D.4). We should like to
remark that this is a reasonable heuristic, as it is precisely in the small N regime that BoN-Alignment is expected to still
perform well according to our theoretical results.

B.4. Results for AlpacaEval-2.0
In addition to the experiments with GSM8K, MATH, and MMLU, we conduct a preliminary investigation on the performance of
InferenceTimePessimism on AlpacaEval-2.0 (cf. Appendix B.1 for an explanation of this task). Because evaluation
requires many queries to the proprietary OpenAI models, we consider a significantly smaller scale of experiments for this
task, and use only 5 replicates for each prompt as opposed to 50. The results are displayed in Figure 11. Due to the

23



Coverage, Scaling, and Optimality in Inference-Time Alignment

20 22 24 26 28 210 212
N

20
15
10

5
0
5

10
% Li

ft in 
Accu

racy
 over

 ref

= 0.0010
= 0.0050
= 0.0100
= 0.0500
= 0.1000
= 0.5000
= 0 (BoN)

(a) (GSM8K, OASST)

20 22 24 26 28 210 212
N

10
0

10
20
30
40
50
60
70

% Li
ft in 

Accu
racy

 over
 ref = 0.0010

= 0.0050
= 0.0100
= 0.0500
= 0.1000
= 0.5000
= 0 (BoN)

(b) (GSM8K, ARMO-RM)

20 22 24 26 28 210 212
N

40
30
20
10

0
10
20

% Li
ft in 

Accu
racy

 over
 ref

= 0.0001
= 0.0005
= 0.0010
= 0.0050
= 0.0100
= 0.0500
= 0.1000
= 0.5000
= 0 (BoN)

(c) (MATH, OASST)

20 22 24 26 28 210 212
N

10
0

10
20
30
40
50

% Li
ft in 

Accu
racy

 over
 ref = 0.0001

= 0.0005
= 0.0010
= 0.0050
= 0.0100
= 0.0500
= 0.1000
= 0.5000
= 0 (BoN)

(d) (MMLU, LLAMA-RM)

Figure 10. Demonstration that monotonicity is robust to the choice of regularization parameter β for Mistral-7B generations with a
representative sample of tasks and estimated rewards r̂.

noise of the evaluation, coupled with the significantly smaller number of replicates and prompts, it is difficult to separate
the performance of BoN-Alignment and InferenceTimePessimism in a statistically significant way, although the broader
trends agree with those found in our other tasks.
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Figure 11. Performance of BoN-Alignment and InferenceTimePessimism on AlpacaEval-2.0 with GEMMA-2-2B as πref for several
reward models.
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Algorithm 3 ComputeNormConstant

input: Prompt x, reward model r̂, regularization coefficient β > 0, set of responses ŶN = (y1, . . . , yN ).
1: Sort and bucket ŶN into bins Y1, . . . ,YM according to the value of r̂(x, y), in ascending order, such that

r̂(x, y) = r̂i, ∀y ∈ Yi, ∀i ∈ [M ], and r̂i < r̂i+1, ∀i ∈ [M ]

2: Initialize r̂0 = −∞, J ←
∑M

i=1 r̂i ·
|Yi|
N and Z ← 1.

3: for i = 1 . . .M do

4: Set λ← J−β
Z .

5: if r̂i−1 ≤ λ < r̂i or i = M then
6: return λ.
7: else
8: Update J ← J − r̂i · |Yi|

N and Z ← Z − |Yi|
N .

Algorithm 4 ComputeNormConstant for general base measures

input: Prompt x, reward model r̂, reference policy πref , regularization coefficient β > 0, set of responses ŶN =
(y1, . . . , yN ).

1: Sort and bucket ŶN into bins Y1, . . . ,YM according to the value of r̂(x, y) in ascending order, such that

r̂(x, y) = r̂i, ∀y ∈ Yi, ∀i ∈ [M ]

r̂i < r̂i+1, ∀i ∈ [M ],

and denote πref(Yi | x) =
∑

y∈Yi
πref(y | x)

2: Initialize r̂0 = −∞, J ←
∑M

i=1 πref(Yi | x) · r̂i and Z ←
∑M

i=1 πref(Yi | x).
3: for i = 1 . . .M do

4: Set λ← J−β
Z .

5: if r̂i−1 ≤ λ < r̂i or i = M then
6: return λ.
7: else
8: Update J ← J − r̂i · πref(Yi | x) and Z ← Z − πref(Yi | x).

Part II

Proofs

C. Normalization Constant Computation
C.1. Background
This section gives guarantees for the ComputeNormConstant subroutine (Algorithm 3) used within
InferenceTimePessimism. Given a set of response ŶN and x ∈ X , the algorithm computes a normalization
constant λ such that

Φ̂(λ) :=
1

N

∑
y∈ŶN

relu
(
β−1(r̂(x, y)− λ)

)
= 1

in time O(N logN) using a dynamic programming-like procedure. Note that such a λ always exists because Φ̂(λ) is a
continuous, piecewise linear function that is decreasing in λ, with Φ̂(−∞) = ∞ and Φ̂(∞) = 0. In what follows, we
state and prove the main guarantee for the algorithm. En route, we will also prove a guarantee for a more general version
of ComputeNormConstant (Algorithm 4), which computes a normalization constant such that Φ(λ) :=

∑
y∈Y πref(y |

x)relu
(
β−1(r̂(x, y)− λ)

)
= 1 in time O(N logN).
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C.2. Guarantee for ComputeNormConstant

Lemma C.1 (Main guarantee for ComputeNormConstant). For any r̂, β, ŶN , and x ∈ X , Algorithm 3 finds λ such that
Φ̂(λ) := 1

N

∑
y∈ŶN

relu
(
β−1(r̂(x, y)− λ)

)
= 1 in O(N logN) time.

Proof of Lemma C.1. Algorithm 3 is equivalent to running Algorithm 4 with r̂, β, Y = ŶN and
π′
ref(y | x) = 1

N · I
[
y ∈ ŶN

]
and so we can directly apply Lemma C.2.

Lemma C.2 (Guarantee for generalized ComputeNormConstant). For any r̂, β, ŶN , and x ∈ X , Algorithm 4 finds λ such
that Φ̂(λ) :=

∑
y∈ŶN

πref(y | x)relu
(
β−1(r̂(x, y)− λ)

)
= 1 in O(N logN) time.

Proof of Lemma C.2. Let x ∈ X be fixed; we omit dependence on x going forward to keep notation compact. We begin
by defining a surrogate problem with response space ŶM := {y1, . . . , yM}, where yi is any response from Yi, surrogate
reward function r̂′ with r̂′(yi) =: r̂′i = r̂i, and surrogate reference policy π′

ref , where for i ∈ [M ] we set

π′
ref(yi) =

∑
y∈Yi

πref(y).

Note that all responses in this collection have unique values under a surrogate reward function r̂′. Since Algorithm 4 sorts
rewards in ascending order, we also have that the surrogate rewards are indexed in ascending order, i.e., r̂′i < r̂′i+1 for all i.
We also define the following function, which is the analog of Φ̂(λ) defined over the M surrogate responses,

Φ̂′(λ) =

M∑
i=1

π′
ref(yi)relu

(
β−1(r̂′i − λ)

)
.

For any λ, it can be seen that Φ̂′(λ) = Φ̂(λ) since

Φ̂′(λ) =

M∑
i=1

∑
y∈Yi

πref(y)

relu
(
β−1(r̂i − λ)

)
=
∑

y∈ŶN

πref(y)relu
(
β−1(r̂(y)− λ)

)
= Φ̂(λ),

because each y ∈ ŶN is binned into one of {Yi}Mi=1, and within each Yi all responses share the reward label r̂′i.

Next, define λ⋆ to be such that Φ̂′(λ⋆) = 1, that is, the true constant that normalizes the distribution over the M surrogate
responses. Our goal is to show that Algorithm 4 computes λ⋆, which, given the previously shown equivalence, then proves
the lemma statement since

1 = Φ̂′(λ⋆) = Φ̂(λ⋆).

Note that such a λ⋆ is guaranteed to exist because Φ̂(λ) is continuous and decreasing in λ. Moreover, from the form of Φ̂′,
it can be seen that there exists some index j such that λ⋆ ≥ r̂′j and

1 = Φ̂′(λ⋆) = β−1
∑
i>j

π′
ref(yi)(r̂

′
i − λ⋆).

In other words, there exists an index j ∈ [M ] such that λ⋆ ∈ [r̂′j , r̂
′
j+1], which also shows that λ⋆ ∈ [J(πref)− β, r̂′M ].

Then to find λ⋆, that is, a λ such that Φ̂′(λ) = 1, it is sufficient to find an index j such that for

λ =

∑
i>j π

′
ref(yi)r̂

′
i − β∑

i>j π
′
ref(yi)

,

we have r̂′j ≤ λ < r̂′j+1. This is exactly the output of Algorithm 4 run on ŶM , π′
ref , r̂

′, β, which breaks at an index that
satisfies the above conditions, and outputs the corresponding λ. By inspection, such a λ satisfies Φ̂′(λ) = 1, and therefore
also satisfies Φ̂(λ) = 1.

Lastly, we discuss the computational complexity of Algorithm 4. Sorting ŶN and r̂ require O(N logN) time, while
binning is O(N). Finally, we make one forward pass through the responses, which requires at most N iterations, each
with O(1) computations, before termination.
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D. Rejection Sampling
This section includes background on and guarantees for approximate rejection sampling, which forms the basis for our
analysis for BoN and InferenceTimePessimism.

The organization is as follows. First, in Appendix D.1, we describe the approximate rejection sampling algorithm (Al-
gorithm 5)—which is used within InferenceTimePessimism, as well as within the analysis of BoN-Alignment—and
introduce the fundamental concepts that we will use to analyze the sample complexity of RejectionSampling. Then, in
Appendix D.2 we provide upper bounds on the sample complexity of RejectionSampling, with matching lower bounds
in Appendix D.3, in terms of the aforementioned measure, demonstrating its fundamental nature and the tightness of our
results.

Algorithm 5 Rejection Sampling (RejectionSamplingN,M (w ;πref , x))
input: Prompt x, base policy πref , importance weight w, truncation level M .

1: Draw ŶN = (y1, . . . , yN , yN+1) ∼ πref(· | x) i.i.d.
2: for i = 1 . . . N do
3: Sample Bernoulli random variable ξi such that P(ξi = 1 | yi) = min

{
w(yi|x)

M , 1
}

4: if ξi = 1 then
5: return response y = yi

6: return response y = yN+1.

D.1. Background
The rejection sampling algorithm RejectionSampling is shown in Algorithm 5. The input parameters are the sample size
N and the rejection threshold M , a prompt x, and an importance sampling weight w.

The algorithm first draws N samples from the conditional distribution of πref for the fixed prompt x, i.e., it draws ŶN =
{y1, . . . , yN} where yi ∼ πref(· | x) for each i ∈ [N ]. Then, for each yi ∈ ŶN , it samples a Bernoulli random variable ξi
where the probability of observing ξi = 1 is given by the importance weight w(yi | x) divided by the rejection threshold
M , truncated to be at most 1. The algorithm returns any yi for which ξi = 1, and if no such event is observed, returns the
first response (which is equivalent to randomly sampling from the base policy).

If π(· | x) = w(· | x) ·πref(· | x) is a valid distribution, and the rejection threshold M upper bounds the importance weight
(or now, likelihood ratio) uniformly, that is, M ≥ π(y|x)

πref(y|x) for all x and y, then Algorithm 5 is identical to classical rejection
sampling, where it is known that the law of accepted samples matches the target distribution π, i.e. P(y | ξ = 1, x) = π(y |
x). If M is not a uniform upper bound on the likelihood, the law of the accepted samples is not identical to π. This is
because Algorithm 5 effectively truncates the distribution of π to be at most M · πref , and any mass above this threshold
is effectively lost. Nonetheless, the law of accepted responses is a close approximation to π when M is sufficiently large.
Approximate rejection sampling under this regime was first analyzed in Block & Polyanskiy (2023), and our results in this
section below borrow from their analysis.

For the remainder of this section, we will consider the problem of sampling from a target distribution or policy
π : X → ∆(Y), by calling RejectionSamplingN,M ( π

πref
;πref , x), where π

πref
is its importance weight (or here, likelihood

ratio) over the base policy. Concretely, we are concerned with analyzing how close the RejectionSampling response
distribution is to π as a function of the truncation level M . For example, if there exists y such that w(y | x) > 0 but
πref(y | x) = 0 then it is not possible information-theoretically to sample from this portion of the target distribution, and
similar reasoning applies to y with poor coverage under πref .

Preliminaries: EM -divergence. Based on the intuition above, a central object in our analysis will be the EM -divergence
in Definition D.1 (Polyanskiy, 2010; Block & Polyanskiy, 2023), which, for an input rejection threshold M , quantifies the
mass of the target distribution π that is lost by truncating the importance weight π

πref
to M .

Definition D.1 (EM -divergence). For a prompt x, base policy πref : X → ∆(Y), and target policy π : X → ∆(Y), let
π(x) := π(· | x) refer to the distribution conditioned on x, and define πref(x) similarly. Then for any rejection threshold
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M ≥ 1, the EM -divergence is defined as

EM (π(x), πref(x)) := Ey∼πref(x)

[(
π(y | x)
πref(y | x)

−M

)
+

]
=

∑
y∈YM (x)

π(y | x)−M · πref(y | x),

where YM (x) = {y ∈ Y : π(y | x) > M · πref(y | x)}. In addition, the expected EM -divergence over the prompt distribu-
tion ρ is defined as

EM (π, πref) := Ex∼ρ[EM (π(x), πref(x))].

Note that EM (π(x), πref(x)) and EM (π, πref) are non-increasing in M in the sense that they do not increase as M gets
larger, and we will show in the sequel that they control the approximation error for RejectionSampling. In particular,
the parameter M strikes a bias-variance tradeoff in the RejectionSampling procedure. When M is large, the algorithm
requires a large number of samples in order to terminate; but for M small, incurs larger bias from failing to sample from
regions of the target density.

For the results that follow, it will be useful to define the smallest parameter M that guarantees EM (π(x), πref(x)) ≤ ε for
some error tolerance of interest ε ∈ [0, 1].

Definition D.2. Given the base policy πref , for a target policy π, prompt x, and any ε ∈ [0, 1], define the smallest rejection
threshold M that ensures EM (π(x), πref(x)) ≤ ε to be

Mπ
x,ε := min{M | EM (π(x), πref(x)) ≤ ε}.

Similarly, define the smallest rejection threshold M that ensures EM (π, πref) ≤ ε to be

Mπ
ε := min{M | EM (π, πref) ≤ ε}.

Though the EM -divergence is perhaps the most natural object by which to quantiy the error of aproximate rejection sam-
pling, it can also be upper bounded by other information-theoretic divergences, such as Cπ∞ and Cπ , which will be useful
in the later analysis for BoN-Alignment and InferenceTimePessimism. We state the result below forMπ

x,ε for a fixed x,
which can be stated forMπ

ε in a similar manner.

Proposition D.3. Given the base policy πref , for any target policy π and prompt x, recall that Cπ∞(x) = supy∈Y
π(y|x)
πref(y|x) ,

and define Cπα(x) := 1
α Ey∼π

[(
π(y|x)
πref(y|x)

)α−1
]

for any α > 1, so that Cπ2 (x) = Cπ(x). Then for any ε ∈ [0, 1] and

α ∈ (1,∞), we have

Mπ
x,ε ≤ min

(
Cπ∞(x),

(
Cπα(x)

ε

) 1
α−1

)
.

In particular, for the coverage coefficient Cπ(x) = Cπ2 (x), the above result shows thatMπ
x,ε ≤

Cπ(x)
ε . The proof below

utilizes Block & Polyanskiy (2023, Example 7) and the fact that Cπα controls the Renyi divergence of order α between π
and πref .

Proof of Proposition D.3. As the prompt is fixed, we omit x dependencies for notational compactness. Recall that for any
M , EM (π, πref) = π(YM )−M ·πref(YM ). The statement for M = Cπ∞ follows directly from the definition of EM (π, πref)

since ECπ
∞
(π, πref) = 0. For Cπα , it can be seen that π(YM ) ≤ Cπ

α

Mα−1 since

Cπα ≥
∑
y

π(y)α

πref(y)α−1
· I[y ∈ YM ] > Mα−1

∑
y

π(y) · I[y ∈ YM ] = Mα−1 · π(YM ).

Then for M to satisfy

ε ≤ EM (π, πref) ≤
Cπα

Mα−1
−M · πref(YM ) ≤ Cπα

Mα−1
,

it suffices to have M =
(

Cπ
α

ε

) 1
α−1

.
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D.2. Guarantee for RejectionSampling
This section contains sample complexity upper bounds for Algorithm 5, which express the size of N required to ensure
that the total variation distance between the law of responses drawn from Algorithm 5 and the target distribution π is small.
The main result, Lemma D.4, that expresses sample complexity in terms of M and EM (π(x), πref(x)).

For a fixed N , Lemma D.4 shows that the total variation distance is bounded by the EM -divergence corresponding to the
input rejection threshold M , as well as an exponential in 1

N term that bounds the error when the algorithm fails to terminate.
As expected, the former term decreases as M increases, while the lattter increases. In addition, while increasing N can
reduce error from the latter term, the former term is irreducible even as N tends too infinity, and this too we expect given
that EM (π, πref) is an information-theoretic measure of error that is a property of the distributions and the choice of M .

Lemma D.4 (Per-prompt rejection sampling upper bound; adapted from Theorem 3 in Block & Polyanskiy (2023)). For
any valid policy π : X → ∆(Y), N ∈ Z, and M ∈ R+, for a given prompt x ∈ X , let πR(x) ∈ ∆(Y) be the law of
responses induced by running RejectionSamplingN,M ( π

πref
;πref , x) (Algorithm 5). We have

DTV(π(x), πR(x)) ≤ EM (π(x), πref(x)) +
1

2
exp

(
−N · (1− EM (π(x), πref(x)))

M

)
.

In particular, if M =Mπ
x,ε and N ≳Mπ

x,ε · log
(
1
ε

)
for some ε ∈

(
0, 1

2

)
, we have that DTV(π(x), πref(x)) ≲ ε.

Proof of Lemma D.4. As the prompt is fixed, we omit x dependencies for notational compactness. Define the truncated
pseudo-distribution π̃ = min{π,M · πref}. Define AM :=

∑
y π̃(y) to be the total mass of the truncated policy. Recalling

that YM (x) = {y ∈ Y : π(y | x) > M · πref(y | x)}, AM can be equivalent expressed as

AM =
∑
y

min{π(y),M · πref(y)}

=
∑

y∈YM

M · πref(y) +
∑

y/∈YM

π(y)

= 1− EM (π, πref).

Recall that, for a single sample y ∼ πref , Algorithm 5 samples ξ ∼ Ber(py), where py := min
{

π(y)
πref(y)·M , 1

}
is a Bernoulli

random variable such that Pξ∼Ber(py)(ξ = 1 | y) = py . Then the expected probability of acceptance for a single sample is

Py∼πref ,ξ∼Ber(py)(ξ = 1) = Ey∼πref
[P(ξ = 1 | y)]

=
∑
y

πref(y) ·min

{
π(y)

M · πref(y)
, 1

}
=

1

M

∑
y

min{π(y),M · πref(y)}

=
AM

M
,

and it can be seen that the law of the response conditioned on acceptance,
∑

y∈YM
M ·πref(y)+

∑
y/∈YM

π(y), is equivalent
to the normalized version of π̃ since

Py′∼πref
(y′ = y | ξ = 1) =

Py′∼πref ,ξ∼Ber(py)(y
′ = y, ξ = 1)

Py′∼πref ,ξ∼Ber(py)(ξ = 1)
=

πref(y) ·min
{

π(y)
M ·πref(y)

, 1
}

AM/M
=

π̃(y)

AM
.

Next, given ŶN = {y1, . . . , yN}, let ξ̂N = {ξ1, . . . , ξN} be the random draw of Bernoulli random variables, where
ξi ∼ Ber(pyi) for all i ∈ [N ]. For short, we write PŶN , ξ̂N

(·) ≡ PŶN∼πref ,ξ1∼Ber(y1),...,ξN∼Ber(yN )(·). Define also the

following event, which is a random variable over the draw of ŶN and ξ̂N , under which rejection sampling accepts one of
the N responses and Algorithm 5 outputs the i⋆th response in Line 5,

stop := {∃i⋆ ∈ [N ] s.t. ξi⋆ = 1}. (14)
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Let ŷ = RejectionSamplingN,M ( π
πref

;πref , x) be the response output by Algorithm 5, which is a random variable over

draws of ŶN and ξ̂N . Due to independence, we have that the law of responses is given by

PŶN , ξ̂N
(ŷ = y | stop) = PŶN , ξ̂N

(yi⋆ = y | ∃i⋆ ∈ [N ] s.t. ξi⋆ = 1) =
π̃(y)

AM
. (15)

It can be observed that via union bound,

PŶN , ξ̂N
(¬stop) = PŶN , ξ̂N

(ξi = 0, ∀i ∈ [N ])

=
(
1− Py∼πref ,ξ∼Ber(py)(ξ = 1)

)N
=

(
1− AM

M

)N

≤ e−
N·AM

M . (16)

Recall that πR(y) = PŶN , ξ̂N
(y). Now for the upper bound, we first decompose the total variation distance using π̃,

DTV(π, πR) =
1

2

∑
y

|π(y)− πR(y)| ≤
1

2

∑
y

|π(y)− π̃(y)|︸ ︷︷ ︸
(T1)

+
1

2

∑
y

|πR(y)− π̃(y)|︸ ︷︷ ︸
(T2)

,

where, via Definition D.1, the first term is equivalent to

(T1) =
∑
y

π(y)−min{π(y),M · πref(y)} =
∑
y

π(y) · I[π(y) > M · πref(y)] = EM (π, πref).

and we further bound the second term as

(T2) =
∑
y

∣∣∣PŶN , ξ̂N
(ŷ = y | stop) + PŶN , ξ̂N

(ŷ = y | ¬stop)− π̃(y)
∣∣∣

≤
∑
y

∣∣∣PŶN , ξ̂N
(ŷ = y | stop)− π̃(y)

∣∣∣︸ ︷︷ ︸
(T3)

+PŶN , ξ̂N
(¬stop)

From Eq. (16), have PŶN , ξ̂N
(¬stop) ≤ e−

N·AM
M . In addition, using Eq. (15) and the fact that AM ≤ 1, we have that

(T3) =
∑
y

∣∣∣PŶN , ξ̂N
(ŷ = y | stop)− π̃(y)

∣∣∣
=
∑
y

∣∣∣∣ π̃(y)AM
− π̃(y)

∣∣∣∣ =∑
y

π̃(y)

AM
− π̃(y)

= 1−AM = EM (π, πref),

so that

(T2) ≤ EM (π, πref) + exp−
N·AM

M .

Combining (T1) and (T2),

DTV(π, πref) ≤
1

2
((T1) + (T2))

≤ EM (π, πref) +
1

2
exp−

N·AM
M ,

and substituting the expression for AM = 1− EM (π, πref) gives the result.
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D.3. Lower Bounds
For a fixed prompt x, Lemma D.6 shows N ≳ Mπ

x,ε log
(
ε−1
)

samples are sufficient to guarantee that
DTV(π(x), πref(x)) ≤ ε. The information-theoretic lower bound in Lemma D.6 shows that this dependence is tight
for any selection strategy that selects a response from ŶN , defined more formally below.

Definition D.5 (Selection strategy A). A selection strategy A is any method that, given a prompt x and N responses
ŶN = (y1, . . . , yN ) sampled i.i.d. from πref , returns some (possibly random) y ∈ ŶN .

Lemma D.6 states that selection strategy (Definition D.5) must obtain at leastMπ
x,ε samples in order to induce a response

distribution that is ε-close to π. We will later use this result as a component within our main regret lower bounds (Theo-
rems 3.2 and 4.2).

Lemma D.6 (TV lower bound, adapted from the proof of Theorem 5 in Block & Polyanskiy (2023)). Fix the base policy
πref , target policy π, prompt x, and sample size N . Let A be any selection algorithm (Definition F.2) that, given ŶN ∼
πref(· | x) in the sample-and-evaluate framework (Definition 2.2), outputs a response y ∈ ŶN . Let πA : X → ∆(Y)
denote the distribution of responses induced by A. Then if N <Mπ

x,ε, we have

DTV(πA(x), π(x)) > ε.

Proof of Lemma D.6. In the proof below we omit x dependencies, including inMπ
x,ε ≡ Mπ

ε , and EM (π(x), πref(x)) ≡
EM (π, πref). First fix M . Suppose N < M . Then

2 ·DTV(πA, π) ≥
∑

y∈YM

|π(y)− πA(y)|

≥
∑

y∈YM

π(y)− P
(
y ∈ ŶN

)
≥

∑
y∈YM

π(y)−N · µ(y)

≥
∑

y∈YM

π(y)−M · µ(y)

= 2 · EM (π, πref)

It follows that if N < M ≤Mπ
ε , we have

DTV(πA, π) > ε

from the definition ofMπ
ε , since EM (π, πref) is non-decreasing as M decreases.
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E. Proofs from Section 2
Proof of Proposition 2.3. Let us write Jr(π, x) := Ey∼π(·|x)[r(x, y)] to denote the expected reward under a function
r(x, y). We first state an elementary technical lemma.

Lemma E.1. For any prompt x ∈ X , reward model r̂ : X × Y → R, and policies π⋆, π̂ : X → ∆(Y) and ε > 0, there
exists r⋆ : X × Y → R such that

Jr⋆(π
⋆;x)− Jr⋆(π̂;x) ≥ Jr̂(π

⋆;x)− Jr̂(π̂;x) + ε ·

√√√√∑
y∈Y

(π⋆(y | x)− π̂(y | x))2
πref(y | x)

and Ey∼πref(·|x)
[
(r̂(x, y)− r⋆(x, y))2

]
≤ ε2.

Proof of Lemma E.1. We use the choice

r⋆(x, y) = r̂(x, y) + ε · π
⋆(y | x)− π̂(y | x)

πref(y | x)
·

∑
y∈Y

(π⋆(y | x)− π̂(y | x))2

πref(y | x)

−1/2

,

from which the result is immediate.

Going forward, we omit dependence on x ∈ X to keep notation compact. Define Cmax = maxπ:X→∆(Y) Cπ and πmax =
argmaxπ:X→∆(Y) Cπ , and let Cmax ≥ C⋆ ≥ 8 be given. Throughout the proof, we will use the fact that Cπ ≥ 1 for all π.
We set r̂(x, y) = 0 and consider two cases for the analysis.

Case 1: Cπ̂ > 1
8C

⋆. In this case, we invoke Lemma E.1 with π⋆ = πref and ε = εRM, which shows that there exists some
r⋆ for which

Jr⋆(π
⋆)− Jr⋆(π̂) ≥ εRM ·

√√√√∑
y∈Y

(πref(y)− π̂(y))2

πref(y)
.

The result now follows by noting that∑
y∈Y

(πref(y)− π̂(y))2

πref(y)
= Cπ̂ − 1 ≥ 1

8
C⋆ − 1 ≥ 1

16
C⋆.

Case 2: Cπ̂ ≤ 1
8C

⋆. In this case, we set
π⋆ = λπmax + (1− λ)πref

for λ2 := C⋆

2Cmax ∈ (0, 1). We compute directly that

Cπ
⋆

= λ2Cmax + (1− λ2),

so that Cπ⋆ ∈
[
1
2C

⋆, C⋆
]
. We invoke Lemma E.1 with π⋆ and ε = εRM, which gives that there exists some r⋆ for which

Jr⋆(π
⋆)− Jr⋆(π̂) ≥ εRM ·

√√√√∑
y∈Y

(π⋆(y)− π̂(y))2

πref(y)
.

We further compute that ∑
y∈Y

(π⋆(y)− π̂(y))2

πref(y)
= Cπ

⋆

+ Cπ̂ − 2
∑
y∈Y

π⋆(y)π̂(y)

πref(y)
≥ 1

2
Cπ

⋆

− Cπ̂,

where the last step follows by the AM-GM inequality, i.e.∑
y∈Y

π⋆(y)π̂(y)

πref(y)
≤ 1

4

∑
y∈Y

(π⋆(y))2

πref(y)
+
∑
y∈Y

(π̂(y))2

πref(y)
.
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By the assumption for this case, we have Cπ̂ ≤ 1
8C

⋆, so that

1

2
Cπ

⋆

− Cπ̂ ≥ 1

2
Cπ

⋆

− 1

8
C⋆ ≥ 1

4
C⋆ − 1

8
C⋆ =

1

8
C⋆,

completing the result.
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F. Proofs from Section 3
This section gives proofs for the guarantees for BoN-Alignment in Section 3. These results in this section build on the
guarantees for rejection sampling in Appendix D, and are organized as follows:

• Appendices F.1 and F.2 provide general tools to analyze BoN-Alignment. In Appendix F.1, we provide a general upper
bound on the regret of BoN-Alignment in terms of the EM -divergence introduced in Appendix D, and in Appendix F.2
we give general lower bounds on the regret.

• In Appendices F.3 to F.5, we instantiate these results to prove the main theorems in Section 3. Namely, these results
leverage Proposition D.3 to translate the EM -divergence to the Cπ and Cπ∞ coverage coefficients, which are standard
measures of distribution shift in offline alignment (cf. Proposition 2.3).

F.1. General Regret Decomposition for BoN-Alignment
Recall that the EM -divergence (Definition D.1) is defined for a parameter M > 0 via

EM (π(x), πref(x)) :=
∑

y∈YM (x)

π(y | x)−M · πref(y | x) = Ey∼πref(x)

[(
π(y | x)
πref(y | x)

−M

)
+

]
.

Our central technical result for the analysis of BoN-Alignment is Lemma F.1 below, which quantifies the regret of the
BoN policy given N samples. This result will later be instantiated to prove Theorem 3.1 and Theorem 3.4. Even though
Lemma F.1 concerns BoN-Alignment, its analysis makes use of the rejection sampling algorithm (Algorithm 5) as a
tool to analyze certain intermediate quantities. As a result, the lemma statement contains an extra parameter M , which
corresponds to a rejection sampling threshold (cf. Algorithm 5), and the regret upper bound is expressed in terms of the
information-theoretic EM -divergence (Definition D.1) which appears in the analysis of rejection sampling in Appendix D.

Lemma F.1 (EM -divergence regret bound for BoN-Alignment). Fix a prompt x. For any comparator policy π⋆ and N ∈ Z
and M ∈ R+ such that EM (π⋆(x), πref(x)) ≤ 1

2 , the BoN policy π̂BoN satisfies

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax ·
(
EM (π⋆(x), πref(x)) + exp

(
−N

M
· (1− EM (π⋆(x), πref(x)))

))
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√

N · ε2RM(x)

Because Lemma F.1 holds for any choice of M ∈ R+, M can be viewed as a parameter (within the analysis) that trades
off between the best regret achievable —which is upper bounded by EM (π⋆(x), πref(x)), which decreases with M— and
the sample complexity required to achieve it, which increases with M . Indeed, when we later prove Theorem 3.1 and
Theorem 3.4 later, we will choose M to make the RHS of Lemma F.1 tight when EM (π(x), πref(x)) is translated to our
coverage coefficients of interest.

Proof sketch. The high-level idea of the proof is to use as an intermediate comparator the response distribution πR induced
simulating sampling from π⋆ via RejectionSamplingN,M ( π⋆

πref
;πref , x), with the parameter M from the lemma statement.

The utility of using such a comparator is that, because the BoN procedure always chooses the response with largest reward
label, π̂BoN is always able to compete with πR under r̂ (in the sense of having larger expected estimated reward).

We can then translate this observation to the desired bound by recalling that πR approximates π⋆ in total variation distance
(from Lemma D.4), which means that π̂BoN is also approximately as good as π⋆ under r̂. Lastly, we translate the performance
under r̂ to the performance under the true reward r⋆, which is penalized by the reward estimation error εRM(x) on the BoN
response distribution, and the gap between the two is quantified by the reward estimation error under the distribution of
responses drawn from π̂BoN, which is the source of the

√
N term.

Proof of Lemma F.1. For simplicity in this proof, we will assume WLOG that r̂(y) is unique for all y ∈ Y , otherwise we
can perturb r̂(y) with a miniscule ε(y)≪ εRM, as long as it is within floating-point precision to break ties.

Let π⋆
R(x) be the distribution of responses induced by running RejectionSamplingN,M ( π⋆

πref
;πref , x) which we use to

decompose the regret as follows:

J(π⋆;x)− J(π̂BoN;x) = J(π⋆;x)− J(π⋆
R;x) + J(π⋆

R;x)− J(π̂BoN;x)

≤ Rmax ·DTV(π
⋆(x), π⋆

R(x)) + J(π⋆
R;x)− J(π̂BoN;x).
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We next bound the last pair of terms as a function of the reward estimation error. Below, we use EŶN∼πref(x)
[·] to refer to

expectations over N samples ŶN = (y1, . . . , yN ) drawn i.i.d. from πref(x), and, given ŶN , we use Ey∼π⋆
R (x)|ŶN

[·] to refer
to the expectation over responses induced by running
RejectionSamplingN,M (π

⋆
/πref ;πref , x) conditioned on the realization of the set ŶN = (y1, . . . , yN ) drawn by the

algorithm. We define Ey∼π̂BoN(x)|ŶN
[·] analogously.

We begin by decomposing the second term above as follows:

J(π⋆
R;x)− J(π̂BoN;x) = Ey∼π⋆

R (x)
[r⋆(x, y)− r̂(x, y)] + EŶN∼πref(x)

[
Ey∼π⋆

R (x)|ŶN
[r̂(x, y)]− Ey∼π̂BoN(x)|ŶN

[r̂(x, y)]
]

+ Ey∼π̂BoN(x)[r̂(x, y)− r⋆(x, y)]

≤ Ey∼π⋆
R (x)

[r⋆(x, y)− r̂(x, y)] + Ey∼π̂BoN(x)[r̂(x, y)− r⋆(x, y)]

≤ Ey∼π⋆
R (x)

[|r⋆(x, y)− r̂(x, y)|]︸ ︷︷ ︸
(T1)

+Ey∼π̂BoN(x)[|r̂(x, y)− r⋆(x, y)|]︸ ︷︷ ︸
(T2)

.

Note that above we use the linearity of expectation in the first inequality, so that

EŶN∼πref(x)

[
Ey∼π⋆

R (x)|ŶN
[r̂(x, y)]− Ey∼π̂BoN(x)|ŶN

[r̂(x, y)]
]

couples the set ŶN drawn by the two algorithms, and compares the performance of π̂BoN and π⋆
R for a fixed set of N

responses. Then, because the BoN policy always chooses the response with the largest value under r̂ for any fixed ŶN , i.e.,
I[y ∈ supp(π̂BoN(· | x))] = I

[
r̂(x, y) ≥ r̂(x, y′), ∀y′ ∈ ŶN

]
, it can be seen that

Ey∼πR(x)|ŶN
[r̂(x, y)]− Ey∼π̂BoN(x)|ŶN

[r̂(x, y)] ≤ 0.

For (T2), we first show that Cπ̂BoN(x) ≤ Cπ̂BoN
∞ (x) ≤ N . Letting

∑
ŶN∼πref(x)

refer to the sum over all possible sequences of

N responses ŶN = (y1, . . . , yN ) ∈ YN , and πref(y1, . . . , yN | x) =
∏N

i=1 πref(yi | x) to be its probability, we can express
the BoN policy in closed form as

π̂BoN(y | x) =
∑

ŶN∼πref(x)

πref(y1, . . . , yN | x) · I
[
y ∈ ŶN

]
· I
[
r̂(x, y) ≥ r̂(x, y′), ∀y′ ∈ ŶN

]
,

since, conditioned on a set of samples ŶN , the BoN algorithm deterministically outputs the one with the largest r̂ value.
The base policy πref can be written in a similar form, by marginalizing over the process through which we sample ŶN , then
sample y uniformly from this set:

πref(y | x) =
∑

ŶN∼πref(x)

πref(y1, . . . , yN | x) ·
∑

y′∈ŶN

I[y′ = y]

N
.

Then for any y, we can upper bound the likelihood ratio between the BoN policy and πref by N ,

π̂BoN(y | x)
πref(y | x)

= N ·

∑
ŶN∼πref(x)

πref(y1, . . . , yN | x) · I
[
y ∈ ŶN

]
· I
[
r̂(x, y) ≥ r̂(x, y′), ∀y′ ∈ ŶN

]
∑

ŶN∼πref(x)
πref(y1, . . . , yN | x) ·

∑
y′∈ŶN

I[y′ = y]

≤ N ·

∑
ŶN∼πref(x)

πref(y1, . . . , yN | x) · I
[
y ∈ ŶN

]
· I
[
r̂(x, y) ≥ r̂(x, y′), ∀y′ ∈ ŶN

]
∑

ŶN∼πref(x)
πref(y1, . . . , yN | x) · I

[
y ∈ ŶN

]
≤ N.

Now, to bound the reward estimation error in (T2), we combine this result with the Cauchy-Schwarz inequality, giving

(T2) ≤
√
Cπ̂BoN(x) · Eπref(x)

[
(r̂(x, y)− r⋆(x, y))

2
]
≤
√

N · ε2RM(x).
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For (T1), we leverage results from Appendix D. Recall the random event from Eq. (14) random draws of ŶN and ξ̂N =
(ξ1, . . . , ξN ), under which Algorithm 5 returns a response in Line 5,

stop := {∃i⋆ ∈ [N ] s.t. ξi⋆ = 1}.

From the proof of Lemma D.4 (Appendix D.2), recall that we can write the induced policy as

π⋆
R(y | x) = PŶN , ξ̂N

(y | x, stop) · PŶN , ξ̂N
(stop | x) + PŶN , ξ̂N

(y | x,¬stop) · PŶN , ξ̂N
(¬stop | x).

On the event of ¬stop, Algorithm 5 returns a randomly drawn response yN+1 ∼ πref(· | x) in Line 6, thus

PŶN , ξ̂N
(y | x,¬stop) = πref(y | x)

As a result,

π⋆
R(y | x) = PŶN , ξ̂N

(stop | x) · PŶN , ξ̂N
(y | x, stop) + PŶN , ξ̂N

(¬stop | x) · πref(y | x)

≤ PŶN , ξ̂N
(y | x, stop) + 1

2
· πref(y | x)

=
min{π⋆(y | x),M · πref(y | x)}

1− EM (π⋆(x), πref(x))
+

1

2
· πref(y | x)

≤ 2 ·min{π⋆(y | x),M · πref(y | x)}+
1

2
· πref(y | x)

where in the last inequality we have used the assumption that EM (π⋆(x), πref(x)) ≤ 1
2 , and in the first we use the ob-

servation that PŶN , ξ̂N
(¬stop | x) ≤ 1

2 since PŶN , ξ̂N
(stop | x) = 1−EM (π⋆(x),πref(x))

M and M ≥ 1. We can then use
Cauchy-Schwarz to bound

(T1) = Ey∼π⋆
R (x)

[|r⋆(x, y)− r̂(x, y)|]

≤ 2 · Ey∼π⋆(x)[|r⋆(x, y)− r̂(x, y)|] + 1

2
· Ey∼πref(x)[|r

⋆(x, y)− r̂(x, y)|]

≤ 2 ·
√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2

Combining all the preceding bounds, we obtain

J(π⋆
R;x)− J(π̂BoN;x) ≤ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√

N · ε2RM(x)

thus the regret is bounded as

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax ·DTV(π
⋆(x), π⋆

R(x)) + 2 ·
√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√

N · ε2RM(x).

Finally, we apply Lemma D.4, which bounds

DTV(π
⋆(x), π⋆

R(x)) ≤ EM (π⋆(x), πref(x)) + exp

(
− N

2M
· (1− EM (π⋆(x), πref(x)))

)
to give the lemma statement.

F.2. General Lower Bounds on Regret
This section contains two regret lower bounds that apply to both BoN and InferenceTimePessimism across a range of
parameter values, for a single prompt x. Each bound contains an information-theoretic component that applies to any
selection algorithm, which is defined formally in Definition F.2, and takes the general form that if N < (threshold), the
regret of any selection algorithm will be at least poly(Cπ⋆

(x), εRM(x)). The results also have a component that is specific
to BoN, that when N ≥ (threshold), BoN has at least

√
N · ε2RM(x) regret.
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• Theorem F.3 in Appendix F.2.1 shows that (threshold) ∝ Cπ∞(x), and for smaller N any algorithm pays√
Cπ⋆

∞ (x) · ε2RM(x) regret, and for larger N BoN incurs
√
N · ε2RM(x) ≥

√
Cπ⋆

∞ (x) · ε2RM(x) regret.

• Theorem F.4 in Appendix F.2.2 utilizes a construction where Cπ⋆

∞ (x) is exponentially larger than Cπ⋆

(x), and any
algorithm has regret at least

(
Cπ⋆

(x) · ε
)p

for a range of ε ≥ εRM(x), unless N ≥ (threshold) ∝
(
ε2RM(x)

)−p
. BoN

again pays
√

N · ε2RM(x) in this regime.

The latter result is later used to prove Theorem 3.2, where p = 1
3 to balance the terms, and Theorem 4.2, where p = 1

2 .

Proof techniques. The information-theoretic component of the results reflects the difficulty of simulating a sample from
the target policy’s distribution, which is required for any selection algorithmA to be able to compete with the target policy.
Recall that the lower bound for rejection sampling (Lemma D.6) states that any selection algorithm requires at leastMπ⋆

x,ε

samples to be ε-close to the target distribution in TV distance. To convert this result to regret lower bounds, we a) construct
a pair of distributions for which the conversion fromMπ⋆

x,ε to coverage coefficient Cπ(x) in Proposition D.3 is tight, and b)
specify reward functions r⋆ and r̂ so that the regret maximally witnesses the reward estimation error εRM(x) where rejection
sampling fails to approximate π⋆, and where π̂BoN overfits to r̂.

While the construction used for the Cπ⋆

∞ (x) result is relatively simple and has |Y| = O(1), the construction for the Cπ⋆

(x)
utilizes a countable infinite response space Y , which is necessary to create the exponential separation between Cπ⋆

(x) and
Cπ⋆

∞ (x). If we label the responses i = 1, 2, 3, . . ., the ratio π⋆

πref
increases exponentially in i, and r⋆ increases in i while

the reward model r̂ decreasess. Because π⋆ here is an exponential tilting of πref with respect to the true reward, the lower
bound construction reflects the structure of language modeling, where policies are parameterized as softmax functions and
the response space is exponentially large, which we believe may be of independent interest.

Preliminaries. The lower bound constructions below utilize only a single prompt x, and in the proofs (not the theorem
statements), we drop the x dependence for notational compactness. For example, π(y) ≡ π(y | x) since X = {x},
Cπ ≡ Cπ(x), etc. Lastly, we formally define what we mean by “any selection algorithm” in the sample-and-evaluate
framework.

Definition F.2 (Inference-time selection algorithm A). Under the sample-and-evaluate framework (Definition 2.2), an
inference-time selection algorithm A is any mapping from ŶN = (y1, . . . , yN ) ∼ πref(· | x) and {r̂(x, yi)}i∈[N ] to a

response y ∈ ŶN ; we define πA : X → ∆(Y) to be the law over responses that the algorithm induces.

F.2.1. LOWER BOUNDS UNDER L∞-COVERAGE

Theorem F.3 (Regret lower bound for Cπ⋆

∞ ). For any ε2RM ∈ [0, 1] and C ≥ 1, there exists a comparator policy π⋆ over
contexts X = {x} and responses Y for which the following statements hold.

1. There exists a problem instance (πref , r
⋆, r̂) with ε2RM(x) ≤ εRM and

Cπ
⋆

∞ (x) = Cπ
⋆

(x) = C

such that, for any N < C
2 , any inference-time selection algorithm A (Definition F.2) has regret

J(π⋆;x)− J(πA;x) > min

{
2
√
Cπ⋆

∞ (x) · ε2RM(x), 1
}
.

2. For any N ≥ 1, there exists a problem instance (πref , r
⋆, r̂) with ε2RM(x) ≤ εRM and

Cπ
⋆

∞ (x) = Cπ
⋆

(x) = C

such that BoN-Alignment suffers regret

J(π⋆;x)− J(π̂BoN;x) ≥ c ·min

{√
N · ε2RM(x), 1

}
,

where c is a universal constant.
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Proof of Theorem F.3. Because we condition on a single prompt x, we omit x dependencies for ease of presentation; in
particular, we abbreviateMπ⋆

ε ≡Mπ⋆

x,ε, and EM (π⋆, πref) ≡ EM (π⋆(x), πref(x)).

Fix N and εRM and C. The response space is Y = {y0, y⋆, ybad}, the comparator policy π⋆(y) = I[y = y⋆] plays y⋆

deterministically, and the reference policy is

πref(y0) = 1− 1
2N −

1
C , πref(y

⋆) = 1
C , πref(ybad) =

1
2N ,

for which we have Cπ⋆

∞ = Cπ⋆

= C. Next, for some ε ≥ 0 recall Definition D.2,

Mπ⋆

ε := min{M | EM (π⋆, πref) ≤ ε}.

For our choice of policies we can computeMπ⋆

ε in closed form, since for any M ,

EM (π⋆, πref) = 1−M · πref(y
⋆) = 1− M

C
.

Then any M ≥ C · (1− ε) is sufficient to have EM (π⋆, πref) ≤ ε, therefore

Mπ⋆

ε = C · (1− ε). (17)

Part 1 (Small N ). Define the reward functions

r⋆(y0) = 0 r⋆(y⋆) = 1 r⋆(ybad) = 0

r̂(y0) = 0 r̂(y⋆) = 1−min
{√

C · ε2RM, 1
}

r̂(ybad) = 0

It is easy to see that

Eπref

[
(r̂(y)− r⋆(y))

2
]
≤ C · ε2RM

C
= ε2RM.

For some ε that we will set shortly, when N <Mπ⋆

x,ε the regret is lower bounded as

J(π⋆)− J(π̂BoN) = π⋆(y⋆)− π̂BoN(y
⋆)

≥ 1− P
(
y⋆ ∈ ŶN

)
≥ 2EMπ⋆

ε
(π⋆, πref).

Then setting ε = min
{√

C · ε2RM, 1
2

}
and using the closed form ofMπ⋆

x,ε in Eq. (17), Lemma D.6 states that when

N <Mπ⋆

ε = C ·
(
1−min

{√
C · ε2RM,

1

2

})
= C ·max

{
1−

√
C · ε2RM,

1

2

}
,

we have EMπ⋆
ε
(π⋆, πref) > ε = min

{√
C · ε2RM, 1

2

}
, and thus

J(π⋆)− J(π̂BoN) > min

{
2
√
C · ε2RM, 1

}
.

Part 2 (Large N ) . Define the gap on ybad to be ∆ := min
{
1,
√
N · ε2RM

}
, and set the reward functions

r⋆(y0) = 0 r⋆(y⋆) = 1 r⋆(ybad) = 1−∆

r̂(y0) = 0 r̂(y⋆) = 1−min
{√

C
2 · ε

2
RM, 1

}
r̂(ybad) = 1

and we can check that

Eπref

[
(r̂(y)− r⋆(y))

2
]
≤ C · ε2RM

2C
+

∆2

2N
=

ε2RM
2

+
min

{
1, N · ε2RM

}
2N

≤ ε2RM.
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Note that for this construction, r̂(ybad) is the largest reward under r̂, so π̂BoN will always play ybad if ybad ∈ ŶN , which is
an event that occurs with at least constant probability under our choice for πref

P(ybad ∈ ŶN ) = 1−
(
1− 1

2N

)N

≥ 1− e−
1
2 .

Using this, we lower bound the regret as

J(π⋆)− J(π̂BoN) = P(ybad ∈ ŶN ) · EŶN

[
J(π⋆)− J(π̂BoN) | ybad ∈ ŶN

]
+ P(ybad /∈ ŶN ) · EŶN

[
J(π⋆)− J(π̂BoN) | ybad /∈ ŶN

]
> P(ybad ∈ ŶN ) · EŶN

[
J(π⋆)− J(π̂BoN) | ybad ∈ ŶN

]
= P(ybad ∈ ŶN ) ·∆

≥ c ·min

{
1,
√

N · ε2RM
}
,

where in the first inequality we use the fact that π⋆ is optimal for r⋆, and in the last inequality we plug in the definition of
∆.

F.2.2. LOWER BOUNDS UNDER L1-COVERAGE

Theorem F.4 (Regret lower bound for Cπ⋆

). For any εRM ∈ (0, 1/4] and C ≥ ε−1
RM , there exists a comparator policy π⋆

over contexts X = {x} and response space Y = Z+, and universal constants c1, c2, c3 such that the following statements
hold for any p ∈ (0, 1/2].

1. For any ε ∈ [εRM,
1
4 ], there exists a problem instance (πref , r

⋆, r̂) with ε2RM(x) ≤ εRM and

Cπ
⋆

(x) = O(logC),

Cπ
⋆

∞ (x) = O(C),

such that, for any N < c1 ·
(
Cπ⋆

(x) · ε2
)−p

, any selection algorithm A (Definition F.2) suffers regret

J(π⋆;x)− J(πA;x) > c2 ·
(
Cπ

⋆

(x) · ε2
)p

.

2. For any N ≳ 1, there exists a problem instance (πref , r
⋆, r̂) with ε2RM(x) ≤ εRM and

Cπ
⋆

(x) = O(logC)

Cπ
⋆

∞ (x) = O(C),

such that the BoN-Alignment policy π̂BoN has regret

J(π⋆;x)− J(π̂BoN;x) > c3 ·
√

N · ε2RM(x).

Proof of Theorem F.4. As in the proof of Theorem F.3, x-dependencies are ommitted in the proof below, inclusive of
complexity measures such as EM (π⋆(x), πref(x)) and εRM(x), since there is only a single prompt.

Part 1 (N small). We prove the statement for Cπ⋆ ≤ ε−2
RM , otherwise

√
Cπ⋆ · ε2RM = Ω(1).

For all ε ∈
[
εRM,

1
4

]
, we will define πref and π⋆ to be the distributions from the construction in Lemma F.5 with C. These

policies are defined as follows for all i ∈ Y = {1, 2, . . .} (where we use i instead of y to index responses).

πref(i) =
3

4i

π⋆(i) =

{
2i

3 · πref(i), if i ≤ I := ⌈logC⌉,
2I · πref(i), otherwise.
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From the proof of Lemma F.5, we know that

Cπ
⋆

= O(logC), and Cπ
⋆

∞ = O(C).

Now fix a choice of ε ∈
[
εRM,

1
4

]
. We will now define the reward functions for the construction. Let kε ∈ Y is an index that

will be specified shortly, and, for i ∈ Y , define ∆ε(i) = 2i ·
√

ε2RM
4·kε

, and

r⋆(i) =

{
0 if i < kε,
1
2 + ∆ε(kε)

2 otherwise.
r̂(i) =

{
∆ε(i) if i < kε,
1
2 −

∆ε(kε)
2 otherwise.

For this choice of r̂ and r⋆, we verify that the estimation error is upper bounded as ε2RM,

Eπref

[
(r̂(i)− r⋆(i))

2
]
= 3

(
kε∑
i=1

4−i ·∆2
ε(i) + ∆2

ε(kε)

∞∑
i=kε+1

4−i

)

= 3 · kε ·
ε2RM
4 · kε

+

(
4kε · ε2RM
4 · kε

)
· 4−kε

=
ε2RM
4

(
3 +

1

kε

)
≤ ε2RM.

Next, we set

kε =

⌊
log

((
Cπ

⋆

· ε2
)−p

)⌋
.

We can check that kε ≤ I = ⌈logC⌉, again using the precondition that C ≥ 1
εRM
≥ 1

ε ,

kε ≤
⌊
log

(
1

(Cπ⋆ · ε2RM)
p

)⌋
≤
⌊
log

(
1

εRM

)⌋
≤ ⌊log(C)⌋ .

Then Lemma D.6 applied with ε′ = 2−kε = c ·
(
Cπ⋆ · ε2

)p
, where c is an absolute constant, states that, if N < c ·(

Cπ⋆ · ε2
)−p

, any selection algorithm (Definition F.2) has

DTV(π
⋆, πA) ≥ E 1

ε′
(π⋆, πref) ≳

(
Cπ

⋆

· ε2
)p

. (18)

We conclude by lower bounding the regret using Eq. (18). When N < c ·
(
Cπ⋆ · ε2

)−p
,

J(π⋆)− J(πA) =

kε∑
i=1

r⋆(i) · (π⋆(i)− πA(i)) + r⋆(kε) ·
∞∑

i=kε+1

(π⋆(i)− πA(i))

= r⋆(kε) ·
∞∑

i=kε+1

(π⋆(i)− πA(i))

≥
(
1 +

∆ε(kε)

2

)
· E 1

ε′
(π⋆, πref)

> c2 ·
(
Cπ

⋆

· ε2
)p

,

where we have applied Eq. (18) in the last line, and in the first inequality we use the definition of EM (π⋆, πref) with
M = 1

ε′ = 2kε , since {kε + 1, . . .} = {i : π⋆(i)
πref(i)

≥ 2kε}.

Part 2 (N large). Fix N ∈ Z+. We prove the result for N ≲ 1
ε2RM

, otherwise the stated bound holds trivially. Let

kN = ⌊log4(N)⌋ ≤ I := ⌈logC⌉, so that πref(kN ) ≥ 1
N .
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Next, let ∆N (i) := 2i
√

ε2RM
8·kN

, and define the reward functions

r⋆(i) =


1
2 + ∆N (i)

2 if i < kN ,
1
2 −

√
kN ·∆N (kN )

2 if i = kN ,
1
2 +

√
kN ·∆N (kN )

2 otherwise.

r̂(i) =


1
2 −

∆N (i)
2 if i < kN ,

1
2 +

√
kN ·∆N (kN )

2 if i = kN ,
1
2 −

√
kN ·∆N (kN )

2 otherwise.

First, we check the reward ranges, and observe that
√
kN ·∆N (kN ) =

√
1
8 ·N · ε

2
RM ≤ 1. For the reward model error, we

have

Eπref

[
(r̂(i)− r⋆(i))

2
]
= 3

(
kN−1∑
i=1

4−i ·∆2
N (i) + kN ·∆2

kN
(kN )

∞∑
i=kN

4−i

)

=
3(kN − 1) · ε2RM

8kN
+ kN ·∆2

N (kN ) · 41−kN

=
ε2RM
8

(
3(kN − 1)

kN
+ 4

)
≤ ε2RM.

Second, we show that J(π⋆) − J(πref) ≥ 0 as long as kN ≥ 4 by computing the policies in closed form. Recall that
π⋆(i) = 2−i if i ≤ I , and π⋆(i) = 3 · 2I · 4−i otherwise. Then by plugging in this expression and the definition of r⋆

above, we calculate its return as

J(π⋆) =

kN−1∑
i=1

2−i ·
(
1

2
+

∆N (i)

2

)
+

1

2
·

(
2−kN +

I∑
i=kN+1

2−i + 3 · 2I
∞∑

i=I+1

4−i

)

+

√
kN ·∆N (kN )

2
·

(
I∑

i=kN+1

2−i + 3 · 2I
∞∑

i=I+1

4−i − 2−kN

)

Recall that

1 =
∑
i∈Y

π⋆(y) =

I∑
i=1

2−i + 3 · 2I
∞∑

i=I+1

4−i.

Then grouping terms and substituting this identity,

J(π⋆) =
1

2

(
1 +

kN−1∑
i=1

2−i∆N (i) +
√

kN ·∆N (kN ) ·

(
1−

kN∑
i=1

2−i − 2−kN

))

=
1

2

1 +

kN−1∑
i=1

2−i · 2i
√

ε2RM
8 · kN

+ 2kN

√
ε2RM
8
·

(
1−

kN∑
i=1

2−i − 2−kN

)
=

1

2

1 + (kN − 1)

√
ε2RM

8 · kN
+ 2kN

√
ε2RM
8
·
(
2−kN − 2−kN

)
=

1

2
+ (kN − 1)

√
ε2RM

32 · kN
.
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Also, for πref we have

J(πref) = 3

(
kN−1∑
i=1

4−i ·
(
1

2
+

∆N (i)

2

)
+

1

2
·

(
4−kN +

∞∑
i=kN+1

4−i

)
+

√
kN ·∆N (kN )

2
·

( ∞∑
i=kN+1

4−i − 4−kN

))

=
1

2
+ 3

√
ε2RM

32kN
·
kN−1∑
i=1

2−i +

√
kN ·∆N (kN )

2
·
(
4−kN − 4−kN

)
=

1

2
+ 3

√
ε2RM

32kN
·
(
1− 21−kN

)
≤ 1

2
+ 3

√
ε2RM

32kN
.

Together, we obtain that

J(π⋆)− J(πref) ≥ (kN − 4) ·

√
ε2RM

32 · kN
,

which is nonnegative whenever kN = ⌊log4 N⌋ > 4, or N ≥ 256.

Lastly, we lower bound the regret by considering two cases.

• If kN ∈ ŶN , then BoN will choose kN since kN = argmaxi r̂(i), and

E
[
J(π⋆)− J(π̂BoN) | kN ∈ ŶN

]
≥ 1

2
−
(
1

2
−
√
kN ·∆k

2

)
=

√
kN ·∆N (kN )

2
=

√
1

32
·N · ε2RM.

• If kN /∈ ŶN , our design of r⋆ and r̂ ensures that BoN will always choose the response y ∈ ŶN with the smallest
reward r⋆, while πref is equivalent to choosing y ∈ ŶN uniformly, thus

E
[
J(πref)− J(π̂BoN) | kN /∈ ŶN

]
≥ 0.

Formally, combining these cases gives

J(π⋆)− J(π̂BoN) = P(kN ∈ ŶN ) · E
[
J(π⋆)− J(π̂BoN) | kN ∈ ŶN

]
+ P

(
kN /∈ ŶN

)
· E
[
J(π⋆)− J(π̂BoN) | kN /∈ ŶN

]
≥ P(kN ∈ ŶN ) ·

√
kN ·∆N (kN )

2
+ P

(
kN /∈ ŶN

)
· (J(π⋆)− J(πref))

> P(kN ∈ ŶN ) ·
√
kN ·∆N (kN )

2

≥
(
1− e−3

)
·
√

1

32
·N · ε2RM

where in the last inequality we use the fact that, since πref(kN ) ≥ 3
N ,

P(k ∈ ŶN ) = 1− P(k /∈ ŶN ) = 1−
(
1− 3

N

)N

> 1− e−3.
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F.2.3. SUPPORTING LEMMAS

The following lemma identifies a pair of distributions π and πref where the upper bound Mπ
ε ≤ Cπ

ε is tight up to loga-
rithmic factors, and where it is information-theoretically hard to approximate π using samples from πref . In particular, the
distributions exhibitMπ

ε = O
(
ε−1
)

and Cπ = O(log(Cπ∞)).

Lemma F.5. For any ε ∈ (0, 1
4 ] and C ≥ 1

2·ε , there exists a prompt space X = {x}, response space Y , and two
distributions π, πref : X → ∆(Y) with

• Cπ(x) = O(log(C)); and

• Cπ∞(x) = O(C);

such that if N < 1
12·ε , any selection algorithm A (Definition F.2) has DTV(π(x), πA(x)) > ε.

Proof of Lemma F.5. We omit all x dependencies given that there is a single prompt, and all instances of log are base
2. The construction is as follows. The response space Y = N is countably infinite and indexed by i ∈ {1, 2, 3, . . .}. Let
I := ⌈log(C)⌉ (the preconditions on ε and C are to ensure that I ≥ 1), and define

π(i) =

{
2−i

Zπ
if i ≤ I,

2I

Zπ
· πref(i) if i > I,

and πref(i) =
4−i

Zπref

,

where

Zπref
:=

∞∑
i=1

4−i =
1

3
, and

Zπ =

I∑
i=1

2−i + 2I ·
∞∑

i=I+1

4−i

Zπref

=
(
1− 2−I

)
+ 2I · 4−I = 1.

The coverage coefficient has Cπ = O(logC) since

Cπ =

I∑
i=1

π2(i)

πref(i)
+

4I

(Zπ)2
·

∞∑
i=I+1

πref(i) =
Zπref

(Zπ)2
· I + 4I · Zπref

(Zπ)2
· 4−I =

Zπref

(Zπ)2
(I + 1),

while Cπ∞ = O(C), since Cπ∞ =
Zπref

Zπ
· 2⌈logC⌉. Next, recall that for any M ≥ 1,

EM (π, πref) =

∞∑
i=1

πref(i) ·
(

π(i)

πref(i)
−M

)
+

=

∞∑
i=1

4−i

Zπref

·
(
2(i∧I) · Zπref

Zπ
−M

)
+

.

Note that π(i)
πref(i)

increases with i. Motivated by this, we will set M = Mk :=
2k·Zπref

Zπ
for some index k ≤ I to be specified

shortly, which effectively zeroes out all terms i ≤ k in the sum above:

EMk
(π, πref) =

∞∑
i=1

4−i

Zπref

·
(
2(i∧I) · Zπref

Zπ
−Mk

)
+

.

=

∞∑
i=k+1

4−i

Zπref

·
(
2i · Zπref

Zπ
−Mk

)

=

∞∑
i=k+1

2−i

Zπ
−Mk ·

∞∑
i=k

4−i

Zπref

= 2−k −Mk · 4−k

= 2−k −
(
2k · Zπref

Zπ

)
· 4−k

= 2−k ·
(
1− Zπref

Zπ

)
.
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Now let Z =
Zπref

Zπ
= 1

3 for short, and set k = ⌊log
(

1
2ε

)
⌋. We check that k ≤ log

(
1
2ε

)
≤ log(C) ≤ I , since C ≥ 1

2ε by
assumption. For this choice of k, we have

EMk
(π, πref) ≥ 2− log( 1

2ε ) · (1− Z) =
4

3
· ε.

Recall thatMπ
ε = min{M | EM (π, πref) ≤ ε}. Since larger M has smaller EM (π, πref), we conclude that

Mπ
ε ≥Mk ≥ 2log(

1
4ε ) · Z =

Z

4ε
=

1

12 · ε
.

The theorem statement then follows by applying Lemma D.6, which states that when N < 1
12·ε , any selection strategy A

must have DTV(π, πA) > ε.

F.3. Proof of Theorem 3.1
Proof of Theorem 3.1. Recall from Definition D.1 that for a given prompt x and target policy π,

EM (π(x), πref(x)) :=
∑

y∈YM (x)

π(y | x)−M · πref(y | x) = Ey∼πref(·|x)

[(
π(y | x)
πref(y | x)

−M

)
+

]
.

Proposition D.3 states that for any M we can upper bound EM (π⋆(x), πref(x)) ≤ Cπ⋆
(x)

M , which when combined with
Lemma F.1 results in

J(π⋆;x)− J(π̂BoN;x)

≤ Rmax ·
(
Cπ⋆

(x)

M
+ exp

(
−N

M
· (1− EM (π⋆(x), πref(x)))

))
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√
N · ε2RM(x)

as long as M is large enough such that EM (π⋆(x), πref(x)) ≤ Cπ⋆
(x)

M ≤ 1/2. We will set M = N
log(4R2

max/ε
2
RM(x))

; we can

check that as long as N ≥ 2 · Cπ⋆

(x) · log
(
4R2

max/ε
2
RM(x)

)
then EM (π⋆(x), πref(x)) ≤ 1

2 since

EM (π⋆(x), πref(x)) ≤
Cπ⋆

(x)

M
=
Cπ⋆

(x) log
(
4R2

max/ε
2
RM(x)

)
N

≤ 1

2
.

Then for any N ≥ 2 · Cπ⋆

(x) · log
(
4R2

max/ε
2
RM(x)

)
, we have

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax ·
(
Cπ⋆

(x)

M
+ exp

(
− N

2M

))
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√

N · ε2RM(x)

= Rmax ·
Cπ⋆

(x) log
(

4R2
max

ε2RM(x)

)
N

+ 2 ·
√
Cπ⋆(x) · ε2RM(x) + εRM(x) +

√
N · ε2RM(x),

which completes the first statement of the theorem. The second part of the theorem statement follows from by set-
ting N to minimize the RHS of the regret bound above, by balancing the two N -dependent terms. Namely, if

N ≍

Cπ⋆
(x)·Rmax·log

(
4R2

max
ε2RM(x)

)
εRM(x)

 2
3

, then

J(π⋆;x)− J(π̂BoN;x) ≲
(
Rmax · Cπ

⋆

(x) · ε2RM(x) · log
(

Rmax

εRM(x)

)) 1
3

.
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F.4. Proof of Theorem 3.2
Proof of Theorem 3.2. The first part of the theorem statement follows from Theorem F.3 with C = 2, which then states
that

J(π⋆;x)− J(π̂BoN) ≥ c ·min

{√
N · ε2RM(x), 1

}
as long as N ≥ 1, where c is a universal constant.

The second part of the theorem statement follows from invoking Theorem F.4 with p = 1
3 and C = εRM(x)

−1 which states

that if N = Õ
(
ε
− 2

3
RM (x)

)
then

J(π⋆;x)− J(π̂BoN;x) > c1 ·
(
ε2RM(x) · log(εRM(x))

) 1
3

while if N = Ω̃
(
ε
− 2

3
RM (x)

)
then

J(π⋆;x)− J(π̂BoN;x) > c2 ·
√

N · ε2RM(x) ≥ Ω̃
(
ε

2
3
RM(x)

)
.

F.5. Proof of Theorem 3.4
Proof of Theorem 3.4. When M = Cπ⋆

∞ (x) we have EM (π⋆(x), πref(x)) = 0, and using this choice of M in Lemma F.1
gives

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax · exp
(
− N

Cπ⋆

∞ (x)

)
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√
N · ε2RM(x),

which proves the first part of the theorem statement. For the second, we observe for any N ≥ Cπ⋆

∞ (x) log(2Rmax/εRM(x)),
we have

J(π⋆;x)− J(π̂BoN;x) ≲ εRM(x) +
√
N · ε2RM(x),

and if N ≍ Cπ⋆

∞ (x) · log(Rmax/εRM(x)) additionally, then

J(π⋆;x)− J(π̂BoN;x) ≲
√
Cπ⋆

∞ (x) · ε2RM(x) · log(Rmax/εRM(x)) .

F.6. Additional Results
Here, as an additional result, we prove a regret guarantee for BoN-Alignment in terms of the information-theoretic quan-
titiesMπ

x,ε andMπ
ε (Definition D.2). Our main theorems, Theorem 3.1 and Theorem 3.4, can be viewed as more inter-

pretable relaxations that isolate the dependencies on coverage coefficients and N .

Theorem F.6 (BoN regret withMπ⋆

ε ). Given prompt x, for any ε ∈ [0, 1
2 ] and N ∈ Z and comparator policy π⋆ , the BoN

policy π̂BoN satisfies

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax ·
(
ε+ exp

(
− N

2Mπ⋆

x,ε

))
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√
N · ε2RM(x).

In particular, if N = 2Mπ⋆

x,ε · log
(

εRM(x)
2Rmax

)
,

J(π⋆;x)− J(π̂BoN;x) ≲ Rmax · ε+
√
Cπ⋆(x) · ε2RM(x) +

√
Mπ⋆

x,ε · ε2RM(x) · log
(
εRM(x)

2Rmax

)
.
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Proof of Theorem F.6. We will apply Lemma F.1 with M = Mπ⋆

x,ε for ε ∈ [0, 1
2 ]. Whenever ε ≤ 1

2 , we have
EM (π⋆(x), πref(x)) ≤ 1

2 by definition, since

EMπ⋆
x,ε

(π⋆(x), πref(x)) ≤ ε ≤ 1

2
.

As a result, 1− EMπ⋆
x,ε

(π⋆(x), πref(x)) ≥ 1
2 , and Lemma F.1 states that, for any N ,

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax ·
(
ε+ exp

(
− N

2Mπ⋆

x,ε

))
+ 2 ·

√
Cπ⋆(x) · ε2RM(x) +

εRM(x)

2
+
√
N · ε2RM(x).

Setting N = 2Mπ⋆

x,ε log
(

εRM(x)
2Rmax

)
, we obtain

J(π⋆;x)− J(π̂BoN;x) ≤ Rmax · ε+ 2 ·
√
Cπ⋆(x) · ε2RM(x) + εRM(x) +

√
2Mπ⋆

x,ε · ε2RM(x) · log
(
εRM(x)

2Rmax

)

≲ Rmax · ε+
√
Cπ⋆(x) · ε2RM(x) +

√
Mπ⋆

x,ε · ε2RM(x) · log
(
εRM(x)

2Rmax

)
.
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G. Proofs from Section 4
The proofs below are conditioned on a single prompt x, and as a result we omit x dependencies to simplify presentation
throughout. We refer to x-dependent quantities via their x-independent analogs, e.g., J(π;x) ≡ J(π), λ(x) ≡ λ, etc.

G.1. Proof of Theorem 4.1
Proof of Theorem 4.1. In the proof below, for a reward model r we define the expected return under it to be Jr(π;x) :=
Ey∼π(x)[r(x, y)], and using this definition we can also write J(π;x) = Jr⋆(π;x). With prompt dependencies ommitted,
we equivalently write Jr(π;x) ≡ Jr(π) .

Given a reward function r̂, define for a normalization constant λ the following functions:

πλ(y) =
πref(y)relu

(
β−1(r̂(y)− λ)

)
Φ(λ)

, (19)

Φ(λ) = Eπref

[
relu
(
β−1(r̂(y)− λ)

)]
, (20)

and

Φ̂(λ) =
1

N

N∑
i=1

relu
(
β−1(r̂(yi)− λ)

)
.

We analyze the regret using the following decomposition, where λ̂ ≡ λ̂(x) is the output of Eq. (9) in Algorithm 2.

J(π⋆)− J(π̂) = J(π⋆)− Jr̂(π
⋆)︸ ︷︷ ︸

(T1)

+ Jr̂(π
⋆)− Jr̂(πλ̂)︸ ︷︷ ︸
(T2)

+ Jr̂(πλ̂)− J(πλ̂)︸ ︷︷ ︸
(T3)

+ J(πλ̂)− J(π̂)︸ ︷︷ ︸
(T4)

.

For (T2), recall that λ̂ is computed using using Algorithm 3 in Eq. (9), which Lemma C.1 shows obtains λ̂ such that
Φ̂(λ) = 1. Further, the procedure in Algorithm 3 is equivalent to solving the optimization problem in Lemma G.2 with
πref = unif

(
ŶN
)

and α = 1, and, as a result, we have λ̂ ∈ [−β,Rmax − β]. Now for a fixed N , the bound in Lemma G.3
states that with probability at least 1− δ, for any δ ∈ (0, 1) we have

7

9
+

8

9
· εN ≤ Φ(λ̂) ≤ 9

7
+

8

7
· εN ,

where εN := 12
(

Rmax+β
β

)
log( 60Rmax

βδ )
N is the expression in the RHS of the bound. Then to have Φ(λ̂) ∈

[
1
2 ,

3
2

]
with

probability ≥ 1− δ, it is sufficient to choose N large enough such that εN ≤ 1
4 , which is satisfied when

N ≥ 48

(
Rmax + β

β

)
log

(
60Rmax

βδ

)
.

Next, let E =
{
Φ(λ̂) ∈

[
1
2 ,

3
2

]}
denote the aforementioned high-probability event. Using Lemma G.1, we may bound

Jr̂(π
⋆)− Jr̂(πλ̂) ≤ P(E) · E

[
Jr̂(π

⋆)− Jr̂(πλ̂) | E
]
+ P(¬E) · E

[
Jr̂(π

⋆)− Jr̂(πλ̂) | ¬E
]

≤ E
[
Jr̂(π

⋆)− Jr̂(πλ̂) | E
]
+ δ ·Rmax

≤ 3β

4
· Cπ

⋆

− β

4
· Cπλ̂ + δ ·Rmax,

By setting δ = εRM
Rmax

, we obtain that

(T2) = Jr̂(π
⋆)− Jr̂(πλ̂) ≤

3β

4
· Cπ

⋆

− β

4
· Cπλ̂ + εRM

if N = Ω
((

1 + Rmax

β

)
log
(

Rmax

β·εRM

))
.
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For (T4), from Lemma D.4 with M = Rmax

β , we have

DTV

(
πλ̂, π̂

)
≤ exp

(
− N · β
2Rmax

)
thus as long as N ≳ Rmax

β log
(

Rmax

εRM

)
we have

DTV

(
πλ̂, π̂

)
≤ εRM

Rmax
.

As a result,

(T4) = J(πλ̂)− J(π̂) ≤ Rmax ·DTV

(
πλ̂, π̂

)
≤ εRM.

For (T1), we know from the standard Cauchy-Schwarz bound that

(T1) = J(π⋆)− Jr̂(π
⋆) = Ey∼π⋆ [r⋆(y)− r̂(y)] ≤

√
Cπ⋆ · ε2RM

Lastly, for (T3), Cauchy-Schwarz and the AM-GM inequality imply that

(T3) = Jr̂(πλ̂)− J(πλ̂) = Ey∼π
λ̂
[r̂(y)− r⋆(y)] ≤

√
Cπλ̂ · ε2RM ≤

β

4
· Cπλ̂ +

ε2RM
β

Putting things together, as long as N ≳ Ω̃
((

1 + Rmax

β

)
log
(

Rmax

β·εRM

))
we have

J(π⋆)− J(π̂) ≤
√
Cπ⋆ · ε2RM +

3β

4
· Cπ

⋆

+
ε2RM
β

+ 2εRM.

We set β =

√
ε2RM
Cπ⋆ to balance the terms for the final result.

G.1.1. SUPPORTING LEMMAS

Throughout this section, we consider a fix prompt x ∈ X and omit dependence on x as above.

Lemma G.1. Suppose we have λ such that Φ(λ) = α for some α > 0 (cf. Eq. (20)). Then for πλ defined in Eq. (19), it
holds for any policy π that

Jr̂(π)− Jr̂(πλ) ≤
αβ

2
· Cπ − αβ

2
· Cπλ .

In particular, if α ∈
[
1
2 ,

3
2

]
, then

Jr̂(π)− Jr̂(πλ) ≤
3β

4
· Cπ − β

4
· Cπλ

Proof of Lemma G.1. Let α = Φ(λ) and define πλ
′ = relu

(
β−1(r̂(y)− λ)

)
= α · πλ, so that π′

λ ∈ ∆α(Y) (cf. Eq. (21)).
Further, for the comparator policy π, define π′ = α · π ∈ ∆α(Y). We know from Lemma G.2 that

Jr̂(π
′)− Jr̂(πλ

′) ≤ β

2
· Cπ

′
− β

2
Cπ

It can be observed that Cπ′
= α2 · Cπ and Cπλ

′
= α2 · Cπλ , as well as α(Jr̂(π)− Jr̂(πλ)) = Jr̂(π

′)− Jr̂(πλ
′), therefore

Jr̂(π)− J(πλ) ≤
αβ

2
· Cπ − αβ

2
Cπλ .

For the second statement, for any α ∈
[
1
2 ,

3
2

]
we have

Jr̂(π)− J(πλ) ≤
3
2 · β
2
· Cπ −

1
2 · β
2
Cπλ =

3β

4
· Cπ

⋆

− β

4
· Cπ
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Lemma G.2. Let a reward function r and parameter α > 0 be given, and define

∆α(Y) =
{
π ∈ RY

+ |
∑

y∈Y π(y) = α
}
. (21)

Then there exists a choice of λ ∈ [J(πref)− αβ,maxy∈Y r(y)− αβ] such that
∑

y∈Y π(y) = α. Furthermore, given any
λ such that

∑
y∈Y π(y) = α,

π(y) = πref(y) · relu
(
β−1(r(y)− λ)

)
is the optimal solution to

π = argmax
π∈∆α(Y)

[
J(π)− β

2
Cπ
]
. (22)

Proof of Lemma G.2. First we rewrite the objective in Eq. (22) in primal form,

π =argmin
π∈RY

{
−J(π) + β

2
Cπ
}
.

s.t.
∑
y∈Y

π(y) = α

− π(y) ≤ 0, ∀y ∈ Y

and we can verify that Slater’s condition holds, because the objective is convex, since J(π) is affine and Cπ is (strongly)
convex, and there exists at least one strictly feasible point, an example being the function π′ that sets π′(y) = α

|Y| for all
y ∈ Y .

Under strong duality, the KKT conditions are both necessary and sufficient for optimality; further, the objective has a
unique minimum due to strong convexity, and therefore, to prove the theorem statement, it is sufficient to show that the
proposed π satisfies the KKT conditions.

For primal variable π and dual variables (ν, λ), the Lagrangian is given by

min
π∈RY

max
λ∈R,ν∈RY

+

L(π, ν, λ) = −
∑
y∈Y

π(y)r(y) +
β

2
Cπ + λ

∑
y∈Y

π(y)− α

−∑
y∈Y

ν(y)π(y)

and under strong duality, we know that the optimal primal and dual variables (π, ν, λ) satisfy

• π ≥ 0

•
∑

y π(y) = α

• ν ≥ 0

• π(y) · ν(y) = 0 for all y (complementary slackness).

• ∇πL(π, (ν, λ)) = 0 (first-order condition).

From the first-order condition ∇πL(π, ν, λ) = 0, we know that π satisfies for all y ∈ Y :

r(y)− β
π(y)

πref(y)
− λ+ ν(y) = 0,

or after rearranging,

π(y) = πref(y) · β−1(r(y)− λ+ ν(y)). (23)

Now consider a fixed y ∈ Y . We consider three cases:
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• If r(y) − λ < 0, then we must have ν(y) ≥ − (r(y) − λ) > 0 to satisfy π(y) ≥ 0 by Eq. (23). By complementary
slackness, this implies that π(y) = 0.

• If r(y)− λ = 0, then Eq. (23) gives π(y) = πref(y)β
−1ν(y), which implies π(y) = 0 by complementary slackness.

• if r(y)− λ > 0, then r(y)− λ+ ν(y) > 0 (since ν(y) ≥ 0), which in turn gives π(y) > 0 by Eq. (23). This implies
that ν(y) = 0 by complementary slackness.

Combining these cases, we conclude that

π(y) =

{
0, r(y)− λ ≤ 0,
πref(y)β

−1(r(y)− λ) r(y)− λ > 0.

This is equivalent to π(y) = πref(y) · relu(β−1(r(y) − λ)), which is also optimal under strong duality. Finally, the
condition

∑
y π(y) = α implies that λ must be chosen such π ∈ ∆α(Y) normalizes to α.

Lemma G.3. Recall Φ(λ) = Ey∼πref

[
relu
(
β−1(r(y)− λ)

)]
, and given N samples from y1, . . . , yN ∼ πref , define

Φ̂(λ) =
1

N

N∑
i=1

relu
(
β−1(r(yi)− λ)

)
.

Fix any γ ∈ R+. With probability at least 1− δ, for all λ ∈ [−γ,Rmax − γ], we have

max

{
7

8
Φ(λ)− Φ̂(λ), Φ̂(λ)− 9

8
Φ(λ)

}
≤ 1

8
+ 12

(
Rmax + γ

β

) log
(

60Rmax

βδ

)
N

.

Proof of Lemma G.3. We start with Bernstein’s inequality, which states that for a bounded random variable X ∈ [a, b],
with probability at least 1− δ′, the empirical mean Ê[X] = 1

N

∑N
i=1 Xi satisfies

∣∣∣Ê[X]− E[X]
∣∣∣ ≤ 2

√
V[X] log( 2δ )

N
+

4(b− a) log( 2δ )

N
,

where V[X] is the variance of X . Now fix λ, and let the random variable be X = relu(r(y)− λ). Since λ ∈
[−γ,Rmax − γ], the random variable X ∈

[
0, Rmax+γ

β

]
, and henceforth we refer to the range as R = Rmax+γ

β . We can
bound the variance of this random variable as

V[X] ≤ E[X2] ≤ R · E[X] = R · Φ(λ).

Then with probability at least 1− δ′, we have

∣∣∣Φ(λ)− Φ̂(λ)
∣∣∣ ≤ 2

√
RΦ(λ) log( 2

δ′ )

N
+

4R log( 2
δ′ )

N

≤ Φ(λ)

8
+

8R log
(

2
δ′

)
N

+
4R log

(
2
δ′

)
N

=
Φ(λ)

8
+

12R log
(

2
δ′

)
N

,

where we use the AM-GM inequality in the second inequality. This then implies that

Φ(λ)− Φ̂(λ) ≤ Φ(λ)

8
+

12R log
(

2
δ′

)
N

, and

Φ̂(λ)− Φ(λ) ≤ Φ(λ)

8
+

12R log
(

2
δ′

)
N

,
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which after rearranging and plugging in the expression for R, results in

7

8
Φ(λ)− Φ̂(λ) ≤ 12

(
Rmax + γ

β

)
log
(

2
δ′

)
N

, and (24)

Φ̂(λ)− 9

8
Φ(λ) ≤ 12

(
Rmax + γ

β

)
log
(

2
δ′

)
N

,

which proves that the desired inequality holds for any λ fixed a-priori.

We now convert this guarantee into a uniform-in-λ bound. Consider the interval [−γ,Rmax − γ], and, for some fixed ε, let
Λε =

{
−γ + ε · i : i = 1, . . . , ⌈Rmax

ε ⌉
}

, which has cardinality |Λε| ≤ 2Rmax

ε . Then for any λ ∈ [−γ,Rmax − γ], we can
always find λ′ ∈ Λε such that |λ− λ′| ≤ ε, for which∣∣relu(β−1(r(y)− λ)

)
− relu

(
β−1(r(y)− λ′)

)∣∣ ≤ β−1 · |λ− λ′| ≤ β−1 · ε.

Applying Eq. (24) and taking a union bound, with probability at least 1− δ we have that for all λ′ ∈ Λε,

7

8
Φ(λ′)− Φ̂(λ′) ≤ 12

(
Rmax + γ

β

)
log
(
4Rmax

εδ

)
N

Φ̂(λ′)− 9

8
Φ(λ′) ≤ 12

(
Rmax + γ

β

)
log
(
4Rmax

εδ

)
N

,

thus for all λ ∈ [−γ,Rmax − γ],

7

8
Φ(λ)− Φ̂(λ) ≤ 15

8

ε

β
+ 12

(
Rmax + γ

β

)
log
(
4Rmax

εδ

)
N

Φ̂(λ)− 9

8
Φ(λ) ≤ 15

8

ε

β
+ 12

(
Rmax + γ

β

)
log
(
4Rmax

εδ

)
N

,

and choosing ε = β
15 results in

7

8
Φ(λ)− Φ̂(λ) ≤ 1

8
+ 12

(
Rmax + γ

β

) log
(

60Rmax

βδ

)
N

Φ̂(λ)− 9

8
Φ(λ) ≤ 1

8
+ 12

(
Rmax + γ

β

) log
(

60Rmax

βδ

)
N

which when combined proves the lemma statement.

G.2. Proof of Theorem 4.2
Proof of Theorem 4.2. Fix N ≲ 1

εRM
. We apply the first part of Theorem F.4 with εRM = εRM, p = 1

2 , C = O(ε−1
RM ), and

ε = 1

c1·N ·
√

2Cπ⋆ (x)
. Note that the construction has Cπ⋆

(x) = O(logC). With this set of parameters, any algorithm A
using N ′ such that

N ′ < c1 ·
(
Cπ

⋆

(x) · ε2
)− 1

2

= c1 ·
(

1

2c21N
2

)− 1
2

= 2N

must suffer regret at least

J(π⋆)− J(π̂A) > c2 ·
(
Cπ

⋆

(x) · ε2
) 1

2

= c2 ·
(

Cπ⋆

(x)

2c21 · Cπ
⋆(x) ·N2

) 1
2

=
c2
2c1
· 1
N

,
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which is therefore a lower bound that applies to N ′ = N .
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