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Homography Estimation With Adaptive Query
Transformer and Gated Interaction Module

Zhongyang Li, Faming Fang , Tingting Wang , and Guixu Zhang

Abstract— Homography estimation is essential for aligning
images captured from different viewpoints by accurately mod-
eling the geometric relationship between them. In homography
estimation, global information plays a critical role. To establish
global correspondences, cross-attention has been widely used
in recent studies. However, vanilla cross-attention mechanisms
treat queries in redundant and low-texture areas the same
as those in richly textured areas, leading to the accumulation
and propagation of erroneous information. We define this phe-
nomenon, where the model excessively attends to queries in
redundant and low-texture areas, as query over-focusing. To alle-
viate query over-focusing and achieve fine-grained homography
estimation, we propose a novel homography estimation network,
termed AGNet, which integrates an Adaptive Query Trans-
former (AQFormer) and a Gated Interaction Module (GIM).
The AQFormer is designed to dynamically adjust attention by
applying a mask to queries, allowing the model to adaptively
emphasize feature-rich regions while suppressing redundant or
weakly textured areas. Meanwhile, the GIM selectively captures
local information by adjusting convolutional kernels based on
input, enhancing the extraction of shared features between image
pairs. Extensive experiments on various datasets demonstrate
that AGNet significantly improves accuracy in homography
estimation, particularly in challenging scenarios with low overlap
and large viewpoint variations.

Index Terms— Deep learning, transformer, homography esti-
mation, image alignment, geometry-enhanced.

I. INTRODUCTION

HOMOGRAPHY is a 3 × 3 matrix that contains
8 degree-of-freedoms (DOFs). It models the geometric

transformation between two images of the planar surface cap-
tured from different perspectives. In non-coplanar scenarios,
homography is often employed as an initial alignment model
to establish a rough geometric transformation before applying
more sophisticated techniques, such as mesh flow [1], [2] and
optical flow [3], [4]. Homography estimation is crucial for
various applications, including image alignment [5], [6], [7],
video stabilization [8], [9], panoramic photography [10], [11],
and camera calibration [12]. However, it is a challenge to
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Fig. 1. Illustration of our main idea. We predict the query masks based
on input images. (a), (b), and (c) visualize queries located in richly textured,
redundant, and weakly textured areas, respectively, and the corresponding
attention maps for these queries.

estimate the homography of image pairs accurately, especially
in cross-modal and cross-resolution scenarios.

Since homography describes the overall geometric transfor-
mation relationship between image pairs, long-range depen-
dency is pivotal for homography estimation. Recent methods
employ vanilla cross-attention to establish correspondences
across image pairs [13], [14]. Specifically, the model receives
two sets of features: queries and key-value pairs. The purpose
is to use one set of features (typically the query from Image
1) to selectively focus on relevant information in the other set
(key-value pairs from Image 2), enabling the model to asso-
ciate specific features across inputs. As shown in Fig. 1 (a), for
the query of image 1, vanilla cross-attention efficiently focuses
on the corresponding area of image 2.
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Fig. 2. Visualization of Input Image Pairs from Five Datasets. The unique content of Image 1 and Image 2 is shown in the R and B channels, respectively,
while the shared content of the input image pairs is shown in RGB.

However, Vanilla cross-attention treats all queries uniformly
which is suboptimal for homography estimation. Fig. 2 shows
that estimating geometric transformations requires aligning
shared regions between the images. Content unique to each
image does not contribute to homography estimation which
is termed “redundant areas”. As shown in Fig. 1 (b), when
unique areas appear in one image but not in the other,
vanilla cross-attention focuses on incorrect regions. Moreover,
as illustrated in Fig. 1 (c), it is challenging to establish accurate
correspondences when the query is situated in weakly textured
areas. Vanilla cross-attention treats queries in redundant and
low-texture areas the same as those in richly textured areas,
leading to the accumulation and propagation of erroneous
information. We define this phenomenon, where the model
excessively attends to queries in redundant and low-texture
areas, as query over-focusing.

To address the issues, we introduce an Adaptive Query
transFormer termed AQFormer. Specifically, we design a
MAsk Generation module (MAG) that generates a mask based
on the input image pairs. The mask corresponds to redundant
and weakly textured areas with low weights, while it has high
weights for richly textured areas. As shown in Fig. 1, the
child and the pillow exhibit rich textures, playing a crucial
role. The quilt with repetitive textures introduces interference
in homography estimation. MAG generates a mask with higher
weights in the regions of the child and the pillow, and lower
weights in the quilt area. Additionally, MAG assigns lower
weights for the area which only present in image 1. By apply-
ing this mask to the queries before cross-attention, AQFormer
adaptively focuses on the most information-dense regions,
effectively suppressing less relevant areas. Compared with
vanilla cross transformers, AQformer brings about a notable
enhancement, with the added parameters and computational
complexity almost negligible.

The global information captured by AQFormer is fed into a
homography aggregator to generate a coarse homography for
the overall alignment. However, there are still some discrep-
ancies in local details. We introduced the Gated Interaction
Module (GIM) to refine the local details further. Specifically,
GIM leverages the feature to generate gated signals which are
then modulated into the convolutional kernel. Subsequently,

the modulated kernel is applied to a conventional convolution
operation to capture local information. Based on the gating
mechanism, GIM focuses on relevant features and filters out
unimportant information between feature pairs.

Integrating AQFormer and GIM into a multi-scale itera-
tive framework, we propose a novel homography estimation
network, termed AGNet. AGNet achieves state-of-the-art per-
formance on five benchmark datasets, including challenging
scenarios such as cross-resolution and cross-modal scenarios.
The main contributions are summarized as follows:

• We discover the phenomenon of “query over-focusing”,
which interferes with the accuracy of cross-attention.
The phenomenon is common in image pairs where the
perspective changes.

• We propose an adaptive query transformer called
AQFormer to mitigate query over-focusing. AQFormer
suppresses the queries located in redundant and weakly
textured areas and promotes the queries located in richly
textured areas by an adaptive mask.

• We propose a gated interaction module called GIM. The
GIM selectively captures local information by adjust-
ing convolutional kernels based on input, enhancing the
extraction of shared features between image pairs.

II. RELATED WORK

A. Feature-Based Homography Estimation

The feature-based homography estimation methods typically
work in four steps: key point detection, local feature extrac-
tion for each key point, feature-based key point matching,
and matching-based homography fitting [15]. It can be seen
that accurate matching is the key to traditional homography
estimation.

Numerous studies have explored traditional key point
matching methods [16], [17]. These methods initially detect
key points based on the image information such as gra-
dient. Subsequently, they calculate descriptors using the
key points and the surrounding information. Thereafter, the
descriptors are compared using metrics such as Euclidean
distance to obtain the matched pairs. Finally, RANSAC [18]
and MAGSAC [19] are used to remove outlier matches.
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Fig. 3. The architecture of the proposed AGNet. Ia and Ib denote the input image pair. In the k-th iteration, Ib is warped into Ik
b guided by Ĥk−1. Fa and

Fk
b are shallow features extracted by a Siamese network. Ja and Jk

b are fused features which are then sent to an aggregator to estimate 1H and 1D. 1H and
1D denote the homography and displacement vectors of the 4 corner points for aligning Ik

b to Ia , respectively. D̂k−1 and Ĥk−1 is updated by 1D and 1H
to generate D̂k and Ĥk , which are then used to supervise the network learning and warp Ib , respectively. After M + N iterations, AGNet outputs the final
homography Ĥ.

Some methods introduce richer structural information, such
as line segments, to extract more features [20], [21]. How-
ever, insufficient feature extraction remains a pain point for
traditional methods. Traditional methods rely on manually
crafted descriptors, which may struggle to capture complex
representations in diverse visual data, such as cross-modal and
cross-resolution scenarios [22], [23], [24].

Deep learning methods [25], [26], [27] gain prominence
in key point matching. SuperPoint [25] leverages a fully
convolutional architecture to generate dense feature maps.
Additionally, SuperGlue [26] performs feature matching and
geometric verification, improving the accuracy and reliabil-
ity of correspondences. LoFTR [27] employs a transformer
architecture, showcasing superior performance in challeng-
ing scenarios. Compared to traditional matching methods,
deep matching methods are more accurate. However, these
feature-based homography estimation methods involve multi-
ple stages. The complex pipeline increases computational costs
and processing time.

B. CNN-Based Homography Estimation

In recent years, CNN-based homography estimation has
undergone significant advancements. As a pioneering work,
DHN [28] introduces a CNN architecture that directly outputs
homography matrices based on input image pairs. UDHN [29]
enhances this by proposing a pixel-wise photometric loss
for unsupervised training. Additionally, several works [1],
[30], [31] have demonstrated strong performance in real-world
scenarios using pixel-wise photometric loss. ECLUH [32]
incorporates intuitive structural information as an additional
cue, making it more sensitive to human vision and effective
in low-texture situations. Nie et al. [33] design a contextual
correlation layer to extract the matching relationships from
global to local. However, these unsupervised methods exhibit
instability and convergence challenges during training [34].
Their applicability is constrained to image pairs with small
baselines, such as continuous video frames or photos captured
by dual-camera smartphones.

To estimate homography with large baselines, CLKN [35]
learns deep features through a recurrent framework and
employs an inverse compositional algorithm based on iterative

closest Lucas Kanade (IC-LK). Furthermore, DLKFM [36]
extends the applicability of IC-LK to estimate homography
for cross-modal image pairs by introducing a novel loss
function. However, IC-LK is an untrainable layer of the deep
network. IHN [37] abandon untrainable IC-LK and design an
iterative architecture that can be trained end-to-end, predicting
the homography from coarse to fine, significantly improving
prediction accuracy.

C. Transformer-Based Homography Estimation

Transformers and their variants have been applied to homog-
raphy estimation in recent years. HomoGAN [38] proposes an
unsupervised GAN using the transformer architecture as the
backbone to impose coplanarity constraints on the predicted
homography. LocalTrans [14] designs a cross-transformer
module to capture the long-short range dependencies between
image pairs. Following this, RHWF [13] indicates that
standard convolutions fail to uphold equivariance beyond
translation. Consequently, they utilize homography to warp
images instead of feature maps. However, the above methods
overlook query over-focusing in homography estimation. Our
approach adaptively adjusts the weight of each query, focusing
on prominent features in the shared regions of image pairs.

III. METHODOLOGY

The architecture of our proposed AGNet for homography
estimation is shown in Fig. 3, which can be divided into three
components: feature extraction, feature interaction by adaptive
query transformer (AQFormer) or gated interaction module
(GIM), and homography aggregator.

A. Overview

The AGNet takes two images Ia ∈ RH×W×3 and Ib ∈

RH×W×3 as input and outputs a homography Ĥ that aligns
Ib to Ia , where H and W denote the height and width of the
image. To enhance the accuracy of homography estimation,
we refine the homography iteratively. In the k-th iteration, Ib
is warped to Ik

b guided by Ĥk−1, achieving a coarse alignment
with Ia . Note that Ĥ0 is initialized as the identity matrix. Then,
Ia and Ik

b are fed into a Siamese network to obtain the features
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Fig. 4. The architecture of the adaptive query transformer (AQFormer) that captures global dependencies.

Fig. 5. Illustration of warping Ib under the guidance of ˆHk .

Fa ∈ R
H
4 ×

W
4 ×C and Fk

b ∈ R
H
4 ×

W
4 ×C , where C denotes the

channel dimension. To establish correspondences, we take Fa
and Fk

b as input into the feature interaction module (FIM).
Based on the output of the FIM, a homography aggregator
estimates 1H and 1D which denote the homography and
displacement vectors of the 4 corner points for aligning Ik

b to
Ia , respectively. Finally, D̂k−1 is updated by 1D to generate
D̂k , which is used to supervise the network learning. Ĥk−1 is
updated by 1H to generate Ĥk , which is used to warp Ib in
the {k+1}-th iteration. After M +N iterations, AGNet outputs
the final homography Ĥ, where M and N are hyperparameters
controlling the number of iterations.

B. Feature Interaction Module

Deep feature interaction between two images plays a crucial
role in homography estimation. It matches corresponding
points or regions across the images, which is essential for
accurately estimating the transformation. We propose a feature
interaction module (FIM) to facilitate feature interaction from
global to local levels, refining the homography estimation
progressively. The FIM sends Fa and Fk

b to AQFormer or
GIM based on the number of iterations and outputs the fused
features Ja and Jk

b. As shown in Fig. 5, significant geometric
disparities exist between the image pairs in the early iterations.
In the later iterations, Ib is approximately aligned with Ia
under the guidance of Ĥk−1. Therefore, Fa and Fk

b are fed
to AQFormer during the first M iterations. In the subsequent
N iterations, Fa and Fk

b are sent to the GIM, which specializes
in capturing local information.

Fig. 6. The detailed architecture of the mask generation module (MAG).
F1 denotes the feature that is subsequently mapped as the query, F2 denotes
the feature that is subsequently mapped as the key and value, and M denotes
the mask applied to the queries.

C. Adaptive Query Transformer

Recent transformer-based methods [13], [14] demonstrate
that global information is profitable for capturing the geomet-
ric transformation between image pairs. However, the vanilla
attention map may be misdirected when the keys respond
strongly to queries in redundant or weakly textured areas. This
inaccurate attention map then influences the values, leading
to incorrect global correspondences. Hence, we design an
adaptive query transformer that adaptively adjusts the weights
of queries in different regions based on input features.

To achieve the above objectives, we develop a CNN-based
mask generation module termed MAG. Formally, the feature
subsequently mapped as the query is denoted as F1, and the
feature subsequently mapped as the key and value is denoted
as F2. As shown in Figure 5, we concatenate F1 and F2 and
feed them into a two-layer convolutional network to generate
a mask M with a channel dimension of 1, which is used to
adjust the weights of the queries. Specifically, queries located
in rich texture areas are assigned higher weights, while those
located in redundant or weakly textured areas are assigned
weights close to 0. The process can be expressed as:

M =M(C AT (F1, F2)), (1)
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Fig. 7. The architecture of the gated interaction module (GIM). F denotes the input pair, G denotes the middle feature, and J denotes the output of GIM.

where C AT (·) denotes concatenation operation along the
channel dimension, and M denotes the mask generation
network.

Combining with MAG, AQFormer consists of two stages:
self-interaction and cross-interaction, which is illustrated in
Fig. 4. The shallow features Fa and Fk

b are first fed into a self-
interaction encoder. In this stage, each feature map undergoes
self-interaction to generate deep features, denoted as Aa and
Ak

b, respectively. Subsequently, Aa and Ak
b are then fed into

a cross-interaction encoder. In this stage, Aa and Ak
b interact

with one another to merge their information and generate the
final feature Ja and Jk

b.
1) Self-Interaction of AQFormer: We first adopt three 1×1

convolution layers fQ(·), fK (·), and fV (·) to encode the input
image feature F (Fa or Fk

b) to the features Q, K and V. The
process is expressed as follows:

Q, K, V = fQ(F), fK (F), fV (F). (2)

In self-attention, even though the features for generating
Q, K, V are identical, we leverage MAG to decrease the
weight of queries in areas of weak texture. The process is
expressed as follows:

Q̃ =M(C AT (F, F)) ⊙ Q, (3)

where Q̃ denotes the adaptive query of Q and ⊙ denotes the
element-wise product operation. Then the self-attention can be
formulated as:

A = S(
Q̃K
√

C
)V, (4)

where S denotes the SoftMax function.
2) Cross-Interaction of AQFormer: Since 2(Aa, Ak

b) and
2(Ak

b, Aa) are similar, where 2 represents cross-interaction.
For simplicity, we only elaborate on 2(Aa, Ak

b) in the follow-
ing text. We first adopt two 1 × 1 convolution layers f ′

Q(·)

to encode the deep feature Ak
b to the features Q′k

b. Then, the
convolutional layer f ′

K (·) and f ′

V (·), which shares the same
architecture as f ′

Q(·) but does not share weights, is utilized

to encode the deep feature Aa to generate the features K′
a

and V′
a . The process is expressed as follows:

Q′k
b = f ′

Q(Ak
b),

K′
a, V′

a = f ′

K (Aa), f ′

V (Aa). (5)

Due to significant geometric transformations in Aa and Ak
b,

some queries in Q′k
b cannot match correct correspondences

in K′
a . Directly computing the attention matrix using Q′k

b and
K′

a is not suitable. Therefore, we utilize MAG to decrease the
weights of queries in redundant and weakly textured areas as
follows:

Q̃′
k
b =M(C AT (Ak

b, Aa)) ⊙ Q′k
b, (6)

where Q̃′
k
b denotes the adaptive query of Q′k

b. The cross-
attention can be formulated as:

Ja = S(
Q̃′

k
bK′

a
√

C
)V′

a . (7)

Similar to the vanilla attention architecture, The residual
connecting, layer normalization, and Multilayer Perceptron
(MLP) are applied at both self-interaction and cross-interaction
stages to obtain the final results.

D. Gated Interaction Module

AGNet outputs ĤM in M iterations. Guided by ĤM , Ib is
warped to IM

b , which is roughly aligned with Ia . As shown in
Fig. 5, there are only minor local misalignments between Ia
and IM

b . It is unnecessary to establish global dependencies.
Consequently, we abandon the transformer and utilize the
CNN as the backbone for subsequent iterations. Inspired by
gMLP [39], we introduce a Gated Interaction Module (GIM)
as shown in Fig. 7. The GIM adjusts the convolutional kernels
flexibly based on the input information, allowing it to extract
common information from the input pair.

Like AQFormer, GIM is divided into two stages: feature
self-interaction and feature cross-interaction. The shallow fea-
tures Fa and Fk

b are initially fed into the feature self-interaction
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Fig. 8. The detailed architecture of the homography aggregator.

encoder to produce deep features Ga and Gk
b. Then, Ga and

Gk
b are inputted into the cross-interaction encoder to generate

the final feature Ja and Jk
b.

1) Self-Interaction of GIM: We design a gating network that
generates C convolutional kernels with the spatial size of 3 ×

3 pixels based on the input feature F (Fa or Fk
b) ∈ R

H
4 ×

W
4 ×C .

Specifically, we first apply pooling followed by convolution
layer twice, to generate features with spatial dimensions of
H
16 ×

W
16 and channel dimension of C . Next, we use adaptive

pooling to compress the spatial dimensions of the feature to
1×1, and then apply a convolution layer to generate a feature
of size 1×1×(C ×3×3). Finally, we reshape the feature into
C convolutional kernels with the spatial size of 3 × 3 pixels.
These kernels are then applied to F to extract features. The
process can be expressed as:

G = Nsel f (F) ⊗ F, (8)

whereNsel f denotes the gating network, G (Ga or Gk
b) denotes

the deep feature produced by self-interaction of GIM and ⊗

denotes a convolution operation.
2) Cross-Interaction of GIM: Ga and Gk

b originate from two
different images, which may even have different resolutions
and modalities. Concatenating Ga and Gk

b directly to estimate
the homography is not elegant. Although Ga and Gk

b have dis-
tributional differences, they have shared features. We discard
the unique features of Ga and Gk

b, only utilizing their shared
features.

Since 0(Ga, Gk
b) and 0(Gk

b, Ga) are similar, where 0

represents cross-interaction of GIM. For simplicity, we only
elaborate on 0(Ga, Gk

b) in the following text. We first feed
Gk

b into a gated network Ncross to generate C convolutional
kernels with the spatial size of 3 × 3 pixels. Next, these
convolutional kernels are applied to Ga to extract the shared
features with Gk

b, while discarding the unique features of Ga .
The process can be expressed as:

Ja = Ncross(Gk
b) ⊗ Ga, (9)

where Ncross denotes the gating network with the same
structure as Nsel f , but with different weights.

E. Homography Aggregator

The homography aggregator estimates the homography that
aligns Ik

b to Ia based on the output of the FIM. Traditional
computer graphics typically treat homography as a 3×3 matrix
with 8 degrees of freedom. However, supervising homography
presents challenges during training because the homography

matrix combines rotation and translation terms, which are
difficult to balance. To address this, we estimate the displace-
ment of four corner points instead of directly supervising the
homography matrix. Once the displacement of the four corners
is known, we use the normalized Direct Linear Transform
(DLT) algorithm to calculate the homography matrix [28].

The detailed architecture of the homography aggregator is
shown in Fig. 8, Ja and Jk

b are concatenated and then sent to
the aggregator which consists of multiple basic units. Each unit
includes a 3×3 convolution, followed by group normalization
and ReLU activation, and a max-pooling layer with a stride
of 2. By stacking basic units, a feature map with a spatial
resolution of 2 × 2 is obtained. Subsequently, a convolutional
layer projects the feature map into a 2 × 2 × 2 cube 1D. 1D
denotes the displacement vectors of the 4 corner points for
aligning Ik

b to Ia . 1D is transformed into an equivalent 1H by
DLT algorithm. Clearly, D̂k

= D̂k−1
+1D and Ĥk

= Ĥk−11H.

F. Multiscale Refinement
Previous studies have indicated that multi-scale refine-

ment further enhances the performance of networks. Taking
inspiration from these findings [13], [14], [37], we design
the 2-scale AGNet. Specifically, after M + N iterations at
low resolution, Ia and IM+N

b are input into a new Siamese
network to obtain the feature pairs with a resolution of
H
2 ×

W
2 . The feature pairs are then sent to the FIM for

further feature processing. We iterate an additional K times
at high resolution to achieve a more accurate refinement. The
experiments demonstrate that the 1-scale AGNet outperforms
the majority of prior works. The two-scale AGNet exhibits a
significant performance improvement compared to the 1-scale
AGNet.

IV. EXPERIMENT

In this section, we first describe the utilized datasets and
the specific training configurations. Then, we present the
implementation details. Finally, we compare our results with
both feature-based and deep homography methods on five
benchmark datasets for common scenarios, cross-resolution
scenarios, and cross-modal scenarios.

A. Datasets
1) MS-COCO: The MS-COCO dataset is a large-scale real-

world RGB dataset that has been widely used in recent deep
homography estimation approaches. To generate the training
pairs, a square patch, denoted as Ip, is first cropped from
a larger image I at a random position p. The four vertices
of this patch are then randomly displaced within a range of
[-ρ, ρ] pixels, where ρ represents the maximum allowable
displacement, to form a new patch. Given that the degrees of
freedom for a homography is 8, a homography matrix HAB is
computed based on the four corresponding points. The inverse
homography HB A = (HAB)−1 is applied to the original image
I, producing a transformed image I′. A second patch I′

p is
cropped from I′ at the same position p. As a result, Ip and
I′

p form the input image pair, with HAB serving as the ground
truth. To evaluate the accuracy, we use the Average Corner
Error (ACE) as the metric.
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Fig. 9. Visualization of results on the MS-COCO dataset. The red polygon represents the ground position of the source image on the target image. The blue
polygon represents the estimated position using different algorithms on the target image. The closer the two colors of polygons are, the better the estimation
accuracy.

To demonstrate the capability of AGNet in cross-resolution
scenarios, we perform downsampling on the target images
using bicubic interpolation with scaling factors of 4× and 8×.
For a more comprehensive comparison, we categorized the
results into three levels based on ACE, defining the top 30%
as Easy, the 30% − 70% range as Medium, and the bottom
30% as Hard.

2) Google Earth: Google Earth provides satellite images on
different dates. Following the setup of DLKFM [36], images
from April 2018 and June 2019 in the Greater Boston area are
selected as cross-modal input data. Due to different shooting
times, the image pairs exhibit variations in both structure and
color. We employ a similar method to MS-COCO to introduce
displacements. There are a total of 8,750 image pairs for
training and 850 image pairs for testing.

3) Google Maps: Static Google maps and satellite maps
can be obtained by the Google Maps API. They represent the
same area with distinct color patterns. Following the DLKFM
configuration [36], we have 8,822 cross-modal image pairs for
training and 888 cross-modal image pairs for testing.

B. Implementation Details
We implement our method based on PyTorch 1.7.0 and train

it from scratch using a machine with one NVIDIA GeForce
RTX 3090 GPU. The batch size is set to 16. We use the
AdamW optimizer [40] with default parameter settings as the
optimizer. The learning rate is initialized to be 0.0004 and is
updated by the OneCycleLR scheme. The iteration times M ,
N , and K are set to 3, 3, and 6. The hyperparameters γ and
ρ are set to 0.85 and 32.

C. Evaluation on MS-COCO
We compared AGNet on the MS-COCO dataset with other

homography estimation methods, including deep homography
methods such as DHN [28], UDHN [29], LocalTrans [14],
IHN [37], RHWF [13], ECLUH [32], MCNet [41] and feature-
based homography methods such as SIFT+RANSAC [16],
LoFTR [27], and GeoFormer [34].

Table I presents the quantitative evaluation results. In easy
scenarios, feature-based methods capture the relationship
between corresponding feature points to solve homography.
However, in hard scenarios, these methods may match incor-
rect feature points. Consequently, the subsequent homography
calculation exacerbate the error, leading to failure. In con-
trast, deep methods circumvent matching feature points and

TABLE I
THE MACE COMPARISON ON THE MS-COCO DATASET. ROWS 1-6

REPRESENT DEEP HOMOGRAPHY METHODS, WHILE ROWS 7, 8,
AND 9 CORRESPOND TO FEATURE-BASED

HOMOGRAPHY METHODS

estimate homography end-to-end, which leads to more robust
performance in complex scenarios. Compared to the previ-
ous state-of-the-art (SOTA) method RHWF [13], our method
demonstrates a significant improvement in accuracy, achieving
a 30% enhancement.

Fig. 9 illustrates the visualization results of aligning Image 2
to Image 1 using the estimated homography. Despite the
sky occupying the majority of the image pairs, our method
effectively eliminates the interference from sky-dominated
textureless regions and aligns the kite, which contains rich
visual information.

D. Evaluation on Cross-Resolution MSCOCO

For multi-scale gigabit pixel photography, cross-resolution
homography evaluation is a crucial aspect [11]. Images cap-
tured by different sensors or at different scales often need
to be processed together. Compared to common scenarios,
the decrease in resolution greatly increases the difficulty of
homography estimation. Following LocalTrans [14], we con-
duct the evaluation on 4× and 8× cross-resolution MSCOCO.

The visualization results are shown in Fig. 11. In the first
case, both IHN and RHWF estimate inaccurate homography
due to the low resolution. Only our method preserves the tail
of the animal after alignment. In the second case, due to the
low resolution, the two lines in Image 1 degenerate into a
single black line in Image 2. Both IHN and RHWF incorrectly
align the black line in Image 2 to the bottom line in Image 1.
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Fig. 10. Homography estimation evaluation. The x-axis is the mean average pixel error, the y-axis is the cumulative percentage of test images that have a
lower average pixel error than x.

Fig. 11. Visualization of results on the MS-COCO 4× and 8× dataset.

However, our method warp the black line to a more accurate
position.

Quantitative comparison is illustrated in Fig. 10(a) and
Fig. 10(b). we plot the fraction of the number of images
with respect to the corresponding ACEs of the dataset.

Feature-based methods struggle in cross-resolution scenes due
to the necessity of extracting features from two images and
subsequently matching them. By obtaining a coarse estimation
of the homography, our method establishes a preliminary
alignment between the images, regardless of their resolution
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Fig. 12. Visualization of results on the Google Earth and Google Maps datasets.

disparities. This coarse estimation serves as a robust starting
point, enabling subsequent fine-tuning steps to iteratively
improve the accuracy of the homography. As a result, our
method achieves superior performance in both MS-COCO 4×

and MS-COCO 8× datasets.

E. Evaluation on Cross-Modal Datasets

In some scenarios, data from a specific modality may
be unavailable. Cross-modal models compensate for missing
data by utilizing information from other accessible modalities.
However, Different modalities of data are typically captured
using different devices. Even slight changes in angle or posi-
tion of the devices can result in significant variations in the
content. Additionally, data is sometimes collected at different
times, and even if the capturing devices remain unchanged, the
content being captured may still undergo alterations. It is an
essential step to align image pairs from disparate modalities
before conducting downstream tasks.

Different modalities of data have different distributions
and representations. Google Earth encompasses images cap-
tured at the same geographic location but during different
seasons. Google Maps provides satellite images and their
corresponding maps. Effectively estimating the homography of
cross-modal data poses a challenge. We evaluate the proposed
models against the state-of-the-art methods on Google Earth
and Google Maps datasets. The results are illustrated in
Fig. 10(c) and Fig. 10(d). One can see that AGNet has obvious

advantages over both deep homography methods and feature-
based homography methods.

Fig. 12 shows the visualization results. For Google Earth
datasets, IHN and RHWF exhibit obvious gaps. Our results
are closer to the ground truth. For Google Maps datasets, IHN
and RHWF produce structure inconsistency in the letter ‘s’.
In contrast, our method creates an artifacts-free result.

V. ANALYSIS AND DISCUSSIONS

In this section, we conduct ablation experiments to evaluate
each module of AGNet comprehensively. All experiments in
this section are executed on 1-scale AGNet with iteration times
M and N both being 3, unless explicitly stated. To ensure a
fair comparison, all variants are trained and evaluated under
identical settings, encompassing training strategy, training
equipment, data preprocessing, hyperparameters, and evalu-
ation metrics.

A. Effectiveness of MAG

MAG predicts a mask based on the input feature pairs.
The mask dynamically adjusts the weights of the queries.
We conduct ablation experiments to assess its impact on
homography estimation by removing MAG while keeping
other settings unchanged. It’s worth noting that after remov-
ing MAG, AQFormer degenerates into a vanilla transformer.
As shown in Table II, MAG introduces more accurate homog-
raphy with lower MACE values at all three levels. To further
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Fig. 13. Visualization results of masks generated by MAG.

TABLE II
THE MACE COMPARISON OF ABLATION STUDY

ON THE MS-COCO DATASET

illustrate the importance of MAG, we present the visualization
results of the masks generated by MAG. As shown in Fig. 13,
whether in single-modal or cross-modal scenarios, the masks
generated by MAG assign lower weights to redundant or
weakly textured areas and high weights to richly textured
areas.

B. Effectiveness of GIM

To demonstrate the effectiveness of GIM, we introduce a
new variant (w/o GIM) by setting the iteration counts M and
N to 6 and 0, respectively, The variant ‘w/o GIM’ ensures that
AGNet only uses AQFormer for global information interaction
without GIM for local information interaction. Table II shows
that GIM improves the accuracy of homography estimation.

C. Effectiveness of AQFormer

We propose an AQFormer to better capture global informa-
tion. To demonstrate the effectiveness of this design, we design
a new variant (w/o AQFormer) that sets the iteration counts M
and N to 0 and 6, respectively. The variant ‘w/o AQFormer’
ensures that AGNet only builds local dependencies using
GIM without involving AQFormer for global dependencies.
Table II presents the quantitative evaluation. We observe that
discarding AQFormer results in an increase in the MACE
by 0.0054. In hard scenarios, discarding AQFormer leads
to even greater performance degradation. This indicates the
importance of global information in homography estimation,
particularly for large baselines. In the following subsection,
we discuss global information’s impact on large baselines.

TABLE III
THE MACE COMPARISON OF ABLATION STUDY ON THE LARGE BASELINE

D. Study of Large Baselines

To investigate the effectiveness of AQFormer in large base-
line scenarios where image overlap is reduced and redundant
regions increase, we adjusted the hyperparameter ρ, which
controls the overlap rate between input images, from 32 to 48.
This setup allows us to evaluate AQFormer’s performance
under conditions with increased redundancy and reduced
overlap.

The quantitative analysis results are shown in Table III.
It is observed that AQFormer demonstrates more signifi-
cant benefits in handling redundancy by selectively focusing
on informative regions and suppressing less relevant ones.
Furthermore, We notice that in hard scenarios, the variant
“w/o GIM” outperforms the 1-scale AGNet. This suggests
that iterating AQFormer only three times for large baselines
is insufficient, as there still exist long-range dependencies
between the two images that GIM cannot capture. Therefore,
we propose a new variant “1-scale AGNet+” with M and N set
to 6, 6. “1-scale AGNet+” demonstrates the best performance
regardless of the scenario.

Figure 2 presents the visual comparison results. As the
geometric transformation between input images increases, the
variant without AQFormer (w/o AQFormer) exhibits notice-
able artifacts. The variants ‘w/o GIM’ leveraging the global
information provided by AQFormer, significantly reduce
these artifacts. This demonstrates AQFormer’s effectiveness
in addressing substantial geometric changes. Additionally,
the complete AGNet model with both AQFormer and GIM
achieves superior performance, as it combines global and
local information, further reducing artifacts and improving
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Fig. 14. Visualization of ablation results in the large baseline scenario.

Fig. 15. Two methods for warping Fb to Fa under the guidance of Ĥk−1.

homography estimation under challenging conditions. Fur-
thermore, “1-scale AGNet+” achieves the best performance,
indicating that increasing the number of iterations is essential
for improving visual quality in large baseline scenarios.

E. Study of Iterations

Iterative methods refine the homography matrix step by
step, gradually reducing errors with each iteration. Intuitively,
if the geometric transformation between the input image pair is
small, only a few iterations are needed to estimate a reasonably
accurate homography matrix. However, in large baseline sce-
narios, more iterations are required to refine the homography
matrix gradually. To verify this hypothesis, we conducted
experiments by adjusting the hyperparameter ρ and the number
of iterations M and N . The larger the value of ρ, the lower
the overlap between the input pairs.

The experimental results, as shown in Table IV, indicate
that for small baseline scenarios (e.g., ρ = 24), only a few
iterations are needed to achieve optimal performance. In con-
trast, additional iterations are beneficial for large scenarios
(e.g., ρ = 48), as they enable the model to progressively refine
the alignment between input images.

F. Study of Warping Methods

We observe that during the iterative process, Ib can be
warped in two ways: warping in the image domain and
warping in the feature domain, which is shown in Fig. 15.
First, we introduce the detailed process of image domain
warping: as shown in Fig. 15 (a), in the k-th iteration, Ib is
warped into Ik

b guided by Ĥk−1, achieving a coarse alignment

TABLE IV
THE RELATIONSHIP BETWEEN OVERLAP RATE AND THE NUMBER

OF ITERATIONS, WITH MACE ↓ AS THE EVALUATION METRIC.
THE LARGER THE VALUE OF ρ , THE LOWER THE OVERLAP

BETWEEN THE INPUT PAIRS. LARGER BASELINE SCENARIOS
REQUIRE MORE ITERATIONS FOR REFINEMENT. M AND

N REPRESENT THE NUMBER OF ITERATIONS OF
AQFORMER AND GIM, RESPECTIVELY

with Ia . Then, Ia and Ik
b are fed into a convolutional network to

obtain the features Fa and Fk
b. Next, we introduce the detailed

process of feature domain warping: as shown in Fig. 15 (b),
Ia and Ib are fed into a convolutional network to obtain the
features Fa and F0

b. F0
b is warped into Fk

b guided by Ĥk−1 in
the k-th iteration.

For feature domain warping, it is only necessary to extract
features Fa and F0

b during the first iteration. In contrast,
features must be re-extracted after each warp for image
domain warping. As a result, feature domain warping offers
a lower computational cost. However, it is important to note
that homography transformations involve translation, rotation,
scaling, and other transformations, while convolutional neural
networks lack rotation and scale invariance. Thus, applying
homography transformation before feature extraction yields
different results compared to performing feature extraction
first, followed by the homography transformation. To further
explore the impact of these two warping methods, we con-
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TABLE V
QUANTITATIVE COMPARISON OF MACE↓ ON THE TWO WARPING METHODS

ducted detailed ablation experiments. As shown in Table V,
the experimental results indicate that warping in the feature
domain leads to significant performance degradation. There-
fore, we choose to warp Ib in the image domain.

VI. LIMITATIONS

While AGNet is effective across various scenarios, certain
limitations need to be addressed. One specific challenge arises
in cases where there are significant viewpoint transformations
between image pairs. In such situations, the model may
struggle to establish correspondences, leading to suboptimal
performance. This difficulty can stem from the drastic changes
in perspective, which can obscure common features and make
it challenging for the model to accurately identify matching
regions. To mitigate this issue, we are exploring various
strategies that may improve the model’s ability to adapt to
varying perspectives and better capture the underlying geo-
metric relationships between images.

VII. CONCLUSION

Long-range contexts are crucial for homography estimation.
Recent approaches use transformers to capture long-range
contexts. However, they ignore the phenomenon of query over-
focusing. In this paper, we proposed an iterative network
(AGNet) for homography estimation. AGNet predicts homo-
graphs coarse to fine in a global-to-local manner. To alleviate
query over-focusing in capturing global contexts, we devel-
oped an adaptive query transformer that suppresses ambiguous
queries and promotes key queries. In addition, we developed a
gated interaction module to capture local contexts. Experimen-
tal results show that the proposed method performs favorably
against state-of-the-art methods in general, cross-resolution,
and cross-modal scenarios. In the future, we will explore
more applications in tasks with fewer labeled data, such as
estimating the homography of MRI and CT pairs.
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