
Under review as a conference paper at ICLR 2023

QUALITY MATTERS: EMBRACING QUALITY CLUES
FOR ROBUST 3D MULTI-OBJECT TRACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

3D Multi-Object Tracking (MOT) has achieved tremendous achievement thanks
to the rapid development of 3D object detection and 2D MOT. Recent advanced
works generally employ a series of object attributes, e.g., position, size, veloc-
ity, and appearance, to provide the clues for the association in 3D MOT. However,
these cues may not be reliable due to some visual noise, such as occlusion and blur,
leading to tracking performance bottleneck. To reveal the dilemma, we conduct
extensive empirical analysis to expose the key bottleneck of each clue and how
they correlate with each other. The analysis results motivate us to efficiently ab-
sorb the merits among all cues, and adaptively produce an optimal tacking manner.
Specifically, we present Location and Velocity Quality Learning, which efficiently
guides the network to estimate the quality of predicted object attributes. Based on
these quality estimations, we propose a quality-aware object association (QOA)
strategy to leverage the quality score as an important reference factor for achiev-
ing robust association. Despite its simplicity, extensive experiments indicate that
the proposed strategy significantly boosts tracking performance by 2.2% AMOTA
and our method outperforms all existing state-of-the-art works on nuScenes by
a large margin. Moreover, QTrack achieves 48.0% and 51.1% AMOTA tracking
performance on the nuScenes validation and test sets, which significantly reduces
the performance gap between pure camera and LiDAR based trackers.

1 INTRODUCTION

3D Multi-Object Tracking (MOT) has been recently drawing increasing attention since it is widely
applied to 3D perception scenes, e.g., autonomous driving, and automatic robot. The 3D MOT
task aims at locating objects and associating the targets of the same identities to form tracklets.
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Figure 1: Illustration of three type of hard cases:
(1) illumination of external, (2) occlusion, (3) mo-
tion blur. The red, green and blue pillars are orga-
nized to represent the classification score, location
quality, and velocity quality, where the higher pil-
lars indicate higher values.

According to the used sensors, existing 3D
MOT methods can mainly be categorized into
two classes, i.e., camera-based and LiDAR-
based schemes. In this paper, we mainly delve
into the camera-only scheme since it contains
semantic information and is more economical.

Existing 3D MOT methods mostly adopt the
tracking-by-detection paradigm. In this regime,
a 3d detector is firstly employed to predict
3D boxes and the corresponding classifica-
tion scores, and then some post-processing
methods (e.g., motion-based Kalman (1960) or
appearance-based) are used to line detected tar-
gets to form trajectories. In the camera scheme,
it is natural to extract objects’ discriminative
appearance features Chaabane et al. (2021); Hu
et al. (2022) to represent targets and use the
features to measure the similarities among de-
tected targets. However, the procedure of ex-
tracting the appearance feature is cumbersome
since it requires predicting high-dimensional
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Figure 2: Statistics of location and velocity quality distribution and their correlation on nuScenes
val dataset. (a) and (b) reveal that the accuracy of all prediction locations and velocity are varying
on an unfixed scale, showing irregularity. (c) shows a messy scatter plot, which reflects no relations
between location and velocity results.

embedding, which is hard for joint training due to the optimization contradiction between the detec-
tion and embedding branches Yu et al. (2022b). Moreover, it is difficult to deal with the notorious
occlusion and motion blur issues. Some other methods Weng et al. (2020a); Pang et al. (2021) build
a motion model (Kalman Filter) to obtain some desired states of tracking clues (e.g, center position,
size, size ratio, or rotation) by a linear motion assumption. Nevertheless, this process involves var-
ious hyper-parameters (e.g., initialization uncertainty of measurement, state and process, etc.) and
executes complex matrix transpose operation. Different from the aforementioned methods, Center-
Point Yin et al. (2021) reasonably leverages predicted center locations and velocities of targets for
building motion. In detail, it uses time lag between two moments of observations to multiply the
predicted velocity for linear location prediction. Afterwards, the L2 distance among targets acts as a
measurement metric for the association procedure. For simplicity, we call this tracking framework
CV method. It shows effectiveness to achieve remarkable tracking performance, while only con-
ducting a simple operation (i.e., matrix addition and multiplication) for parallel cost computation.

Although the CV framework shows efficiency for 3D MOT tasks, it relies heavily on the predicted
quality of center location and velocity. The requirement may be harsh for the 3D base detector,
since estimating the center location and velocity of an object from a single image is exactly an
ill-posed problem. As shown in Fig. 1, notorious occlusion, motion blur, and the illumination
of external issues will significantly disturb the estimation performance. To further confirm this
issue, we conduct an empirical analysis to study the predicted center location and velocity quality
distribution as well as their correlations. Our study reveals two valuable points: (1) There exists a
significant gap between the estimation error of 3D centers and that of velocities; (2) The predicted
quality of location and velocity is extremely misaligned. The imbalanced tracking cues have little
effect on the detection performance but play a dramatic role in MOT. The analysis cues motivate
us to endow each predicted box with the self-diagnosis ability to tracking clues for realizing stable
tracking association.

To this end, we propose to forecast the quality of tracking clues from the base 3D detector. Specifi-
cally, we introduce a Normalized Gaussian Quality (NGQ) metric with two dimensions to measure
the quality of predicting center location and velocity. NGQ metric comprehensively considers the
vector errors of the two predictions in a 2D vector space, which is a prerequisite for our tracking
framework. Based on the quality estimation of NGQ, we design a robust association mechanism,
i.e, the Quality-aware Object Association (QOA) strategy. It adopts the velocity quality to filter out
low-quality motion candidates, and leverages the location quality to further rule out center positions
of boxes with bad estimations. Therefore, QOA not only effectively deals with hard cases but also
avoids dangerous associations. In a sense, our method is subordinate to the idea of ”Put Quality
Before Quantity” principle.

By combining the proposed methods with the baseline 3D detector, we obtain a simple and robust 3D
MOT framework, namely quality-aware 3D tracker (QTrack). We conduct extensive experiments
on nuScenes dataset Caesar et al. (2020), showing significant improvements in the 3D MOT task.
Comprehensively, the contributions of this work are summarized as follows:
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• We conduct extensive empirical analysis to point out that the predicted quality of center
location and velocity exist a large distribution gap and misalignment relationship, making
an efficient CV tracking framework fall into sub-optimal performance.

• We first propose to predict the quality of velocity and location quality measured by our
designed NGQ metric. Afterwards, we further introduce QOA to leverage the two qualities
for insuring safe association in 3D MOT task.

• The overall 3D MOT framework (QTrack) achieves SOTA performance on nuScenes
dataset which outperforms other camera-based methods by a large margin. Specially, QOA
improves the baseline tracker by +2.2% AMOTA among several 3D detector settings, show-
ing its effectiveness.

2 RELATED WORK

2.1 3D MULTI-OBJECT TRACKING

Thanks to the development of 3D detection Huang et al. (2021); Li et al. (2022a); Liu et al. (2022)
and 2D MOT technologies Han et al. (2022); Yu et al. (2022b;a); Zhang et al. (2022b), recent 3D
MOT methods Weng et al. (2020a); Yin et al. (2021); Chaabane et al. (2021); Hu et al. (2022); Pang
et al. (2021) mainly follow tracking-by-detection paradigm. These trackers following this paradigm
first utilize a 3D object detector to localize the targets in the 3D space (including location, rotation,
and velocity) and then associate the detected objects with the trajectories according to various cues
(location or appearance).

Traditional 3D MOT usually uses a motion model (Kalman filter) to predict the location of the
tracklets and then associate the candidate detections using 3D (G)IoU Weng et al. (2020a); Pang
et al. (2021) or L2 distance Yin et al. (2021). Some works also utilize advanced appearance model
(ReID) Chaabane et al. (2021); Weng et al. (2020b); Chaabane et al. (2021) or temporal model
(LSTM) Marinello et al. (2022); Hu et al. (2022) to provide more reference cues for the association.
Recently, Transformer Vaswani et al. (2017) has been used in 3D detection Wang et al. (2022)
and MOT Li & Jin (2022); Zhang et al. (2022a) to learn 3D deep representations with 2D visual
information and trajectory encoded. Although these methods achieved remarkable performance,
when they are applied to complex scenarios (e.g., occlusion, motion blur, or light weakness), the
tracking performance becomes unsatisfactory. In this work, we argue that a simple velocity clue
with quality estimation can deal with the corner cases and achieve robust tracking performance. Our
proposed QTrack focuses on how to assess the quality of the location and velocity prediction, and
then make full use of these quality scores in the matching process.

2.2 PREDICTION QUALITY ESTIMATION

To estimate the quality of model’s prediction is non-trivial, which can be applied to tackle prediction
imbalance or decision-making. In the field of object detection, advanced works Wang et al. (2021);
Tian et al. (2019); Jiang et al. (2018) introduce to predict a box’s centerness or IoU for perceiving the
quality of prediction (3D) boxes. Huang et al. (2019) employ the method to perceive the mask pre-
dicted quality. These methods can alleviate the imbalance between classification score and location
accuracy. Li et al. (2022c) introduces an uncertainty-based method to estimate the predicted quality
of several depth factors, and then the quality is employed to make optimal decisions. In this paper,
we introduce to predict the predicted quality of velocity and location. Afterwards, the predicted
quality will be used to eliminate the non-robust association case of tracking task. To our knowledge,
our work is the first effort to perceive the velocity and location qualities for the decision-making in
3D MOT task.

2.3 MULTI-VIEW 3D OBJECT DETECTION

3D object detection is the predecessor task for 3D MOT task. It can be split into two stream methods
including point-based Lang et al. (2019); Yan et al. (2018); Yin et al. (2021); Shi et al. (2019; 2020);
Yang et al. (2022c) and camera-based detectors Wang et al. (2021); Huang et al. (2021); Li et al.
(2022a); Wang et al. (2022); Liu et al. (2022); Li et al. (2022b). In this paper, we focus on the 3D
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MOT for the multi-view camera based framework, which has made tremendous advance. Trans-
former based methods Wang et al. (2022); Liu et al. (2022); Li et al. (2022b) introduce 3D object
queries to interact with the multi-view image feature map. 3D object queries are constantly refined
to predict 3D boxes and other tasks in an end-to-end manner. BEVDet Huang et al. (2021) and
BEVDepth Li et al. (2022a) directly project the multi-view image feature into BEV representation
and attach a center-based head Yin et al. (2021) to conduct detection task. Standing on the shoulders
of giants, we aim to equip BEVDepth with the ability to perceive the quality of velocity and center
locatopn, which is the key to diagnose non-robust association for tracking. Then we introduce a
novel “tracking by detection” (QTrack) to endow BEVDepth with effiective and efficient tracking.

3 METHODOLOGY

3.1 DELVE INTO THE QUALITY DISTRIBUTION

We aim to solve the task of 3D multi-object tracking (3D MOT), the goal of which is to locate
the objects in the 3D space and then associate the detected targets with the same identity into the
tracklets. The key challenge is how to associate the tracklets efficiently and correctly. In contrast
to the motion-based and appearance-based association strategies, we argue that the simple velocity
clue (CV method) is enough for the association, which is more lightweight and deployment-friendly.
However, the performance of the existing CV tracking framework is not satisfactory. To analyze the
reason for the limited performance of tracking with velocity, we count and visualize the distribution
of the prediction error between location and velocity. As illustrated in Fig. 2 (a) and (b), we can
observe that the distribution of the location and velocity quality (prediction error) is scattered, and a
sizable number of low-quality boxes are included. Moreover, Fig. 2 (c) shows that the distribution
correlation between the location and velocity error is nonlinear, which means the quality of the
location and velocity is seriously misaligned.

Based on these observations, we conclude that the limited performance of tracking with velocity is
due to the following reasons: (1) Low quality of the location or velocity. When one of the location
and velocity predictions is not accurate enough, the tracker can not perform well even if the other
prediction is reliable. (2) Misalignment between the quality of location and velocity. We should take
both location and velocity quality into consideration. Driven by this analysis, we propose Location
and Velocity Quality Learning to learn the quality uncertainty of the location, and velocity that can
assist the tracker to select high-quality candidates for the association.

3.2 BASE 3D OBJECT DETECTOR

Our method can be easily coupled with most existing 3D object detectors with end-to-end training.
In this paper, we take BEVDepth Li et al. (2022a) as an example. BEVDepth is a camera-based
Bird’s-Eye-View (BEV) 3D object detector that transfers the multi-view image features to the BEV
feature through a depth estimation network and then localizes and classifies the objects in the BEV
view. It consists four kinds of modules: an image-view encoder, a view transformer with explicit
depth supervision utilizing encoded intrinsic and extrinsic parameters, a BEV encoder and a task-
specific head. The entire network is optimized with a multi-task loss function:

Ldet = Ldepth + Lcls + Lreg, (1)

where the depth loss Ldepth, classification loss Lcls and regression loss Lreg remain the same setting
as the original paper. As illustrated in Fig. 3, the task of the regression branch includes heatmap,
offsets, height, size, rotation and velocity.

3.3 LOCATION AND VELOCITY QUALITY LEARNING

To effectively estimate the quality of location and velocity, it first needs to define the quality
measurement metric. Technically, the box’s center location is calculated by incorporating pre-
dicted heatmap and corresponding offsets so that the location quality can be simplified to off-
set predicted quality. Specially, the offsets and velocity are defined in a 2-dimensional vector
space. We introduce a Normalized Gaussian Quality (NGQ) metric to represent their quality.
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Figure 3: Overview of base 3D detector and
QTrack. The multi-view images are first fed into
detector, i.e., BEVDepth. Then we add two par-
allel branches for predicting location and veloc-
ity quality, respectively. For QTrack, it first em-
ploys velocity clue to conduct motion predicted,
and then adopts heatmap, offsets, and classifica-
tion score to carry out association procedure in the
first gate stage. Specially, location and velocity
qualities are introduced to execute this work’s key
module QOA for unmatched trackers and detec-
tions in the second gate stage.

Given a predicted vector P ∈ R2 and ground
truth vector G ∈ R2, we formulate NGQ metric
as:

NGQ = e−
√

(Px−Gx)2+(Py−Gy)2

γ , (2)

where the subscripts x and y indicate the value
in the x and y directions while γ is a hyper-
parameter to control the value distribution of
NGQ. We set γ to 1.0 and 3.0 for location and
velocity, respectively. P and G can be instan-
tiated as predicting offset and velocity. When
the prediction is equal to ground truth, NGQ =
1, while the predicted error is larger, NGQ is
closer to 0.

After defining the quality, we elaborate on how
to learn it. As shown in Fig. 3, we attach a 3×3
convolution layer for offset and velocity branch
to predict location quality NGQloc ∈ R1 and
velocity quality NGQvel ∈ R1, respectively.
The quality supervision is conducted by binary
cross entropy (BCE) loss:

Lquality = − 1

N

N∑
i=1

[ ˆNGQi · log NGQi

+ (1−NGQi) · log (1− ˆNGQi)],

(3)

where ˆNGQ is the ground truth quality calculated by Eq. 2. This far, the total loss for our detector
is formulated as:

Ltotal = Ldet + Lquality. (4)

The overall training procedure is an end-to-end manner while the quality prediction task will not
damage the performance of the base detector. Moreover, the quality estimation is used in our pro-
posed Quality-aware Object Association (QOA) module, which will be discussed next section.

3.4 QUALITY-AWARE OBJECT ASSOCIATION

After obtaining the quality of the center location and velocity, we have more reference cues to
achieve robust and accurate association. To this end, we propose a simple but effective quality-
aware object association strategy (QOA). Specifically, QOA sets up two ”gates”. The first gate
is the classification confidence score (cls score). We first separate the candidate detection boxes
into high score ones and low score ones according to their cls scores. The high score candidates
are first associated with the tracklets. Then the unmatched tracklets are associated with the low
score candidates. These low score candidates are most caused by occlusion, motion blur, or light
weakness, which are easily confused with the miscellaneous boxes. To deal with the issue, the
second gate, quality uncertainty score, is introduced. After getting the second association results
between the unmatched tracklets and the low score candidates, we then recheck the matched track-
det pairs according to the location and velocity quality scores. Only high-quality matched track-det
pairs can remain and low-quality pairs are regarded as the mismatch. The pseudo-code of QOA is
shown in Algorithm 1.

Benefiting from the quality estimation, QOA does not need a complex motion or appearance model
to provide association cues. A simple velocity prediction (CV) is enough (line #15). Hence, we
use the velocity of the tracklet at frame t − 1 to predict the center location at frame t and then
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Algorithm 1: Pseudo-code of QOA.
Input: A video sequence V; object detector Det; detection score threshold τ ; quality score threshold µv ,

µt

Output: Tracks T of the video
1 Initialization: T ← ∅
2 for frame fk in V do

/* boxes & scores */
3 Dk ← Det(fk)
4 Dhigh ← ∅
5 Dlow ← ∅

/* first gate */
6 for d in Dk do
7 if d.score > τ then
8 Dhigh ← Dhigh ∪ {d}
9 end

10 else
11 Dlow ← Dlow ∪ {d}
12 end
13 end

/* predict location */
14 for t in T do
15 t← CV(t)
16 end

/* association with high scores */
17 Associate T and Dhigh using L2 distance
18 Dremain ← remaining object boxes from Dhigh

19 Tremain ← remaining tracks from T
/* association with low scores */

20 Associate Tremain and Dlow using L2 distance
21 Tsec,Dsec ← matched pairs from Tremain ,Dlow

22 Tre−remain ← remaining tracks from Tremain

/* second gate */
23 for t, d in Tsec, Dsec do
24 if t.vscore < µv or d.lscore < µt then
25 Tre−remain ← Tre−remain ∪ {t}
26 end
27 end

/* update and initialize */
28 T ← T \ Tre−remain

29 for d in Dremain do
30 T ← T ∪ {d}
31 end
32 end
33 Return: T

compute the L2 distance between predictions and candidate detections (line #17 and line #20) as
the similarity. At last, we apply the similarity with the Hungarian algorithm to get the association
results. Mathematically,

ct = ct−1 + vt−1∆t

cost = L2(ct, dt)

match = Hungarian(cost),

(5)

where ct−1, vt−1 represents the center location and velocity of the tracklets at frame t− 1. dt is the
candidate detection center location at frame t and ∆t is the time lag.
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Methods Modality AMOTA ↑ AMOTP ↓ RECALL ↑ MOTA ↑ IDS ↓
Validation Split

CenterPoint Yin et al. (2021) LiDAR 0.665 0.567 69.9% 0.562 562
SimpleTrack Pang et al. (2021) LiDAR 0.687 0.573 72.5% 0.592 519

DEFT Chaabane et al. (2021) Camera 0.201 N/A N/A 0.171 N/A
QD3DT Hu et al. (2022) Camera 0.242 1.518 39.9% 0.218 5646
TripletTrack Marinello et al. (2022) Camera 0.285 1.485 N/A N/A N/A
MUTR3D Zhang et al. (2022a) Camera 0.294 1.498 42.7% 0.267 3822
QTrack (Ours) Camera 0.511 1.090 58.5% 0.465 1144

Test Split

CenterTrack Zhou et al. (2020) Camera 0.046 1.543 23.3% 0.043 3807
DEFT Chaabane et al. (2021) Camera 0.177 1.564 33.8% 0.156 6901
Time3D Li & Jin (2022) Camera 0.210 1.360 N/A 0.173 N/A
QD3DT Hu et al. (2022) Camera 0.217 1.550 37.5% 0.198 6856
TripletTrack Marinello et al. (2022) Camera 0.268 1.504 40.0% 0.245 1044
MUTR3D Zhang et al. (2022a) Camera 0.270 1.494 41.1% 0.245 6018
PolarDETR Chen et al. (2022) Camera 0.273 1.185 40.4% 0.238 2170
SRCN3D Shi et al. (2022) Camera 0.398 1.317 53.8% 0.359 4090
QTrack (Ours) Camera 0.480 1.107 56.9% 0.431 1484

Table 1: Comparison with state-of-the-art methods on nuScenes validation and test dataset. Our
QTrack employs VoVNet-99 initialized from DD3D as image backbone. The resolution of input
image is 640 × 1600.

Methods Backbone AMOTA ↑ AMOTP ↓ RECALL ↑ MOTA ↑ MOTP ↓ IDS ↓ FRAG ↓ MT ↑ ML ↓
BEVDepth + KF ResNet-50 0.303 1.337 39.7% 0.284 0.705 1290 780 1462 3344
BEVDepth + CV ResNet-50 0.325 1.276 42.8% 0.300 0.710 903 907 1843 3299
BEVDepth + SimpleTrack ResNet-50 0.338 1.294 43.9% 0.304 0.742 950 904 1798 3213
BEVDepth + Ours ResNet-50 0.347 1.347 42.6% 0.309 0.722 944 1106 1758 3137

BEVDepth + KF ResNet-101 0.301 1.345 40.2% 0.287 0.685 1444 841 1591 3156
BEVDepth + CV ResNet-101 0.323 1.282 42.1% 0.299 0.696 807 885 2359 3256
BEVDepth + SimpleTrack ResNet-101 0.333 1.302 42.4% 0.303 0.701 887 904 1835 3174
BEVDepth + Ours ResNet-101 0.339 1.349 42.8% 0.309 0.691 1100 1187 1956 2890

Table 2: Comparison with different post-processing trackers on nuScenes val dataset. We report the
tracking results with two different backbones, and the resolution of the input image is 256 × 704.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We mainly evaluate our QTrack on the 3D detection and tracking datasets of nuScenes.
nuScenes dataset is a large-scale autonomous driving benchmark that consists of 1000 real-world
sequences, 700 sequences for training, 150 for validation, and 150 for the test. Each sequence has
roughly 40 keyframes, which are annotated by each sensor (e.g., LiDAR, Radar, and Camera) with
a sampling rate of 2 FPS. Each frame includes images from six cameras with a full 360-degree field
of view. For the detection task, there are 1.4 M annotated 3D bounding boxes from 10 categories.
For the tracking task, it provides 3D tracking bounding boxes from 7 categories.

Metrics. For 3D detection task, we report nuScenes Detection Score (NDS), mean Average Pre-
diction (mAP), as well as five True Positive (TP) metrics including mean Average Translation Error
(mATE), mean Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Aver-
age Velocity Error (mAVE), mean Average Attribute Error (mAAE). For 3D tracking task, we report
Average Multi-object Tracking Accuracy (AMOTA) and Average Multi-object Tracking Precision
(AMOTP). We also report metrics used in 2D tracking task from CLEAR Bernardin et al. (2006),
e.g., MOTA, MOTP, and IDS.

4.2 IMPLEMENTATION DETAILS

Following BEVdepth, we adopt three types of backbone: ResNet-50 He et al. (2016), ResNet-101,
and VoVNet-99 (Initialized from DD3D Park et al. (2021)) as the image backbone. If not specified,
the image size is processed to 256×704. The data augmentation includes random cropping, random
scaling, random flipping, and random rotation. In addition, we also adopt BEV data augmentations
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including random scaling, random flipping, and random rotation. We use AdamW as optimizer with
learning rate of 2 × 10−4 and batch size of 64. When compared with other methods, QTrack is
trained for 24 epochs for ResNet and 20 epochs for VoVNet with CBGS Zhu et al. (2019).

4.3 COMPARISION WITH PRECEDING SOTAS

Test and validation set. We compare the performance of QTrack with preceding SOTA methods
on the nuScenes benchmark. The results are reported in Tab. 1. Our QTrack outperforms all current
SOTA methods for the camera-based trackers by a large margin. For both validation and test sets, all
reported metrics (e.g., AMOTA, AMOTP, RECALL, IDS, etc.) achieve best performance. Specially,
AMOTA result of QTrack first achieves 0.511, which significantly reduces the performance gap
between the pure camera and LiDAR-based trackers.

MF VQ LQ AMOTA↑ AMOTP↓ MOTA↑ IDS↓

% 40.4 1.266 36.9 1575
% ! 40.1 1.269 36.6 1680
% ! 40.5 1.264 37.3 1445
% ! ! 40.8 1.259 37.0 1527

! 42.2 1.236 38.1 1125
! ! 41.9 1.239 38.0 999
! ! 42.2 1.235 38.2 1023
! ! ! 42.6 1.228 38.3 1076

Table 3: Ablation study of how to use veloc-
ity quality (VQ) and location quality (LQ).
MF indicates using multiple frames.

Compare with other post-processing trackers.
Tab. 2 illustrates that QTrack outperforms the naive
Kalman filter based method and its advanced variant
from SimpleTrack Pang et al. (2021) by employing
identical 3D detector and backbone settings. More-
over, our method only needs simple operations (i.e.,
Matrix multiplication and addition) for tracking pro-
cedure, while Kalman filter based ones need rela-
tively complex operation like matrix transpose and
the complex process for adjusting hyper-parameters.
The overall tracking framework is significantly effi-
cient and will not trigger a serious latency, which is
fatal in a real perception scenario Yang et al. (2022a;b).

4.4 ABLATION STUDY

In this subsection, we verify the effectiveness of the proposed strategies separately through ablation
studies. All the experiments are conducted on the nuScenes val set.

Backbone MF CLS Q. AMOTA↑ AMOTP↓ MOTA↑ IDS↓

R50 % 29.1 1.314 26.7 1488
R50 % ! 30.7 1.394 28.3 1748
R50 % ! ! 31.3 1.390 28.5 1559

R50 ! 32.5 1.276 30.0 903
R50 ! ! 34.1 1.348 30.5 1141
R50 ! ! ! 34.7 1.347 30.9 944

R101 % 29.1 1.314 26.7 1488
R101 % ! 31.2 1.389 28.4 1622
R101 % ! ! 31.8 1.386 29.1 1638

R101 ! 32.3 1.282 30.9 1100
R101 ! ! 33.2 1.352 30.3 1053
R101 ! ! ! 33.9 1.349 30.9 1100

V99 % 38.8 1.220 35.3 1670
V99 % ! 40.4 1.266 36.9 1575
V99 % ! ! 40.8 1.259 37.0 1527

V99 ! 41.7 1.177 37.3 914
V99 ! ! 42.2 1.236 38.1 1125
V99 ! ! ! 42.6 1.228 38.3 1076

Table 4: Ablation study of the components in QTrack.
CLS indicates the first gate classification score while
Q. indicates the second gate, i.e., quality score. MF
indicates using multiple frames.

Analysis of the location and velocity
quality for tracking. In this part, we con-
duct an in-depth analysis on the location
and velocity quality score for the associ-
ation process. As mentioned before, lo-
cation and velocity quality scores are ob-
tained by the quality branch. Then they
are both regarded as the reference clues
to filter the low classification confidence
association results in QOA. We verify the
performance of only using one of them as
the second gate of QOA, and the results
are reported in Tab. 3. As shown, only us-
ing one of the location and velocity quality
scores does not contribute to the tracking
performance, which confirms our analysis
that the location and velocity quality is not
aligned and we should take both of them
into consideration.

Analysis of the components of QTrack.
In this part, we verify the effectiveness of
various components in QTrack through an
ablation study. As shown in Tab. 4, the first row of the table shows baseline performance for tracking
when using BEVDepth detections followed by a simple velocity association step (CV method). We
can observe that the two gates of QOA can both develop the tracking performance in the all settings
(ResNet-50, ResNet-101 or VoVNet-99, single-frame or multi-frame), which means that the filter for
the low-quality association results is necessary. Furthermore, we can observe that the metric of IDS
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increases when applying the first gate by classification confidence score. This phenomenon shows
that only considering confidence score inevitably introduces low-quality bounding boxes, which
causes bad association cases. Therefore, the second gate, quality score, can provide a fine-grained
reference to achieve a better association trade-off.

Extra Branch mAP↑ NDS↑ CV SimpleTrack

None 0.3579 0.4826 0.326 0.337

Appearance 0.3522 0.4798 0.315 0.328
Relative Drop -0.57% -0.38% -1.1% -0.9%

Quality 0.3585 0.4831 0.325 0.338
Relative Drop +0.06% +0.05% -0.1% +0.1%

Table 5: Influence of extra branch on performance
and tracking detection. For tracking performance
of CV and SimpleTrack, we report the AMOTA
metric for comparison.

Influence on base 3D detector. As shown in
Tab. 5, it proves that adding quality predic-
tion branch does not affect the performance of
base 3D detector. This is an extremely im-
portant property since post-processing track-
ers normally rely on the super performance of
detector. Going one step further, we report
the tracking performance by employing exist-
ing CV and SimpleTrack scheme. It reveals
that tracking performance will not be affected
by our quality branch, which agrees with our
designing purpose of Sec. 1. Then, we explore to append an appearance branch for extracting in-
stance wised appearance embedding, which implement is the same as Zhang et al. (2021). The
results show that slight performance degradation (nearly 0.5%) is triggered on detection task, but it
significantly damages the performance of tracking task by nearly 1.0%. It reflects that our method
is more effective and efficient.

4.5 DISCUSSION AND FUTURE WORK
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Figure 4: Influence of velocity quality on detec-
tion performance in NMS procedure. The abscissa
indicates α in Eq. 6.

Inspired by Jiang et al. (2018); Wu et al. (2020);
Yang et al. (2022d), we explore to incorporate
velocity quality V with classification score C as
M , which is adopted to act as threshold metric
in NMS procedure. Technically, we formulate
M in Eq. 6, in which α is a hyper-parameter to
control the contribution of V .

M = V (1−α) · Cα, (6)

As shown in Fig. 4, we plot the four perfor-
mance metrics of detection task by controlling
α. It reflects that as contribution of V becomes
bigger, mAVE drops dramatically. However, it
also brings about inevitable performance degra-
dation for mAP and mATE metrics. NDS, as a
comprehensive metric, becomes better and then gets worse as α changes larger, which is actually a
trade-off between location error and velocity error. This phenomenon agrees with our viewpoint in
Sec. 1, i.e., the quality of these two prediction tasks are not aligned. Combining the performance of
detection and tracking tasks with respect to above imbalance issue, it exposes a challenge: how to
design a method to simultaneously predict location (or 3D box) and velocity well? This challenge
can help further boost performance of 3D detection task or other downstream tasks like 3D MOT.

5 CONCLUSION

In this paper, we analyze the imbalance prediction quality distribution of location and velocity. It
motivates us to propose a Quality-aware Object Association (QOA) method to alleviate the imbal-
ance issue for 3D multi-object tracking (3D MOT). To this end, we introduce Normalized Gaussian
Quality (NGQ) metric to measure the predicted quality of location and velocity, and structure an
effective module for quality learning. Afterwards, we further present QTrack, an “tracking by de-
tection” framework for 3D MOT in multi-view camera scene, which incorporats with QOA to per-
form tracking procedure. The extensive experiments demonstrate the efficacy and robustness of our
method. Finally, we release a challenge to inspire more research to focus on the imbalance between
localization and velocity qualities for both 3D detection and tracking tasks.
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