
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Effective Sharpness Aware Minimization Requires Layerwise
Perturbation Scaling

Moritz Haas1 Jin Xu2 Volkan Cevher3,4 Leena Chennuru Vankadara4
1University of Tübingen and Tübingen AI Center* 3LIONS, EPFL∗

2University of Oxford∗ 4AGI Foundations, Amazon

Abstract

Sharpness Aware Minimization (SAM) enhances performance across various neural architectures
and datasets. As models are continually scaled up to improve performance, a rigorous understanding
of SAM’s scaling behavior is paramount. To this end, we study the infinite-width limit of neural
networks trained with SAM, using the Tensor Programs framework. Our findings reveal that the
dynamics of standard SAM effectively reduce to applying SAM solely in the last layer in wide neural
networks, even with optimal hyperparameters. In contrast, we identify a unique parameterization with
layerwise perturbation scaling, which we call maximal update and perturbation parameterization
(µP2), that ensures all layers are both feature learning and effectively perturbed in the limit. Through
experiments with MLPs, ResNets and Vision Transformers, we empirically demonstrate that µP2

is the only parameterization to achieve hyperparameter transfer of the joint optimum of learning
rate and perturbation radius across model scales. Moreover, we provide an intuitive condition to
derive µP2 for other perturbation rules like Adaptive SAM and SAM-ON, also ensuring balanced
perturbation effects across all layers.

1. Introduction

Sharpness Aware Minimization (SAM) [15] and its variants [28, 35] improve generalization across
a range of neural architectures and datasets [8, 25]. In the SAM formulation, we minimize a given
loss L between our prediction and the data y as a function of the network’s weights W , where an
adversary simultaneously maximizes the same loss by perturbing the weights within a budget ρ.

A standard SAM update for an L-hidden layer multi layer perceptron (MLP) is given by

W l
t+1 = W l

t − ηl∇W lL (f (ξt;Wt + εt) , yt) , with εlt = ρ · ∇W lL(f(ξt;Wt), yt)

∥∇W lL(f(ξt;Wt), yt)∥
, (SAM)

where t is the iteration count and εlt denotes the perturbation in the l-th MLP layer with width n ∈ N,
and where we define an L-hidden layer MLP iteratively via

h1(ξ) := W 1ξ, xl(ξ) := ϕ(hl(ξ)), hl+1(ξ) := W l+1xl(ξ), f(ξ) := WL+1xL(ξ),

for inputs ξ ∈ Rdin with trainable weight matrices W 1 ∈ Rn×din , W l ∈ Rn×n for l ∈ [2, L], and
WL+1 ∈ Rdout×n. We call hl preactivations, xl activations, and f(ξ) output function. Despite the
inherent difficulty of non-convex, non-concave optimization, SAM is quite successful in practice.

* Moritz, Jin, and Volkan holds/held joint appointments at the University of Tübingen, University of Oxford, and EPFL
respectively and Amazon. This work was done at Amazon. Correspondence to: mo.haas@uni-tuebingen.de

© M. Haas, J. Xu, V. Cevher, L. C. Vankadara.

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

On the other hand, the steadily growing scale of foundation models has sparked considerable interest
in scaling laws of model size and dataset size [26, 58]. To rigorously understand learning dynamics
under width scaling, Yang and Hu [52] have recently provided general infinite-width theory for SGD,
which has since been shown to be a good model for understanding the properties of large models [44].
Yang and Hu [52] show that standard parameterizations (SP), including He or LeCun initialization
[19, 29] with a global learning rate, do not learn features in the infinite-width limit.

Instead, a different scaling of layerwise initialization variances and learning rates, termed Maximal
Update Parameterization (µP), is necessary to achieve feature learning in wide networks. A crucial
practical benefit of µP is the transferability of the optimal learning rate across model scales [54].
This can drastically reduce computational costs as it allows to tune hyperparameters on smaller
representative models and then to train the large model only once. We provide a detailed account of
related work and potential future work in Appendix I.

10−2 10−1

Perturbation radius ρ

10−2

10−1

L
ea

rn
in

g
ra

te
η

SP-naive

10−3 10−2 10−1

Perturbation radius ρ

10−1

100

µP-naive

10−2 10−1 100

Perturbation radius ρ

10−1

100

L
ea

rn
in

g
ra

te
η

µP-global

10−1 100

Perturbation radius ρ

10−1

100

µP2

width
4096
1024
256

(a)

10−3 10−2 10−1 100

Perturbation radius ρ

52

53

54

55

56

57

58

59

60

Te
st

ac
cu

ra
cy

µP2

µP-global
µP-naive
SP-LP
SP-naive

(b)

Figure 1: (a) (Only µP2 transfers both η and ρ): Test accuracy as a function of learning rate η
and perturbation radius ρ of a 3-layer MLP trained with SAM on CIFAR10 for various widths and
in different parameterizations (see subplot title), averaged over 3 independent runs.‘×’ denotes the
optimum. Blue contours (the darker, the wider) denote the region within 1% of the optimal test
accuracy smoothened with a Gaussian filter. Grey regions (the lighter, the wider) denote the unstable
regime below 30% test accuracy. ‘naive’ denotes no perturbation scaling, ‘global’ denotes global
perturbation scaling ρ = Θ(n−1/2). (b) (µP2 achieves the best generalization performance):
Same as left but sliced at the optimal learning rate of each parameterization for width 4096. Dashed
horizontal lines denote the base optimizer SGD in SP (green) and in µP (blue), respectively. Average
and 2σ-CI from 16 independent runs. SP-LP denotes SP with layerwise perturbation scaling.

Contributions. In this paper, we adopt a scaling perspective to understand SAM’s learning dynamics.
Using the Tensor Programs framework [50, 52, 53], this work provides the first infinite-width theory
for SAM with important practical consequences:

1. We show that training an MLP with the standard (SAM) update rule is equivalent to applying
perturbations only in the last layer in the infinite-width limit even if the perturbation radius is
properly tuned. This holds for any stable parameterization including SP and µP.

2

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

2. We postulate that just like learning rate transfers when features evolve non-trivially with width
in every layer, transferability of the perturbation radius requires that every layer is effectively
perturbed in the limit. We demonstrate that while the optimal learning rate transfers across
widths under µP, the perturbation radius can shift significantly (Figure 1).

3. We show that this can be achieved by layerwise scalings of the perturbation radius. We
characterize the class of parameterizations with layerwise scalings for which every layer of the
network is effectively perturbed by SAM in the infinite-width limit.

4. We derive the unique Maximal Update and Perturbation Parameterization (µP2) that achieves
both feature learning and effective perturbations in all layers in the infinite-width limit. We
empirically demonstrate that µP2 is the only parameterization to achieve hyperparameter
transfer in both learning rate η and perturbation radius ρ (Figure 1).

5. We provide a versatile scaling condition applicable to architectures such as ResNets and Vision
Transformers (ViTs), and to various SAM variants like SAM-ON and Adaptive SAM (ASAM),
and any SAM updates modeled in a Tensor Program.

2. Sharpness Aware Minimization in the infinite-width limit

2.1. SAM induces vanishing perturbations in wide neural networks

While our theory covers any stable parameterization including He and LeCun initializations, for
concreteness and for the clarity of exposition, we first present our results for MLPs under µP:

initialize W 1 ∼ N (0, 1/din), W
l ∈ Rn×n ∼ N (0, 1/n) for l ∈ [2, L], WL+1 ∼ N (0, 1/n2)

with layerwise SGD learning rates η1 = ηn, ηl = η, for l ∈ [2, L], ηL+1 = ηn−1.

By analyzing SAM’s infinite-width behaviour, we show that the training dynamics under standard
(SAM) become unstable under increasing width. All results are stated formally in Appendix III.

Proposition 1 (Instability of standard SAM parameterization in wide neural networks) Under
µP with the standard (SAM) update rule and default perturbation given in (SAM), the output func-
tion becomes unbounded after the first update step in the infinite-width limit for any fixed, positive
learning rate η > 0 and perturbation radius ρ > 0.

To achieve stable optimization, it is necessary to introduce some width-dependent perturbation
scaling ρn−d for some suitable d > 0. Before we present our results on the width-scaling behavior
of SAM under this scaling, we define the notion of vanishing perturbations.

Vanishing perturbations. The weight perturbation εl perturbs the l-th layer’s activations as

xl + δ̃xl = ϕ((W l + εl)(xl−1 + δ̃xl−1)), (1)

where δ̃xl denotes the perturbation of the l-th layer’s activations accumulated from the weight
perturbations {εl′}l′∈[l−1] in all previous layers. We say a layer l has vanishing perturbations if
δ̃xlt → 0 as the width approaches infinity. We omit time step t above for simplicity.

Informally, Theorem 2 below shows that for every choice of a decay parameter d > 0, either the
training dynamics of SAM are unstable or all the hidden layers of the network have vanishing
perturbations in the limit.

3

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Theorem 2 (Global perturbation scaling is unstable or induces vanishing perturbations) Fix
ρ > 0 and t ∈ N. Let f̊t denote the infinite-width limit of the output function after training an MLP
of width n with the SAM update rule (SAM) with perturbation radius ρn−d for t steps. If d < 1/2,
then output perturbations blow up, and f̊t is unstable. If d > 1/2, then the perturbations in all layers
vanish and f̊t corresponds to the limit after t steps of SGD. If d = 1/2, then only the last layer is
effectively perturbed, all other layers have vanishing perturbations.

Appendix VII.1 shows statistics of an MLP trained with (SAM) with global width-dependent scaling
ρn−1/2 versus the same MLP trained with SAM where only the last-layer weights are perturbed
and εl = 0 for all l ∈ [L]. As predicted by Theorem 2, both training algorithms produce equivalent
training dynamics, already at moderate width, and last-layer perturbations are scaled correctly.

2.2. Effective perturbations using layerwise perturbation scaling

In this section, we show that correcting the (SAM) update rule to achieve effective perturbations
in every single layer requires introducing additional hyperparameters — layerwise width-dependent
scaling of the perturbation radius. This is similar in spirit to µP which corrects standard parameter-
ization by introducing layerwise scaling of the learning rates. Under layerwise perturbation scaling,
we show that there exists a unique parameterization, we call maximal update and perturbation
parameterization (µP2) that achieves both feature learning and effective perturbations in all
layers in the infinite-width limit.

Formally, we extend the class of abc-parameterizations1 [52] by including layerwise scaling of
the perturbation radius. For clarity of exposition, we present our main results for MLPs. It is
straightforward to extend our theory to any architecture that is representable as a NE⊗OR⊤program
including ResNets and Transformers. Further theoretical considerations such as extensions to other
ASAM variants and architectures can be found in Appendix V. For all of the results in this section,
we assume that the used activation function is either tanh or σ-gelu for σ > 0 sufficiently small.
For small enough σ > 0, σ-gelu (Definition 13) approximates ReLU arbitrarily well. The full
formal result statements can be found in Appendix III. All proofs are provided in Appendix IV.

Definition 3 (bcd-parametrization) A bcd-parametrization {bl}l∈[L+1]∪{cl}l∈[L+1]∪{dl}l∈[L+1]∪
{d} defines the training of an MLP with SAM in the following way:

(a) Initialize weights iid as W l
ij ∼ N (0, n−2bl).

(b) Train the weights using the SAM update rule with layerwise learning rates,

W l
t+1 = W l

t − ηn−cl∇W lL (f (ξt;Wt + εt) , yt) ,

with the scaled perturbation εt via layerwise perturbation radii,

εt := ρn−d vt
∥vt∥

, with vt = (v1t , . . . , v
L+1
t), vlt := n−dl · ∇W lL(f(ξt;Wt), yt), (LP)

W.l.o.g. we set ∥vt∥ = Θ(1), which prevents nontrivial width-dependence from the denominator.
This imposes the constraints: d1 ≥ 1/2 − min(bL+1, cL+1), dl ≥ 1 − min(bL+1, cL+1) for l ∈

1. For each abc-parameterization (al, bl, cl)l=1,...,L+1, we consider the SGD-equivalent parameterization (0, bl+al, cl+
2al)l=1,...,L+1, which condenses all equations. In Appendix V.7, we derive a choice of weight multipliers for which
global perturbation scaling induces effective perturbations in all layers.

4

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

[2, L], and dL+1 ≥ 1/2, with at least one equality required to hold (see Appendix IV.1.3). The nor-
malization vt/∥vt∥ removes one degree of freedom from {dl}l∈[L+1] via the equivalence {d′l}l∈[L+1]

∼=
{dl}l∈[L+1] iff there exists a C ∈ R such that d′l = dl + C for all l ∈ [L+ 1].

Stability. We impose the same conditions on a bcd-parameterization to be stable as Yang and Hu [52]
and additionally require that perturbations do not blow up. Altogether we call a bcd-parameterization
stable (Definition 7) if the hidden activations have width-independent scaling Θ(1) at initialization
and during training, and neither the updates nor the perturbations δ̃xl of the activations or output
logits fW̃t

− fWt blow up at any point in training.

Effective perturbations. Given stability, the choice of layerwise initialization variance and learning
rate scalings {bl}l∈[L+1] ∪{cl}l∈[L+1] is largely decoupled from the choice of layerwise perturbation
scaling {dl}l∈[L+1] ∪ {d}. To achieve feature learning in every layer, µP is the unique choice of
{bl}l∈[L+1] ∪ {cl}l∈[L+1]. What is left to do is to find the unique choice of {dl}l∈[L+1] ∪ {d} so
that the perturbations in every layer have a non-vanishing and non-exploding effect on the output.
Recalling (1), it is crucial to not only propagate non-vanishing perturbations δ̃xl−1 through the
forward pass, but for the l-th layer weights to contribute a non-vanishing term εl(xl−1 + δ̃xl−1).
If εl(xl−1 + δ̃xl−1) = Θ(1), we say that the l-th layer is effectively perturbed. Given µP with
min(bL+1, cL+1) = 1, the following theorem provides the perturbation scaling to reach µP2.

Theorem 4 (Maximal Perturbation Parameterization (MPP)) Consider any stable bcd-parame-
trization {bl}l∈[L+1] ∪ {cl}l∈[L+1] ∪ {dl}l∈[L+1] ∪ {d} with bL+1 ≥ 1. Then up to the equivalence
d′l = dl + C, C ∈ R, ∀l ∈ [L + 1], the unique stable choice {dl}l∈[L+1] ∪ {d} that effectively
perturbs all layers l ∈ [L+ 1] is given by

d = −1/2, dl =


1/2−min(bL+1, cL+1) l = 1,

3/2−min(bL+1, cL+1) l ∈ [2, L],

3/2 l = L+ 1.

(2)

3. µP2 achieves hyperparameter transfer and improved generalization

0 25 50 75 100 125 150 175 200

Epochs of Training

101

102

10
0%

-t
es

ta
cc

ur
ac

y

SAM µP2

SGD µP
SAM SP
SGD SP

Figure 2: (ResNets in µP2) Training a
ResNet-18 with width multiplier 2 with
SAM in µP2 versus SP on CIFAR10.

Figure 1 shows that only µP2 yields hyperparameter trans-
fer in (η, ρ) and improved generalization for MLPs trained
on CIFAR10 [27]. Figure 2 shows that µP2 also improves
performance in ResNets and stabilizes SAM’s training
dynamics.

An intuitive condition for generalizing µP2 to other
gradient-based perturbation rules is: weight perturba-
tions of every layer should scale like their updates, εlt =
Θ(δW l

t). In Appendix V.5, we apply this condition to
SAM-ON [35] and ASAM [28] in ResNet-18 [20] trained
on CIFAR10, and find that µP2 improves the generaliza-
tion performance of all considered SAM variants com-
pared to SP. In µP2, most SAM variants perform similarly
well, suggesting that their differences in SP primarily stem from differing degrees to which the nor-
malization layers are perturbed. Experimental details are disclosed in Appendix VI and supplemental
experiments including ρ-transfer in ViTs on Imagenet1K can be found in Appendix VII.

5

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

References

[1] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware
minimization. In International Conference on Machine Learning, pages 639–668. PMLR,
2022.

[2] Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-
aware minimization leads to low-rank features. arXiv:2305.16292, 2023.

[3] Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nico-
las Flammarion. A modern look at the relationship between sharpness and generalization.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 840–902. PMLR, 23–29 Jul 2023.

[4] Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the
edge of stability in deep learning. In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 948–1024,
17–23 Jul 2022.

[5] Peter L. Bartlett, Philip M. Long, and Olivier Bousquet. The dynamics of sharpness-aware
minimization: Bouncing across ravines and drifting towards wide minima. Journal of Machine
Learning Research, 24(316):1–36, 2023.

[6] Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv:2404.10102, 2024.

[7] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv:2309.16620,
2023.

[8] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform
resnets without pre-training or strong data augmentations. arXiv:2106.01548, 2021.

[9] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In International Conference on
Learning Representations, 2020.

[10] Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of normalization in sharpness-aware
minimization. Advances in Neural Information Processing Systems, 36, 2024.

[11] Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains
mysteries in sharpness regularization. arXiv:2401.10809, 2024.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE conference on computer vision and pattern recognition
(ICCV), pages 248–255, 2009.

[13] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1019–1028, 06–11 Aug 2017.

6

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[15] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[16] Boris Hanin and David Rolnick. How to start training: The effect of initialization and architec-
ture. Advances in neural information processing systems, 31, 2018.

[17] Soufiane Hayou and Greg Yang. Width and depth limits commute in residual networks. In
International Conference on Machine Learning, pages 12700–12723. PMLR, 2023.

[18] Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Arnaud Doucet, and Judith
Rousseau. Stable resnet. In International Conference on Artificial Intelligence and Statistics,
pages 1324–1332. PMLR, 2021.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In IEEE international conference
on computer vision (ICCV), pages 1026–1034, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, jan 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1.

[22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[23] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence
and generalization in neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), pages 8571–8580, 2018.

[24] Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In International Conference on
Learning Representations, 2020.

[25] Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
work? Advances in Neural Information Processing Systems, 35:16577–16595, 2022.

[26] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2001.08361, 2020.

7

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[28] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International
Conference on Machine Learning, pages 5905–5914. PMLR, 2021.

[29] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

[30] Mufan Li, Mihai Nica, and Dan Roy. The future is log-gaussian: Resnets and their infinite-
depth-and-width limit at initialization. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, pages 7852–7864, 2021.

[31] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and
scalable sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12360–12370, 2022.

[32] Philip M. Long and Peter L. Bartlett. Sharpness-aware minimization and the edge of stability.
arXiv:2309.12488, 2023.

[33] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

[34] Enea Monzio Compagnoni, Luca Biggio, Antonio Orvieto, Frank Norbert Proske, Hans Kerst-
ing, and Aurelien Lucchi. An SDE for modeling SAM: Theory and insights. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 25209–25253, 23–29 Jul 2023.

[35] Maximilian Müller, Tiffany Vlaar, David Rolnick, and Matthias Hein. Normalization layers
are all that sharpness-aware minimization needs. Advances in Neural Information Processing
Systems, 36, 2024.

[36] Radford M. Neal. Priors for Infinite Networks, pages 29–53. Springer New York, 1996.

[37] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

[38] Lorenzo Noci, Chuning Li, Mufan Li, Bobby He, Thomas Hofmann, Chris J Maddison, and
Dan Roy. The shaped transformer: Attention models in the infinite depth-and-width limit.
Advances in Neural Information Processing Systems, 36, 2024.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,

8

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[40] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. Advances in neural
information processing systems, 29, 2016.

[41] David Samuel. (adaptive) sam optimizer (pytorch). https://github.com/davda54/
sam, 2022.

[42] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep informa-
tion propagation. arXiv:1611.01232, 2016.

[43] Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, and Namhoon Lee. The effects of
overparameterization on sharpness-aware minimization: An empirical and theoretical analysis.
arXiv:2311.17539, 2023.

[44] Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and
Cengiz Pehlevan. Feature-learning networks are consistent across widths at realistic scales.
Advances in Neural Information Processing Systems, 36, 2024.

[45] Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes
sharpness? In The Eleventh International Conference on Learning Representations, 2023.

[46] Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only
minimize sharpness to achieve better generalization. Advances in Neural Information Processing
Systems, 36, 2024.

[47] Jonathan Wenger, Felix Dangel, and Agustinus Kristiadi. On the disconnect between theory
and practice of overparametrized neural networks. arXiv:2310.00137, 2023.

[48] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision. arXiv:2006.03677, 2020.

[49] Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and
generalization in deep neural networks. In International Conference on Machine Learning,
pages 10462–10472. PMLR, 2020.

[50] Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. Advances in Neural Information Processing Systems, 32, 2019.

[51] Greg Yang. Tensor programs iii: Neural matrix laws. arXiv:2009.10685, 2021.

[52] Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning (ICML), 2021.

[53] Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width
limit. arXiv:2308.01814, 2023.

9

https://github.com/davda54/sam
https://github.com/davda54/sam

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

[54] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv:2203.03466, 2022.

[55] Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv preprint arXiv:2310.17813, 2023.

[56] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning
in infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

[57] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training bert in 76 minutes. In International Conference on Learning
Representations, 2020.

[58] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12104–12113, 2022.

10

Appendices

11

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Appendix Contents.

I Detailed related work 13

II Definitions 15

III Extensive main results 16

IV Proof of main results 23

IV.1 Tensor program formulation . 23

IV.2 The infinite-width limit . 31

IV.3 Concluding the proof of all main results . 33

IV.4 Analytic expression of the features after first SAM update 37

V Additional theoretical considerations 39

V.1 Alternative bcd-definition . 39

V.2 The criterion εlt = Θ(δW l
t) for effective perturbations in µP 40

V.3 Overview over choices of dl and d . 41

V.4 Extension to SAM without gradient normalization 43

V.5 Extension to Adaptive SAM . 44

V.6 Representing general architectures and adaptive optimizers as a Tensor Program . . 47

V.7 Influence of width-dependent weight multipliers on bcd-parameterizations 49

V.8 Implementation of the spectral µP perspective for varying widths 52

VI Experimental details 55

VIISupplemental experiments 58

VII.1 SAM is approximately LL-SAM in µP with global perturbation scaling 58

VII.2 Propagating perturbations from the first layer does not inherit SAM’s benefits . . . 61

VII.3 Hyperparameter transfer . 63

VII.4 Gradient norm contributions have negligible effects on generalization performance 73

VII.5 Vision Transformers in µP2 . 75

12

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

I. Detailed related work

Signal propagation. Our work can be seen as scaling theory with the goal of preventing both
vanishing and exploding signals in forward and backward passes, where the analysis of SAM requires
considering stability of perturbations in each layer as well. In this sense, we build on a rich literature,
often restricted to an analysis at initialization [16, 40, 42, 49]. For scaling neural networks to infinite
depth, residual connections have been found to be beneficial for stabilizing signal propagation
while retaining expressivity. The simple 1√

L
-scaling allows depth-scaling in ResNets and unlocks

hyperparameter transfer [7, 18, 30, 56]. Noci et al. [37, 38] provide infinite width and depth analyses
for Transformers with the goal of preventing rank collapse and attaining a limit that has behaviour
consistent with that of moderately large networks.

Tensor Programs. After kernel-based approaches to understand infinite-width limits of neural
networks [23, 36] and applications of mean-field theory [33], the Tensor Program series [50, 52–
54, 56] marks the first important break through in the theory of large neural networks. The frame-
work covers many modern deep learning architectures, optimization algorithms and arbitrary abc-
parameterizations, where each abc-parameterization is essentially defined by a layerwise scaling of
initialization variance and learning rate as a function of network width. Yang and Hu [52] propose
the maximal update parameterization (µP) and show that it is the unique stable parameterization that
achieves feature learning in all layers in the limit of infinite width. In this framework, training neural
networks with a global learning rate η > 0 for all layers and with He or LeCun initialization falls
under the category of so called standard parameterization (SP). The neural tangent parameterization
(NTP), studied in the neural tangent kernel literature, differs but does not achieve feature learning
in any layer, and is therefore less useful to describe the behaviour of finite width networks than µP
[44, 47]. Yang and Littwin [53] characterize stable learning with adaptive optimizers at infinite width
into a feature learning versus a (nonlinear) operator regime. SAM is not covered by the update rule
definition in Yang and Littwin [53] since the nested application of the gradient w.r.t. the weights is
not a coordinatewise optimizer anymore. While recent works have considered joint limits of infinite
width and depth [17, 56], the data distribution has not been taken into account in Tensor Program
literature. The study of scaling laws of jointly scaling model size, data set size and training time has
predominantly been empirical [6, 22, 26, 58]. Developing theory to inform Pareto optimal trade offs
in a principled manner constitutes an important direction for future work.

Sharpness Aware Minimization. Sharpness aware minimization (SAM) [15] has shown to be
extremely effective and robust in improving generalization performance across a wide range of
architectures and settings [8, 25]. SAM was motivated as an inductive bias towards flatter minima
and it has been understood to have an gradient-norm adaptive edge of stability at which it drifts
towards minima with smaller spectral norm of the Hessian [5, 32]. However a full understanding of
why SAM works so well remains elusive. While correlations between flatness and generalization
have been observed in some settings [21, 24], other studies have questioned the usefulness of
sharpness as a measure for generalization, especially for modern architectures [3, 13, 46]. Applying
SAM on only the normalization layers often even improves generalization in vision tasks depsite
increasing sharpness [35]. Adaptive SAM (ASAM) [28] is a variant of SAM derived from a sharpness
definition that is invariant to weight rescalings with respect to a chosen normalization operator that
leave the output function invariant. The results in Müller et al. [35] suggest that two of the most
promising normalization operators are elementwise normalization T l

w(x) = |W l| ⊙ x and layerwise

13

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

normalization T l
w(x) = ∥W l∥F · x. We state the resulting update rules and a scaling analysis in

Appendix V.5. A variant of SAM that is often studied theoretically because of its simplicity does not
normalize the gradient of the perturbation. Our theory covers this variant too (Appendix V.4), but Dai
et al. [10] argue that normalizing the gradients for the perturbation is crucial. Monzio Compagnoni
et al. [34] find that unnormalized SAM gets stuck around saddles while SAM slowly escapes through
additional Hessian-induced noise. This suggests that the additional effort of analysing the original
SAM update rule with gradient normalization is necessary for practically useful theory. Dauphin et al.
[11] draw connections between SAM and other second order optimizers like gradient penalties and
weight noise. They show that SAM is able to effectively use second order information implicitly using
ReLU, whereas the other two methods close the gap to SAM when using GeLU since they require the
localized second order information that GeLU provides in contrast to ReLU. Wen et al. [45] show that
worst-case, ascent and average case sharpness are biased towards minimizing the maximal eigenvalue,
minimal non-zero eigenvalue and trace of the Hessian, respectively. With an architecture-agnostic
analysis, they show that 1-SAM minimizes the trace of Hessian like average-case sharpness, for
small enough η and ρ. Similarly, the theoretical results by Andriushchenko and Flammarion [1] rely
on the assumption that learning rate η and perturbation radius ρ are chosen sufficiently close to 0.
Arguably, the empirically optimal choice of η and ρ lies outside of this gradient flow-like regime and
has qualitatively different properties (see e.g. edge of stability literature [4, 9]).

Scaling theory for SAM. Shin et al. [43] suggest that the generalisation improvement by SAM
continues to increase with growing overparametrization. This corroborates empirical observations
that performance monotonically improves with scale, and understanding the infinite-width limit is
not only of theoretical interest but entails immediate practical benefits.

Liu et al. [31] introduce Look-LayerSAM with layerwise perturbation scaling for preserving good
performance under large batch training for enhanced training parallelization. They use LAMB [57]
for layerwise learning rate scaling for large batch training. The update scaling strategy in these kinds
of algorithms follows

W l
t+1 = W l

t − ηtϕ(∥W l
t∥F)

∇W lL

∥∇W lL∥F
,

with some ϕ : R+ → R+ and where ∇W lL may be replaced by ADAM’s mt√
vt+ε . In practice, often

simple functions like ϕ(x) = max(c,min(x,C)) or ϕ(x) = x are used. The idea is to ensure that
the update has the same order of magnitude as the weights. Look-LayerSAM follows an analogous
approach for layerwise perturbation scaling. A derivation of µP for LAMB could also yield feature
learning in all layers in the infinite-width limit as well as hyperparameter transfer. It certainly requires
layerwise learning rate scaling. In the case ϕ(x) = x, following a heuristic scaling derivation as
in Appendix V.5 leads to layerwise learning rate scalings η1 = ηL+1 = Θ(1) and ηl = Θ(n−1/2)
for hidden layers l ∈ [2, L]. With a bounded function like ϕ(x) = max(c,min(x,C)), the scalings
become η1 = Θ(n1/2), ηL+1 = Θ(n−1/2) and ηl = Θ(1) for hidden layers l ∈ [2, L]. We leave a
closer investigation of feature learning and hyperparameter transfer with LAMB and Look-LayerSAM
in SP and µP to future work.

Future work. This study may serve as an inspiration of how scaling theory can be used to understand
and improve training procedures in minimax optimization and beyond. To reach a fully practical
theory of deep learning, it will be necessary to take data distributions and training dynamics into
account in more detail than it is possible with current Tensor Program theory. For example, existing
Tensor Program theory does not make statements about generalization. We also observe that ResNets

14

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

in SP can sometimes display HP transfer in η and ρ after training to convergence (Appendix VII.3.2).
This contradicts the infinite-width theory from Yang and Hu [52] which predicts output blowup under
large learning rates, and it shows that the exact conditions which enable hyperparameter transfer in
practice are not fully understood. We plan to address some of these questions in upcoming work.

II. Definitions

In this section, we collect all definitions that do not appear in the main text. With minor modifications,
we adopt all definitions from Yang and Hu [52]. If not stated otherwise, limits are taken with respect
to width n → ∞.

Definition 5 (Big-O Notation) Given a sequence of scalar random variables c = {cn ∈ R}∞n=1,
we write c = Θ(n−a) if there exist constants A,B such that for almost every instantiation of
c = {cn ∈ R}∞n=1, for n large enough, An−a ≤ |cn| ≤ Bn−a. Given a sequence of random
vectors x = {xn ∈ Rn}∞n=1, we say x has coordinates of size Θ(n−a) and write x = Θ(n−a) to

mean the scalar random variable sequence
{√

∥xn∥2 /n
}

n

is Θ(n−a). Similarly for the notations

O (n−a) ,Ω (n−a). We write xn = o(n−a) if na ·
√
∥xn∥2 /n → 0 almost surely.

Definition 6 (Training routine) A training routine is a combination of base learning rate η ≥ 0,
perturbation radius ρ ≥ 0, training sequence {(ξt, yt)}t∈N and a continuously differentiable loss
function L(f(ξ), y) using the SAM update rule with layerwise perturbation scaling (LP).

In addition to the stability conditions from the corresponding SGD result, we demand that the
activation perturbations do not blow up. Otherwise the perturbations would strictly dominate both
the initialization and the updates which makes the perturbation too strong and is avoided in practice.

Definition 7 (Stability) We say a bcd-parametrization of an L-hidden layer MLP is stable if

1. For every nonzero input ξ ∈ Rdin \{0},

hl0, x
l
0 = Θξ(1), ∀l ∈ [L], and Ef0(ξ)2 = Oξ(1),

where the expectation is taken over the random initialization.
2. For any training routine, any time t ∈ N, l ∈ [L], ξ ∈ Rdin , we have

hlt(ξ)− hl0(ξ), x
l
t(ξ)− xl0(ξ) = O∗(1), and ft(ξ) = O∗(1),

where the hidden constant in O∗ can depend on the training routine, t, ξ, l and the initial
function f0.

3. For any training routine, any time t ∈ N0, l ∈ [L], ξ ∈ Rdin , for the perturbed (pre-)activation
h̃lt := hl(W̃t), x̃

l
t := xl(W̃t) and output function f̃t(W̃t) we have

h̃lt(ξ)− hlt(ξ), x̃
l
t(ξ)− xlt(ξ) = O∗(1), and f̃t(ξ) = O∗(1),

where the hidden constant in O∗ can depend on the training routine, t, ξ, l and the initial
function f0.

15

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Definition 8 (Nontriviality) We say a bcd-parametrization is trivial if for every training routine,
ft(ξ)− f0(ξ) → 0 almost surely for n → ∞, for every time t > 0 and input ξ ∈ Rdin . Otherwise the
bcd-parametrization is nontrivial.

Definition 9 (Feature learning) We say a bcd-parametrization admits feature learning in the l-th
layer if there exists a training routine, a time t > 0 and input ξ such that xlt(ξ) − xl0(ξ) = Ω∗(1),
where the constant may depend on the training routine, the time t, the input ξ and the initial function
f0 but not on the width n.

Definition 10 (Vanishing perturbations) Let l ∈ [L]. We say that a stable bcd-parametrization has
vanishing perturbations in the l-th layer if for any training routine, t ∈ N0 and ξ ∈ Rdin , it holds that
x̃lt − xlt = o(1), and it has vanishing perturbations in the output if for any training routine, t ∈ N0

and ξ ∈ Rdin it holds that δ̃ft(ξ) := fW̃t
(ξ)− fWt(ξ) = o(1).

Definition 11 (Perturbation nontriviality) Let l ∈ [L]. We say that a stable bcd-parametrization
is perturbation nontrivial with respect to the l-th layer if and only if it does not have vanishing
perturbations in the l-th layer. A stable bcd-parametrization is perturbation nontrivial with respect
to the output if it does not have vanishing perturbations in the output.

Definition 12 (Effective perturbations) Let l ∈ [L+ 1]. We say that a stable bcd-parametrization
effectively perturbs the l-th layer if there exists a training routine, t ∈ N and ξ ∈ Rdin such that
δ̃W l

t x̃
l−1
t (ξ) = Θ(1) where δ̃W l

t is defined in (LP) and x̃0t = x0t = ξt.

Definition 13 (σ-gelu) Define σ-gelu to be the function x 7→ x
2

(
1 + erf

(
σ−1x

))
+ σ e−σ−2x2

2
√
π

.

In order to apply the Tensor Program Master Theorem, all Nonlin and Moment operations in the
NE⊗OR⊤ program, which do not only contain parameters as inputs, are required to be pseudo-
Lipschitz in all of their arguments. For training with SGD, this is fulfilled as soon as ϕ′ is pseudo-
Lipschitz. Both tanh as well as σ-gelu fulfill this assumption.

Definition 14 (Pseudo-Lipschitz) A function f : Rk → R is called pseudo-Lipschitz of degree d
if there exists a C > 0 such that |f(x)− f(y)| ≤ C∥x− y∥(1 +

∑k
i=1 |xi|d + |yi|d). We say f is

pseudo-Lipschitz if it is so for any degree d.

III. Extensive main results

Using the formal definitions from Appendix II, here we provide the full formal statements of all of
our main theoretical results together with further details and implications. The proof of all statements
is provided in Appendix IV. Since SAM evaluates the gradients on perturbed weights, it is not
covered by the update rule definition in Yang and Littwin [53] and an infinite-width analysis requires
explicitly deriving the corresponding NE⊗OR⊤ program, scalings and infinite-width limits.

Recall that our definition of bcd-parameterizations extends abc-parameterizations by setting the
maximal perturbation scaling to n−d and allowing relative downweighting n−dl of the global scaling

16

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

in each layer l. The perturbation scaling does not affect the choice of layerwise initialization variance
scalings bl and the layerwise learning rate scalings cl. Common bc-parametrizations for SGD are
summarized in Table III.1. SAM with SGD as a base optimizer requires the same scalings. Similarly,
SAM with ADAM as a base optimizer requires the same scalings as ADAM [54, Table 3]. Recall
that, for convenience, we require width-independent denominator scaling ∥vt∥ = Θ(1) of the scaled
gradient for the perturbation (LP), which imposes the constraints

d1 ≥ 1/2−min(bL+1, cL+1), dl ≥ 1−min(bL+1, cL+1) for l ∈ [2, L], dL+1 ≥ 1/2. (III.1)

All (pre-)activation and function outputs can be thought of as outputs given a fixed input ξ ∈ Rdin \{0}
with din ∈ N fixed, e.g. ft := fWt := fWt(ξ). For the perturbed weights we write W̃t := Wt+ δ̃Wt,
with δ̃Wt defined in (LP) as εlt. Here we write weight perturbations as δ̃W l

t instead of εlt to show the
resemblance to weight updates δW l

t . Perturbed activations and function outputs at time t are written
as x̃lt(ξ) = xl

W̃t
(ξ) and f̃t(ξ) = fW̃ l

t
(ξ). Recall that for all of the results in this section we make the

following smoothness assumption on the activation function.

Assumption 15 (Smooth activation function) The used activation function is either tanh or
σ-gelu for σ > 0 sufficiently small.

For stating the conditions that characterize the class of stable bcd-parameterizations, we define the
maximal feature update scale of a bcd-parameterization

r := min(bL+1, cL+1, d+ dL+1) +
L

min
l=1

(cl − I(l ̸= 1)). (III.2)

as well as the maximal feature perturbation scale of a bcd-parameterization

r̃ := min(bL+1, cL+1) + d+
L

min
l=1

(dl − I(l ̸= 1)). (III.3)

As for SGD [52], the maximal feature update scaling r denotes the scaling of the last-layer activation
updates δxl. Ideally these updates should be non-exploding and non-vanishing. In that case, we call
a stable parameterization feature learning, characterized by r = 0.

Similarly, r̃ describes how much the last hidden-layer activations xL are perturbed as a function
of width. Hidden-layer activation perturbations do not explode with width if and only if r̃ ≥ 0.
Additionally, the output perturbations not to blow up if and only if d+ dl ≥ 1 and bL+1 + r̃ ≥ 1. In
particular, this implies that any stable bc-parameterization together with naive perturbation scaling
dl = d = 0 for all l ∈ [L+ 1] is unstable due to blowup in the last layer.

Stability requires the constraints (a-c) from SGD and additional perturbation stability constraints
(d-e) that include the layerwise perturbation scales {dl}l=1,...,L+1.

Theorem 16 (Stability characterization) A bcd-parametrization is stable if and only if all of the
following are true:

(a) (Stability at initialization, hl0, x
l
0 = Θ(1) for all l, f0 = O(1))

b1 = 0, bl = 1/2 for l ∈ [2, L] and bL+1 ≥ 1/2.

17

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

(b) (Features do not blow up during training, i.e. ∆xlt = O(1) for all l)
r ≥ 0.

(c) (Output function does not blow up during training, i.e. ∆WL+1
t xLt ,W

L+1
0 ∆xLt = O(1))

cL+1 ≥ 1 and bL+1 + r ≥ 1.
(d) (Feature perturbations do not blow up, i.e. δ̃xlt = O(1) for all l)

r̃ ≥ 0.
(e) (Output function perturbations do not blow up during training, i.e. δ̃WL+1

t x̃Lt ,W
L+1
t δ̃xLt =

O(1))
d+ dL+1 ≥ 1 and bL+1 + r̃ ≥ 1.

The nontriviality and feature learning characterizations from SGD remain unaltered. This is because
in the definition of r, it holds that d+dL+1 ≥ 1 (from perturbation stability), and min(bL+1, cL+1) ≤
1 already had to hold for nontriviality in SGD, so that stable perturbation scaling does not affect r.

Theorem 17 (Nontriviality characterization) A stable bcd-parametrization is nontrivial if and
only if cL+1 = 1 or min(bL+1, cL+1) + r = 1.

As for nontriviality, the conditions under which a stable, nontrivial parameterization is feature learning
in the infinite-width limit are decoupled from the choice of perturbation scalings {dl}l∈[L+1] ∪ {d}.
Hence the conditions are the same as for SGD. Below we provide a slightly refined result in terms
of the maximal feature update scale rl0 of a bcd-parameterization up to layer l0 (as provided in the
Appendix of Yang and Hu [52]).

Theorem 18 (Feature learning characterization) For any l0 ∈ [L], the following statements are
equivalent:

(a) A stable, nontrivial bcd-parametrization admits feature learning in layer l0.
(b) A stable, nontrivial bcd-parametrization admits feature learning in layer l for all l ≥ l0.
(c) rl0 := min(bL+1, cL+1, d+ dL+1) + minl0m=1(cm − I(m ̸= 1)) = 0.

Consequently, a stable, nontrivial bcd-parametrization admits feature learning (at least in the last
layer activations) if and only if r = 0.

Remark 19 (Effective feature learning) As for perturbations, feature learning in later layers can
be caused by weight updates in earlier layers that propagate through the network. One could demand
effective feature learning in the l-th layer as δW l

tx
l−1
t = Θ(1) and it would occur if and only if

min(bL+1, cL+1, d+ dL+1) + cl − I(l ̸= 1) = 0.

As for nontriviality, perturbation nontriviality in the output is attained if the constraints for δ̃WL+1
t x̃Lt

or W l
t δ̃x

L
t are exactly satisfied. If perturbations vanish in all layers, SAM’s training dynamics

collapse to SGD dynamics with scale.

Theorem 20 (Perturbation nontriviality characterization) Let l ∈ [L]. A stable bcd-parametrization
is perturbation nontrivial with respect to the l-th layer if and only if

r̃l := min(bL+1, cL+1) + d+
l

min
m=1

(dm − I(m ̸= 1)) = 0.

18

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

A stable bcd-parametrization is perturbation nontrivial with respect to the output if and only if
d+ dL+1 = 1 or min(bL+1, cL+1) + r̃ = 1.

The converse formulation of the perturbation-nontriviality results characterizes the regime of vanish-
ing perturbations.

Corollary 21 (Vanishing perturbation characterization)

For any l0 ∈ [L], the following statements are equivalent:

(a) A stable bcd-parametrization has vanishing perturbations in layer l0.
(b) A stable bcd-parametrization has vanishing perturbations in layer l for all 1 ≤ l ≤ l0.
(c) r̃l0 := min(bL+1, cL+1) + d+minl0m=1(dm − I(m ̸= 1)) > 0.

A stable bcd-parametrization has vanishing perturbations with respect to all layers and the output
function if and only if dL+1 > 1/2 and r̃ > max(0, 1− bL+1). This case reduces to the results in
Yang and Hu [52].

For the class of stable and perturbation non-trivial bcd-parameterizations, SAM learning is both
stable and deviates from SGD dynamics. A natural question to ask here is: what should be the ideal
SAM behaviour in the infinite-width limit? To address this question, we make the following crucial
distinction between non-vanishing and effective perturbations.

Non-vanishing versus effective perturbations. Recall that the weight perturbation εl perturbs the
l-th layer’s activations as

xl + δ̃xl = ϕ((W l + εl)(xl−1 + δ̃xl−1)),

where δ̃xl denotes the perturbation of the l-th layer’s activations accumulated from the weight
perturbations {εl′}l′∈[l−1] in all previous layers. Therefore, perturbations δ̃xl can stem both from
weight perturbations εl

′
in a previous layer l′ < l and/or from weight perturbations εl from the

current layer l. Intuitively, if we perturb a layer, we want this to affect the next layer’s activations and
thereby have a non-trivial effect on the output function (i.e., non-vanishing and non-exploding with
width). Otherwise one can simply set the layer’s perturbations to 0 by design and not change the
learning algorithm in the infinite-width limit. This motivates the definition of effective perturbations.
Without an effective perturbation εl of the l-th layer, this layer does not inherit SAM’s inductive bias
towards low spectral norm of the Hessian or enhanced sparsity and does not improve generalization
performance. We provide empirical evidence for these claims in Appendix VII.2. Therefore it is
crucial to distinguish between non-vanishing perturbations δ̃xlt = Ω(1) and effective perturbations
εlt(x

l−1
t + δ̃xl−1

t)) = Θ(1), where x0t + δ̃x0t = ξt.

The following theorem formulates the characterizing conditions under which layers are effectively
perturbed.

Theorem 22 (Effective perturbation characterization) For l ∈ [L], a stable bcd-parametrization
effectively performs SAM in the l-th layer if and only if min(bL+1, cL+1) + d+ dl − I(l ̸= 1) = 0.

A stable bcd-parametrization effectively performs SAM in the last layer if and only if d+ dL+1 = 1.

19

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

The above understanding of all update and perturbation scalings allows us to extract the most
important consequences of different choices of perturbation scaling on the learning dynamics.

Theorem 23 (Global Perturbation Scaling) Given any stable bcd-parametrization {bl}l∈[L+1] ∪
{cl}l∈[L+1] ∪ {dl}l∈[L+1] ∪ {d}. The parametrization performs updates in the original gradient
direction if and only if dl = C for all l ∈ [L+ 1] for some C ∈ R. In this case, the parametrization
has vanishing perturbations in all hidden layers l ∈ [L], and the last layer l = L+ 1 is effectively
perturbed if and only if d = 1/2. If bL+1 > 1/2 (as in µP), the gradient norm is dominated by the
last layer and simplifies to,

∥vt∥ = Θ(n1/2−C), ∥vt∥ − L′(ft(ξt), yt)∥xLt ∥ = o(n1/2−C).

One might suspect that it is desirable to let all layers contribute non-vanishingly to the gradient norm
in the denominator of (LP). The following proposition shows that this should be avoided with our
definition of bcd-parameterizations. Of course, if we add even more hyperparameters by decoupling
numerator and denominator scalings, we can set all contributions to Θ(1), which is what we do in
Appendix V.8.

Proposition 24 (Balancing gradient norm contributions) Given any stable bcd-parametrization
{bl}l∈[L+1] ∪ {cl}l∈[L+1] ∪ {dl}l∈[L+1] ∪ {d}. If all layers contribute to the gradient norm non-
vanishingly in the limit, i.e. ∥vlt∥ = Θ(∥vt∥) for all l ∈ [L + 1], t ∈ N0, then the parametrization
has vanishing perturbations in all hidden layers l ∈ [L]. Such a parametrization effectively performs
SAM in the last layer l = L+ 1 if and only if d = 1/2.

We argue that for optimal SAM behaviour in the infinite-width limit, every layer of a network must
be effectively perturbed. We postulate that just as learning rate transfers across widths under µP
due to non-trivial feature evolution with width in all layers, perturbation radius may be transferable
across widths if the weights in all layers have non-trivial perturbations with width. Here, we show
that there exists a unique stable choice of layerwise perturbation scalings under which a stable
bcd-parameterization effectively perturbs every single layer. We term this parameterization of the
layerwise scalings {dl}l∈[L+1] ∪ {d} the Maximal Perturbation Parameterization (MPP).

Theorem 25 (Perturbation Scaling Choice for Effective Perturbations) Given any stable bcd-
parametrization {bl}l∈[L+1] ∪{cl}l∈[L+1] ∪{dl}l∈[L+1] ∪{d}. If bL+1 < 1, then there does not exist
a stable choice of {dl}l∈[L+1] ∪ {d} that achieves effective perturbations before the last layer. If
bL+1 ≥ 1, then up to the equivalence d′l = dl + C, C ∈ R, ∀l ∈ [L+ 1], the unique stable choice
{dl}l∈[L+1] ∪ {d} with effective perturbations in all layers l ∈ [L+ 1] is given by

d = −1/2, dl =


1/2−min(bL+1, cL+1) l = 1,

3/2−min(bL+1, cL+1) l ∈ [2, L],

3/2 l = L+ 1.

(III.4)

Maximal Update and Perturbation Parameterization µP2. Table III.2 summarizes the conse-
quences of Theorem 25.Theorem 25 provides us with the unique choice of layerwise perturbation

20

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Definition SP SP (stable) NTP (stable) µP

bl N (0, n−2bl)

{
0 l = 1,

1/2 l ≥ 2.

{
0 l = 1,

1/2 l ≥ 2.

{
0 l = 1,

1/2 l ≥ 2.


0 l = 1,

1/2 l ∈ [2, L],

1, l = L+ 1.

cl LR ηn−cl 0 1

{
0 l = 1,

1 l ≥ 2.


−1 l = 1,

0 l ∈ [2, L],

1 l = L+ 1.

r Equation (III.2) -1 1/2 1/2 0
Stable? ✓ ✓ ✓
Nontrivial? ✓ ✓ ✓
Feature learning? ✓

Table III.1: (bc-parametrizations) Overview over common implicitly used bc-parametrizations
for training MLPs without biases in standard parametrization (SP), standard parametrization with
maximal stable nonadaptive LR c = 1 (SP (stable)), neural tangent parametrization (NTP) and
maximal update parametrization (µP).

Definition Naive Global (stable) Effective
d ρn−d 0 1/2 −1/2

dl n−dl∇W lLt 1/2 1/2


1/2− c∇ l = 1,

3/2− c∇ l ∈ [2, L],

3/2 l = L+ 1.

r̃ Equation (III.3) c∇ − 1/2 c∇ 0

Stable? ✗ ✓ ✓

Last layer effectively perturbed? ✗ ✓ ✓

All layers effectively perturbed? ✗ ✗ ✓

Table III.2: (Perturbation scalings) Overview over important choices of the global perturbation
scaling ρn−d and the layerwise perturbation scalings n−dl for training MLPs without biases with
SAM: Naive scaling without width dependence (Naive), maximal stable global scaling along the
original gradient direction (Global) and the unique scaling that achieves effective perturbations in
all layers (Effective). An extensive overview that characterizes all possible choices of perturbation
scaling is provided in Appendix V.3. Recall the gradient scaling c∇ := min(bL+1, cL+1).

21

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

scaling {dl}l∈[L+1] ∪ {d} for effective perturbations in all layers. To achieve feature learning in
every layer and hyperparameter transfer in the learning rate, µP is the unique2 choice of layerwise
initialization variance and learning rate scalings {bl, cl}l∈[L+1]. Hence, there exists a unique2 bcd-
parameterization that achieves both feature learning and effective perturbations in all layers, we call
maximal update and perturbation parametrization, µP2 for short. Note that in µP2 only the first
layer dominates the gradient norm ∥vt∥. This shows that a balancing of all layerwise gradient norms
should be avoided in the SAM perturbation rule (LP). One could also decouple the numerator and
denominator scalings in (LP) and scale the gradient norm contributions of all layers to Θ(1). The
ablations in Appendix VII.4 suggest that this has a negligible effect on the optimal generalization
performance, but can be more stable given slightly suboptimal hyperparameters. Now that we have
found a parameterization that achieves width-independent scaling of both activation updates and
activation perturbations, µP2 fulfills essential necessary conditions for hyperparameter transfer to
occur in both η and ρ.

General perturbation scaling condition. For a generalization to other perturbation rules, we are
interested in an intuitive and practical condition of how to scale the perturbations without writing out
the NE⊗OR⊤ program. For this purpose we leverage the fact that perturbations εlx̃l−1 and updates
δW lxl−1 scale very similarly, as long as weight updates δW l and perturbations εl are both gradient-
based and correlated with the incoming activations xl−1. Because we set the gradient normalization
to ∥vt∥ = Θ(1), we can think of perturbation scalings n−(d+dl) like we think about learning rate
scalings n−cl . Accordingly, we arrive at the simple scaling condition: weight perturbations of every
layer should scale like their updates.

Rule for maximal stable perturbations in µP in the l-th layer: εlt = Θ(δW l
t)

Generalizations to other architectures and ASAM variants. This rule can also be applied to
other variants of SAM. Table V.2 summarizes its application to two ASAM variants that perform
well empirically but cannot be written as a NE⊗OR⊤program. Additional details are provided in
Appendix V.5. We demonstrate that these scalings perform well and transfer hyperparameters in
Appendix VII. In Appendix V.6, we discuss other architectural components of ResNets and ViTs.
According to the perturbation scaling condition (Table V.2), only SAM-ON and elementwise ASAM
effectively perturb input-like layers under global scaling in µP. From a scaling perspective, normaliza-
tion layers behave like input layers and therefore standard applications of SAM or layerwise ASAM
do not effectively perturb them. Müller et al. [35, Section 5.3] make the same empirical observations
in SP. Irrespective of the SAM variant, our scaling rules even allow to balance perturbations of
different layer types and therefore provide precise understanding and control which layers should be
perturbed across model scales.

Together with Theorem 25, the following proposition suggests that bL+1 = 1 is a good choice.
However bL+1 > 1 can also induce effective perturbations, as long as d and dL+1 are chosen
correctly.

Proposition 26 (Effects of last-layer initialization bL+1 on all perturbations) If a stable
bcd-parametrization with min(bL+1, cL+1) ≤ 1 is perturbation nontrivial with respect to any hidden
layer l ∈ [L], it is also perturbation nontrivial with respect to the output.

2. Strictly speaking, unique up to smaller last-layer initialization bL+1 ≥ 1.

22

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Lastly, the following proposition shows that effective perturbations from the first layer propagate
through the entire network.

Proposition 27 (Perturbations propagate through the forward pass) All stable bcd-parametriza-
tions with d1 = −min(bL+1, cL+1) − d effectively perturb the first layer and are perturbation
nontrivial in all layers.

Remark 28 (Efficiency gains) The above results may be used for efficiency gains. Given any stable
bcd-parametrization, we can compute the maximal layer l0 such that r̃l0 > 0, and in wide networks
do not have to compute SAM perturbations before layer l0 + 1; as soon as bL+1 > 1/2 (as for µP),
the gradient norm for the SAM update rule is approximately given by ∥∇Lt∥ ≈ L′(ft(ξt), yt)∥xLt ∥,
which can directly be computed without an additional backward pass. The practical recommendation
from our experiments however is to either use µP2 or to completely abstain from perturbations.

Remark 29 (SAM without gradient normalization) For the SAM update rule without gradient
normalization simply set d = 0 and remove the gradient norm constraints (III.1) to arrive at the
adapted NE⊗OR⊤ program and bcd-constraints. Note that standard parametrization gets even more
unstable without dividing by ∥∇L∥ = Θ(n1/2), now requiring dL+1 ≥ 1 for stability. Similar to the
previous results, this shows that unawareness of bcd-parametrizations requires strongly scaling down
ρ for stability, while vasting computation on vanishing perturbations before the last layer. More
details can be found in Appendix V.4.

IV. Proof of main results

In this section we derive the NE⊗OR⊤ program that corresponds to training a MLP without biases
with SAM. For simplicity and clarity of the proof, we prove the one-dimensional case din = 1,
dout = 1, but an extension to arbitrary but fixed din, dout is straightforward. Recall Assumption 15
that allows us to apply the Tensor Program Master Theorem and explicitly state the infinite-width
limit of training MLPs with SAM in Appendix IV.2.

IV.1. Tensor program formulation

IV.1.1. TENSOR PROGRAM INITIALIZATION

We initialize the matrices W 2
0 , . . . ,W

L
0 as (W l

0)αβ ∼ N (0, 1/n), which absorbs bl = 1/2.

We initialize the input layer matrix W 1
0 ∈ Rn×1 and normalized output layer matrix ŴL+1

0 =
WL+1

0 nbL+1 ∈ R1×n as (W 1
0)α, (Ŵ

L+1
0)α ∼ N (0, 1), as initial vectors should have a distribution

that is Θ(1).

In the NE⊗OR⊤formulation, we write all quantities as θzz, where θz denotes their scaling nC for
some C ∈ R and z therefore has a Θ(1) distribution. The stability, nontriviality and feature learning
conditions then stem from requiring either θz → 0 or θz = 1 depending on z and its desired scale.

23

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

IV.1.2. FIRST FORWARD PASS

We denote a definition of a Tensor Program (TP) or NE⊗OR⊤computation as :=. Compared to
MLPs trained with SGD nothing changes in the first forward pass,

h10(ξ) := W 1
0 ξ (NL), xl0 := ϕ(hl0) (NL), hl+1

0 := W l+1
0 xl0. (MatMul)

In the case of MuP, f0(ξ) = WL+1
0 xL0 (ξ) → 0 defines a scalar in the TP.

Observe the scalings x10 = Θ(h10) = Θ(n−b1), xl0 = Θ(hl0) = Θ(n1/2−bl) for l ∈ [2, L] due to CLT,
independence at initialization and xl0 = Θ(hl0) = Θ(1) by stability. Hence stability at initialization
inductively requires b1 = 0, bl = 1/2 for l ∈ [2, L] and bL+1 ≥ 1/2.

IV.1.3. FIRST BACKWARD PASS

The chain rule of the derivative remains the same, we just evaluate on different weights compared to
standard SGD. We denote the adversarially perturbed weights by W̃ l

t and the normalized perturbations
by δ̃W l

t . Before computing the updates we have to compute a full backward pass to determine these
perturbed weights for each layer, and then compute a forward pass with these perturbed weights to
compute the perturbed preactivations h̃lt that we will need for computing the SAM update. Therefore
the NE⊗OR⊤ program for SAM maintains a perturbed copy of all preactivations, activations, last-
layer weights and logits just for computing the updates of the actual parameters.

Under MuP, the loss derivative with respect to the function remains χ0 := L′(f0(ξ0), y0) →
◦
χ0 :=

L′(0, y0). For the weight perturbation, we need to perform a SGD backward pass,

dxL0 := ŴL+1
0 , dhl0 := dxl0 ⊙ ϕ′(hl0), dxl−1

0 := (W l
0)

Tdhl0,

where dz := θ−1
∇ ∇zf . For SGD (and for SAM, as we will see later) all gradients have scaling

θ∇ := n−bL+1 in the first step, whereas we overload the notation θ∇ := n−min(bL+1,cL+1) for all
later steps. For clarity of presentation assume bL+1 ≥ cL+1 here, the other case follows analogously.
For the first step this can be understood from

∇xLf0 = WL+1
0 = Θ(n−bL+1), ∇hLf0 = ∇xLf0 ⊙ ϕ′(hL0) = Θ(n−bL+1),

since hL0 = Θ(1) by the stability assumption, and this scale Θ(n−bL+1) propagates through all layers
via the chain rule and remains stable in later backward passes. For hidden layer gradients, observe
that

∇xL−1ft = (WL
t)

T∇hLft = (WL
0 +∆WL

t)
T∇hLft

= Θ

(
(WL

0)
T∇hLft − n−cL

t−1∑
s=0

((∇hLfs)
T∇hLft)x

L−1
s

)
= Θ(n1−2bLθ∇ − n−cLθ2∇n) = Θ(θ∇),

where first term’s scale stems from the products (WL
0)

TWL
0 v = Θ(n1−2bLv) due to Yang [51],

bL = 1/2 for stability at initialization and bL+1 + cL ≥ 1 for update stability during training (r ≥ 0).
If we allowed the second term to strictly dominate, the gradient scale would explode iteratively in the
backward pass.

24

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

The gradient norm. Before computing the weight perturbations, we need to compute the gradient
norm for the SAM update. The gradient norm at time t in each layer l ∈ [2, L] is given by the scalar,

θ−2
∇

∥∥∥∥ ∂Lt

∂W l

∥∥∥∥2 = n∑
i,j=1

(
χt(dh

l
t)i(x

l−1
t)j

)2
= χ2

t ∥dhlt(xl−1
t)T ∥2F = χ2

t

(
(dhlt)

Tdhlt
)(
(xl−1

t)Txl−1
t

)
,

where χt = L′(ft(ξt), yt) and we used ∂hl/∂W l
ij = (xl−1

j δik)k=1,...,n.

Hence the gradient norm of all weights jointly is given by the unnormalized scalar

∥∇wLt∥2 = χ2
t

(
nθ2∇

(dh1t)
Tdh1t
n

(ξTt ξt) +

L∑
l=2

n2θ2∇
(dhlt)

Tdhlt
n

(xl−1
t)Txl−1

t

n
+ n

(xLt)
TxLt
n

)
,

(IV.1)

with scaling θ2∥∇∥ = Θ(n2θ2∇ + n) = Θ(n), because stability at initialization requires bL+1 ≥ 1/2

so that n2θ2∇ ≤ n. Note that the first layer contributes vanishingly to the gradient norm, the hidden
layer gradients only if bL+1 = 1/2 (equivalently f0 = Θ(1)) and the last-layer activations always
in dominating order. So in µP, in the limit, ∥∇wLt∥ = L′(ft(ξt), yt)∥xLt ∥. This means that the
unscaled gradient always aligns with the last-layer activation. For learning in µP, this dominance is
corrected by the layerwise learning rates.

The squared norm of the rescaled gradient is given by

∥vt∥2 = χ2
t

(
nθ2∇n

−2d1 (dh
1
t)

Tdh1t
n

(ξTt ξt) (IV.2)

+
L∑
l=2

n2θ2∇n
−2dl

(dhlt)
Tdhlt
n

(xl−1
t)Txl−1

t

n
+ nn−2dL+1

(xLt)
TxLt
n

)
,

with scaling θ2v = Θ(n1−2d1θ2∇ +
∑L

l=2 n
2−2dlθ2∇ + n1−2dL+1). For simplicity, set θv = 1. This

raises the constraints n1−2d1θ2∇ ≤ 1, n2−2dlθ2∇ ≤ 1 for l ∈ [2, L] and n1−2dL+1 ≤ 1, which can be
rewritten as

d1 ≥ 1/2−min(bL+1, cL+1), dl ≥ 1−min(bL+1, cL+1) for l ∈ [2, L], dL+1 ≥ 1/2,

where at least one equality is demanded to hold in order to attain θv = 1. If one of the equalities
holds, the respective layer contributes to the norm non-vanishingly in the limit.

Thus, applying the square root and dividing by θv = 1 the square root of (IV.2) defines a normalized
TP scalar.

Perturbations. Stability implies that also the perturbed (pre-)activations and output function remain
Θ(1) and O(1) respectively. Otherwise a SAM training step would induce blowup in the updates.
We call this weaker property of just the perturbations perturbation stability.

Definition 30 (Perturbation stability) We call a bcd-parametrization perturbation stable if and
only if h̃lt, x̃

l
t = Θ(1) for all l ∈ [L] and t ∈ N and δ̃ft = O(1) for all t ∈ N.

25

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Mathematically we get the normalized weight perturbations for l ∈ {2, . . . , L},

δ̃WL+1
0 :=

ρ χ0 x
L
0

∥v0∥
, δ̃W l

0 =
ρ χ0 dh

l
0 (x

l−1
0)T

∥v0∥
, δ̃W 1

0 =
ρ χ0 dh

1
0 ξ

T
0

∥v0∥
,

which scale as θ̃L+1 := θ̃WL+1 := n−(d+dL+1), Θ(n(d+dl)−bL+1) and Θ(n−(d+d1)−bL+1) respec-
tively. But the NE⊗OR⊤ program computation rules do not allow to compute matrices δ̃W l

0, l ∈ [L],
therefore we use the weight updates to directly compute the preactivation and activation changes
analogous to the t-th forward pass. For all t ≥ 0, we write

h̃lt = hlt + θ̃lδ̃h
l
t, x̃lt = xlt + θ̃lδ̃x

l
t,

with the perturbations for l ∈ [2, L],

δ̃h10(ξ) := +
ρχ0(ξ

T
0 ξ)dh

1
0

∥v0∥
,

δ̃xlt := θ̃−1
l (ϕ(hlt + θ̃lδ̃h

l
t)− ϕ(hlt)),

θ̃lδ̃h
l
0 := θ̃l−1W

l
0δ̃x

l−1
0 + (W̃ l

0 −W l
0)x̃

l−1
0

= θ̃l−1W
l
0δ̃x

l−1
0 + ρθ̃W l

χ0

∥v0∥
(xl−1

0)T x̃l−1
0

n
dhl0,

which defines a NonLin operation with the vectors W l
0δ̃x

l−1
0 and dhl0 and everything else treated

as scalars, and with first backward pass scalings θ̃W 1 := n−(d+d1)θ∇, θ̃W l := n1−(d+dl)θ∇ and
θ̃l := max(θ̃l−1, θ̃W l) = maxlm=1 θ̃Wm , where we used that x̃l−1

0 = Θ(1) due to perturbation
stability. Note that these scalings may implicitly increase when t > 0 since θ∇ = n−bL+1 gets
replaced by θ∇ = n−min(bL+1,cL+1).

The activation perturbations can then simply be defined via the NonLin operation,

δ̃xl0 := θ̃−1
l (ϕ(hl0 + θ̃lδ̃h

l
0)− ϕ(hl0)),

with the same scaling as δ̃hl0.

The perturbation of the scalar output function can simply be defined via the NonLin operation,

δ̃f0 := W̃L+1
0 x̃L0 −WL+1

0 xL0 = θ̃′L+1

δ̃WL+1
0 x̃L0
n

+ θ̃′L∇
ŴL+1

0 δ̃xL0
n

,

with θ̃′L+1 := nθ̃WL+1 and θ̃′L∇ := nθ∇θ̃L.

SAM Update. Finally, we can compute the SAM updates as follows. In the case min(bL+1, cL+1) ≤
d+ dL+1 the weight perturbation scale is dominated by the weight scale, so that

dxLSAM,0 := ŴL+1
0 + θ̃(L+1)/∇ δ̃WL+1

0 ,

with θ̃(L+1)/∇ := θ̃L+1/θ∇ ≤ 1, whereas if min(bL+1, cL+1) > d+ dL+1 we write

dxLSAM,0 := θ̃∇/(L+1)Ŵ
L+1
0 + δ̃WL+1

0 ,

26

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

with θ∇/(L+1) := θ∇/θ̃L+1 ≤ 1. In any case, the scaling of dxLSAM,0 and all other SAM gradients is
θSAM := max(θ∇, n−(d+dL+1)) = n−min(bL+1,cL+1,d+dL+1). The other SAM gradients are given by

dhlSAM,0 := dxlSAM,0 ⊙ ϕ′(h̃l0)

dxl−1
SAM,0 := (W̃ l

0)
TdhlSAM,0 = (W l

0 + θ̃W l δ̃W l
0)

TdhlSAM,0

= (W l
0)

TdhlSAM,0 + ρθSAM θ̃W l

χ0

∥v0∥
(dhl0)

TdhlSAM,0

n
xl−1
0 .

where the last line define a NonLin operation in the vectors (W l
0)

TdhlSAM,t and xl−1
0 and everything

else treated as scalars. Consequently, ∇hl
0
f |W̃0

is of the same scale as ∇xl
0
f |W̃0

and ∇xl−1
0

f |W̃0
is

of the scale max(θSAM , θ̃W lθSAM) = θSAM since θ̃W l ≤ 1 is required for perturbation stability.

Note that for SAM’s weight updates the loss derivative is also evaluated on the perturbed weights,

χ̃0 := L′(W̃L+1
0 x̃L0 , y0).

Constraints on the output function. Assuming x̃L0 = Θ(1) (perturbation stability), we get χ̃0 =
O(1) if and only if δ̃WL+1

0 = O(n−1) if and only if d+ dL+1 ≥ 1.

We have χ̃0 = Θ(1) if and only if f̃0 = W̃L+1
0 x̃L0 = Θ(1). This can either be caused by changes

in the last-layer weights, by non-vanishing initial function WL+1
0 xL0 (if and only if bL+1 = 1/2) or

by WL+1
0 δ̃xL0 = Θ(1), which holds if and only if bL+1 + r̃L = 1 (analogously, WL+1

0 δ̃xL0 = O(1)
if and only if bL+1 + r̃L ≥ 1). The first case requires δ̃WL+1

0 = Θ(n−1), since δ̃WL+1
0 and x̃L0

are highly correlated. δ̃WL+1
0 = Θ(n−1) is fulfilled if and only if d+ dL+1 = 1 (the analogue to

cL+1 ≥ 1 for stability and cL+1 = 1 for nontriviality).

Hence perturbation stability of the output function holds only if d+ dL+1 ≥ 1 and bL+1 + r̃L ≥ 1.
Then, perturbation nontriviality holds if and only if d+ dL+1 = 1 or bL+1 + r̃L = 1.

In the t-th backward pass, bL+1 + r̃L ≥ 1 will be replaced by the slightly stronger constraint
bL+1 + r̃ ≥ 1.

IV.1.4. t-TH FORWARD PASS

Formally, we sum the updates in each step,

ŴL+1
t := ŴL+1

0 + θL+1/∇(δW
L+1
1 + · · ·+ δWL+1

t),

where δWL+1
t+1 := −η χ̃t (x̃Lt)

T denotes the normalized change in the weights WL+1 (as a row
vector) of scaling θL+1 = θWL+1 = n−cL+1 under perturbation stability and nontriviality so that
ŴL+1

t scales as θ∇ = n−min(bL+1,cL+1). δWL+1
t+1 should not be confused with δ̃WL+1

t+1 which denotes
the perturbation of the weights at time t+ 1. For every nontrivial stable parametrization we have
χ̃t = Θ(1) and x̃Lt = Θ(1) which requires θ̃L ≤ 1. In the case cL+1 < bL+1, we write ŴL+1

t :=
n−bL+1+cL+1ŴL+1

0 + (δWL+1
1 + · · ·+ δWL+1

t) with the same scaling θ∇ = n−min(bL+1,cL+1).

For preactivations and activations we also sum the changes from each step,

hlt := hl0 + θl(δh
l
1 + · · ·+ δhlt), xlt := xl0 + θl(δx

l
1 + · · ·+ δxlt).

27

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Using the fact that
W 1

t −W 1
t−1 = −ηχ̃t−1θW 1dh1SAM,t−1ξ

T
t−1,

yields the normalized preactivation updates

δh1t (ξ) := −ηχ̃t−1dh
1
SAM,t−1ξ

T
t−1ξ (NL),

with scaling θ1 = θW 1 = n−c1θSAM = n−c1−min(bL+1,cL+1,d+dL+1) as for SGD under perturbation
stability and nontriviality where χ̃t−1 = Θ(1).

For l ∈ [2, L], it holds that

W l
t −W l

t−1 = −ηχ̃t−1θW l

1

n
dhlSAM,t−1(x̃

l−1
t−1)

T ,

with the right scaling θW l = n1−cl−min(bL+1,cL+1,d+dL+1) as for SGD under perturbation stability
x̃l−1
t−1 = Θ(1), so that we get δhlt using a telescope sum,

θlδh
l
t = W l

tx
l−1
t −W l

t−1x
l−1
t−1 = W l

t−1(x
l−1
t − xl−1

t−1) + (W l
t −W l

t−1)x
l−1
t

= θl−1

(
W l

0δx
l−1
t +

t−1∑
s=1

(W l
s −W l

s−1)δx
l−1
t

)
+ (W l

t −W l
t−1)x

l−1
t

= θl−1

(
W l

0δx
l−1
t − ηθW l

t−1∑
s=1

χ̃s−1
(x̃l−1

s−1)
T δxl−1

t

n
dhlSAM,s−1

)

−ηθW lχ̃t−1
(x̃l−1

t−1)
Txl−1

t

n
dhlSAM,t−1,

which defines a NonLin operation with the vectors W l
0δx

l−1
t , dhlSAM,0, dh

l
SAM,t−1 and everything

else treated as scalars. The scaling is given by

θl = max(θl−1, θW lθl−1, θW l) =
l

max
m=1

θWm = n−rl ,

with

rl := min(bL+1, cL+1, d+ dL+1) +
l

min
m=1

(cm − I(m ̸= 1)),

where θW l ≤ 1 for all l ∈ [L] for stability. Note that for l1 ≤ l2, it holds that θl1 ≤ θl2 , which
explains the sufficiency of θL = n−rL = n−r for the stability of the activation updates.

Activations with the same scaling θl can then simply be defined via the NonLin operation

δxlt := θ−1
l (ϕ(hlt−1 + θlδh

l
t)− ϕ(hlt−1)).

The updates of the output function are scalars defined as

δft := θ′L+1

δWL+1
t xLt
n

+ θ′L∇
ŴL+1

t−1 δxLt
n

,

where θ′L+1 = nθL+1 = n1−cL+1 and θ′L∇ = nθ∇θL = n1−min(bL+1,cL+1)−rL , where we will see
why WL+1

t−1 = Θ(n−min(bL+1,cL+1)) in the next paragraph. This leads to the constraints cL+1 ≥ 1
and bL+1 + r ≥ 1 for the stability of the output function, where equality in either constraint leads to
nontriviality.

28

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

IV.1.5. t-TH BACKWARD PASS

Perturbations. Due to linearity and stability, the last layer remains

dxLt := ŴL+1
t ,

with scaling θ∇ = n−min(bL+1,cL+1).

As in the first backward pass, we use the weight updates to directly compute the preactivation and
activation perturbations similar to the t-th forward pass but performing SGD instead of SAM in the
last step. The SGD backward pass for the perturbation is given by

dhlt := dxlt ⊙ ϕ′(hlt),

dxl−1
t := (W l

t)
Tdhlt

=

(
W l

0 − ηθW l

t∑
s=1

χ̃s−1
1

n
dhlSAM,s−1(x̃

l−1
s−1)

T

)T

dhlt

= W l
0dh

l
t − η(n1−clθSAMθ∇)

t∑
s=1

χ̃s−1

(dhlSAM,s−1)
Tdhlt

n
x̃l−1
s−1,

with scaling max(θ∇, n1−clθSAMθ∇) = θ∇, since n1−clθSAM ≤ 1 is implied by r ≥ 0 required for
the stability of (pre-)activation updates.

We write χt = L′(ft(ξt), yt) for the derivative of the loss with respect to the unperturbed function
(which is Θ(1) under stability and nontriviality), and get

δ̃h1t (ξ) := +
ρχt(ξ

T
t ξ)dh

1
t

∥vt∥
,

θ̃lδ̃h
l
t := θ̃l−1W

l
t δ̃x

l−1
t + (W̃ l

t −W l
t)x̃

l−1
t

= θ̃l−1

(
W l

0δ̃x
l−1
t +

t∑
s=1

(W l
s −W l

s−1)δ̃x
l−1
t

)
+ (W̃ l

t −W l
t)x̃

l−1
t

= θ̃l−1

(
W l

0δ̃x
l−1
t − η(n1−clθSAM)

t∑
s=1

χ̃s−1
(x̃l−1

s−1)
T δ̃xl−1

t

n
dhlSAM,s−1

)

+ρθ̃W l

χt

∥vt∥
(xl−1

t)T x̃l−1
t

n
dhlt,

which defines a NonLin operation with the vectors W l
0δ̃x

l−1
t , dhlSAM,0, . . . , dh

l
SAM,t−1, dh

l
t, and

where we can now define the definitive scalings θ̃1 := θ̃W 1 := n−(d+d1)θ∇ = n−(min(bL+1,cL+1)+d+d1),
θ̃W l := n1−(d+dl)θ∇ = n−(min(bL+1,cL+1)+d+(dl−1)) and θ̃l = max(θ̃l−1, n

1−clθSAM θ̃l−1, θ̃W l) =
maxlm=1 θ̃Wm = n−r̃l with

r̃l := min(bL+1, cL+1) + d+
l

min
m=1

(dm − I(m ̸= 1)),

where we used that n1−clθSAM ≤ 1 due to r ≥ 0 for stability and x̃l−1
t = Θ(1) due to perturbation

stability. Perturbation stability of the hidden layer (pre-)activations δ̃hl, δ̃xl = O(1) for all l ∈ [L]
holds if and only if r̃ := r̃L ≥ 0 since r̃l ≥ r̃L for all l ≤ L.

29

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

The activation perturbations δ̃xlt and the perturbation of the output function δ̃ft can be defined exactly
as in the first backward pass,

δ̃xlt := θ̃−1
l (ϕ(hlt + θ̃lδ̃h

l
t)− ϕ(hlt)),

δ̃ft := W̃L+1
t x̃Lt −WL+1

t xLt = θ̃′L+1

δ̃WL+1
t x̃Lt
n

+ θ̃′L∇
ŴL+1

t δ̃xLt
n

,

with δ̃WL+1
t :=

ρ χt xL
t

∥vt∥ and the same scalings θ̃l, θ̃′L+1 = n1−(d+dL+1) and θ̃′L∇ = nθ∇θ̃L =

n1−min(bL+1,cL+1)−r̃ since WL+1
t = WL+1

0 +∆WL+1
t = max(n−bL+1 , n−cL+1), which yields the

slightly stronger constraint (than in the first backward pass) min(bL+1, cL+1)+r̃ ≥ 1 for perturbation
stability and either θ̃′L+1 = 1 or min(bL+1, cL+1) + r̃ = 1 for perturbation nontriviality.

SAM Update. For each l ∈ {1, . . . , L}, as in the first backward pass, we get

dxLSAM,t := ŴL+1
t + θ̃(L+1)/∇ δ̃WL+1

t ,

with scaling θSAM = n−min(bL+1,cL+1,dL+1+1/2) as well as

dhlSAM,t := dxlSAM,t ⊙ ϕ′(h̃lt).

For dxlSAM,t we again use a telescope sum over the weight changes,

dxl−1
SAM,t := (W̃ l

t)
TdhlSAM,t = (W l

0 + θW l

t∑
s=1

δW l
s + θ̃W l δ̃W l

t)
TdhlSAM,t

= (W l
0)

TdhlSAM,t − η(n1−clθSAM)
t∑

s=1

χ̃s−1

(dhlSAM,s−1)
TdhlSAM,t

n
x̃l−1
s−1

+ρ(n1/2−dlθ∇)
χt

∥vt∥
(dhlt)

TdhlSAM,t

n
xl−1
t ,

which defines a NonLin operation in the vectors (W l
0)

TdhlSAM,t, x̃
l−1
0 , . . . , x̃l−1

t−1, x
l−1
t and everything

else treated as scalars. Note that the scalings remain θSAM , since

∇xl−1
t

f |W̃t
= Θ(max(θSAM , n1−clθ2SAM , n1/2−dlθ∇θSAM)) = Θ(θSAM)

under stability, nontriviality, perturbation stability and perturbation nontriviality.

Finally define the loss derivative on the perturbed output function

χ̃t := L′(W̃L+1
t x̃Lt , yt),

and compute the normalized change in WL+1,

δWL+1
t+1 := −ηχ̃tx̃

L
t .

30

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

IV.2. The infinite-width limit

In this section, we apply the Master Theorem’s computation rules to derive the marginal distributions
Z corresponding to the vectors of the program constructed above. According to the Master Theorem,
each such vector z will have roughly iid coordinates distributed like Zz in the large n limit.

We assume stability holds, so that θ → θ̊ ∈ {0, 1} for all scalars θ in the program.

For the first forward pass, we have

Zh1
0(ξ) = ξZW 1

0 , Zxl
0(ξ) = ϕ(Zhl

0(ξ)), Zhl+1
0 (ξ) = ZW l+1

0 xl
0(ξ).

If bL+1 > 1/2 then f̊0 = 0, otherwise if bL+1 = 1/2 then f̊0 converges to a nontrivial Gaussian. For
the details we refer to Appendix H.4.1 in Yang and Hu [52], as at initialization their results still hold
here.

For the first SGD backward pass, we have

ZdxL
0 (ξ) = ZŴL+1

0 , Zdhl
0(ξ) = Zdxl

0(ξ)ϕ′(Zhl
0(ξ)), Zdxl−1

0 (ξ) = Z(W l
0)

T dhl
0(ξ),

where Żdxl
0(ξ) = 0 and Zdxl

0(ξ) = Ẑdxl
0(ξ) for all ξ ∈ X .

For general t > 0, we have

ZdxL
t (ξ) = ZŴL+1

t ,

Zdhl
t(ξ) = Zdxl

t(ξ)ϕ′(Zhl
t(ξ)),

Zdxl−1
t (ξ) = Z(W l

0)
T dhl

t(ξ) − ηθ̊W l

t∑
s=1

˚̃χs−1E[Zdhl
SAM,s−1Zdhl

t]Z x̃l−1
s−1 ,

where ˚̃χs = L′(˚̃fs(ξs), ys) for s < t, and Z(W l
0)

T dhl
t(ξ) is a Θ(1) random variable distributed as

Z(W l
0)

T dhl
t(ξ) = Ẑ(W l

0)
T dhl

t(ξ) +
∑

v∈V: W l
0v∈V

Zv E
∂Zdhl

t(ξ)

∂ẐW l
0v

.

For all t ≥ 0, the limit of the gradient norm is given by

∥̊v∥ = χ̊t

(
θ̊2∥v1∥E[Z

(dh1
t)

2
](ξTt ξt) +

L∑
l=2

θ̊2∥vl∥E[Z
(dhl

t)
2
]E[Z(xl−1

t)2] + θ̊2∥vL+1∥
(xLt)

TxLt
n

)1/2

,

where χ̊t = L′(f̊t(ξt), yt), θ2∥v1∥ := n1−2d1θ2∇, θ2∥vl∥ := n2−2dlθ2∇ for l ∈ [2, L] and θ2∥vL+1∥ :=

n1−2dL+1 , and where θ̊2∥vL+1∥ = 1 if and only if dL+1 = 1/2 and θ̊2∥vL+1∥ = 0 if and only if

dL+1 > 1/2, while θ̊2∥vl∥ = 1 if and only if 2dl = 1 + I(l > 1)− 2min(bL+1, cL+1) and θ̊2∥vl∥ = 0

if and only if 2dl > 1 + I(l > 1)− 2min(bL+1, cL+1).

For the last-layer weight perturbations (for θ∇ ≥ θ̃L+1, else Z
ˆ̃WL+1
t = Z δ̃WL+1

t) we have

Z
ˆ̃WL+1
t = ZŴL+1

t +
˚̃
θ(L+1)/∇Z

δ̃WL+1
t , Z δ̃WL+1

t =
ρ χ̊t

∥̊v∥
ZxL

t .

31

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Note that χ̊t cancels itself out and we purely get a perturbation in distribution ZxL
t scaled to have

standard deviation ρ.

For all t ≥ 0 and l ∈ [1, L], we have

Z h̃l
t = Zhl

t +
˚̃
θlZ

δ̃hl
t , Z x̃l

t = Zxl
t +

˚̃
θlZ

δ̃xl
t ,

where for l = 1,

Z δ̃h1
t (ξ) = +

ρχ̊t(ξ
T
t ξ)

∥̊v∥
Zdh1

t .

If ˚̃θl = 0, then
Z δ̃xl

t = ϕ′(Zhl
t)Z δ̃hl

t ,

otherwise ˚̃θl = 1 and
Z δ̃xl

t = ϕ(Z h̃l
t)− ϕ(Zhl

t).

For l ≥ 2, we have

Z δ̃hl
t =

˚̃
θ(l−1)/l Z

W l
0δ̃x

l−1
t − ηθ̊W l(l̃−1)/l̃

t∑
s=1

˚̃χs−1E[Z x̃l−1
s−1Z δ̃xl−1

t]Zdhl
SAM,s−1

+ρ
˚̃
θW l/l

χ̊t

∥̊v∥
E[Zxl−1

t Z x̃l−1
t]Zdhl

t ,

where θ̃(l−1)/l =
θ̃l−1

θ̃l
, θW l(l̃−1)/l̃ =

θ
Wl θ̃l−1

θ̃l
and θ̃W l/l =

θ̃
Wl

θ̃l
, and ZW l

0δ̃x
l−1
t has the decomposition

ZW l
0δ̃x

l−1
t = ẐW l

0δ̃x
l−1
t +

∑
v∈V: (W l

0)
T v∈V

Zv E
∂Z δ̃xl−1

t

∂Ẑ(W l
0)

T v
.

The perturbed output function has the limit ˚̃ft := f̊t +
˚̃
δft with

˚̃
δft :=

˚̃
θ′L+1E[Z δ̃WL+1

t Z x̃L
t] +

˚̃
θ′L∇E[ZŴL+1

t Z δ̃xL
t],

so that we can define ˚̃χt = L′(˚̃ft(ξt), yt) or equivalently ˚̃χt = L′(˚̃θL+1
˚̃
θLE[Z

ˆ̃WL+1
t Z x̃L

t], yt).

For the SAM gradients we have

ZdxL
SAM,t = ZŴL+1

t +
˚̃
θ(L+1)/∇ Z δ̃WL+1

t ,

Zdhl
SAM,t = Zdxl

SAM,t · ϕ′(Z h̃l
t)

Zdxl−1
SAM,t = Z(W l

0)
T dhl

SAM,t − ηθ̊W l

t∑
s=1

˚̃χs−1E[Zdhl
SAM,s−1Zdhl

SAM,t]Z x̃l−1
s−1

+ρ
˚̃
θW l

χ̊t

∥̊v∥
E[Zdhl

tZdhl
SAM,t]Zxl−1

t ,

32

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

where Z(W l
0)

T dhl
SAM,t is given by

Z(W l
0)

T dhl
SAM,t = Ẑ(W l

0)
T dhl

SAM,t +
∑

v∈V: W l
0v∈V

Zv E
∂Zdhl

SAM,t

∂ẐW l
0v

.

Now SAM’s (pre-)activation updates are given by

Zhl
t = Zhl

0 + θ̊l(Z
δhl

1 + · · ·+ Zδhl
t), Zxl

t = Zxl
0 + θ̊l(Z

δxl
1 + · · ·+ Zδxl

t),

with, for l ∈ [2, L],

Zδh1
t (ξ) = −η˚̃χt−1(ξ

T
t−1ξ)Z

dh1
SAM,t−1 ,

Zδhl
t = θ̊(l−1)/l

(
ZW l

0δx
l−1
t − ηθ̊W l

t−1∑
s=1

˚̃χs−1E[Z x̃l−1
s−1Zδxl−1

t]Zdhl
SAM,s−1

)
−ηθ̊W l/l

˚̃χt−1E[Z x̃l−1
t−1Zxl−1

t]Zdhl
SAM,t−1 ,

where θ(l−1)/l := θl−1/θl, θW l/l := θW l/θl and ZW l
0δx

l−1
t has the decomposition

ZW l
0δx

l−1
t = ẐW l

0δx
l−1
t +

∑
v∈V: (W l

0)
T v∈V

Zv E
∂Zδxl−1

t

∂Ẑ(W l
0)

T v
.

If θ̊l = 0, then
Zδxl

t = ϕ′(Zhl
t−1)Zδhl

t ,

otherwise θ̊l = 1 and
Zδxl

t = ϕ(Zhl
t)− ϕ(Zhl

t−1).

The last-layer SAM weight update is given by

ZŴL+1
t = ZŴL+1

0 + θ̊L+1/∇(Z
δWL+1

1 + · · ·+ ZδWL+1
t),

with ZδWL+1
t = −η˚̃χt−1Z

x̃L
t−1 .

For t > 0, the SAM function update is given by

f̊t = f̊0 + δ̊f1 + · · ·+ δ̊ft,

with δ̊ft = θ̊′L+1E[ZδWL+1
t ZxL

t] + θ̊′L∇E[Z
ŴL+1

t−1 ZδxL
t].

IV.3. Concluding the proof of all main results

After writing out the NE⊗OR⊤program and its limit, as well as tracking all scalings, the main
results stated in Appendix III all follow from the Tensor Program Master Theorem and from the
characterization results in Yang and Hu [52] in the following way.

33

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Formally Yang and Hu [52] show feature learning for SGD with small enough learning rate η > 0
by proving ∂2

ηE(ZxL
1 (ξ0))2 ̸= 0 at η = 0, and they show that learning does not occur in the kernel

regime by showing ∂3
η f̊1 ̸= 0, hence f̊1 − f̊0 is not linear in η.

Both E(ZxL
1 (ξ0))2 and f̊1 are defined via NE⊗OR⊤computations and can be written as a composition

of additions, multiplications, the expectation operator, applications of ϕ and ϕ′, overall applications
of infinitely differentiable, pseudo-Lipschitz functions to (Gaussian) random variables, η and ρ.
Consequently E(ZxL

1 (ξ0))2 and f̊1 are infinitely often differentiable as a function of both η and ρ,
where differentiating the expectation operator is covered in Yang and Hu [52, Lemma H.39]. Since
Yang and Hu [52] cover the case ρ = 0, their proofs immediately show the correctness of the derived
scalings for SAM as long as η > 0 and ρ > 0 are chosen small enough. Both the gradient evaluation
for the perturbation as well as the gradient evaluation for the updates stay arbitrarily close to those of
SGD if ρ > 0 is chosen small enough. The conditions for stability, nontriviality, feature learning,
perturbation nontriviality and effective perturbations now follow from considering the respective
scaling.

IV.3.1. PROOF OF THEOREM 16

A bcd-parameterization is stable if and only if all scalings in the Tensor Program have the limit
θ̊ ∈ {0, 1}, where θ̊ = 1 is required for activations at initialization (for which nothing changes
compared to SGD). Potential cancellations are taken care of for sufficiently small η > 0 and ρ > 0
by the argument above. Now collecting all constraints that are already stated in the Tensor Program
formulation at the respective step concludes the proof.

IV.3.2. PROOF OF THEOREM 17

A stable bcd-parameterization is nontrivial if and only if f̊t = Θ(1) if and only if θ̊′L+1 = 1 or
θ̊′L∇ = 1.

IV.3.3. PROOF OF THEOREM 18

A stable bcd-parametrization is feature learning in layer l if and only if the feature update scaling
θ̊l = 1 where

θl = n−rl , rl := min(bL+1, cL+1, dL+1 + 1/2) +
l

min
m=1

(cm − I(m ̸= 1)).

Hence a stable bcd-parametrization is feature learning in layer l if and only if rl = 0.

Since for all l1 ≤ l2, it holds that rl1 ≥ rl2 ≥ 0, we get the equivalence for any l0 ∈ [L]: A stable
bcd-parametrization is feature learning in layer l0 if and only if it is feature learning in layer l for all
l ≥ l0 if and only if rl0 = 0.

34

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

IV.3.4. PROOF OF THEOREM 20

Given a stable bcd-parametrization, perturbation triviality is fulfilled if and only if ˚̃θ′L+1 = 0 and
˚̃
θ′L∇ = 0, where θ̃′L+1 = n1/2−dL+1 and θ̃′L∇ = nθ∇θ̃L = n1−min(bL+1,cL+1)−r̃, hence if and only if
dL+1 > 1/2 and min(bL+1, cL+1) + r̃ > 1.

In that case, ˚̃ft = f̊t, but f̊t may still be affected by non-vanishing SAM perturbations in δWL+1
t

and δxLt . Only when all SAM perturbations vanish are we effectively only using SGD. By definition,

the perturbation scale in the l-th layer vanishes if and only if ˚̃θl = 0, where θ̃l = n−r̃l with
r̃l = min(bL+1, cL+1) + 1/2 + minlm=1(dm − I(m ̸= 1)), hence if and only if r̃l > 0. Since

r̃l ≥ r̃L = r̃ for all l ≤ L, we get ˚̃θl = 0 for all l ∈ [L] if and only if r̃ > 0. Similarly, for any

reference layer l0 ∈ [L], we get ˚̃θl = 0 for all l ≤ l0 if and only if r̃l0 > 0. In words, for any l0 ∈ [L],
we have vanishing perturbations in layer l0 if and only if we have vanishing perturbations until layer
l0 if and only if r̃l0 > 0.

Altogether, a stable bcd-parametrization has vanishing perturbations if and only if r̃ > 0, dL+1 > 1/2
and min(bL+1, cL+1)+ r̃ > 1. This case reduces to the results in Yang and Hu [52] in the limit. Since
stability requires cL+1 ≥ 1 and r̃ ≥ 0, we can rewrite the equivalence conditions as dL+1 ≥ 1/2 and
r̃ > max(0, 1− bL+1).

IV.3.5. PROOF OF THEOREM 22

Recall θ̃W 1 := n−(d+d1)θ∇, θ̃W l := n1−(d+dl)θ∇ and, for the last layer θ̃WL+1 := n−(d+dL+1).

As opposed to perturbation nontriviality, we are not only interested in θ̃l = max(θ̃l−1, θ̃W l) =
maxlm=1 θ̃Wm → 1, but in a non-vanishing contribution of the perturbations in layer l, i.e.̊ θ̃W l = 1
or, for the last layer,̊ θ̃L+1 = 1.

IV.3.6. PROOF OF THEOREM 23

The limit of the gradient norm is defined as a NE⊗OR⊤ program scalar (V.1). Note that for
bL+1 > 1/2, the last-layer scaling strictly dominates all other scalings leading to the simplified
gradient norm formula.

Now consider an arbitrary stable choice of layerwise initialization variances {bl}l∈[L+1] and learning
rates {cl}l∈[L+1]. To fulfill the gradient norm constraints (III.1), we have to choose dl = C = 1/2
for all l ∈ [L+ 1], because stability requires min(bL+1, cL+1) ≥ 1/2. Now stability of the output
function perturbations requires d ≥ 1/2, where d > 1/2 yields vanishing perturbations and d = 1/2
yields effective last-layer SAM through the term δ̃WL+1

t x̃Lt . After choosing d ≥ 1/2, we get
r̃ ≥ min(bL+1, cL+1) ≥ 1/2 > 0 which implies vanishing perturbations in all hidden layers.

IV.3.7. PROOF OF PROPOSITION 24

To achieve non-vanishing gradient norm contribution of the last layer in (III.1), we need to choose
dL+1 = 1/2, which requires d ≥ 1/2 for stability of the output function perturbations. Achieving
non-vanishing gradient norm contributions of all layers requires d1 = 1/2−min(bL+1, cL+1) and

35

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

dl = 1−min(bL+1, cL+1) for l ∈ [2, L], which results in r̃ = d ≥ 1/2 > 0 which implies vanishing
perturbations in all hidden layers.

IV.3.8. PROOF OF THEOREM 25

Given a stable bcd-parametrization, we know d+ dL+1 ≥ 1, so that the feature learning constraint
r is not affected by any stable choice of d ∪ {dl}l∈[L+1]. The maximal stable choice of layerwise
initialization variances {bl}l∈[L+1] and learning rates {cl}l∈[L+1] that constitute µP is therefore
unaffected by the perturbation scalings d ∪ {dl}l∈[L+1].

Stability of the output function perturbations requires bL+1 + r̃ ≥ 1. Hence if bL+1 < 1, then
r̃ ≥ 1− bL+1 > 0, which implies vanishing perturbations in all hidden layers.

From now on consider bL+1 ≥ 1. Recall c∇ := min(bL+1, cL+1). In µP, c∇ = 1, but effective
perturbations in all layers can be achieved more generally for c∇ ≥ 1. Choosing d1 = 1/2 − c∇
saturates the gradient norm constraint (III.1). To reach effective perturbations already in the first
layer r̃1 = c∇ + d + d1 = 0, we need d = −1/2. For perturbation stability and last-layer
effective perturbations, we need d+ dL+1 = 1 which requires dL+1 = 3/2. Achieving perturbation
stability and effective perturbations in all hidden layers requires θ̃W l = 1 which is equivalent to
c∇ + d + dl − I(l ̸= 1) = 0. For l ∈ [2, L], we therefore need dl = 3/2 − c∇. This choice of
{dl}l∈[L+1] achieves effective perturbations in all layers.

To show uniqueness we iterate through all possibilities of saturating the norm bound constraint (III.1).
We have considered the cases dL+1 = 1/2 in (b) leading to vanishing perturbations in all hidden
layers and d1 = 1/2− c∇ in (c) with only one choice for effective perturbations in all layers. Lastly
consider dl = 1 − c∇ for l ∈ [2, L] for non-vanishing gradient contribution of the hidden layers.
Note that all hidden layers play the same role in all relevant constraints. Effective perturbations in
any hidden layer l ∈ [2, L] requires θ̃W l = 1 for which we need d = 0. But then, as d1 ≥ 1/2− c∇,
it holds that r̃1 ≥ 1/2 implying vanishing perturbations in the first layer. This shows the uniqueness
of (2).

For the gradient norm statements, note that the gradient norm ∥vt∥ can be written as a NE⊗OR⊤computation
rule (IV.2) where the layer scalings in this parameterization are Θ(1) for the input layer, Θ(n−1/2) for
hidden layers and Θ(n−1) for the output layer. Now the Tensor Program master theorem immediately
implies the result.

IV.3.9. PROOF OF PROPOSITION 26

Perturbation nontriviality with respect to any hidden layer is equivalent to r̃ = 0. Since min(bL+1, cL+1) ≤
1, we get min(bL+1, cL+1) + r̃ ≤ 1. Since stability requires min(bL+1, cL+1) + r̃ ≥ 1, we get
min(bL+1, cL+1) + r̃ = 1, which implies perturbation nontriviality with respect to the output.

IV.3.10. PROOF OF PROPOSITION 27

The constraint is the same constraint as in Theorem 22, which implies effective perturbations in the
first layer. Now r̃l ≤ r̃1 = 0 implies perturbation nontriviality in all hidden layers due to Theorem 20.

36

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

IV.4. Analytic expression of the features after first SAM update

Below we state the analytic expression of the first SAM update, but leave a closer analysis of its
fine-grained dynamics in comparison to SGD to future work. Before looking into the effective
perturbation regime, we restate Lemma H.37 in Yang and Hu [52] with a more detailed proof.

First, we define ℓ ∈ [L] as the unique index that satisfies θL = · · · = θℓ = 1 > θℓ−1 ≥ · · · ≥ θ1. In
words, ℓ is the first layer in which feature learning occurs. Analogously, we define ℓ̃ ∈ [L] as the

unique index that satisfies 1 = θ̃L
θ̃L

= · · · = θ̃ℓ̃
θ̃L

>
θ̃ℓ̃−1

θ̃L
≥ · · · ≥ θ̃1

θ̃L
.

Lemma 31 (Features after first SGD step) Defining Z l
t := Zhl

t , γl(η) = Eϕ(Z l
0)ϕ(Z

l
1) for l ≥ 1,

γ0 = ξT0 ξ and γl11(η) = Eϕ′(Z l
0)ϕ

′(Z l
1), we have

Zℓ−1
1 = Zℓ−1

0 , . . . , Z1
1 = Z1

0 ,

and, for all l ≥ ℓ,
Z l
1 = Z l

0 + Il>ℓẐ
W l

0δx
l−1
1 + ηβlZdxl

0ϕ′(Z l
0),

where βl is defined recursively by

βl = βl(η) = −χ̊0γ
l−1(η) + βl−1(η)γl−1

11 (η),

with βℓ−1 = 0. Note that βl(0) < 0 for all l ≥ ℓ.

Proof By the defining infinite-width equations, assuming θ̊W l/l = 1 (so minimal stable choice of cl),

Z l
1 = Z l

0 + θ̊(ℓ−1)/ℓZ
W l

0δx
l−1
1 − ηχ̊0γ

l−1Zdxl
0ϕ′(Z l

0).

At l = ℓ, we get θ̊(ℓ−1)/ℓ = 0, whereas for l > ℓ we get θ̊(l−1)/l = 1, which results in θ̊(ℓ−1)/ℓ = Il>ℓ.

Now, for l > ℓ, the second term decomposes into ẐW l
0δx

l−1
1 and

ŻW l
0δx

l−1
1 = Zdhl

0E
∂Zδxl−1

1

∂Ẑ(W l
0)

T dhl
0

.

Since by induction hypothesis,

Zδxl−1
1 = ϕ(Z l−1

1)− ϕ(Z l−1
0) = ϕ

(
Z l−1
0 + Il>ℓẐ

W l
0δx

l−1
1 + ηβl−1Zdxl−1

0 ϕ′(Z l−1
0)

)
− ϕ(Z l−1

0),

where Zdxl−1
0 = Z(W l

0)
T dhl

0 is the only dependence on Ẑ(W l
0)

T dhl
0 , we get

∂Zδxl−1
1

∂Ẑ(W l
0)

T dhl
0

= ϕ′(Z l−1
1)ηβl−1ϕ′(Z l−1

0).

Plugging the derivative back into the defining equation and noticing that Zdhl
0 = Zdxl

0ϕ′(Z l
0)

concludes the proof.

An analogous analysis for the perturbation at initialization shows.

37

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Lemma 32 (Feature perturbation at initialization) The perturbation trivial layers fulfill

Z h̃ℓ̃−1
0 = Zhℓ̃−1

0 , . . . , Z h̃1
0 = Zh1

0 ,

and, for all l ≥ ℓ̃,
Z h̃l

0 = Zhl
0 + Il>ℓ̃Ẑ

W l
0δ̃x

l−1
0 + ρβ̃lZdxl

0ϕ′(Zhl
0),

where β̃l independent of η is defined recursively by

β̃l = β̃l(ρ) =
χ̊0

˚̄∥∇L0∥
E[ϕ(Zhl−1

0)ϕ(Z h̃l−1
0)] + β̃l−1E[ϕ′(Zhl−1

0)ϕ′(Z h̃l−1
0)]

with β̃ ℓ̃−1 = 0. Note that β̃l(0) > 0 for all l ≥ ℓ̃.

Remark 33 If ℓ̃ = 1, in the definition of β̃l replace E[ϕ(Zhl−1
0)ϕ(Z h̃l−1

0)] by ξT0 ξ.

Now we are ready to state the closed form expression for the first SAM update.

Lemma 34 (Features after first SAM update) Defining Z l
t := Zhl

t and Z̃ l
t := Z h̃l

t , we have

Zℓ−1
1 = Zℓ−1

0 , . . . , Z1
1 = Z1

0 ,

and, for all l ≥ ℓ,

Z l
1 = Z l

0 + Il>ℓẐ
W l

0δx
l−1
1 + ηβlZdxl

SAM,0ϕ′(Z̃ l
0) + ηγlZdhl

0 ,

where βl is defined recursively by

βl = βl(η) = −˚̃χ0E[ϕ(Z̃ l−1
0)ϕ(Z l−1

1)] + βl−1(η)E[ϕ′(Z l−1
1)ϕ′(Z̃ l−1

0)],

with βℓ−1 = 0, and γl = γl(η) is recursively defined by

γl := βl−1ρβ̃l−1E[ϕ′(Z l−1
1)ϕ′(Z l−1

0)ϕ′′(Z̃ l−1
0)Zdxl−1

SAM,0] + γl−1E[ϕ′(Z l−1
0)ϕ′(Z l−1

1)],

with γℓ−1 = γℓ = 0.

Remark 35 If ℓ = 1, in the definition of βl replace E[ϕ(Z̃ l−1
0)ϕ(Z l−1

1)] by (ξTt−1ξ).

Proof By the defining infinite-width equations, for l ≥ ℓ, assuming θ̊W l/l = 1 (so minimal stable
choice of cl),

Z l
1 = Z l

0 + θ̊(l−1)/lZ
W l

0δx
l−1
1 − ηχ̊0E[ϕ(Z̃ l−1

0)ϕ(Z l−1
1)]Zdxl

SAM,0ϕ′(Z̃ l
0). (IV.3)

At l = ℓ, we get θ̊(ℓ−1)/ℓ = 0 and θ̊W ℓ/ℓ = 1, whereas for l > ℓ we get θ̊(l−1)/l = 1 and θ̊W l/l = 1

(under minimal stable choice of cl), which results in θ̊(l−1)/l = Il>ℓ. Now, for l > ℓ, the second term

decomposes into ẐW l
0δx

l−1
1 and ŻW l

0δx
l−1
1 . For the rest of the proof it remains to analyse ŻW l

0δx
l−1
1 .

38

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Since by induction hypothesis,

Zδxl−1
1 = ϕ(Z l−1

1)− ϕ(Z l−1
0)

= ϕ
(
Z l−1
0 + Il>ℓẐ

W l
0δx

l−1
1 + ηβl−1Zdxl−1

SAM,0ϕ′(Z̃ l−1
0) + ηγl−1Zdhl−1

0

)
− ϕ(Z l−1

0),

where Zdxl−1
SAM,0 = Z(W l

0)
T dhl

SAM,0 + ρ
˚̃
θW l

χ̊0
˚̄∥∇L0∥

E[Zdhl
0Zdhl

SAM,0]Zxl−1
0 with the second term inde-

pendent of (W l
0)

T and by Lemma 32 we know Z̃ l−1
0 = Z l−1

0 +Il−1>ℓ̃Ẑ
W l−1

0 δ̃xl−2
0 +ρβ̃l−1Zdxl−1

0 ϕ′(Z l−1
0),

where only the last term with Zdxl−1
0 = Z(W l

0)
T dhl

0 influences ŻW l
0δx

l−1
1 , we get

ŻW l
0δx

l−1
1 = Zdhl

0E
∂Zδxl−1

1

∂Ẑ(W l
0)

T dhl
0

+ Zdhl
SAM,0E

∂Zδxl−1
1

∂Ẑ(W l
0)

T dhl
SAM,0

, (IV.4)

with
∂Zδxl−1

1

∂Ẑ(W l
0)

T dhl
SAM,0

= ϕ′(Z l−1
1)ηβl−1ϕ′(Z̃ l−1

0),

and, using Zdhl−1
0 = Zdxl−1

0 ϕ′(Z l−1
0) = Z(W l

0)
T dhl

0ϕ′(Z l−1
0), yields

∂Zδxl−1
1

∂Ẑ(W l
0)

T dhl
0

= ϕ′(Z l−1
1)

(
ηβl−1Zdxl−1

SAM,0ϕ′′(Z̃ l−1
0)

∂Z̃ l−1
0

∂Ẑ(W l
0)

T dhl
0

+ ηγl−1ϕ′(Z l−1
0)

)
= ϕ′(Z l−1

1)
(
ηβl−1Zdxl−1

SAM,0ϕ′′(Z̃ l−1
0)ρβ̃l−1ϕ′(Z l−1

0) + ηγl−1ϕ′(Z l−1
0)

)
.

Plugging Eq. (IV.4) back into the defining equation (IV.3) and noticing that
Zdhl

SAM,0 = Zdxl
SAM,0ϕ′(Z̃ l

0) as well as Zdhl
0 = Zdxl

0ϕ′(Z l
0) concludes the proof.

V. Additional theoretical considerations

V.1. Alternative bcd-definition

A desirable definition of parametrizations for the SAM update rule should certainly allow perturba-
tions that have a stable but non-vanishing effect on the perturbed (pre-)activations and perturbed
output function. Otherwise we would not need to perturb the inactive layers in the first place. Writing
out the gradient norm, it turns out that for bL+1 > 1/2 (such as in µP) only the last layer dominates
the gradient norm, yielding ∥∇wL(f(ξt;Wt), yt))∥ ≈ L′(ft(ξt), yt)∥xL∥ = Θ(n1/2) in the limit.
Both for achieving a non-vanishing effect in every layer but also if one wants to balance the contribu-
tions of each layer to the gradient norm, the gradient has to be scaled layerwise such as β ⊙∇wL
with βl = n−dl , which changes the direction away from the original gradient direction. In this way,
our definition allows maximal stable perturbations in each layer while using a single perturbation.
The choice of dl then determines whether the original gradient direction should be retained with
βi = βj for all i, j ∈ [L+1], whether the norm contributions should be balanced or whether another
layer weighting is preferred, for example to achieve maximal stable perturbations in each layer.

39

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

If we want to take a step in the original gradient direction, but adapt the perturbation scaling in each
layer to the maximal stable scaling at the same time, we need to compute a layerwise perturbation
that may require multiple outer backward passes and use an update rule such as

W l
t = W l

t − ηn−cl∇W lL

(
f

(
ξt;Wt + ρn−dl

∇wL

∥∇wL∥

)
, yt

)
.

This update rule can be computationally much more expensive as it requires to evaluate the outer
gradient on multiple perturbed weights at each time step. It is therefore arguably less interesting
for practitioners. Since the perturbation scaling only comes in after the dh, dx iteration and always
∥∇wL(f(ξt;Wt), yt))∥ = Θ(n1/2), the scalings for this update rule are covered by the above
analysis of our bcd-definition when setting d = 1/2 to imitate the gradient norm scaling, and
replacing the normalized TP scalar ∥vt∥ with the normalized TP scalar

¯∥∇Lt∥ := χt

(
θ2∇

(dh1t)
Tdh1t
n

(ξTt ξt) +
L∑
l=2

nθ2∇
(dhlt)

Tdhlt
n

(xl−1
t)Txl−1

t

n
+

(xLt)
TxLt
n

)1/2

.

For all t ≥ 0, the limit of this normalized gradient norm is given by

˚̄∥∇Lt∥ = χ̊t

(
θ̊2∇E[Z(dh1

t)
2
](ξTt ξt) +

L∑
l=2

θ̊2
′

∇E[Z(dhl
t)

2
]E[Z(xl−1

t)2] + E[Z(xL
t)

2
]

)1/2

, (V.1)

where the first term vanishes as θ̊∇ = 0, χ̊t = L′(f̊t(ξt), yt) and θ2
′

∇ := nθ2∇ where θ̊2
′

∇ = 0 if and
only if bL+1 > 1/2 and θ̊2

′
∇ = 1 if and only if bL+1 = 1/2 (since cL+1 ≥ 1 for stability of the output

function). Consequently, the updated stability, nontriviality and perturbation nontriviality constraints
remain the same with the choice d = 1/2.

The maximal update parametrization with maximal perturbations again remains invariant in layerwise

initialization variances bl and learning rates cl but uniquely becomes dl =


−3/2 l = 1,

−1/2 l ∈ [2, L],

1/2 l = L+ 1.

without equivalent scalings because ∥∇wLt∥ = Θ(n1/2).

Another potential definition could decouple the scalings in the numerator and the denominator, and
simply scale all layerwise gradient norms in the denominator to be width-indepdendent Θ(1). In
this way all layers contribute to the gradient norm by design and we recover Θ(1) gradient norm
scaling, however we lose the control over the norm of the perturbation of all parameters potentially
reducing it beyond ρn−d. Our ablation studies find no significant performance differences between
this alternative definition and our choice.

V.2. The criterion εlt = Θ(δW l
t) for effective perturbations in µP

As in Yang et al. [55], we might be interested in a simple criterion to check for achieving effective
perturbations, except quantifying the correct scaling by writing out the NE⊗OR⊤ program. To
achieve effective perturbations in µP, there is a simple criterion to fulfill: δ̃W l = Θ(δW l). In short,
this is because the perturbation follows a similar direction as the update, both correlated with the

40

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

incoming activations (inducing LLN-like scaling behaviour), so that if the update δW l
tx

l−1
t and the

perturbation δ̃W l
t x̃

l−1
t shall have the same scaling, then it will generally hold that δ̃W l = Θ(δW l).

In µP, we have δW l
tx

l−1
t = Θ(1), so that δ̃W l = Θ(δW l) provides a criterion to achieve effective

perturbations δ̃W l
t x̃

l−1
t = δW l

tx
l−1
t = Θ(1). If not in µP, we do not have δW l

tx
l−1
t = Θ(1), so

that we might have to choose δ̃W l
t larger than δW l

t to achieve effective perturbations. However
W l

tx
l−1
t = o(1) is undesirable, as the l-th layer then does not learn features in the infinite-width

limit.

Below we explicitly write out the scalings of updates δW l and perturbations δ̃W l for each layer type.
The interested reader may take this as an opportunity to familiarize themselves with these scaling
arguments.

In the last layer l = L + 1, observe WL+1
0 = Θ(n−bL+1) and δWL+1

t = −ηncL+1χ̃t∥x̃Lt ∥ =
Θ(n−cL+1). Thus δ̃WL+1

t = Θ(WL+1
t), t > 0, if and only if d+ dL+1 = min(bL+1, cL+1). Hence,

in µP we indeed get δ̃WL+1
t = Θ(WL+1

t) = Θ(n−1) for all t ≥ 0.

In the first layer l = 1, W 1
0 = Θ(n−b1) and

δW 1
t = −ηn−c1χ̃tdh

1
SAM,tξ

T
t = Θ(n−c1−min(bL+1,cL+1,d+dL+1)).

The perturbation simply replaces the scaled learning rate ηn−c1 by the scaled perturbation radius
ρn−(d+d1) and acts on the unperturbed gradient δ̃W 1

t = ρn−(d+d1)χtdh
1
t ξ

T
t , so that δ̃W 1

t = Θ(W 1
t),

t > 0, if and only if d+ d1 +min(bL+1, cL+1) = min(b1, c1 +min(bL+1, cL+1, d+ dL+1)). For
µP, this results in δ̃W 1

t = Θ(W 1
t) = Θ(1) for all t ≥ 0.

In the hidden layers l ∈ [2, L], we have initialized weights W l
0 = Θ(n−bl), weight updates δW l

t =
−ηn−clχ̃tdh

l
SAM,t(x̃

l−1
t)T = Θ(n−cl−min(bL+1,cL+1,d+dL+1)), and the weight perturbation δ̃W l

t =

ρn−(d+dl)χtdh
l
t(x

l−1
t)T = Θ(n−(d+dl)−min(bL+1,cL+1)), so that δ̃W l

t = Θ(W l
t), t > 0, if and only

if d+ dl +min(bL+1, cL+1) = min(bl, cl +min(bL+1, cL+1, d+ dL+1)).

In µP, note that in hidden layers l ∈ [2, L] initial weights behave as CLT requiring W l
0 = Θ(n−1/2),

while updates δW l
t = Θ(n−1) behave as LLN since they are highly correlated with the incoming

activations xl−1
t . As perturbations also follow the gradient direction they are also highly correlated

with xl−1
t . For t > 0, the perturbation radius ρn−(d+dl) replaces learning rate ηn−cl as in the

other layers so that the perturbation always has the same scaling as the weight updates δ̃W l
t =

Θ(δW l
t) = Θ(n−1), but note that the total scaling of the hidden layer weights is therefore larger

than the perturbation scaling, δ̃W l
t = o(W l

t) = o(n−1/2).

V.3. Overview over choices of dl and d

Since for some combinations of architectures and datasets it turns out that performing SAM on a
subset of layers performs better than effective perturbations in all layers [35], we would like to know
how to choose d and dl to adjust which layers should be effectively perturbed and which should have
vanishing weight perturbations. In practice, simply set all perturbations that should vanish to 0 by
design, and use the global scaling d and relative scalings dl from µP2 for the perturbed layers. This
section is instead interested in a complete characterization of all possible choices of {dl}l∈[L+1] and
d. The heuristic derivation only requires the gradient norm constraints (III.1) and the perturbation

41

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Effective perturbations possible Gradient norm may be dominated by
input-like hidden-like output-like input-like hidden-like output-like

d = −1/2 ✓ ✓ ✓ ✓ ✗ ✗

d ∈ (−1/2, 0) ✗ ✓ ✓ ✓ ✗ ✗

d = 0 ✗ ✓ ✓ ✓ ✓ ✗

d ∈ (0, 1/2) ✗ ✗ ✓ ✓ ✓ ✗

d = 1/2 ✗ ✗ ✓ ✓ ✓ ✓

d > 1/2 ✗ ✗ ✗ ✓ ✓ ✓

Table V.1: (Characterization of perturbation scalings) Overview over the regimes of all possible
choices of d and dl. A layer is effectively perturbed if and only dl satisfies (V.2). At least one layer
must satisfy equality in its gradient norm constraint (III.1). This table summarizes which layers
can exhibit effective perturbations, and which may dominate the gradient norm, given a choice of d.
The choice d < −1/2 results in perturbation blowup r̃ < 0. At the critical d = −1/2 (respectively,
d = 0; d = 1/2) a input-like (respectively hidden-like; output-like) layer is effectively perturbed if
and only if it dominates the gradient norm. Consequently d = −1/2 implies effective perturbations
in at least one input-like layer.

stability constraints that require δ̃W 1 = O(1) and δ̃W l = O(n−1) for l > 1 given by

dl ≥


−c∇ − d if l is input-like,
1− c∇ − d if l is hidden-like,
1− d if l is output-like,

(V.2)

where a layer is effectively perturbed if and only if equality holds in the respective perturbation
stability inequality. This heuristic claim yields the characterization of all phases of the choices of
perturbation scalings d and dl in Table V.1 and allows us to formulate a simple rule of how to choose
d and dl given the information which layers should be effectively perturbed, and which should have
vanishing weight perturbations.

Choice of perturbation scaling from list of layers to effectively perturb. We denote the set of
all layers by L, whereas the subset of layers, which we want to effectively perturb, is denoted by
LSAM ⊆ L.

1. If there exists an input-like layer l ∈ LSAM , set d = −1/2. Input-like layers are effectively
perturbed if and only if dl = 1/2 − c∇. Hidden-like (respectively, output-like) layers are
effectively perturbed if and only if dl = 3/2− c∇ (respectively, dl = 3/2). For all layers that
have vanishing weight perturbations, do not perturb these weights or choose dl > 1/2− c∇
for input-like, dl > 3/2− c∇ for hidden-like and dl > 3/2 for output-like layers.

2. If all input-like layers should have vanishing weight perturbations but there exists a hidden-
like layer l ∈ LSAM , set d = 0. Hidden-like layers are effectively perturbed if and only if
dl = 1 − c∇. Output-like layers are effectively perturbed if and only if dL+1 = 1. For all
layers that have vanishing weight perturbations, do not perturb these weights, or set dl > c∇
for input-like, dl > 1− c∇ for hidden-like and dl > 1 for output-like layers (as required by
the perturbation stability and gradient norm constraints).

42

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

3. If both all input-like and all hidden-like layers have vanishing weight perturbations, but there
exists some output-like layer l ∈ LSAM , then set d = 1/2. Output-like layers are effectively
perturbed if and only if dl = 1/2. For all layers that have vanishing weight perturbations, do
not perturb these weights or set dl ≥ 1/2− c∇ for input-like, dl ≥ 1− c∇ for hidden-like and
dl > 1/2 for output-like layers (as required by the perturbation stability and gradient norm
constraints).

4. If LSAM = ∅, then set d > 1/2 or simply perform SGD.

Example 1 (First-layer-only effective perturbations) Instead of simply using the rule set above,
we derive the necessary choice of perturbation scaling from the scaling equalities and the norm
constraints (III.1). To achieve first-layer effective perturbations, but trivial weight perturbations in
all other layers, we need θ̃W 1 = 1 and ˚̃

θW l = 0, for which we will choose θ̃W l = n−1. This requires
setting

d1 = −(c∇ + d), dl = 2− c∇ − d, dL+1 = 2− d,

where one of the constraints (III.1) has to be fulfilled. Plugging the above dl-choices into (III.1)
results in the constraints d ≤ −1/2, d ≤ 1, d ≤ 3/2, hence choose d = −1/2 so that only the first
layer contributes non-vanishingly to the gradient norm. Note that r̃ = 0 and output perturbation
nontriviality holds if and only if min(bL+1, cL+1) = 1 (as in µP). We apply this perturbation scaling
in Appendix VII.2 to show that propagating perturbations from early layers are not enough to inherit
SAM’s inductive bias that leads to improved generalization performance.

V.4. Extension to SAM without gradient normalization

Andriushchenko and Flammarion [1] and Andriushchenko et al. [2] consider the SAM update without
normalizing the gradient in the adversarial ascent. The corresponding update rule is given by

Wt = Wt − η∇wL(f(ξt;Wt + ρvt, yt)), yt), vt = ∇wL(f(ξt;Wt).

The NE⊗OR⊤ program for this update rule with arbitrary vlt = n−cl∇wL(f(ξt;Wt) is also easily
adapted from the above derivation. Just note that the gradient norm appears in an equation if and
only if the perturbation radius ρn−d appears. Without dividing by ∥vt∥, the parameter d becomes
superfluous. Simply set d = 0 and remove the gradient norm constraints (III.1) to arrive at the
NE⊗OR⊤ program and bcd-constraints for the update rule without gradient normalization.

Following the arguments in Appendix V.2, dl plays a similar role as cl as both scale similar gradients.
We get effective perturbations in the l-th layer from the equation dl + min(bL+1, cL+1) = cl +
min(bL+1, cL+1, dL+1) in µP, which yields dl = cl for all l ∈ [L] (since dL+1 = 1 for stability). In
particular, in µP, the correct layerwise perturbation scaling of unnormalized gradients is given
by the rule fan out

fan in or the squared weight (update) spectral norm ∥W l∥2∗ [55], which could be
efficiently approximately tracked with a running power iteration.

Note that Dai et al. [10] argue that the normalizing the gradients for the perturbation is crucial (in
standard parametrization) due to a stabilizing effect and an enhanced drift along manifolds of minima.
Monzio Compagnoni et al. [34] find that unnormalized SAM gets stuck around saddles while SAM
slowly escapes through additional Hessian-induced noise. This suggests that the additional effort
of analysing the original SAM update rule with gradient normalization is necessary for practically

43

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

useful theory. From this paper’s point of view, the gradient normalization may be adding stability via
the n−1/2 contribution which allows to scale down ρ less aggressively in practice.

V.5. Extension to Adaptive SAM

Adaptive SAM (ASAM) [28] is motivated by a sharpness definition that is invariant to parameter
rescaling operators that leave the output function invariant, and can provide a further improvement
over SAM of 0.5% to 1%, depending on the considered vision dataset and model [35]. Here we
consider the two examples of elementwise rescaling operators (with p = 2) and layerwise rescaling
operators (with p = 2), which are the best performing SAM variant in most settings in Müller et al.
[35].

Proposition 36 Neither elementwise ASAM, which performs (SAM) but using the perturbation rule
(V.5), nor layerwise ASAM, which performs (SAM) but using the perturbation rule (V.7), can be
written as a NE⊗OR⊤program.

Proof sketch. Elementwise ASAM requires an elementwise multiplication of matrices, and layerwise
ASAM requires calculating the Frobenius norm of a matrix. A NonLin operation only takes vectors
as arguments, so NE⊗OR⊤calculations with a matrix require its multiplication with a vector. But
then a single coordinate of the resulting vector contains a mixture of an entire row of that matrix.
Since we are only allowed to define random vectors and matrices, this mixture cannot be disentangled
by choosing a structured vector.

Although ASAM is not formally covered by our theory, we still expect that the ASAM perturbations
are correlated with the gradient and therefore with the incoming activations, so that heuristically we
can still expect LLN-like behaviour and apply our scaling condition. If the perturbation rules still
behave LLN-like, then Table V.2 summarizes which layers are effectively perturbed under global
scaling and provides the unique maximal perturbation scalings for all considered SAM variants. The
correct perturbation scaling in µP for other perturbation rules that behave LLN-like can always be
derived following the same steps:

1. In µP, it always holds that

W l =


Θ(1) l = 1,

Θ(n−1/2) l ∈ [2, L],

Θ(n−1) l = L+ 1,

and ∇W lL =

{
Θ(θ∇) = Θ(n−1) l ≤ L,

Θ(1) l = L+ 1.

(V.3)

2. Assuming the normalization term in the denominator is scaled to Θ(1), track the layerwise
scalings of the numerator. Maximal stable perturbations are always achieved with

δ̃W l
t =

{
Θ(1) l = 1,

Θ(n−1) l > 1.
(V.4)

This yields constraints for achieving maximal stable perturbations in each layer.

44

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Perturbed under global scaling? For effective perturbations with µP2:
Input,
biases,
norm.

Other
hidden
layers

Output
layer

Global
ρ

Input-
like

Hidden-
like

Output-
like

SAM ✗ ✗ ✓ n1/2 n1/2 n−1/2 n−3/2

Layer. ASAM ✗ ✓ ✗ 1 1 n−1 1

Elem. ASAM ✓ ✓ ✓ n1/2 1 1 1

SAM-ON ✓ - - n1/2 1 - -

Table V.2: (Layerwise perturbation scaling for effective perturbations in µP) Without layerwise
perturbation scaling (left), each SAM variant perturbs a different subset of layers at large width
n → ∞, but we provide the unique layerwise perturbation rescaling µP2 (right) that achieves
effective perturbations in all layers. This parameterization achieves hyperparameter transfer across
widths.

3. Now replace the norm constraints (III.1) by tracking the scalings of each layer’s contribution
to the update rule’s total normalization term.

4. To ensure normalization term scaling Θ(1), iterate through the layers l:
(a) choose dl to satisfy its norm constraint,
(b) choose d to induce maximal stable perturbations in that layer,
(c) choose all other dl′ , l′ ̸= l, minimal to both satisfy its norm constraint as well as

perturbation stability δ̃W l
t =

{
O(1) l = 1,

O(n−1) l > 1.
5. From the above configurations, choose the unique one that yields maximal stable perturbations

in all layers.

If ASAM behaves Tensor Program-like, Table V.2 summarizes the subset of layers that are perturbed
under global perturbation scaling, and how to achieve µP2 with each SAM variant.

The experiments in Müller et al. [35] suggest that the role of normalization layer perturbations is
particularly important. According to Table V.2, only SAM-ON and elementwise ASAM effectively
perturb input-like layers under global scaling in µP. From a scaling perspective, normalization layers
behave like input layers and therefore standard applications of SAM or layerwise ASAM do not
effectively perturb them. Müller et al. [35, Section 5.3] make the same empirical observations in SP.
Irrespective of the SAM variant, our scaling rules even allow to balance perturbations of different
layer types and therefore provide precise understanding and control which layers should be perturbed
across model scales.

V.5.1. ELEMENTWISE ASAM

If we want to be invariant to elementwise rescaling operators T l
w(x) = |W l| ⊙ x where x,W l ∈

Rm×n and ⊙ denotes elementwise multiplication, the resulting ASAM perturbation rule (where we

45

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

introduce (layer-wise) perturbation scalings {d} ∪ {dl}l∈[L+1]) replaces (LP) and is given by

δ̃W l
t := ρn−dn

−dl |W l| ⊙ |W l| ⊙ ∇W lL(f(ξt;Wt), yt)

∥∇elem
ASAM∥

, (V.5)

with normalization

∥∇elem
ASAM∥ :=

L+1∑
l=1

n−dl
∥∥∥|W l| ⊙ ∇W lL(f(ξt;Wt), yt)

∥∥∥
F
,

where the absolute values |W l| are computed and multiplied elementwise. To find the correct
perturbation scalings, we track the typical elementwise scaling of each quantity as before.

Elementwise ASAM in µP. In µP, the layerwise weights and gradients scale as (V.3). For ∥∇elem
ASAM∥ =

O(1), we therefore replace the constraints (III.1) by the constraints

dl ≥ 1/2− c∇, for l ∈ [L], dL+1 ≥ −1/2, (V.6)

where we can choose {dl}l∈[L+1] to achieve equality in at least one constraint to achieve ∥∇elem
ASAM∥ =

Θ(1).

The layerwise perturbations scale as δ̃W l
t = n−d


Θ(n−d1θ∇) l = 1,

Θ(n−1−dlθ∇) l ∈ [2, L],

Θ(n−dL+1n−2) l = L+ 1.

Stable and nontrivial perturbations in each layer are achieved under condition (V.4), which induces
the constraints for optimal layerwise perturbation scaling

d+ dl = −c∇, for l ∈ [L], d+ dL+1 = −1.

Irrespective which of the above norm constraints (V.6) we satisfy, we need d = −1/2 to achieve
optimal layerwise perturbation scaling. Hence d = dL+1 = −1/2 and dl = 1/2 − c∇ for l ∈ [L]
is the unique choice of {d} ∪ {dl}l∈[L+1] modulo norm scaling equivalence that achieves Θ(1)
perturbation scaling in all layers. With this choice all layers contribute non-vanishingly to the
gradient norm. In µP c∇ = 1, so that dl = −1/2 for all l ∈ [L+ 1], so that ASAM does not require
layerwise rescaling of the gradients, but upscaling of the perturbation by n1/2 to achieve nontrivial
perturbations in any layer. This may explain why ASAM often outperforms SAM in large models:
By only requiring global scaling, ASAM achieves maximal stable perturbations in all layers if the
perturbation radius is tuned globally at every width.

If instead of a global gradient norm ∥∇elem
ASAM∥, one would want to normalize in each layer separately

with ∥∇elem,l
ASAM∥ := n−dl∥|W l| ⊙ ∇W lL(f(ξt;Wt), yt)∥F , the layerwise perturbation scalings be-

come δ̃W l
t = n−d

{
Θ(n−1/2) l = 1,

Θ(n−3/2) l > 1.
Again, to achieve maximal stable perturbations in all layers

we need d = −1/2 and no layerwise adaptation of the gradient norm.

46

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

V.5.2. LAYERWISE ASAM

ASAM with layerwise rescaling as in Müller et al. [35] employs the layerwise transformations
T l
w(x) = ∥W l∥F · x. This ASAM perturbation rule replaces (LP) and is given by

δ̃W l
t := ρn−dn

−dl∥W l∥2F∇W lL(f(ξt;Wt), yt)

∥∇layer
ASAM∥

, (V.7)

with normalization

∥∇layer
ASAM∥ :=

L+1∑
l=1

n−dl∥W l∥F ∥∇W lL(f(ξt;Wt), yt)∥F .

Layerwise ASAM in µP. In µP, we have ∥W l∥F =


Θ(n1/2) l = 1,

Θ(n1/2) l ∈ [2, L],

Θ(n−1/2) l = L+ 1.

Hence, the norm constraints (III.1) are now replaced by

d1 ≥ 1− c∇, dl ≥ 3/2− c∇ for l ∈ [2, L], dL+1 ≥ 0.

The scale of the perturbation numerator now scales as δ̃W l
t = n−d


Θ(n−d1nθ∇) l = 1,

Θ(n−dlnθ∇) l ∈ [2, L],

Θ(n−dL+1n−1) l = L+ 1.

In µP, achieving maximal stable perturbations (V.4) is therefore equivalent to satisfying the constraints

d+ d1 = 0, d+ dl = 1 for l ∈ [2, L], d+ dL+1 = 0.

Now we can simultaneously satisfy the first- and last-layer norm constraints with d1 = 0 and
dL+1 = 0, while achieving effective perturbations in all layers with d = 0 and dl = 1. Satisfying the
norm constraint in the hidden layers with dl = 1/2 would imply vanishing perturbations in the first
and last layer (by requiring d ≥ 1/2).

V.6. Representing general architectures and adaptive optimizers as a Tensor Program

Here, we lay out explicitly how to write some of the building blocks in ResNets and ViTs in a
Tensor Program and provide further scaling considerations. According to Yang and Hu [52], it is
straightforward to generalize scaling conditions that induce feature learning in MLPs to these other
common neural network building blocks. Since perturbations should always scale like updates, the
conditions for stable feature learning and those for stable effective perturbations are analogous.

Layernorm. The Layernorm operation is defined as

hl+1
t = γlt

xlt − νlt
σl
t + ε

+ βl
t,

47

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

where ε > 0 is a small positive constant, γlt, β
l
t are learnable parameters and νlt = 1

n

∑n
i=1(x

l
t)i

is an Avg operation as in Yang and Littwin [53, Def. 2.6.1] and σl
t =

√
1
n

∑n
i=1(x

l
t − νlt)

2 is a

composition of Nonlin, Avg and Nonlin. The parameters γlt, β
l
t can be seen as input weights to

the input 1. They should be initialized as γl0 = 1 and βl
0 = 0. In the forward pass, the layernorm

preserves stability hl+1
t = Θ(1) when γlt + βl

t = Θ(1) except for the Lebesgue nullset of learning
rates for which they exactly cancel each other out. The derivatives are

dβl
t = dhl+1

t , dγlt = dhl+1
t

xlt − νlt
σl
t + ε

.

Using ∂σl
t

∂xl
t
=

xl
t−νlt
nσl

t
, we get

dxlt = dhl+1
t γlt

(
1

σl
t + ε

(I − 1

n
)− xlt − νlt

(σl
t + ε)2

∂σl
t

∂xlt

)
= dhl+1

t γlt

(
1

σl
t + ε

(I − 1

n
11T)− xlt − νlt

(σl
t + ε)2

(xlt − νlt)
T

nσl
t

)
,

which preserves the order as long as γlt = Θ(1), since xlt = Θ(1), we know νlt, σ
l
t = Θ(1).

Note that Layernorm removes the necessity to avoid blowup in the activations xlt in the forward
pass (ignoring potential numerical issues), and always rescales to Θ(max(γlt, β

l
t)). However, in the

backward pass, a scaling xlt = Θ(nc), with c > 0, results in dxlt = Θ(n−cdhl+1
t γlt), hence vanishing

gradients. The gradients would only stabilize if ϕ′(hlt) = Θ(hlt), but no popular activation function
has a scale equivariant derivative.

Convolutions. Convolutional layers can be seen as a collection of dense weight matrices where
width corresponds to the number of channels [50]. With kernel positions ker, input channels [nl] and
output channels [nl+1], the weights of a stride-1 convolution are given by {W l

iαβ}i∈ker,α∈[nl+1],β∈[nl],

so that for each i ∈ ker, W l
i ∈ Rnl+1×nl

is a dense matrix. With {xliα}i∈posl,α∈[nl], the convolution
operation is given by

(W l ∗ x)iα =
∑

β,j:j+i∈posl
W l

jαβx
l
i+j,β,

which performs MatMul and Avg and where ker, posl are assumed to be of fixed size.

Residual connections. A residual connection propagates the current activation forward, skipping
an arbitrarily complex nonlinear block f l

t : Rnl → Rnl+1 in between, where f l
t can depend on

time-dependent parameters like a weight matrix. The forward pass can be written as

xlt = xl−1
t + f l

t(x
l−1
t).

If xlt = Θ(1) for all layers l holds in the model without residual connections, it also holds in the
model with residual connections. Note that as long as x1t = Θ(1) and f l

t = O(1), it holds that
xlt = Θ(1) for all l. But f l

t = o(1) should still be avoided, as it would hold that xl+1
t = xlt in the

infinite-width limit and the layer would be superfluous. The derivative of the activations becomes

dxl−1
t = dxlt + dxlt

∂f l
t

∂xl−1
t

,

48

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

where the second term stays the same as without the residual connection. For the example of f l
t

being a fully connected layer we get dxl−1
t = dxlt + (W l

t)
T
(
dxlt ⊙ ϕ′(W l

tx
l−1
t)

)
. In this example,

the derivative with respect to the weights becomes

∂ft

∂W l
t

= dxlt
∂xlt
∂W l

t

= dxlt
∂f l

t

∂W l
t

= (dxlt ⊙ ϕ′(W l
tx

l−1
t))(xl−1

t)T ,

where the residual connection does not alter the functional dependence on dxlt and xlt compared to a
MLP, but implicitly influences the weight gradient since dxlt and xlt are altered. As for the forward
pass, the gradient scaling dxlt gets stabilized in the backward pass so that ∂f l

t

∂xl−1
t

is now allowed to be
vanishing with width. Again, we are not aware of an architecture in which that would be desirable.

ADAM as a base optimizer. When using ADAM or similar adaptive optimizers as a base optimizer,
the learning rate should scale as Θ(1) for input-like layers and biases, and Θ(n−1) for hidden and
output layers [54]. Yang et al. [56] provide proofs for arbitrary optimizers that perform generalized,
nonlinear outer products. In the example of ADAM, the update rule can be written as

ϕ(u1α, . . . , u
k
α, v

1
β, . . . , v

k
β) =

∑
i

γiu
i
αv

k
β/

(∑
i

ωi(u
i
αv

i
β)

2

)1/2

,

where γi, ωi are the weights that stem from the moving averages. By using a learning rate of n−1

and using the fact that both u and v have approximately iid coordinates of order Θ(1), the law of
large numbers yields Θ(1) updates of the form

1

n

n∑
β=1

ϕ(u1α, . . . , u
k
α, v

1
β, . . . , v

k
β)xβ = Eϕ(u1α, . . . , ukα, Zv1 , . . . , Zvk)Zx.

Any other learning rate scaling would either result in blowup or vanishing updates.

V.7. Influence of width-dependent weight multipliers on bcd-parameterizations

Our definition of bcd-parameterizations is convenient because it purely adapts the learning algorithm
but not the architecture. We can also adapt the architecture by using layerwise width-dependent
weight multipliers to avoid the necessity of layerwise perturbation scaling for effective pertur-
bations in all layers. The reason is that weight multipliers scale the gradients. In this section, we
study how the introduction of weight multipliers affects bcd-parameterizations.

In this section, we consider L-hidden layer MLPs with weight multipliers {al}l∈[L+1], width n ∈ N,
inputs ξ ∈ Rdin , and with outputs f(ξ) := n−aL+1WL+1xL(ξ) where the activations xL(ξ) are
defined via the iteration

h1(ξ) := n−a1W 1ξ, xl(ξ) := ϕ(hl(ξ)), hl+1(ξ) := n−alW l+1xl(ξ).

We define abcd-parameterizations in the same way as bcd-parameterizations, but instead of MLPs
we use MLPs with weight multipliers {al}l∈[L+1].

abcd-equivalence classes. The weight multipliers n−al affect the gradient scaling in the respective
layer analytically as n−2al . This can be counteracted by adapting the learning rate scaling. For

49

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

abc-parameterizations and SGD training, this induces the layerwise equivalence between parameteri-
zations with (al, bl, cl) or with (al + θ, bl − θ, cl − 2θ). As perturbations are gradient-based, they
behave like updates, and dl − 2θ analytically cancels out the changed gradient scaling.

The following lemma formalizes the parameterization equivalences for SAM with SGD as a base
optimizer. Its proof is provided at the end of this section. The extension to ADAM as a base optimizer
is straightforward, since learning rate scalings and perturbation scalings are decoupled. For ADAM,
cl should be adapted to cl − θl.

Lemma 37 (abcd-equivalence classes) Let ft(ξ) denote the output of a MLP in a stable abcd-
parameterization with weight multipliers {al}l∈[L+1] after t steps of training with the SAM update
rule with layerwise perturbation scaling (LP) using a fixed sequence of batches and evaluated on
input ξ. Then for any {θl}l∈[L+1] ⊂ R, ft(ξ) stays fixed for all t and ξ if

(a) {dl}l∈[L+1] is reparameterized to {dl + C}l∈[L+1] for some arbitrary C ∈ R,
(b) (al, bl, cl, dl, d) is reparameterized to (al + θl, bl − θl, cl − 2θl, dl − 2θl, d).

Impacts on global perturbation scaling. Here we restrict ourselves to the µP equivalence class
of abc-parameterizations, and do not allow layerwise perturbation scaling. We are interested in
the maximal stable choice of global perturbation scaling n−d to at least achieve non-vanishing
perturbations in some layers. Note that there exist multiple abcd-equivalence classes that satisfy
µP, but they induce differing global perturbation scalings. The crucial difference between SAM
and SGD is that the layers are coupled through the joint gradient normalization in the update rule.
Different choices of {al}l∈[L+1] induce different relative scalings of the gradient norms, so that
different subsets of the layers dominate the total gradient norm, and allow different choices of global
perturbation scaling d. Therefore the maximal global perturbation scaling will not always belong to
the same equivalence class. This even affects which subset of layers will be effectively perturbed
in global perturbation scaling. The following lemma summarizes the effect of the choice of weight
multipliers {al}l∈[L+1] on the abcd-parameterization with maximal stable perturbations. Its proof is
provided at the end of this section.

Lemma 38 (Effect of weight multipliers on global scalings) Assume {(al, bl, cl)}l∈[L+1] are cho-
sen from the µP equivalence class. Assume there is some C ∈ R such that dl = C for all l ∈ [L+1].

(a) (Naive perturbation scaling is not sufficient) Under naive perturbation scaling d = 0, there
is no choice of {al}l∈[L+1] that achieves effective perturbations in the first layer.

(b) (Global scaling can effectively perturb all layers) Global perturbation scaling achieves
effective perturbations in all layers as long as the following constraints are satisfied,

d = −1/2, al = a1 + 1/2 for l ∈ [2, L], aL+1 = a1 + 1.

(c) (mup package global scaling effectively perturbs hidden layers) The mup-package implements
the choice aL+1 = 1 and al = 0 for l ∈ [L]. Then maximal stable perturbations are achieved
under d = 0. In this parameterization, hidden layers are effectively perturbed, but first
and last layers are not effectively perturbed. µP2 would now be achieved with the choice
d = d1 = dL+1 = −1/2 and d1 = −1/2, dl = 1/2 for l ∈ [2, L].

50

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

The above lemma asks how much we can simplify the perturbation scaling while recovering effective
perturbations in all layers. Lemma 38(a) shows that the global perturbation radius always has
to be scaled nontrivially, in order to achieve effective perturbations in all layers. The reason is
that the gradient normalization prevents the weight multipliers from arbitrarily scaling the global
perturbation radius. But Lemma 38(b) shows that with global perturbation scaling d = −1/2
layerwise perturbation scaling is not necessary, with a proper choice of weight multipliers. One
choice of {al}l∈[L+1] that achieves such effective global perturbation scaling would be a1 = 0,
al = 1/2 for l ∈ [2, L] and aL+1 = 1. This choice resembles the mup-package if one implemented
hidden layers with weight multiplier n−1/2. The current implementation of the mup-package
seems suboptimal for the SAM update rule with layerwise perturbation scaling (LP) in the sense
that it requires both an adaptation of the architecture and of the learning algorithm, whereas bcd-
parameterizations only adapt the learning algorithm and abcd-parameterizations from Lemma 38(b)
only require adapting the architecture and the global perturbation radius. The generalized gradient
norm and effective perturbation constraints in the proof of Lemma 38 jointly show that in all abcd-
parameterizations that achieve effective perturbations in all layers, d = −1/2 and only the first layer
contributes non-vanishingly to the gradient norm.

Proof of Lemma 37

Part (a) is immediately implied by the normalization of vlt in (LP).

Part (b) follows in the same way as for SGD Yang et al. [54]. Analytically, al + θ scales the l-th
layer’s gradient as n−2θ, which can be counteracted by cl − 2θ and dl − 2θ, since both the cl and dl
scale analogous gradients.

Proof of Lemma 38

In general, in the abc-equivalence class of µP, the l-th layer’s gradient norm is scaled by n−2al . This
induces the generalized gradient norm constraints for ∥∇WL∥ = Θ(1),

d1 ≥ −1/2− 2a1, dl ≥ −2al, dL+1 ≥ 1/2− 2aL+1.

Effective perturbations are achieved when ρn−d−dl∇W lL = Θ(n−I(l>1)), which induces the pertur-
bation stability constraints

d+ d1 ≥ −1− 2a1, d+ dl ≥ −2al, d+ dL+1 ≥ 1− 2aL+1,

with effective perturbations whenever the equality of the respective layer holds.

Part (a):

Under naive perturbation scaling d = 0, it is clear that the first layer gradient norm constraint
d1 ≥ −1/2− 2a1 is exhausted before effective perturbations are achieved at d1 = −1− 2a1.

Part (b):

For some C ∈ R, the gradient norm constraints become C ≥ −1/2 − 2a1, C ≥ −2al, C ≥
1/2− 2aL+1, where one equality is required to hold. The effective perturbation constraints become
d + C ≥ −1 − 2a1, d + C ≥ −2al, d + C ≥ 1 − 2aL+1. Hence, if the last layer gradient norm
constraint is fulfilled, d = 1/2 achieves effective last-layer perturbations, but first and hidden layers

51

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

cannot be effectively perturbed; d < 1/2 then induce output perturbation blowup. But, if the first-
layer norm constraint is fulfilled (by C = −1/2− 2a1), then d = −1/2 induces effective first-layer
perturbations, and the choices al = 1/2 + a1 and dL+1 = 1 + a1 achieve effective perturbations in
hidden and last layers while contributing vanishingly to the gradient norm.

Part (c):

The mup-package implements µP for the last layer with the width multiplier n−1, the initialization
variance N(0, 1) and the SGD learning rate ηn, letting them treat all weight vectors (input-like or
output-like) in the same way. As updates scale as ηn∇WL+1L = Θ(n−1), the last-layer gradient
must now scale as ∇WL+1L = Θ(n−2) and ∥∇WL+1L∥ = Θ(n−3/2) (this could also be derived
by elementary calculations). Hence the last-layer gradient norm constraint (III.1) is replaced by
dL+1 ≥ −3

2 with equality for Θ(1) gradient norm contribution. For effective perturbations in the last
layer, we need ρn−d−dL+1∇WL+1L = Θ(n−1), which translates into d+ dL+1 = −1 for effective
perturbations, where d+ dL+1 ≥ −1 is required for perturbation stability. The overall weight scaling
WL+1 = Θ(n−1) remains invariant, and with it dxL = WL+1 and the gradients of all previous
layers. To summarize, the adapted norm constraints for n−dl∥∇W lL∥ = Θ(1) in mup are now

d1 ≥ −1/2, dl ≥ 0, dL+1 ≥ −3/2,

and the conditions to achieve effective perturbations δ̃W l = Θ(n−I(l>1)) in mup are

d+ d1 ≥ −1, d+ dl ≥ 0, d+ dL+1 ≥ −1.

Maximal perturbations in all layers are now achieved with the previous choices d = −1/2, d1 =
−1/2, dl = 1/2, but now dL+1 = −1/2 in the last layer, which still contributes vanishingly to the
gradient norm.

For global scaling, now all hidden layers contribute to Θ(1) gradient norm with dl = 0 for all
l ∈ [L + 1]. The minimal stable choice of global perturbation scaling is now d = 0 achieving
effective hidden-layer perturbations, but not effective first- or last-layer perturbations.

V.8. Implementation of the spectral µP perspective for varying widths

When allowing the width to vary inside the network, we need to track the initialization, learning rate
and perturbation scaling more carefully in terms of layerwise width nl. As varying width is common,
this is the version of bcd-parametrizations we implement. We closely follow the implementation
in the mup package by introducing a base width at which SP and µP are equivalent, allowing to
immediately transfer setups that perform well in SP.

While we use the mup package as a basis for the ViT experiments, for MLPs and ResNets we do not
introduce a width multiplier in the output layer and directly implement bcd-parameterizations using
the spectral conditions from Yang et al. [55]. Yang et al. [55] provide a simple key requirement on
the spectral norm scaling of weight matrices to achieve µP. With input width fan_in and output

width fan_out, the initialization variance should be chosen as b = 1√
fan_in

min
{
1,
√

fan_out
fan_in

}
,

and learning rate c = fan_out
fan_in .

52

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Implementation details for µP2. We scale layerwise learning rates with the layerwise factor
fan_out
fan_in . For ADAM, due to gradient normalization, the learning rate should be scaled as 1

fan_in .
The initialization variance remains the same 1

fan_in in all except the last layer, which we initialize
to 0 anyways. The layerwise perturbation radii should scale as the learning rates fan_out

fan_in . If we
decouple the gradient normalization terms in the denominator of the SAM update rule and intend

to scale them all to Θ(1), each input-like and each hidden-like term should be scaled as
√

fan_out
fan_in .

Here output layers require a special treatment, if we care about the correct width-independent spectral
constants, which may be significant when nL+1 is large, as in ImageNet1K. For hidden and input
layers l ∈ [L], we get dW l = dhl(xl−1)T = Θ(1/nl), where dhl = Θ(1/nl) coordinatewise with
Frobenius (equivalently spectral) norm ∥dW l∥∗ = ∥dW l∥F =

√
nl−1

nl
. Output layer gradients

scale as dWL+1 = xL = Θ(1) thus ∥dWL+1∥∗ = ∥dWL+1∥F =
√
nLnL+1. This also shows that

fulfilling the spectral update condition ∥∆WL+1∥∗ = Θ(
√

nL+1

nL
) strictly speaking requires a SGD

learning rate scaling 1
nL

. For biases before the last layer, dbl = dhl so ∥dbl∥∗ = ∥dbl∥F =
√

1
nl

,

which fits into the scheme
√

fan_in
fan_out , but for the output layer bias ∥dbL+1∥F = ∥1∥F =

√
nL+1. In

the output layer, the term dhl = Θ(1/nl) is missing. The output multiplier used in the mup package
does not correct this difference, but using a base width cancels out all occurences of nL+1.

For elementwise ASAM, it suffices to rescale the global perturbation radius by
√
nL, assuming all

width dimensions scale at the same rate.

For layerwise ASAM and l ∈ [L], we get ∥W l
t∥F = ∥W l

0∥F = Θ(
√
nl), which requires layerwise

perturbation scaling 1
fan_in , and in the denominator ∥W l∥F ∥∇W lL∥∗ =

√
nl

√
nl−1

nl
=

√
nl−1

requires
√

1
fan_in for width independence. For output layer weights ∥WL+1∥2F = ∥∆WL+1∥2F =

Θ(
n3
L+1

nL
). For perturbations that fulfill the spectral condition ρL+1∥WL+1∥2F ∥∇W l+1L∥∗ = Θ(

√
nL+1

nL
),

we need to choose ρL+1 = 1
n3
L+1

(width-independent). The last-layer denominator term scales as

∥WL+1∥F ∥∇W l+1L∥∗ = Θ(

√
n3
L+1

nL
· √nLnL+1) = Θ(n2

L+1), which is width independent, but

can be a big constant if nL+1 is large like in ImageNet1K. The output bias has ∥∆bL+1∥2F = nL+1

requiring ρ = Θ(1
fan_out). Using a base width, the scalings of both output weights and the output

bias become width-independent.

If using the mup-package, only the last layer scalings change. WL+1 and ∆WL+1 remain invariant,
but ∇WL+1L should be scaled by n−2

L everywhere. For SAM, the last layer can now be scaled
like input layers. More details can be found in Appendix V.7. For SAM-ON nothing changes,
as only input-like layers are perturbed. For elementwise ASAM, the last-layer numerator scaling
becomes Θ(n

5/2
L), and the last-layer denominator scaling becomes Θ(n−2

L), assuming a base width
and ignoring the fixed nL+1. For the example of layerwise ASAM, we get ∥WL+1∥F ∥∇W l+1L∥∗ =
Θ(

n2
L+1

n2
L

), and ρL+1 =
n2
L

n3
L+1

.

To provide a code example, the SAM implementation Samuel [41] can simply be adapted to µP2

as follows (scaling the gradient norm contributions of all layers to Θ(1) as we do for the ViT
experiments). Note that while SP cannot induce effective perturbations (as proven by Theorem 4),

53

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

one can still run SP with layerwise perturbations (SP-MPP) empirically. The crucial parameters to
track are group["rho"] and group["gradnorm_scaling"]:

import math, torch
from mup import MuAdamW

specify parameterization
parameterization, perturbation = ’mup’, ’mpp’

specify model and hyperparameters
model, lr, rho, weight_decay, last_layer_weight_name = ...

class SAM(torch.optim.Optimizer):
...

def grad_norm(self):
grads = []
for i, group in enumerate(self.param_groups):
for p in group["params"]:

grads.append((group["gradnorm_scaling"] * p.grad).norm(p=2))
norm = torch.stack(grads).norm(p=2)
return norm

@torch.no_grad()
def first_step(self): # the perturbation step before the weight update
grad_norm = self.grad_norm()
for group in self.param_groups:
scale = group["rho"] / (grad_norm + 1e-12)
for p in group["params"]:

if p.grad is None: continue
self.state[p]["old_p"] = p.data.clone()
e_w = p.grad * scale.to(p)

p.add_(e_w) # climb to the local maximum "w + e(w)"

definition of the SAM optimizer for:
LR parameterization (parameterization in [’sp’, ’mup’]), and
RHO parameterization (perturbation in [’naive’,’global’,’mpp’])

param_groups = []
if parameterization == ’mup’ or perturbation == ’mpp’:

for name, p in model.named_parameters():
if p.infshape.ninf() == 0 or perturbation in [’global’,’naive’]:
group = {

"params": [p],
"lr": lr,
"rho": rho,
"gradnorm_scaling": 1,

}
elif p.infshape.ninf() == 1:
vector-like
for d in p.infshape:

if d.base_dim is not None:
factor = d.dim / d.base_dim

54

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

break
group = {

"params": [p],
"lr": lr,
"rho": rho * factor,
"gradnorm_scaling": math.sqrt(factor),

}
if name == last_layer_weight_name:

group["gradnorm_scaling"] = math.sqrt(factor)**3
elif p.infshape.ninf() == 2:
matrix-like
factor = (p.infshape[0].dim/p.infshape[1].dim) * (p.infshape[1].base_dim/p

.infshape[0].base_dim)
group = {

"params": [p],
"lr": lr,
"rho": rho * factor,
"gradnorm_scaling": math.sqrt(factor),

}
else:
raise NotImplementedError

param_groups.append(group)
elif parameterization == ’sp’:

for name, p in model.named_parameters():
group = {
"params": [p],
"lr": lr,
"rho": rho,
"gradnorm_scaling": 1,

}
param_groups.append(group)

else:
raise NotImplementedError

optimizer = SAM(param_groups,
base_optimizer=MuAdamW if parameterization==’mup’ else torch.optim.AdamW,
weight_decay=weight_decay)

Algorithm 1: Implementation of µP2 for SAM using the mup-package and PyTorch. This code scales
the gradient norm contributions of all layers to be width-independent.

VI. Experimental details

If not mentioned otherwise, experiments use the settings specified in this section. While we directly
implement bcd-parameterizations for MLPs and ResNets in PyTorch [39], we use the mup-package
[54] as a basis for ViT experiments.

MLPs. We train 3-layer MLPs without biases with ReLU activation function for 20 epochs with
constant learning rate, using SGD as base optimizer as specified in Definition 3, but allow for SGD
batchsize larger than 1, defaulting to batch size 64. We evaluate the test accuracy after every epoch
and use the snapshot across training with the best accuracy. This is necessary as the test accuracy

55

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Hyperparam. SAM SAM-ON ResNet18 Elem. ASAM Layer ASAM
SP µP2 SP µP2 SGD SP µP2 SP µP2

Training epochs 200
Batch size 64
LR η 0.05 2−4 0.05 2−4 0.05 2−4 0.1 2−4

LR decay Cosine
Weight decay 0.0005
Momentum 0.9
Labelsmoothing 0.1
Pert. radius ρ 0.1 2−4 0.5 5 · 2−4 2 10 · 2−4 0.02 2−6

Output multiplier 1 0.125 1 0.125 1 0.125 1 0.125

Table VI.1: (ResNet-18 hyperparameters for CIFAR10) Hyperparameters for SP are taken from
Müller et al. [35]. Learning rate and perturbation radius are tuned using the experiments in Ap-
pendix VII.3.2. ResNets in µP have base width 0.5, gradient norm scaling according to Definition 3
and their last layer is initialized to 0.

is not monotonically increasing across training, while the training accuracy is. For ResNets we do
not observe such harmful overfitting. For the standard parametrization, we use He initialization [19]
and don’t tune multipliers to mimic standard training procedures. For µP, we resort to the optimal
multipliers from Yang et al. [54]. We then find the optimal learning rate and perturbation radius for
each bcd-parametrization and SAM variant separately.

ResNets. For ResNet18 experiments, we augment the CIFAR10 data with random crops and random
horizontal flips, set labelsmoothing to 0.1 and use a cosine learning rate schedule. ResNets in
µP have base width 0.5, gradient norm scaling according to Definition 3 and their last layer is
initialized to 0. For SP, we again adopt the standard hyperparameters from Müller et al. [35] by
using a momentum of 0.9, weight decay 0.0005, an output multiplier of 1.0, and individually tuned
learning rate and perturbation radius for each SAM variant. For µP, at base width multiplier 0.5
compared to the original width, for each SAM variant, we perform a random grid search over
the hyperparameters learning rate, perturbation radius, output multiplier [2−8, 2−7, . . . , 28], weight
decay [0, 10−5, 10−4, 5 · 10−4, 10−3, 10−2] and momentum [0, 0.1, 0.4, 0.7, 0.9]. Learning rate and
perturbation radius grids were either set to [2−10, 2−9, . . . , 21] or centered around recommendations
from the literature. The optimal hyperparameter configurations found from at least 150 runs for each
SAM variant are summarized in Table VI.1. Learning rates and perturbation radii were further tuned
with the experiments from Appendix VII.3.2.

ViTs. We train ViT-S/16 with 6 layers and 12 attention heads on ImageNet1K [12] and a ViT-S/4
with 12 layers and 12 attention heads on CIFAR100 [27] (see ??), again adopting the hyperparameter
settings from Müller et al. [35]. This means we use AdamW as a base optimizer with warmup
and a cosine learning rate decay. For CIFAR100, we use random crops, random horizontal flips
and AutoAugment as data augmentations. For Imagenet we use the original preprocessing from
Huggingface vit-base-patch16-224 [48]. For µP, we tune multipliers at a basewidth 384,
initialize the last layer and query weights to 0. By using the µP package, the relative perturbation
scalings change as explained in Appendix V.8 and Appendix V.7. Global and naive perturbation

56

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Hyperparam. SAM on ImageNet1K SAM on CIFAR100
SP µP2 shared SP µP2

Training epochs 100 300
Batch size 128
LR η 0.001 0.00226 0.0005
LR warmup epochs 10 30
LR decay Cosine
Weight decay 0.1 0.0872 0.05
Labelsmoothing 0.1
Pert. radius ρ 1 1.1939 0.25 0.25
Input multiplier 1 1.7309 1 1.7309
Output multiplier 1 4.0946 1 4.0946
Layers 6 12
Attention heads 12
Patch size 16 4

Table VI.2: (Vision Transformer hyperparameters) Hyperparameters for SP are taken from Müller
et al. [35] using AdamW as a base optimizer. ViTs in µP have base width 384, last layer and query
weights are initialized to 0 and gradient norm contributions of all layers are scaled to Θ(1).

ResNet-18 on CIFAR10 ViT on CIFAR100 ViT on ImageNet1K
Width multiplier 0.5 1 2 4 0.5 1 2 0.5 1 2
Seconds per epoch 109 161 327 803 209 327 777 2550 4151 9802

Table VI.3: (Training time per epoch) Training time (in seconds) per epoch of the entire data
loading and training pipeline of SAM in µP2 on a single NVIDIA A10G GPU.

scaling in µP now coincide. Here, instead of the original perturbation scaling Definition 3, we
scale the gradient norm contributions of all layers in the denominator to Θ(1). The hyperparameter
choices for ViTs on CIFAR100 and ImageNet are summarized in Table VI.2. For µP, the learning
rate, perturbation radius, input multiplier, output multiplier and weight decay were tuned using 3
independent runs of Nevergrad NGOpt with budget 56 on ImageNet. The same multipliers are used
on CIFAR100.

Figures. Whenever multiple runs with independent random seeds are used for training, confidence
bands cover the interval from the empirical 2.5%- to the empirical 97.5%-quantile. The line then
denotes the average of all runs. When confidence bands are given, but the number of independent
runs is not specified, the number of runs defaults to 4.

Computational resources. We ran all of our experiments on Amazon EC2 G5 instances each
containing up to 8 NVIDIA A10G GPUs. On a single GPU, our µP2-SAM training script for MLPs
of width 4096 on CIFAR10 takes 502 seconds to run in total (25 seconds per epoch), where data
handling takes most of the time. The training times for ResNets and ViTs are presented in Table VI.3.

57

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

VII. Supplemental experiments

This section provides more extensive empirical evaluations to validate the claims of the main paper.
By naive perturbation scaling (naive) we denote parameterizations that do not adapt any perturbation
scalings (d = dl = 0 for all l). Global perturbation scaling (global) denotes the maximal stable
scaling n−d of the global perturbation radius that achieves effective perturbations in some layers
without layerwise perturbation scaling (dl = 0 for all l).

While previous µP-literature mostly focuses on the more immediate transfer in training error, for
SAM it is crucial to consider optimality in test error as the perturbation radius acts as a regularizer,
so that optimality in test error typically coincides with suboptimal training error.

VII.1. SAM is approximately LL-SAM in µP with global perturbation scaling

Figures VII.1 and VII.2 compare SAM in µP under global perturbation scaling (µP-global) with
SAM under global perturbation scaling where only the last-layer weights are perturbed (LL-SAM)
by showing more neural network statistics that are related to SAM’s inductive bias and to learning in
general. From top-left to bottom right, the statistics are: Frobenius norm of the layerwise weight
perturbation (which is closely related to spectral norm as perturbations are low rank); Frobenius
norm of the layerwise weight perturbation normalized by the weight spectral norm to upper bound
the influence of the perturbations on the output; spectral norm of the weight updates across training
scaled by the spectral condition n1/2, 1 and n−1/2 for input, hidden and output layers respectively;
norm of the activation updates for each layer normalized by the square root of the layer’s output
dimension to measure coordinatewise update scaling; layerwise effective feature ranks measured
as in Andriushchenko et al. [2] by the minimal amount of singular values to make up 99% of the
variance of the activations in a given layer; gradient norm, Hessian spectral norm and Hessian trace
of loss with respect to weights; training accuracy, test accuracy after optimally stopping.

Observe that especially for large widths, global perturbation scaling effectively only perturbs the last
layer, as predicted by Theorem 4. Last-layer SAM is more similar to µP-global SAM than SGD on
all of the tracked statistics, in particular at large widths. Only perturbing the last layer still affects the
gradients in earlier layers so that weight updates and activations change in all layers. We find that
SAM in µP with global scaling does not consistently improve generalization performance over SGD,
whereas µP2 does improve over SGD for all widths (Figure VII.4). Last-layer perturbation norms
coincide by design with the global perturbation radius n−dρ and their effect on the activations stays
Θ(1) with increasing width as measured in relation to weight spectral norm. Formally the last-layer
perturbation norm converges due to

∥W̃L+1 −WL+1∥F = n−dρ∥χtx
L
t

∥vt∥
∥F → n−dρ∥ xLt

∥xLt ∥
∥F = n−dρ → 0,

where the loss derivative χt always cancels out due to the normalization and the global gradient norm
∥vt∥ is dominated by the last-layer gradient norm due to the global scaling (Theorem 4). Normalizing
the weight perturbations by the weight spectral norm measures the influence of the perturbations on
the activations. Note that this influence is also vanishing. Feature ranks stay close to initialization,
since random initialization has high rank and training does low effective rank updates. Here we
do not observe that SAM reduces the feature rank compared to SGD. The Hessian spectral norm

58

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

and trace are quite noisy. The last-layer Hessian spectral norm explodes with width in µP, because
last-layer learning rate is scaled as n−1, hence the edge of stability explodes. ResNets in µP are more
stable, their Hessian spectral norm even shrinks with width (not shown).

Contrast the results for µP-global with the results for µP2 in Appendix VII.2 for a comparison with
SGD in µP. The Hessian spectral norm is reduced by SAM as you would expect. Additionally µP2

shows low variability in performance and all other statistics. SAM in µP2 does not reduce the feature
rank compared to SGD in µP. This suggests that the conclusions drawn by Andriushchenko et al. [2]
do not apply to MLPs in µP.

64 256 1024 4096 16384

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

‖W̃
−
W
‖ F

Input layer

64 256 1024 4096 16384

0.000

0.002

0.004

0.006

0.008

Hidden layer

64 256 1024 4096 16384

0.000

0.005

0.010

0.015

0.020

0.025

Output layer

SAM-SGD
SAM-SGD-LL

64 256 1024 4096 16384

Width

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

‖W̃
−
W
‖ F
/
‖W
‖ ∗

×10−5

64 256 1024 4096 16384

Width

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

64 256 1024 4096 16384

Width

0.000

0.005

0.010

0.015

0.020

0.025
SAM-SGD
SAM-SGD-LL

(a)

64 256 1024 4096 16384

Width

9.25

9.50

9.75

10.00

10.25

10.50

10.75

||∆
W
l ||
∗/
cl

Input layer

64 256 1024 4096 16384

Width

6

7

8

9

10

Hidden layer

64 256 1024 4096 16384

Width

6

8

10

12

14

Output layer

SAM-SGD
SAM-SGD-LL
SGD

(b)

64 256 1024 4096 16384

Width

0.12

0.14

0.16

0.18

0.20

C
oo

rd
.w

is
e
‖x
t
−
x

0
‖

Input layer

64 256 1024 4096 16384

Width

0.15

0.20

0.25

0.30

Hidden layer

64 256 1024 4096 16384

Width

3

4

5

6

7

8

Output layer

SAM-SGD
SAM-SGD-LL
SGD

(c)

Figure VII.1: Several neural network statistics for SAM (blue), LL-SAM (green) and SGD as a
baseline (orange) across width after training a 3-layer MLP in µP-global for 20 epochs with the
optimal learning rate 0.3432 and perturbation radius 0.2154. The statistics are explained in the text
of Appendix VII.1.

59

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

64 256 1024 4096 16384

Width

100

200

300

400

500

Fe
at

ur
e

ra
nk

Input layer

64 256 1024 4096 16384

Width

100

200

300

400

500

Hidden layer

64 256 1024 4096 16384

Width

8.0

8.2

8.4

8.6

8.8

9.0

Output layer

SAM-SGD
SAM-SGD-LL
SGD

(a)

64 256 1024 4096 16384

Width

0

2

4

6

8

10

12

14

16

G
ra

di
en

tn
or

m

SAM-SGD
SAM-SGD-LL
SGD

(b)

64 256 1024 4096 16384

Width

0

500

1000

1500

2000

2500

3000

3500

H
es

si
an

sp
ec

tr
al

no
rm

SAM-SGD
SAM-SGD-LL
SGD

(c)

64 256 1024 4096 16384

Width

0

10000

20000

30000

40000

H
es

si
an

tr
ac

e

SAM-SGD
SAM-SGD-LL
SGD

(d)

64 256 1024 4096 16384

Width

60

65

70

75

80

85

90

95

100

Tr
ai

ni
ng

ac
cu

ra
cy

SAM-SGD
SAM-SGD-LL
SGD

(e)

64 256 1024 4096 16384

Width

46

48

50

52

54

56

58

60

Te
st

ac
cu

ra
cy

SAM-SGD
SAM-SGD-LL
SGD

(f)

Figure VII.2: Figure VII.1 continued.

60

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

VII.2. Propagating perturbations from the first layer does not inherit SAM’s benefits

Here we apply a parametrization that only effectively perturbs the first layer weights (derived in
Example 1). Appendix VII.2 and Fig. VII.3 shows that effective first-layer SAM loses both µP2

SAM’s improvement in test accuracy as well as SAM’s inductive bias towards smaller gradient norm
and Hessian norm, i.e. lower sharpness in MLPs. This performance deterioration occurs although
the perturbation of first-layer SAM has an effect of the same order of magnitude as µP2 on weight
and activation updates in all layers. This shows that mere propagation of weight perturbations from
earlier layers cannot replace effective weight perturbations in each layer in order to benefit from
SAM. It is crucial to correctly adjust the layerwise perturbation scaling, and to distinguish between
effective perturbations and perturbation nontriviality in each layer.

SAM in µP2, on the other hand, achieves the correct perturbation and update scaling, has lower final
gradient and Hessian spectral norm, improves test accuracy over SGD and has overall lower variance
between training runs.

61

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

64 256 1024 4096

0

2

4

6

8

10

12

14
‖W̃
−
W
‖ F

Input layer

64 256 1024 4096

0.00

0.05

0.10

0.15

0.20

0.25

Hidden layer

64 256 1024 4096

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Output layer

perturbation
mpp
first layer

64 256 1024 4096

Width

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

‖W̃
−
W
‖ F
/
‖W
‖ ∗

64 256 1024 4096

Width

0.000

0.005

0.010

0.015

0.020

64 256 1024 4096

Width

0.000

0.005

0.010

0.015

0.020

0.025
perturbation

mpp
first layer

(a)

64 256 1024 4096

Width

11.5

12.0

12.5

13.0

||∆
W
l ||
∗/
cl

Input layer

64 256 1024 4096

Width

6

8

10

12

Hidden layer

64 256 1024 4096

Width

4

6

8

10

12

Output layer

mpp
first layer
SGD

(b)

64 256 1024 4096

Width

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
oo

rd
.w

is
e
‖x
t
−
x

0
‖

Input layer

64 256 1024 4096

Width

0.15

0.20

0.25

0.30

0.35

Hidden layer

64 256 1024 4096

Width

2

3

4

5

6

7

8

9

Output layer

mpp
first layer
SGD

(c)

Same neural network statistics as in Figure VII.1 but SAM-SGD in µP2 (blue) versus MUP with
perturbations scaled to only effectively perturb the first layer weights (green) with SGD in µP as
a baseline. The first-layer perturbation parameterization performs worse than µP2 and results in
gradient norm and Hessian norm similar to that of SGD, larger than those of SAM. While the spectral
norm of the weights converges to a similar quantity as for µP2, the effect of the weight changes on
the hidden activation updates behaves more like SGD. Feature ranks all look similar.

62

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

64 256 1024 4096

Width

100

200

300

400

500

Fe
at

ur
e

ra
nk

Input layer

64 256 1024 4096

Width

100

200

300

400

500

Hidden layer

64 256 1024 4096

Width

8.0

8.2

8.4

8.6

8.8

9.0

Output layer

mpp
first layer
SGD

(d)

64 256 1024 4096

Width

10

20

30

40

50

G
ra

di
en

tn
or

m

mpp
first layer
SGD

(e)

64 256 1024 4096

Width

0

200

400

600

800

1000

1200

H
es

si
an

sp
ec

tr
al

no
rm

mpp
first layer
SGD

(f)

64 256 1024 4096

Width

0

250

500

750

1000

1250

1500

1750

H
es

si
an

ei
ge

nv
al

ue
ga

p

mpp
first layer
SGD

(g)

64 256 1024 4096

Width

60

70

80

90

100

Tr
ai

ni
ng

ac
cu

ra
cy

mpp
first layer
SGD

(h)

64 256 1024 4096

Width

44

46

48

50

52

54

56

58
V

al
id

at
io

n
ac

cu
ra

cy
mpp
first layer
SGD

(i)

Figure VII.3: Appendix VII.2 continued.

VII.3. Hyperparameter transfer

In this section, we provide supplemental evidence that µP2 is the unique parameterization that robustly
achieves hyperparameter transfer both for the optimal learning rate and the optimal perturbation
radius across neural architectures and datasets.

VII.3.1. MLPS

Figure VII.4 shows that in µP2 the optimal hyperparameters in terms of test accuracy transfer in both
learning rate and perturbation radius at sufficient width. In µP2, SAM improves over SGD more than
in SP, and the overall best test accuracy is achieved with the widest MLPs in µP2.

While other works focus on hyperparameter transfer in training loss, we are ultimately interested
in transfer with respect to test accuracy. Especially under harmful overfitting, the test accuracy
is affected by nontrivial interactions between the learning rate and the perturbation radius. While

63

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

the joint optimum is slightly shifting towards larger learning rate and perturbation radius for small
widths, it remains remarkably stable for sufficient width ≥ 1024. Note that slight shifts in the optimal
learning rate due to finite width biases have also been observed in earlier works [54].

Figure VII.5 shows that global perturbation scaling does transfer the same perturbation instability
threshold, whereas in µP-naive every fixed perturbation radius becomes unstable at sufficient width
(Appendix VII.3.1). But in µP-global we do not observe a benefit of SAM over SGD. While the
optimal learning rate with respect to the training accuracy transfers, the optimal learning rate with
respect to the validation error is smaller for MLPs of moderate widths due to harmful overfitting.
How to control for nonmonotonic dependence of the test error on the training error is an important
question for future work. Figure VII.6 also shows µP-global but with a different choice of input
and output multipliers. With these multipliers, networks with width at most 256 perform better in
terms of test accuracy than with the other multiplier choice in Figure VII.5, but these multipliers
have worse width scaling properties. To the best of our knowledge, the issue that optimally tuned
hyperparameters on small models may scale worse than slightly suboptimal hyperparameters has not
been stated before. This raises the question when and how can we use small models to predict the
optimal choice of all hyperparameters jointly in large models.

Figure VII.4: Training accuracy (top) and test accuracy (bottom) after optimally stopping 20 epoch
SAM training as a function of learning rate (left) with perturbation radius ρ = 0.2154, and as a
function of perturbation radius (right) with learning rate η = 0.4529 in µP2. The optimal learning
rate transfers. The smaller the perturbation radius the better the training accuracy. For sufficiently
wide MLPs, the validation-optimal perturbation radius transfers as well and SAM reduces harmful
overfitting.

64

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Figure VII.5: Training accuracy (top) and test accuracy (bottom) after optimally stopping 20 epoch
SAM training as a function of learning rate (left) and perturbation radius (right) in µP-global with
the same base learning rate and perturbation radius as in Appendix VII.3.1. For global perturbation
scaling, we do not observe a benefit of SAM over SGD.

65

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

Figure VII.6: Same as Figure VII.5 but with input multiplier 0.0305 and small output multiplier
0.0098. Note that networks with width at most 256 perform better in terms of test accuracy than
with the other multiplier choice in Figure VII.5, but the multipliers here have worse width scaling
properties. To the best of our knowledge, the issue that optimally tuned hyperparameters on small
models may scale worse than slightly suboptimal hyperparameters has not been stated before. This
raises the question when and how can we use small models to predict the optimal hyperparameters of
large models.

66

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

21 21 21 21 21 21 21 21 21 20
25 25 25 25 25 25 25 25 24 22
29 29 29 29 29 29 29 28 27 24
32 32 32 32 32 32 31 31 29 26
35 35 35 35 35 34 34 33 32 28
37 37 37 37 37 37 37 36 34 31
40 40 40 40 40 40 39 39 37 34
41 41 41 41 41 41 41 40 39 36
41 41 41 42 42 41 41 40 39 10
39 38 38 38 39 37 38 24 23 10
28 25 24 24 24 25 17 10 10 10

width=64

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

29 29 29 29 29 29 29 29 29 27
35 35 35 35 35 35 35 34 33 30
40 40 40 40 40 39 39 38 36 32
44 44 44 44 44 43 43 41 39 34
48 48 48 48 48 48 47 45 42 37
54 54 54 54 54 53 52 50 47 41
62 62 62 62 61 61 59 56 51 44
67 68 67 67 66 65 64 59 53 44
61 60 61 60 59 59 57 52 45 10
10 12 12 11 11 16 14 13 10 10
23 17 14 14 16 12 16 10 10 10

width=256

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

38 38 38 38 38 39 39 38 37 35
44 44 45 45 45 45 45 43 41 36
51 51 52 52 52 52 50 47 43 37
59 60 60 60 60 59 57 52 46 39
74 74 74 74 73 71 67 60 52 42
92 92 92 91 90 88 83 73 60 47
97 96 96 96 96 95 93 86 70 51
93 89 91 92 93 89 87 81 68 11
63 67 65 62 54 31 19 18 11 10
10 10 10 10 10 10 10 10 10 10
22 21 22 23 24 20 10 10 10 10

width=1024

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

50 50 51 51 52 52 51 50 46 41
61 61 61 62 63 63 60 54 47 40
74 75 75 76 76 75 69 59 49 37
92 92 92 91 91 88 81 68 53 32
99 98 99 99 98 98 94 81 60 28

1e+021e+02 99 99 99 99 98 93 72 20
99 98 97 97 96 98 98 94 77 13
85 78 82 86 81 86 80 52 35 11
10 10 10 11 10 11 11 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

width=4096

32

34

36

38

40

Tr
ai

ni
ng

ac
cu

ra
cy

58

60

62

64

66

Tr
ai

ni
ng

ac
cu

ra
cy

88

90

92

94

96

Tr
ai

ni
ng

ac
cu

ra
cy

90

92

94

96

98

Tr
ai

ni
ng

ac
cu

ra
cy

(a)

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

21 21 21 21 21 21 21 21 20 20
25 25 25 25 25 25 25 24 24 22
29 29 29 29 29 29 28 28 27 24
32 32 32 31 31 31 31 30 29 26
33 33 33 33 34 33 33 33 31 28
35 35 35 35 36 36 35 35 34 31
37 37 37 37 37 37 37 37 35 33
38 38 38 38 38 38 38 38 37 35
38 38 38 38 38 38 38 38 37 11
37 37 36 36 36 37 36 23 22 10
27 25 26 26 26 25 17 10 10 10

width=64

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

29 29 29 29 29 29 30 29 29 27
34 34 34 34 34 34 34 33 32 30
38 38 38 38 38 38 38 37 35 32
41 41 41 41 41 41 41 40 38 34
43 43 43 43 43 44 43 42 41 37
45 45 45 45 45 45 45 44 43 39
45 45 45 45 45 45 45 45 45 41
44 44 44 44 44 44 44 44 44 40
42 42 42 42 42 42 42 42 40 10
17 18 17 17 17 18 17 13 10 10
20 17 14 14 17 12 16 10 10 10

width=256

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

35 35 35 35 36 36 36 37 36 34
40 40 40 40 40 40 41 41 39 35
43 43 43 44 44 44 44 43 41 36
46 46 46 46 47 47 47 46 43 37
47 48 48 48 48 49 49 49 46 40
49 48 48 49 49 50 50 50 48 43
50 49 49 49 49 50 50 50 50 45
49 48 49 48 48 49 48 49 47 11
44 45 44 44 41 31 25 21 11 11
12 11 12 11 12 11 11 11 11 11
16 16 16 17 17 17 11 11 11 11

width=1024

0.
0

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.0001
0.0003
0.0006
0.0016
0.004
0.01

0.0251
0.0631
0.1585
0.3981

1.0

L
ea

rn
in

g
ra

te

41 42 42 42 43 43 44 44 43 39
45 45 45 46 46 47 48 47 43 39
47 47 48 48 49 50 50 49 45 38
50 50 50 50 51 52 52 51 47 37
52 52 52 52 52 53 53 53 49 36
54 54 54 53 54 54 54 54 52 29
54 53 53 53 53 54 54 53 52 14
50 49 48 49 49 49 48 43 32 11
13 11 13 14 12 12 11 11 11 11
11 12 11 11 11 12 11 11 11 11
11 11 11 11 11 11 11 11 11 11

width=4096

34

35

36

37

38

V
al

id
at

io
n

ac
cu

ra
cy

41

42

43

44

45

V
al

id
at

io
n

ac
cu

ra
cy

46

47

48

49

50

V
al

id
at

io
n

ac
cu

ra
cy

50

51

52

53

54

V
al

id
at

io
n

ac
cu

ra
cy

(b)

Mean (over 2 runs) of training accuracy (top) and test accuracy (bottom) after optimally stopping
20 epoch SAM training of a MLP in SP-naive as a function of learning rate and perturbation radius.
Neither the optimal learning rate nor the optimal perturbation radius transfers. Every fixed learning
rate becomes unstable in sufficiently wide networks. Optimal training and test accuracy are reached
on differing hyperparameters due to harmful overfitting in SGD.

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

43 43 43 43 43 43 43 43 42 41 38 10
46 46 46 46 46 46 46 46 46 45 42 10
50 50 50 50 50 50 50 50 49 49 47 10
54 54 54 54 54 54 54 54 53 53 51 10
58 58 58 58 58 58 58 57 57 56 55 10
60 60 60 60 61 60 61 60 59 59 57 10
61 62 62 61 61 62 62 60 60 58 56 10
59 60 60 60 59 60 59 58 58 55 24 10
54 54 53 56 56 52 54 54 51 49 21 10

width=64

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

49 49 49 49 49 49 49 48 47 44 10 10
54 54 54 55 55 54 54 53 52 50 10 10
61 61 61 61 61 61 61 60 59 57 10 10
68 68 68 68 69 69 69 68 67 65 10 10
74 75 75 76 76 77 76 76 74 70 10 10
80 81 81 82 82 81 81 80 77 73 10 10
80 83 82 81 81 82 82 80 76 68 10 10
79 79 80 81 81 79 76 78 73 47 10 10
72 69 72 72 71 71 69 68 63 24 10 10

width=256

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

53 53 53 53 52 52 51 49 44 11 11 11
60 60 60 60 60 59 58 57 53 11 11 11
69 69 69 69 69 69 68 66 64 11 11 11
77 78 78 78 79 78 77 75 73 11 10 10
83 86 85 85 85 85 85 83 79 10 10 10
90 88 91 91 92 91 88 86 81 10 10 10
95 92 96 94 91 89 92 90 80 10 10 10
87 86 87 86 89 83 86 85 10 10 10 10
84 85 82 81 83 78 73 75 10 10 10 10

width=1024

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62
Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

54 54 54 53 53 51 50 15 11 12 12 12
62 62 62 61 61 59 58 12 12 12 12 11
72 73 73 72 72 71 70 12 12 11 11 11
81 82 82 82 82 81 79 12 11 11 11 10
90 88 88 87 86 86 84 11 11 10 10 10
96 95 95 92 92 91 89 11 10 10 10 10
99 98 94 93 94 97 95 10 10 10 10 10
99 94 92 94 92 94 92 10 10 10 10 10
91 85 85 85 87 87 80 10 10 10 10 10

width=4096

52

54

56

58

60

Tr
ai

ni
ng

ac
cu

ra
cy

74

76

78

80

82

Tr
ai

ni
ng

ac
cu

ra
cy

86

88

90

92

94

Tr
ai

ni
ng

ac
cu

ra
cy

90

92

94

96

98

Tr
ai

ni
ng

ac
cu

ra
cy

(c)

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

42 42 42 42 42 42 42 42 41 40 37 15
45 45 45 45 45 45 44 44 44 43 41 13
47 47 47 47 47 47 47 47 46 45 44 11
49 49 49 49 49 49 48 48 48 48 46 10
49 49 50 50 50 49 49 49 49 49 47 10
50 50 50 50 49 49 49 49 49 49 48 10
50 50 49 50 49 49 49 49 49 48 47 10
49 48 49 48 48 49 48 48 48 47 22 10
47 47 47 47 46 47 47 47 46 44 20 10

width=64

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

47 47 47 47 47 47 47 46 46 43 19 13
49 50 50 50 50 50 49 49 48 47 17 11
51 51 51 51 51 51 51 51 51 50 13 11
52 52 52 52 52 52 52 52 52 51 11 10
52 52 53 53 53 53 53 53 52 52 10 10
53 53 53 53 53 53 53 53 53 52 10 10
52 52 52 52 52 52 52 52 52 51 10 10
51 52 52 51 51 51 51 51 50 35 10 10
50 50 50 49 49 49 49 49 47 21 10 10

width=256

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

49 49 50 49 49 49 48 47 44 23 14 11
52 52 52 52 52 52 52 51 49 20 12 11
53 53 53 54 54 54 54 53 53 15 11 11
54 54 54 54 55 55 54 54 53 12 11 11
54 54 54 54 55 55 55 55 54 11 11 11
54 54 55 55 55 55 55 55 54 11 11 11
55 55 55 55 55 55 55 55 53 11 11 11
54 54 54 54 54 54 54 53 11 11 11 11
52 52 51 52 51 52 51 49 11 11 11 11

width=1024

0.
0

0.
00

1

0.
00

18

0.
00

32

0.
00

56

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

Perturbation radius

0.01

0.0178

0.0316

0.0562

0.1

0.1778

0.3162

0.5623

1.0

L
ea

rn
in

g
ra

te

50 50 50 50 50 49 48 34 28 17 12 11
53 53 53 53 53 53 52 34 24 13 11 10
54 54 54 55 55 55 55 34 17 12 10 10
54 55 55 55 55 55 55 32 13 11 10 10
54 55 55 55 55 55 55 23 11 10 10 10
56 56 56 56 56 56 56 14 10 10 10 10
58 57 57 57 57 57 56 11 10 10 10 10
57 57 56 56 57 56 55 10 10 10 10 10
54 54 54 54 54 53 51 10 10 10 10 10

width=4096

45

46

47

48

49

V
al

id
at

io
n

ac
cu

ra
cy

49

50

51

52

53

V
al

id
at

io
n

ac
cu

ra
cy

51

52

53

54

55

V
al

id
at

io
n

ac
cu

ra
cy

53

54

55

56

57

V
al

id
at

io
n

ac
cu

ra
cy

(d)

Mean (over 3 runs) of training accuracy (top) and of test accuracy (bottom) after optimally stopping
20 epoch SAM training of a MLP in µP-naive as a function of learning rate and perturbation radius.
The optimal hyperparameters do not transfer. Every fixed perturbation radius becomes unstable in
sufficiently wide networks.

67

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

39 39 39 39 39 39 39 38 37 35 11 10
43 43 43 43 43 43 42 42 41 39 10 10
46 46 47 47 47 46 46 46 46 44 10 10
51 51 51 51 51 51 51 51 50 49 10 10
55 55 55 55 55 56 55 55 55 54 10 10
59 59 59 59 59 59 59 59 59 57 10 10
61 62 61 61 61 60 61 60 60 58 10 10
60 59 60 60 60 59 59 58 58 54 10 10
54 54 54 55 55 54 54 53 51 48 10 10

width=64

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

44 44 44 44 44 44 44 44 43 41 33 10
49 49 49 49 49 49 49 48 48 46 41 10
55 55 55 55 55 55 55 54 54 53 50 10
62 62 62 62 62 63 63 62 62 61 59 10
71 71 71 71 72 72 72 72 71 70 67 10
79 79 79 79 79 80 80 79 78 76 69 10
80 82 81 84 80 82 83 82 81 77 49 10
83 81 79 81 78 79 78 79 77 72 10 10
72 71 71 72 72 71 70 70 67 61 10 10

width=256

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

47 47 47 47 47 46 46 46 45 43 36 11
52 52 52 52 52 52 52 51 50 49 44 11
61 61 61 61 61 61 60 60 59 57 54 11
71 72 72 72 72 72 72 71 71 69 67 11
81 81 82 82 82 83 82 82 82 80 77 11
88 88 89 89 89 88 90 88 88 85 81 10
96 93 94 95 91 92 92 91 91 91 83 10
89 92 91 93 89 90 88 90 86 87 31 10
83 85 84 84 79 79 80 83 81 75 10 10

width=1024

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

47 47 47 47 47 47 47 46 45 43 37 13
54 54 54 54 53 53 53 52 51 50 45 11
63 63 63 63 63 63 62 62 61 59 56 12
75 75 75 75 75 75 75 75 74 73 70 12
85 85 85 85 85 85 85 85 84 82 80 11
92 91 92 93 92 91 92 88 89 87 85 10
97 97 98 97 97 96 94 95 90 91 89 10
98 98 98 94 95 96 92 95 96 90 10 10
81 80 85 92 86 82 88 81 80 78 10 10

width=4096

52

54

56

58

60

Tr
ai

ni
ng

ac
cu

ra
cy

74

76

78

80

82

Tr
ai

ni
ng

ac
cu

ra
cy

86

88

90

92

94

Tr
ai

ni
ng

ac
cu

ra
cy

90

92

94

96

98

Tr
ai

ni
ng

ac
cu

ra
cy

(e)

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

39 39 39 39 39 38 38 38 37 35 18 14
42 42 42 42 42 42 42 41 40 39 18 13
45 45 45 45 45 45 45 44 44 43 18 11
47 47 47 47 47 47 47 47 46 46 16 10
49 49 49 49 49 49 49 48 48 47 12 10
49 50 49 49 49 49 49 49 49 48 10 10
50 50 50 50 49 50 49 49 49 48 10 10
49 49 49 49 49 49 49 48 47 47 10 10
47 47 47 47 47 47 47 46 45 43 10 10

width=64

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

44 44 44 44 44 44 44 43 42 41 33 18
47 47 47 47 47 47 47 46 46 45 41 18
50 50 50 50 50 50 50 50 49 49 47 15
51 51 51 51 52 52 52 52 52 51 50 12
52 52 52 52 52 52 53 52 52 52 51 10
53 53 53 53 53 53 53 53 53 52 51 10
52 53 53 52 53 53 52 53 52 52 37 10
52 52 52 51 51 51 51 51 52 51 10 10
50 50 50 50 50 50 49 50 48 47 10 10

width=256

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

46 46 46 46 46 46 46 45 44 43 35 24
49 49 49 49 49 49 49 49 48 47 44 24
52 52 52 52 52 52 52 52 52 51 50 20
53 53 53 53 53 53 54 54 54 54 53 15
54 54 54 54 54 54 54 54 55 54 54 12
54 54 54 54 54 55 55 55 55 55 54 11
55 55 55 55 55 55 55 55 55 55 54 11
55 54 54 54 54 54 54 55 54 54 24 11
51 52 52 52 51 51 52 51 51 50 11 11

width=1024

0.
0

0.
01

0.
01

78

0.
03

16

0.
05

62 0.
1

0.
17

78

0.
31

62

0.
56

23 1.
0

1.
77

83

3.
16

23

Perturbation radius

0.005

0.0097

0.0188

0.0364

0.0706

0.1369

0.2657

0.5154

1.0

L
ea

rn
in

g
ra

te

47 47 47 47 47 47 46 46 45 43 36 29
50 50 50 50 50 50 50 50 49 48 45 29
53 53 53 53 53 53 53 53 53 52 51 26
54 54 54 54 54 54 54 54 55 55 54 18
54 54 54 54 55 55 55 55 55 55 55 13
55 55 55 55 55 55 55 56 56 55 55 11
57 57 57 56 57 57 56 57 57 57 56 11
58 58 57 57 57 56 56 56 56 56 11 11
54 54 54 54 54 54 53 54 54 52 11 11

width=4096

46

47

48

49

50

V
al

id
at

io
n

ac
cu

ra
cy

49

50

51

52

53

V
al

id
at

io
n

ac
cu

ra
cy

51

52

53

54

55

V
al

id
at

io
n

ac
cu

ra
cy

54

55

56

57

58

V
al

id
at

io
n

ac
cu

ra
cy

(f)

Mean (over 3 runs) of training accuracy (top) and of test accuracy (bottom) after optimally stopping
20 epoch SAM training of a MLP in µP-global as a function of learning rate and perturbation radius.
The global scaling of the perturbation radius by n−1/2 compared to µP-naive (Appendix VII.3.1)
makes the stable regime invariant to width. But the suboptimal layerwise perturbation scaling that
only perturbs the last layer does not consistently improve over SGD (ρ = 0).

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

49 49 49 49 49 47 42 13
52 53 52 52 52 51 45 14
56 56 56 56 56 54 48 13
59 59 59 59 59 57 51 15
61 61 61 61 61 59 53 21
61 61 61 59 60 59 55 25
58 58 58 57 58 59 55 27
55 54 55 54 52 53 51 29
45 44 45 46 44 45 41 19

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

59 59 59 59 58 55 47 18
66 66 66 65 64 60 51 17
73 73 73 72 71 67 55 17
77 78 78 77 77 74 60 23
81 83 80 79 80 79 65 29
82 79 82 82 82 82 70 33
79 76 80 79 78 80 73 39
69 70 70 72 72 72 70 32
55 52 55 56 56 56 55 23

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

67 67 67 66 64 59 49 22
76 75 75 74 73 66 53 20
83 83 83 83 81 75 58 18
88 88 88 88 88 85 64 26
91 92 95 90 94 91 73 33
94 94 93 90 91 92 83 38
87 89 90 90 89 93 90 44
76 84 81 78 81 84 89 38
64 65 66 65 66 71 70 27

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

71 70 70 69 67 60 49 22
79 79 79 78 76 69 54 19
87 87 86 86 84 78 59 18
93 93 92 91 88 88 66 29
95 94 96 94 91 93 76 34
98 99 96 97 95 97 88 40
91 96 93 93 95 98 96 45
87 82 84 80 89 91 97 42
66 60 72 70 77 79 84 30

width=4096

52

54

56

58

60

Tr
ai

ni
ng

ac
cu

ra
cy

74

76

78

80

82

Tr
ai

ni
ng

ac
cu

ra
cy

86

88

90

92

94

Tr
ai

ni
ng

ac
cu

ra
cy

90

92

94

96

98

Tr
ai

ni
ng

ac
cu

ra
cy

(g)

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

46 46 46 46 46 46 42 15
48 48 48 48 48 48 44 15
49 49 49 49 49 49 46 15
49 49 50 49 50 50 48 15
50 50 50 50 50 50 49 22
49 49 49 50 50 50 49 25
49 48 48 48 49 49 49 29
46 46 47 46 46 47 46 30
41 43 42 43 42 41 39 20

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

51 51 51 51 51 51 47 21
52 52 52 52 53 53 49 20
52 52 53 53 53 54 51 19
52 52 52 53 53 54 53 23
52 52 53 53 53 54 54 29
52 52 52 53 53 54 54 33
51 51 51 51 52 53 54 38
50 49 49 50 50 51 51 33
45 44 45 44 44 46 46 24

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 53 53 53 54 53 48 28
53 53 53 53 54 55 51 27
54 54 54 54 55 56 53 25
54 54 54 54 55 56 55 26
54 54 55 55 55 57 57 33
55 55 55 55 55 56 57 38
54 53 54 54 54 55 57 43
51 52 52 51 52 53 55 37
46 46 46 47 47 48 49 27

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

54 54 54 54 54 54 48 31
54 54 54 54 55 56 51 32
54 54 54 55 55 57 53 31
55 55 55 55 55 57 56 29
56 56 56 56 56 58 58 34
58 58 58 57 57 58 59 40
56 56 57 57 56 58 59 44
53 54 54 54 53 56 58 40
47 48 47 47 48 50 53 31

width=4096

46

47

48

49

50

Te
st

ac
cu

ra
cy

50

51

52

53

54

Te
st

ac
cu

ra
cy

53

54

55

56

57

Te
st

ac
cu

ra
cy

54

55

56

57

58

Te
st

ac
cu

ra
cy

(h)

Mean (over 3 runs) of training accuracy (top) and of test accuracy (bottom) after optimally stopping
20 epoch SAM training of a MLP in µP2 as a function of learning rate and perturbation radius. At
sufficient width, the optimal hyperparameters are stable in terms of test accuracy, even under severe
overfitting.

68

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

VII.3.2. RESNETS

In this section, we plot averages and σ-CI from 2 independent runs.

ResNets in µP2 transfer both the optimal learning rate and perturbation radius for SAM (Ap-
pendix VII.3.2), SAM-ON (Appendix VII.3.3) and elementwise ASAM (Appendix VII.3.3), as
well as different alternatives of scaling the gradient norm contributions to SAM’s denominator
(Appendix VII.4). This suggests correctness of the derived scalings. At width multipliers 2 and 4,
µP2 achieves the same or slightly better test accuracy than SP in all SAM variants.

Figure VII.7 shows ResNets trained with SAM in different parameterizations. In ResNets of practical
scale, ρ remains quite stable in several parameterizations. In µP, for naive perturbation scaling the
optimal perturbation radius shrinks, for global perturbation scaling, the optimal perturbation radius
approaches is maximal stable value. µP2 is most robust to the choice of ρ and achieves the best test
accuracy. Surprisingly, ResNets in SP have very stable hyperparameter transfer across most SAM
variants too, as soon as we tune momentum, weight decay and labelsmoothing (Appendix VII.3.2).
This is in line with previous empirical observations (Figure 16, 54) but contradicts pure infinite-width
theory. Because we are training to convergence, pure infinite-width theory does not adequately
describe the training dynamics anymore [44]. We plan to study this phenomenon in more detail in
upcoming work. The infinite-width theory implies that scaling the width further would eventually
break the learning rate transfer.

(i) (j)

Training accuracy (top) and test accuracy (bottom) after optimally stopping 100 epoch SAM training
as a function of learning rate and perturbation radius in SP-naive without regularization (left) and
with tuned regularization (right) using momentum 0.9, weightdecay 0.0005 and labelsmoothing 0.1.
CI denote the minimal and maximal value from 4 independent runs. Without regularization, the
optimal learning rate shrinks with width. Given the learning rate, the optimal perturbation radius
seems quite stable, but since the optimal learning rate shifts, the performance scales worse than for
µP2 with the fixed learning rate that is tuned on the small model. With optimal regularization, both
optimal learning rate and perturbation radius remain remarkably stable. We plan to investigate this
mechanism in an upcoming work.

69

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

(k)

10−2 10−1 100

Learning rate

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−2 10−1 100

Perturbation radius

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−2 10−1 100

Learning rate

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

10−2 10−1 100

Perturbation radius

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

width
0.5
1.0
2.0
4.0

(l)

Training accuracy (top) and test accuracy (bottom) after optimally stopping 200 epoch SAM training
as a function of learning rate and of perturbation radius in SP (left) and µP2 (right) with optimized
momentum 0.9, weight decay 5 · 10−4 and labelsmoothing 0.1 for both µP2 and SP. In µP2, the base
learning rate is η = 2−4 and the base perturbation radius is ρ = 2−4, in SP η = 0.05 and ρ = 0.1,
respectively. Observe monotonic improvement with width in both training and test error. Optimal
hyperparameters transfer across widths, surprisingly in both µP2 and SP.

10−3 10−2 10−1

Perturbation radius ρ

93

94

95

96

97

Te
st

ac
cu

ra
cy

SP-naive

10−3 10−2 10−1 100

Perturbation radius ρ

93

94

95

96

97

µP-naive

width multiplier
4.0
2.0
1.0
0.5

10−3 10−2 10−1 100

Perturbation radius ρ

93

94

95

96

97

µP-global

10−2 10−1 100

Perturbation radius ρ

93

94

95

96

97

µP2

Figure VII.7: Test accuracy after optimally stopping 200 epoch SAM training as a function of
perturbation radius in various parameterizations. Dashed lines denote the base optimizer SGD with
tuned momentum and weight decay in the respective parameterization.

70

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

SAM global SAM µP2 SAM-ON µP2 Elem. ASAM µP2

SP 97.00±0.03(+0.96) 97.00±0.03(+0.96) 97.29±0.06(+1.26) 97.15±0.01(+1.11)
µP 97.19±0.05(+0.93) 97.23±0.08(+0.97) 97.34±0.08(+1.08) 97.32±0.05(+1.06)

Table VII.1: (Performance of µP2) Average test accuracy±standard deviation across 4 runs (+ improvement
of SAM over SGD) for ResNet-18 with width multiplier 4 on CIFAR10 using SGD as a base
optimizer. In bold, all parameterizations within a 2σ-CI from the best-performing variant SAM-ON
in µP2.

VII.3.3. ASAM VARIANTS

As we are not aware of any use of ASAM with MLPs in the literature and since the amount of
necessary experiments for ViTs exceeds our computational budget, we only show that ResNets
trained with the all of the discussed SAM variants in µP2 transfer the optimal (η, ρ).

Figure VII.8 shows that training a ResNet-18 in µP2 achieves hyperparameter transfer in ρ for
most considered SAM variants with varying width. µP with global perturbation scaling (µP-global)
becomes unstable if ρ is chosen slightly larger than optimal. Table VII.1 shows that all SAM variants
perform similarly well in µP2, some slightly outperforming the best-performing variant SAM-ON
in SP. This suggests that for ResNets, even with a proper layerwise balance, normalization layer
perturbations may suffice, and performance differences in SP are primarily caused by varying degrees
to which the normalization layers are perturbed. Our results partially explain the success of SAM-ON,
as all normalization layers are already effectively perturbed without layerwise perturbations (see
Appendix V.5). For transferring the optimal ρ with SAM-ON in µP, our theory predicts the global
scaling ρ = Θ(n1/2) which is confirmed by our empirical observations (Figure VII.8). However,
properly understanding the role of normalization layer perturbations remains an important question
for future work. Note that we report results after fine-tuning all hyperparameters. The performance
gain of µP2 over SP is likely much higher in larger models, for which fine-tuning is infeasible and
the lack of feature learning and effective perturbations is more pronounced. Even under optimal HPs,
µP2 appears to stabilize SAM’s training dynamics compared to SP (??).

10−2 10−1 100

Perturbation radius ρ

94

95

96

97

Te
st

ac
cu

ra
cy

SAM µP-global

width
4.0
2.0
1.0
0.5

10−2 10−1 100

Perturbation radius ρ

94

95

96

97

SAM µP2

10−1 100 101

Perturbation radius ρ

94

95

96

97

SAM-ON µP2

10−1 100 101

Perturbation radius ρ

94

95

96

97

Elem. ASAM µP2

Figure VII.8: (ρ-transfer of ASAM variants in µP2) Test error as a function of perturbation radius
ρ after 200 epochs of training a ResNet-18 in µP2 on CIFAR10 with various SAM variants (see
subplot title). CI over 2 independent runs. Darker lines correspond to larger width multipliers.
Other hyperparameters are tuned at base width multiplier 0.5. µP2 achieves transfer in ρ and large
improvements over the base optimizer (dashed lines) SGD in µP with momentum and weight decay.

71

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

For the examples of elementwise ASAM and SAM-ON the global perturbation scaling n1/2 suffices
to reach µP2. The stability of the optimal perturbation radius in the applied scaling n1/2 shows that
in µP with naive perturbation scaling the optimal perturbation radius would grow as n1/2.

See the previous section, for a discussion of the remarkable stability of ResNets in SP. For the
example of elementwise ASAM in SP, the optimal perturbation radius seems to grow.

For layerwise ASAM (Appendix VII.3.3), the optimal perturbation radius seems to grow in both
SP and µP2, suggesting that our scaling condition does not perfectly apply to this variant, although
µP2 (97.09±0.03(+0.83)) still outperforms SP (96.86±0.05(+0.83)) in terms of the optimal test
accuracy. As Frobenius norms of weights are the only component that is not representable as a
NE⊗OR⊤program, these Frobenius norms appear to scale differently than heuristically predicted
over the course of training.

(a)

10−2 10−1 100

Learning rate

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−1 100 101

Perturbation radius

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−2 10−1 100

Learning rate

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

10−1 100 101

Perturbation radius

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

width
0.5
1.0
2.0
4.0

(b)

Same as Appendix VII.3.2 but for SAM-ON in µP2 (left) and SP without perturbation scaling (right).
Both optimal learning rate and perturbation radius are remarkably stable in both µP2 and SP. Since
µP2 for SAM-ON is just µP with global perturbation scaling n1/2, transfer here implies that µP with
width-independent scaling would not transfer.

(c)

10−2 10−1 100

Learning rate

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−1 100 101

Perturbation radius

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−2 10−1 100

Learning rate

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

10−1 100 101

Perturbation radius

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

width
0.5
1.0
2.0
4.0

(d)

Same as Appendix VII.3.2 but for elementwise ASAM in SP without perturbation scaling (left) and
in µP2 (right). Observe a consistent HP landscape in µP2 but growing optimal perturbation radius in
SP without perturbation scaling.

72

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

(e)

10−2 10−1 100

Learning rate

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−3 10−2 10−1

Perturbation radius

95

96

97

98

99

100

Tr
ai

ni
ng

ac
cu

ra
cy

10−2 10−1 100

Learning rate

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

10−3 10−2 10−1

Perturbation radius

91

92

93

94

95

96

97

98

Te
st

ac
cu

ra
cy

width
0.5
1.0
2.0
4.0

(f)

Same as Appendix VII.3.2 but for layerwise ASAM in SP without perturbation scaling (left) and µP2

(right). For layerwise ASAM, both µP2 and SP seem to transfer the optimal learning rate as well as
perturbation radius.

VII.4. Gradient norm contributions have negligible effects on generalization performance

In this section we provide ablations concerning the question which layers should contribute non-
vanishingly to the gradient norm in the denominator of the layerwise SAM perturbation rule (LP).

73

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

47 47 47 47 47 46 44 18
48 48 48 48 48 48 46 17
49 49 49 49 49 50 48 16
50 50 50 50 50 50 49 16
50 50 50 50 50 50 50 23
50 49 50 50 49 50 50 28
48 48 48 49 49 48 49 39
46 46 46 46 47 46 46 37
42 42 42 43 41 41 40 22

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

51 51 51 51 51 51 48 26
52 52 52 52 52 53 50 25
52 53 53 53 53 54 52 24
53 53 53 53 54 54 54 23
53 53 53 53 53 54 55 34
52 52 52 53 52 53 55 42
51 51 51 51 52 52 54 45
50 49 49 50 50 51 51 43
44 44 45 45 45 44 46 35

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 53 53 53 54 53 50 30
53 54 54 54 54 55 52 30
54 54 54 54 55 56 54 29
54 54 54 54 55 56 56 29
54 55 54 54 55 57 57 39
55 55 55 55 55 56 57 46
54 54 54 54 54 55 57 49
52 52 52 52 52 52 55 48
46 46 46 47 46 48 49 40

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

54 54 54 54 54 54 50 33
54 54 55 55 55 56 53 33
54 54 54 55 55 57 55 33
55 55 55 55 55 57 57 32
57 56 56 56 56 58 58 37
58 57 58 57 57 57 59 46
56 57 56 57 56 57 59 50
53 54 54 54 54 55 57 50
47 47 48 47 48 50 52 45

width=4096

46

47

48

49

50

Te
st

ac
cu

ra
cy

50

51

52

53

54

Te
st

ac
cu

ra
cy

53

54

55

56

57

Te
st

ac
cu

ra
cy

54

55

56

57

58

Te
st

ac
cu

ra
cy

(g)

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

46 46 46 46 46 45 43 20
48 48 48 48 49 48 45 18
49 49 49 49 50 49 47 15
50 50 50 50 50 50 48 17
50 49 50 49 50 50 49 21
49 49 49 49 49 49 49 31
48 49 48 48 48 48 48 39
47 47 46 46 46 47 47 31
42 42 41 43 43 41 40 18

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

51 51 51 51 52 51 47 23
52 52 52 52 53 53 49 21
52 53 53 53 53 54 51 19
53 53 53 53 54 55 53 18
52 53 52 53 53 55 55 28
52 51 52 53 53 53 54 41
51 51 51 51 52 52 54 47
50 50 49 50 50 50 51 43
45 46 44 45 45 45 46 25

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 53 53 53 53 53 48 30
53 54 54 54 55 55 51 30
54 54 54 55 56 56 53 28
54 55 55 55 56 57 55 27
54 54 55 55 56 57 57 31
56 55 55 55 55 56 58 43
54 53 53 54 53 55 57 49
52 51 52 51 52 52 55 48
46 45 46 46 48 48 49 28

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 54 54 54 54 53 49 32
54 54 54 55 55 56 51 32
54 54 54 55 56 57 54 32
55 55 55 55 56 58 56 30
56 56 56 56 57 58 58 32
58 58 58 57 57 58 59 45
56 56 57 56 56 58 59 49
54 54 54 54 54 55 57 50
47 47 45 47 48 50 52 37

width=4096

46

47

48

49

50

Te
st

ac
cu

ra
cy

50

51

52

53

54

Te
st

ac
cu

ra
cy

53

54

55

56

57

Te
st

ac
cu

ra
cy

54

55

56

57

58

Te
st

ac
cu

ra
cy

(h)

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

46 46 46 46 46 46 43 20
48 48 48 48 48 48 45 18
49 49 49 49 50 49 47 16
50 50 50 50 50 50 49 18
50 50 50 50 50 50 49 24
49 49 49 49 49 50 50 33
48 49 48 47 48 49 49 39
47 46 47 46 46 47 47 41
42 42 42 41 42 42 41 29

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

51 51 51 51 52 51 48 23
52 52 52 52 52 53 50 22
52 53 53 53 53 54 52 19
53 53 53 53 53 54 54 25
52 52 53 52 53 54 55 33
52 52 52 52 52 54 55 43
51 52 51 51 52 52 54 47
50 50 50 50 49 50 52 46
45 44 46 44 44 45 46 31

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 53 53 53 53 53 49 31
53 54 54 54 54 55 52 31
54 54 54 55 55 56 54 29
54 55 55 55 55 57 56 27
54 55 54 55 56 57 58 33
56 55 55 54 55 56 57 46
54 54 53 55 53 55 57 49
52 51 51 51 51 53 55 45
46 46 46 46 47 48 49 37

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 54 54 54 54 54 49 32
54 54 55 54 55 56 52 33
54 54 54 55 56 56 55 32
55 55 55 55 56 57 57 30
56 56 56 56 56 58 59 39
58 58 57 57 57 58 59 48
56 56 57 57 57 58 59 49
54 53 54 55 54 56 58 51
47 46 47 47 48 51 53 42

width=4096

46

47

48

49

50

Te
st

ac
cu

ra
cy

50

51

52

53

54

Te
st

ac
cu

ra
cy

53

54

55

56

57

Te
st

ac
cu

ra
cy

54

55

56

57

58

Te
st

ac
cu

ra
cy

(i)

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

46 46 46 46 46 46 44 21
48 48 48 48 48 48 45 19
49 49 49 49 49 50 48 17
50 50 50 50 50 50 49 16
50 50 49 50 50 50 50 16
49 49 49 48 48 49 50 23
48 48 48 48 48 48 48 42
47 47 47 46 47 47 47 42
42 41 42 41 41 41 42 33

width=64

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

51 51 51 51 52 51 48 24
52 52 52 52 52 53 50 23
52 52 53 53 53 54 52 21
53 52 53 53 54 54 54 22
52 52 52 53 53 54 55 37
52 52 52 53 53 54 55 46
51 51 51 51 52 52 54 49
50 51 49 50 49 50 51 48
45 46 44 46 45 45 46 38

width=256

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 53 53 53 53 53 50 31
53 54 54 54 54 55 52 31
54 54 54 54 55 56 54 30
54 54 55 55 56 56 56 29
54 55 55 55 55 57 58 34
56 55 56 55 55 56 58 47
54 53 54 54 54 54 57 51
52 51 51 52 52 52 54 52
46 47 47 46 47 47 49 45

width=1024

0.0 0.001 0.0032 0.01 0.0316 0.1 0.3162 1.0

Perturbation radius

0.0283

0.0476

0.0801

0.1346

0.2264

0.3808

0.6404

1.0771

1.8114

L
ea

rn
in

g
ra

te

53 54 54 54 54 54 50 33
54 54 54 54 55 55 52 33
54 54 55 54 55 56 55 33
55 55 55 55 56 57 57 32
56 56 57 56 57 57 59 34
58 59 58 57 57 58 59 47
56 56 56 57 56 57 59 52
54 54 54 54 53 55 57 53
47 48 47 48 47 49 52 49

width=4096

46

47

48

49

50

Te
st

ac
cu

ra
cy

51

52

53

54

55

Te
st

ac
cu

ra
cy

53

54

55

56

57

Te
st

ac
cu

ra
cy

55

56

57

58

59

Te
st

ac
cu

ra
cy

(j)

Scaling the gradient norm contributions of all layers to Θ(1) (first row) and then setting the first layer
gradient norm to 0 (2nd row), respectively the hidden layer (3rd row), last-layer (4th row). Each
individual layer seems to have vanishing contribution to the optimal test error.

While under the definition of bcd-parameterizations only the first layer contributes non-vanishingly to
the gradient norm ∥vt∥ (Theorem 25), one could also decouple the numerator from the denominator
scalings and scale the gradient norm contributions of all layers to Θ(1). Here, we find that this has a
negligible effect on the optimal generalization performance, but can be more stable given slightly
suboptimal hyperparameters.

For MLPs, in Appendix VII.4 we scale all contributions to Θ(1), and then set the contribution of
individual layers to zero, one by one. We observe no significant effect on the optimal test loss or
hyperparameter transfer for MLPs. Any layer’s contribution to the gradient normalization in the
denominator of the SAM update rule can be set to 0 without a significant effect on the test loss. This
raises the question which effect the gradient normalization has in µP. Does it contribute a scaling
correction in SP, but may be dropped entirely in µP?

For ResNets, Appendix VII.4(a) shows accuracies when rescaling all layers’ gradient norms to Θ(1),
and Appendix VII.4(b) shows the results when using the original global gradient norm rescaled to
Θ(1). Again, both methods achieve similar optimal test accuracy. The first variant shows cleaner
hyperparameter transfer and monotonous improvement with width. When comparing to our original
definition (LP) in Appendix VII.3.2, optimal performance is similar but rescaling all layers’ gradient

74

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

norm contributions to Θ(1) may even produce a slightly more stable hyperparameter-loss landscape
for ResNets.

(k) (l)

Same as Appendix VII.3.2 but with scaling of the gradient norms in the SAM perturbation (LP)
denominator that scales all terms to Θ(1) (left) and only global denominator scaling ∥∇L∥

nL
(right).

All denominator scalings achieve similar optimal accuracy, show HP transfer in learning rate and
monotonic test accuracy improvement with width. Only global denominator scaling does not have
monotonically improving training error, and is slightly shifting at large widths.

VII.5. Vision Transformers in µP2

Appendix VII.5(a) shows that µP2 also achieves ρ-transfer and large improvements over the base
optimizer AdamW in µP in ViTs [14] trained on Imagenet1K [12]. While Andriushchenko and
Flammarion [1, Appendix E.3] observe diminishing benefits of SAM at large widths in SP, here the
improvements beyond the base optimizer AdamW in µP are particularly large (+8% top 1 accuracy!).

Appendix VII.5(b) shows ViTs on CIFAR100 over the course of training. In ViTs, µP generally
achieves decent accuracy faster than SP. Our theory suggests that in µP2 the gradients are scaled
correctly from the beginning, whereas in SP they have to self-stabilize first, which slows down
convergence. We plan a closer analysis in an upcoming work. SAM converges slower than the base
optimizer AdamW in favor of drifting towards a better generalizing local minimum or saddle point.
For ViTs at this moderate scale, SAM in SP catches up to SAM in µP2 at the end of training.

75

EFFECTIVE SHARPNESS AWARE MINIMIZATION REQUIRES LAYERWISE PERTURBATION SCALING

10−2 10−1 100 101

Perturbation radius ρ

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

To
p

1
ac

cu
ra

cy

width
768
384
192

(m)

0 50 100 150 200 250 300

Epochs of training

3× 101

4× 101

6× 101

10
0%

-t
es

ta
cc

ur
ac

y
SAM µP2

AdamW µP
SAM SP
AdamW SP

(n)

(a) Training a ViT with SAM in µP2 on ImageNet1K from scratch for 100 epochs yields ρ-transfer
and large improvements over AdamW in µP (dashed lines). (b) Training a ViT with width multiplier
2 on CIFAR100 with AdamW as the base optimizer.

76

	Introduction
	Sharpness Aware Minimization in the infinite-width limit
	SAM induces vanishing perturbations in wide neural networks
	Effective perturbations using layerwise perturbation scaling

	P2 achieves hyperparameter transfer and improved generalization
	Detailed related work
	Definitions
	Extensive main results
	Proof of main results
	Tensor program formulation
	The infinite-width limit
	Concluding the proof of all main results
	Analytic expression of the features after first SAM update

	Additional theoretical considerations
	Alternative bcd-definition
	The criterion lt=(Wlt) for effective perturbations in P
	Overview over choices of dl and d
	Extension to SAM without gradient normalization
	Extension to Adaptive SAM
	Representing general architectures and adaptive optimizers as a Tensor Program
	Influence of width-dependent weight multipliers on bcd-parameterizations
	Implementation of the spectral P perspective for varying widths

	Experimental details
	Supplemental experiments
	SAM is approximately LL-SAM in P with global perturbation scaling
	Propagating perturbations from the first layer does not inherit SAM's benefits
	Hyperparameter transfer
	Gradient norm contributions have negligible effects on generalization performance
	Vision Transformers in P2

