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Abstract

Explainable reinforcement learning (XRL) is crucial for reinforcement learning (RL)
algorithms within clinical decision support systems. However, most XRL evalu-
ations have been conducted with non-expert users in toy settings. Despite the
promise of RL in healthcare, deployment has been especially slow in part because
of safety concerns which XRL might be able to attenuate. In our study, we observed
doctors interacting with a clinical XRL in a high-fidelity simulated medication dos-
ing scenario. Using eye-tracking technology, we analyzed these interactions across
safe and unsafe XRL suggestions. We find that there cognitive attention devoted
to XRL during unsafe scenarios is similar to during safe scenarios (despite doctors
more frequently rejecting unsafe XRL suggestions). This suggests that XRL does
not lie in the causal pathway for doctors to reject unsafe AI advice.

1 Introduction

Healthcare is a high-stakes domain with recurrent decision-making in pursuit of a
long term objective (typically maximising patient health/survival); in other words,
the perfect setting in which to exploit the benefits of reinforcement learning (RL)
algorithms. In practice, despite promising proof of concept papers (Komorowski
et al., 2018), there are no widely deployed clinical RL decision support systems
even though these are most likely to be supportive rather than autonomous in the
near future (Festor et al., 2021).

Therefore, optimizing the interaction between healthcare practitioners and RL-
driven AI clinical decision support systems (AI-CDSS) becomes vital for broad
acceptance and influence, something that has been relatively overlooked to date
(van de Sande et al., 2021). Explainable RL (XRL) has been proposed as a poten-
tial strategy by providing intelligible justifications for RL-driven recommendations
to human users (Barredo Arrieta et al., 2020). Apart from fostering trust in RL,
XRL has been proposed as a mechanism to prevent the inadvertent implementation
of unusual or even detrimental AI advice (Jia et al., 2022; Gordon et al., 2019; Anto-
niadi et al., 2021). The urgency for this is heightened by the emergence of generative
AI (such as large language models) which occasionally generate hallucinatory (and
thus, if used clinically, unsafe) suggestions (Lee et al., 2023). Nonetheless, the ex-
tent to which XRL can serve as a guard against unwitting adherence to unsafe (i.e.,
hallucinatory) AI advice is still unclear (Evans et al., 2022; Jacobs et al., 2021;
Ghassemi et al., 2021).

When it comes to the real-world application of clinical XRL, there is a paucity of
clinical evaluations involving XRL with specialist end-users, and even fewer in a
high-fidelity setting (Schoonderwoerd et al., 2021). Current evidence indicates a
weaker than expected correlation between physicians’ actual prescribing behaviors
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and self-reported utility of XRL (Nagendran et al., 2022). Importantly, other in-
vestigators have highlighted that both self-reports and actual behaviors can only
be recorded after the event (Cao & Huang, 2022), limiting the effectiveness of these
retrospective metrics as part of a reinforcement learning feedback loop, in contrast
to real-time clinical attention indicators like eye-tracking (Ball & Richardson, 2022;
Harston & Faisal, 2022). This technique has been widely utilized in non-hospital
scenarios to ascertain an individual’s attention focus (Auepanwiriyakul et al., 2018;
Makrigiorgos et al., 2019; Ranti et al., 2020; Harston et al., 2021). High-fidelity
simulation environments offer an opportunity to investigate XRL in a setting that
closely mirrors real clinical practice and is often used in medical education (Cato &
Murray, 2010; Cook et al., 2011). By incorporating eye-tracking into a high-fidelity
setting, our methodology attempts to address the limitations of previous research
(non-clinical participants, surrogate tasks, low fidelity environments) and gain a
more accurate understanding of the clinician-XRL interaction dynamic.
In this work, we explored the influence of four distinct AI explanation types on
clinicians within a high-fidelity simulation environment, as they performed a routine
hospital task: determining the appropriate medication dosage for a patient after
evaluation. Our aim was to quantify the impact of XRL on clinicians’ prescription
decisions, with a specific focus on whether doctors’ attentional engagement (as
measured by eye-tracking) differed between safe and unsafe AI scenarios.

2 Methods

Experimental Setup and XRL – Our investigation consisted of an observational
analysis of how humans interact with AI within a simulated environment. Medical
professionals were presented with one of six patient situations under two conditions:
a recommendation from AI that was deemed safe or one that was potentially unsafe.
The classification of safe and unsafe was based on exceptionally high or low prescrip-
tions of fluids and vasopressors, as defined in prior research (Festor et al., 2022).
The AI suggestions were artificially generated, with the main aim of our research
being to assess the dynamics of interaction between healthcare professionals and AI.
We constructed four unique explanations for the simulated AI system, all grounded
in techniques we’ve utilized in reinforcement learning decision support systems. The
first provided a natural language description of the Q-value difference between the
recommended action and alternative actions. The second clarified the projected
short-term changes in mortality following dosage adjustments as predicted by the
AI. The third emphasized the five most influential aspects of the input data that
steered the AI’s recommendation. Finally, we identified the three most impactful
training examples during the Q-learning process.
Eye-tracking for Gaze Detection – Eye-tracking was used to detect gaze,
thereby determining clinicians’ attention profile during simulations and their fluctu-
ation. Participants wore unobtrusive, off-the-shelf eye-tracking glasses (Pupil Labs
Core) featuring three cameras (Figure 2b), with the main camera capturing the
wearer’s viewpoint and the remaining two recording the eyes (Figure 2a). Pupil
Labs software (Pupil Capture, version 3.5.7) used these cameras to identify the
pupil and deduce the gaze direction (Figure 3a). Prior to the experiment, a two-
stage 2D calibration exercise was conducted. Eye-tracking glasses were connected to
a laptop (Lenovo Thinkpad) worn in a lightweight backpack, allowing unrestricted
movement.
We delineated four primary regions of interest (ROIs) (Figure 1a): the patient
mannequin, the vital signs monitor, the ICU data chart, and the AI display screen,
the latter having four sub-regions tied to the XRL types. Using pre-set QR codes
(April tags, Figure 3a), ROIs were defined during post-processing. This allowed
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Figure 1: Unfolding of a single simulation trial - Left-hand image shows a picture of the
simulation suite with a clinician assessing the mannequin. (1) Vital signs monitor, (2) AI screen,
(3) Subject, (4) Bedside nurse, (5) Patient mannequin, (6) ICU bedside paper chart.

Figure 2: Eye-tracking glasses (a) and pupil detection (b) – Automatic pupil detection ->
triangulates gaze position after calibrating software for each subject. Eye-tracking glasses have 3
cameras (‘ego-centric’ world-view camera plus one camera for each eye).

analysis of gaze-time per ROI, fixation count per ROI, and blink rate per minute
per ROI - an indicator of concentration level.

Figure 3: Post-processing of eye-tracking data - Left-hand image shows bounding boxes around
regions (surfaces) of interest (ROIs). Right-hand side shows gaze density per ROI as heatmaps.
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We further devised a distinctive method for gauging behavioural attention that
adjusts for the percentage of the visual field an ROI occupies. To illustrate, if an
ROI constitutes 50% of the visual field for half the time, based on randomness alone,
the gaze should land within the ROI 25% of the time. By comparing this ’random
gaze’ figure of 25% with the actual gaze proportion, we can calculate a surrogate
measure of the relative importance of ROIs, contrasting the rates of random and
actual gaze into a ratio. The higher the ratio, the more purposeful the attention is
on any given ROI (versus chance gaze).

Simulation Experiment – Participants first underwent a standard experiment
briefing and completed a pre-experiment questionnaire regarding AI perceptions
and demographic information. After familiarising themselves with the simulation
suite and performing eye-tracking calibrations, they began the simulated scenarios.
An individual role-playing an ICU bedside nurse assisted. The doctors evaluated
six simulated ICU patients with sepsis. Each of the six scenarios required clinicians
to perform an assessment, including data review and patient examination. Subse-
quently, they were asked by the nurse to provide their prescription for fluid and
vasopressors for the next hour, indicate their confidence in the prescription, and
state if they would seek higher advice or a second opinion. Afterward, AI recom-
mendations and explanations were displayed near the patient bedside, prompting
doctors to affirm or amend their prescriptions and reassess their answers regarding
confidence and the need for senior advice (Figure 1b).

Subject recruitment – ICU doctors were recruited via targeted promotion and
convenience sampling within a local hospital area. Eligibility requirements included:
(i) currently practising as a doctor, (ii) possessing at least two months of adult ICU
experience, (iii) current ICU involvement or ICU employment in the previous six
months. Participants received compensation, and each session lasted around 60
minutes. The local research governance team at our institution and the UK Health
Research Authority approved the study.

The previous sentence has been anonymised to allow for a blind peer-review process.
If accepted, information about the institutions and approval reference number will
be filled in on the camera-ready version.

3 Results

Cohort recruited – In total, 19 ICU doctors with eye-tracking data available were
included (13 male, 6 female). Mean doctor age was 33 years (standard deviation
(SD) 6 years). Mean ICU experience was 3.6 years (SD 4 years, range 2 months to
14 years).

Eye-tracking metrics on ROIs – During unsafe scenarios, gaze fixations on the
AI screen were notably higher (mean 962 compared to 704, p=0.002, displayed in
Figure 4a. However, no significant differences in gaze fixations were observed across
various XRL modalities in either safe or unsafe scenarios (Figure 4b), with the
disparity in the AI screen primarily attributed to the AI recommendation.

he blink rate was lowest when viewing the ICU chart (6.1 blinks per minute (bpm),
SD 4.1), and was comparable for both the vital signs monitor and patient mannequin
(average 15.2 bpm and 14.7 bpm, SD 8.7 and 9.2 respectively), with a significantly
higher rate noted on the AI screen (average 19.9 bpm, SD 10.7). A comparison
between all conventional clinical ROIs (chart, patient mannequin, monitor; depicted
by blue bars in Figure 5) and all AI ROIs (including XAIs; shown by red bars in
Figure 5) revealed a significantly lower mean blink rate for the conventional clinical
ROIs compared to the AI ROIs (12.0 bpm vs. 23.7 bpm, p=0.002).
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Figure 4: Gaze fixations distribution: Average number of gaze fixations per trial for safe and
unsafe AI recommendations. The right plot expands the "AI screen" region into its four corners with
explanations and the recommendation in the centre.

Figure 5: Blink rate for each ROI: Average blink rate for each region of interest across trials,
error bars are standard deviations. Red bars are the AI-related ROIs, blud bars are the standard
ones.

For every ROI except the patient mannequin, there was a significantly higher actual
gaze proportion than random chance gaze proportion (p<0.001 for all seven compar-
isons). For the major ROIs (AI screen, ICU chart, vital signs monitor, patient) the
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ratio of actual gaze to random gaze was 6.2, 1.6, 12.9 and 1.3 respectively. For the
XRL ROIs (training examples, Q-value difference, mortality, feature importance)
the ratio of actual gaze to random gaze was 5.4, 3.9, 4.9 and 3.1 respectively (see
Figure 6).

Figure 6: Random gaze comparison: Proportion of actual gaze time spent on each surface against
the time a perfectly random gaze would have spent on it (mean and standard error).

Self-reported XRL usefulness – We here report self-reported data on the utility
of XRL for 10 of the 19 subjects (Figure 7). The overall mean post-experiment
usefulness rating for the XRL was 3.0 (SD 1.1) on a zero to four scale with higher
value implying the XRL was more useful. The training examples explanation was
the only one of the four to be rated significantly lower than the overall rating
for explanations in general (mean 1.0, SD 1.1, p<0.001). When comparing the
‘objective’ marker of how many fixations there were on the four different types of
XRL to the ‘subjective’ marker of how clinicians rated the usefulness of the four
XRLs, we found no significant correlation for any of the four XRLs.
Adherence to AI suggestions among doctors – We defined adherence to
AI as the distance between a doctor’s final prescription (having had the oppor-
tunity to view the AI suggestion) and the value of the AI suggestion for any given
trial/scenario (higher distance suggesting that the doctor was less adherent to AI
and vice versa). There was no evidence of correlation between eye-tracking metrics
(blink rate or number of gaze fixations) and AI adherence regardless of safety status
or drug. Nor was there a significant association between number of fixations specifi-
cally on XRL ROIs and drug (either fluid or vasopressor) for either AI scenario (safe
or unsafe). We however found that the spread of clinical decisions was different in
computer-based and physical simulations (see Figure 8)

4 Discussion

Our study contributes several insights to our understanding of clinician interaction
with XRL decision support tools. We demonstrated the efficacy of gaze fixations
and blink rate as proxy attention indicators in a high-fidelity simulation, with the
real-world clinical application pending less intrusive eye-tracking hardware and pri-
vacy considerations. We found no significant attention increase towards any expla-
nation type when dealing with unsafe versus safe AI suggestions, challenging the
assumption of heightened reliance on explanations in unsafe scenarios. There was
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Figure 7: Usefulness rating for each type of explanation as well as overall rating – Mean
and SEM error bars. The only significantly different explanation type compared to overall was the
‘most influential training examples’.

no correlation between self-rated explanation usefulness and attention received, in-
dicating that self-reports alone may not sufficiently evaluate XRL tools. Blink rate
suggested less cognitive effort was required to interpret the AI data compared to
the ICU chart. Lastly, no consistent links were found between eye-tracking metrics
and variations in clinical practice or adherence to AI suggestions.
These findings must be viewed considering several limitations. The simulation suite
couldn’t fully emulate a real hospital environment’s complexity, such as dynamic pa-
tient examination or team interactions. Real-world experiments require substantial
sample sizes to standardise, making simulation studies crucial in exploring human-
AI dynamics. Our small sample size could limit the validity of certain comparisons.
Also, the categorisation of AI suggestions into safe or unsafe creates an arbitrary
boundary on a continuous spectrum. Variations in explanation format could con-
found comparisons: some were primarily graphical, and others were text-heavy,
potentially confounding comparisons between explanations.
Despite these limitations, our findings offer key insights for optimizing XRL-based
medical decision support tools. We examined the assumption that explanations
should help users reject poor AI advice, and corroborated that an increased re-
jection rate of unsafe advice wasn’t driven by higher reliance on, or attention to,
explanations. Evidence from other studies suggests a breakdown in the process of
discarding unsafe advice, indicating potential automation bias (Shafti et al., 2022).
The risk of such automation bias is also well documented in other medical inves-
tigations (Micocci et al., 2021; Panigutti et al., 2022). Another piece of evidence
is an experiment assessing a mental health drug decision support tool, where ex-
planations failed to prevent clinical users from following intentionally subpar AI
recommendations (Jacobs et al., 2021). Our study corroborates these findings.
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Figure 8: Comparing online to physical simulation - variability in prescription decisions (fluids
on the left, vasopressors on the right) for depending on whether the experiment has happened on a
computer on in a physical simulation suite.

The use of eye-tracking in AI-user studies remains limited. A notable example by
Cao and colleagues found a positive association between gaze percentage on the
AI suggestion and perceived user reliance and agreement with AI suggestions, but
not with perceived trust (Cao & Huang, 2022). Similarly, we found no correlation
between subjective explanation ratings and gaze fixations on the AI explanation.
While eye-tracking may form the basis of a real-time feedback loop for human-AI
interactions (Cao & Huang, 2022)., our results caution that we must first establish
reliable eye movement patterns to accurately categorize users and predict their AI
interactions.

5 Conclusion

In summary, our results indicate that eye-tracking is a viable technique to assess
clinicians’ engagement with reinforcement learning explanations (XRL). We illus-
trate that clinicians’ reactions to safe and unsafe AI recommendations are distinctly
different. Yet, the absence of a ’rescue’ effect presented by XRL is of importance
to note when designing clinical XRL systems. Our insights emphasize the necessity
for future AI decision-support tools to customise not just their recommendations,
but also their interaction style and explanation delivery for clinician users.
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