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Abstract

In decentralized machine learning, workers compute model updates on their local
data. Because the workers only communicate with few neighbors without cen-
tral coordination, these updates propagate progressively over the network. This
paradigm enables distributed training on networks without all-to-all connectivity,
helping to protect data privacy as well as to reduce the communication cost of
distributed training in data centers. A key challenge, primarily in decentralized
deep learning, remains the handling of differences between the workers’ local data
distributions. To tackle this challenge, we study the RelaySum mechanism for
information propagation in decentralized learning. RelaySum uses spanning trees
to distribute information exactly uniformly across all workers with finite delays
depending on the distance between nodes. In contrast, the typical gossip averaging
mechanism only distributes data uniformly asymptotically while using the same
communication volume per step as RelaySum. We prove that RelaySGD, based on
this mechanism, is independent of data heterogeneity and scales to many workers,
enabling highly accurate decentralized deep learning on heterogeneous data. Our
code is available at http://github.com/epfml/relaysgd.

1 Introduction

Ever-growing datasets lay at the foundation of the recent breakthroughs in machine learning. Learning
algorithms therefore must be able to leverage data distributed over multiple devices, in particular
for reasons of efficiency and data privacy. There are various paradigms for distributed learning, and
they differ mainly in how the devices collaborate in communicating model updates with each other.
In the all-reduce paradigm, workers average model updates with all other workers at every training
step. In federated learning [24], workers perform local updates before sending them to a central
server that returns their global average to the workers. Finally, decentralized learning significantly
generalizes the two previous scenarios. Here, workers communicate their updates with only few
directly-connected neighbors in a network, without the help of a server.

Decentralized learning offers strong promise for new applications, allowing any group of agents to
collaboratively train a model while respecting the data locality and privacy of each contributor [25].
At the same time, it removes the single point of failure in centralized systems such as in federated
learning [12], improving robustness, security, and privacy. Even from a pure efficiency standpoint,
decentralized communication patterns can speed up training in data centers [2].

In decentralized learning, workers share their local stochastic gradient updates with the others
through gossip communication [41]. They send their updates to their neighbors, which iteratively
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Figure 1: To spread information across a decentralized network, classical gossip averaging
diffuses information slowly through the network. The left figure illustrates the spread of information
originating from the fourth worker in a chain network. In RelaySum, the messages are relayed
without reweighting, resulting in uniform delivery of the information to every worker. When multiple
workers broadcast simultaneously (not pictured), RelaySum can sum their messages and use the same
bandwidth as gossip averaging.

propagate the updates further into the network. The workers typically use iterative gossip averaging
of their models with their neighbors, using averaging weights chosen to ensure asymptotic uniform
distribution of each update across the network. It will take τ rounds of communication for an
update from worker i to reach a worker j that is τ hops away, and when it first arrives, the update is
exponentially weakened by repeated averaging with weights < 1. In general networks, worker j will
never exactly, but only asymptotically receive its uniform share of the update. The slow distribution of
updates not only slows down training, but also makes decentralized learning sensitive to heterogeneity
in workers’ data distributions.

We study an alternative mechanism to gossip averaging, which we call RelaySum. RelaySum operates
on spanning trees of the network, and distributes information exactly uniformly within a finite number
of gossip steps equal to the diameter of the network. Rather than iteratively averaging models, each
node acts as a ‘router’ that relays messages through the whole network without decaying their weight
at every hop. While naive all-to-all routing requires n2 messages to be transmitted at each step,
we show that on trees, only n messages (one per edge) are sufficient. This is enabled by the key
observation that the routers can merge messages by summation to avoid any extra communication
compared to gossip averaging. RelaySum achieves this using additional memory linear in the number
of edges, and by tailoring the messages sent to different neighbors. At each time step, RelaySum
workers receive a uniform average of exactly one message from each worker. Those messages just
originate from different time delays depending on how many hops they travelled. The difference
between gossip averaging and RelaySum is illustrated in Figure 1.

The RelaySum mechanism is structurally similar to Belief Propagation algorithms for inference
in graphical models. This link was made by Zhang et al. [50], who used the same mechanism for
decentralized weighted average consensus in control.

We use RelaySum in the RelaySGD learning algorithm. We theoretically show that this algorithm is
not affected by differences in workers’ data distributions. Compared to other algorithms that have this
property [36, 31], RelaySGD does not require the selection of averaging weights, and its convergence
does not depend on the spectral gap of the averaging matrix, but instead on the network diameter.

While RelaySum is formulated for trees, it can be used in any decentralized network. We use the
Spanning Tree Protocol [30] to construct spanning trees of any network in a decentralized fashion.
RelaySGD often performs better on any such spanning tree than gossip-based methods on the original
graph. When the communication network can be chosen freely, the algorithm can use double binary
trees [33]. While these trees have logarithmic diameter and scale to many workers, RelaySGD in this
setup uses only constant memory equivalent to two extra copies of the model parameters and sends
and receives only two models per iteration.

Surprisingly, in deep learning with highly heterogeneous data, prior methods that are theoretically
independent of data heterogeneity [36, 31], perform worse than heuristic methods that do not have
this property, but use cleverly designed time-varying communication topologies [2]. In extensive
tests on image- and text classification, RelaySGD performs better than both kinds of baselines at
equal communication budget.
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2 Related work

Out of the multitude of decentralized optimization methods, first-order algorithms that interleave
local gradient updates with a form of gossip averaging [29, 11] show most promise for deep learning.
Such algorithms are theoretically analyzed for convex and non-convex objectives in [28, 11, 29], and
[19, 36, 2, 20] demonstrate that gossip-based methods can perform well in deep learning.

In a gossip averaging step, workers average their local models with the models of their direct
neighbors. The corresponding ‘mixing matrix’ is a central object of study. The matrix can be doubly-
stochastic [29, 19, 16], column-stochastic [38, 26, 39, 2], row-stochastic [40, 44], or a combination
[42, 43, 32]. Column-stochastic methods use the push-sum consensus mechanism [13] and can be
used on directed graphs. Our analysis borrows from the theory developed for those methods.

While gossip averages in general requires an infinite number of steps to reach exact consensus, another
line of work identifies mixing schemes that yield exact consensus in finite steps. For some graphs,
this is possible with time-independent averaging weights [15, 6]. One can also achieve finite-time
consensus with time-varying mixing matrices. On trees, for instance, exact consensus can be achieved
by routing updates to a root node and back, in exactly diameter number of steps [15, 6]. On some
graphs, tighter bounds can be established [8]. For fully-connected networks with n workers, Assran
et al. [2] design a sparse time-varying communication scheme that yields exact consensus in a cycle
of log n averaging steps and performs well in deep learning.

The ‘relay’ mechanism of RelaySGD was previously used by Zhang et al. [50] in the control
community for the decentralized weighted average consensus problem, but they do not use it in the
context of optimization. Zhang et al. also introduce a modified algorithm for loopy graphs, but this
modification makes the achieved consensus inexact. The ‘relay’ mechanism effectively turns a sparse
graph into a fully-connected graph with communication delays. Work on delayed consensus [27] and
optimization [37, 1] analyzes such schemes for centralized distributed algorithms. Those consensus
schemes are, however, not directly applicable to decentralized optimization.

A fundamental challenge in decentralized learning is dealing with data that is not identically dis-
tributed among workers. Because, in this case, workers pursue different optima, workers may
drift [29] and this can harm convergence. There is a large family of algorithms that introduce update
corrections that provably mitigate such data heterogeneity. Examples applicable to non-convex
problems are exact diffusion [45], Gradient Tracking [22, 31, 48], D2 [36], PushPull [32]. To tackle
the same challenge, Lin et al. [20], Yuan et al. [46] propose modifications to local momentum to
empirically improve performance in deep learning, but without provable guarantees. Lu and De Sa
[23] propose DeTAG which overlaps multiple consecutive gossip steps and gradient computations to
accelerate information diffusion. This technique could be applied to the RelaySum mechanism, too.

3 Method

Setup We consider standard decentralized optimization with data distributed over n ≥ 1 nodes:

f? := minx∈Rd
[
f(x) = 1

n

∑n
i=1 [fi(x) := Eξ∼Di Fi(x, ξi)]

]
.

Here Di denotes the distribution of the data on node i and fi : Rd → R the local optimization
objectives. Workers are connected by a network respecting a graph topology G = (V, E), where
V = {1, . . . , n} denotes the set of workers, and E the set of undirected communication links between
them (without self loops). Each worker i can only directly communicate with its neighbors Ni ⊂ V .

Decentralized learning with gossip We consider synchronous first-order algorithms that interleave
local gradient-based updates

x
(t+1/2)
i = x

(t)
i + u

(t)
i

with message exchange between connected workers. For SGD with typical gossip averaging (DP-
SGD [19]), the local updates can be written as u(t)

i = −γ∇fi(x(t)
i , ξ

(t)
i ), and the messages exchanged

between pairs of connected workers (i, j) are m
(t)
i→j = x

(t+1/2)
i ∈ Rd. Each timestep, the workers

average their model with received messages,

x
(t+1)
i = Wiix

(t+1/2)
i +

∑
j∈Ni Wijm

(t)
j→i, (DP-SGD)
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using averaging weights defined by a gossip matrix W ∈ Rn×n.

In this scheme, an update u
(t1)
i from any worker i will be linearly incorporated into the model x(t2)

j

at a later timestep t2 with weight (Wt2−t1)ij . The gossip matrix must be chosen such that these
weights asymptotically converge to 1

n , distributing all updates uniformly over the workers. This setup
appears in, for example, [19, 16].

Uniform model averaging If the graph topology is fully-connected, any worker can communicate
with any other worker, and it is ideal to use ‘all-reduce averaging’,

x
(t+1)
i = 1

n

∑n
j=1 x

(t+1/2)
j .

Contrary to the decentralized scheme (DP-SGD), this algorithm does not degrade in performance
if data is distributed heterogeneously across workers. In sparsely connected networks, however,
all-reduce averaging requires routing messages through the network. On arbitrary networks, such a
routing protocol requires at least a number of communication steps equal to the network diameter
τmax—the minimum number of hops some messages have to travel.

RelaySGD In this paper, we approximate the all-reduce averaging update as

x
(t+1)
i = 1

n

∑n
j=1 x

(t−τij+1/2)
j , (RelaySGD)

where τij is minimum number of network hops between workers i and j (and τii = 0). Since it
takes τij steps to route a message from worker i to j, this scheme could be implemented using a
peer-to-peer routing protocol like Ethernet. Of course, this naive implementation drastically increases
the bandwidth used compared to gossip averaging. The key insight of this paper is that, on tree
networks, the RelaySGD update rule can be implemented while using the same communication
volume per step as gossip averaging, using additional memory linear in the number of a worker’s
direct neighbors.

RelaySum To implement RelaySGD, we require a communication mechanism that delivers sums
of delayed ‘parcels’ s(t)

w =
∑n
j=1 p

(t−τwj)
j to each worker w in a tree network, where the parcel p(t)

j

is created by worker j at time t. To simplify the exposition, let us first consider the simplest type of
tree network: a chain. In a chain, a worker w is connected to workers w− 1 and w+ 1, if those exist,
and the delays are τij = |i− j|. We can then decompose

s(t)
w =

n∑
j=1

p
(t−τwj)
j = p(t)

w +

w−1∑
j=1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘left’

+

n∑
j=w+1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘right’

.

The sum of parcels from the ‘left’ will be sent as one message m(w−1)→w from worker w − 1
to w, and the sum of data from the ‘right’ will be sent as one message m(w+1)→w from w + 1
to w. Neighboring workers can compute these messages from the messages they received from
their neighbors in the previous timestep. Compared to typical gossip averaging, RelaySum requires
additional memory linear in the number of neighbors, but it uses the same volume of communication.

Algorithm 1 shows how this scheme is generalized to general tree networks and incorporated into
RelaySGD. Along with the model parameters, we send scalar counters that are used in the first few
iterations of the algorithm t ≤ τmax to correct for messages that have not yet arrived.

Spanning trees RelaySGD is formulated on tree networks, but it can be used on any communication
graph by constructing a spanning tree. In a truly decentralized setting, we can use the Spanning Tree
Protocol [30] used in Ethernet to find such trees in a decentralized fashion. The protocol elects a
leader as the root of the tree, after which every other node finds the fastest path to this leader.

On the other hand, when the decentralized paradigm is used in a data center to reduce communication,
RelaySGD can run on double binary trees [33] used in MPI and NCCL [10]. The key idea of double
binary trees is to use two different communication topologies for different parts of the model. We
communicate odd coordinates using a balanced binary tree A, and communicate the even coordinates
with a complimentary tree B. The trees A and B are chosen such that internal nodes (with 3 edges)
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Algorithm 1 RelaySGD

Input: ∀ i, x(0)
i = x(0); ∀ i, j,m(−1)

i→j = 0, counts c(−1)
i→j = 0, learning rate γ, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x

(t+1/2)
i = x

(t)
i −γ∇fi(x

(t)
i ) (or Adam/momentum)

4: for each neighbor j ∈ Ni do
5: Send m

(t)
i→j = x

(t+1/2)
i +

∑
k∈Ni\jm

(t−1)
k→i (relay messages from other neighbors)

6: Send corresponding counters c(t)i→j = 1 +
∑
k∈Ni\j c

(t−1)
k→i

7: Receive (m(t)
j→i, c

(t)
j→i) from node j

8: end for
9: n̄

(t+1)
i = 1 +

∑
j∈Ni c

(t)
j→i (n̄ converges to the total number of workers)

10: xt+1
i = 1

n̄
(t+1)
i

(
x

(t+1/2)
i +

∑
j∈Ni m

(t)
j→i

) (
= 1

n

∑n
j=1 x

(t−τij+1/2)
j

)
11: end for
12: end for

in one tree are leaves (with only 1 edge) in the other. Using the combination of two trees, RelaySGD
requires only constant extra memory equivalent to at most 2 model copies (just like the Adam
optimizer [14]), and it sends and receives the equivalent of 2 models (just like on a ring).

4 Theoretical analysis

Since RelaySGD updates worker’s models at time step t+1 using models from (at most) the past τmax

steps, we conveniently reformulate RelaySGD in the following way: Let Y(t),G(t) ∈ Rn(τmax+1)×d

denote stacked worker models and gradients whose row vectors at index n·τ + i represent[
Y(t)

]>
nτ+i

=

{
x

(t−τ)
i t ≥ τ

x(0) otherwise
,

[
G(t)

]>
nτ+i

=

{
∇Fi(x(t−τ)

i ; ξ
(t−τ)
i ) t ≥ τ

x(0) otherwise

for all times t ≥ 0, delay τ ∈ [0, τmax] and worker i ∈ [n]. Then (RelaySGD) can be written as

Y(t+1) = WY(t) − γW̃G(t)

where W,W̃ ∈ Rn(τmax+1)×n(τmax+1) are non-negative matrices whose elements are

[W]nτ+i,nτ ′+j =


1
n τ = 0 and τ ′ = τij
1 i = j and τ = τ ′ + 1

0 otherwise
,

[
W̃
]
nτ+i,nτ ′+j

=

{
1
n τ = 0 and τ ′ = τij
0 otherwise

for all τ, τ ′ ∈ [0, τmax] and i, j ∈ [n]. The matrix W can be interpreted as the mixing matrix of
an ‘augmented graph’ [27] with additional virtual ‘forwarding nodes’. W is row stochastic and its
largest eigenvalue is 1. The vector of all ones 1n(τmax+1) ∈ Rn(τmax+1) is a right eigenvector of W
and let π ∈ Rn(τmax+1) be the left eigenvector such that π>1n(τmax+1) = 1.

We characterize the convergence rate of the consensus distance in the following key lemma:
Lemma 1 (Key lemma). There exists an integer m = m(W) > 0 such that for any X ∈
Rn(τmax+1)×d we have

‖WmX− 1π>X‖2 ≤ (1− p)2m‖X− 1π>X‖2,

where p = 1
2 (1− |λ2(W)|) is a constant.

All the following optimization convergence results will only depend on the effective spectral gap
ρ := p

m of W. We empirically observe that ρ = Θ(1/n) for a variety of network topologies (see
Figure 5 in Appendix A).
Remark 2. The above key lemma is similar to [16, Assumption 4] for gossip-type averaging with
symmetric matrices. However, in our case W is just a row stochastic matrix, and its spectral norm
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‖W‖2 > 1. In general, the consensus distance can increase after just one single communication
step (multiplication by W). That is why we need m > 1. The proof of the Lemma relies on a
Perron-Frobenius type theorem, and holds over several steps m instead of a single iteration. It means
RelaySum defines a consensus algorithm with linear convergence rate which pulls models closer.

Our main convergence results hold under the following common assumptions, as e.g. [16].

Assumption A (L-smoothness). For each i ∈ [n], Fi(x, ξ) : RD × Ωi → R is differentiable for
each ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x,y ∈ Rd, ξ ∈ supp(Di):

‖∇Fi(x, ξ)−∇Fi(y, ξ)‖ ≤ L‖x− y‖ .

Assumption B (Uniform bounded noise). There exists constant σ̄, such that for all x ∈ Rd, i ∈ [n],

Eξ ‖∇Fi(x, ξ)−∇fi(x)‖2 ≤ σ̄2.

Assumption C (µ-convexity). For i ∈ [n], each function fi : Rd → R is µ-(strongly) convex for
constant µ ≥ 0. That is, ∀ x,y ∈ Rd

fi(x)− fj(y) + µ
2 ‖x− y‖22 ≤ ∇fi(x)>(x− y) .

Theorem I (RelaySGD). For any target accuracy ε > 0 and an optimal solution x?,
(Convex:) under Assumptions A, B and C with µ ≥ 0, it holds that 1

T+1

∑T
t=0

(
f(x(t))−f(x?)

)
≤ ε

after
O
(
σ̄2

nε2 + C
√
Lσ̄

ε3/2
+ CL

ε

)
R2

0

iterations. Here x(t) := π>Y(t) averages past models, R2
0 = ‖x0 − x?‖2, and C = O( 1

ρτ
3/2
max).

(Non-convex:) under Assumptions A and B, it holds that 1
T+1

∑T
t=0 ‖∇f(x(t))‖2 ≤ ε after

O
(
σ̄2

nε2 + Cσ̄
ε3/2

+ C
ε

)
LF0

iterations, where F0 := f(x(0))− f(x?).

The dominant term in our convergence result, O
(
σ̄2

nε2

)
matches with the dominant term in the

convergence rate of centralized (‘all-reduce’) mini-batch SGD, and thus can not be improved.

In contrast to other methods, the presented convergence result of RelaySGD is independent of the
data heterogeneity ζ2 in [16, Assumption 3b].

Definition D (Data heterogeneity). There exists a constant ζ2 such that ∀ i ∈ [n],x ∈ Rd

‖∇fi(x)−∇f(x)‖22 ≤ ζ2 .

Remark 3. For convex objectives, Assumptions B and D can be relaxed to only hold at the opti-
mum x?. A weaker variant of Assumption A only uses L-smoothness of fi [16, Assumption 1b].

Comparing to gossip averaging for convex fi which has complexityO( σ̄
2

nε2 + ( ζρ + σ̄√
ρ )
√
L

ε3/2
+ L
ρε )R2

0,
our rate for RelaySGD does not depend on ζ2 and has same leading term O( σ̄

2

nε2 ) as D2.

5 Experimental analysis and practical properties

5.1 Effect of network topology

Random quadratics To efficiently investigate the scalability of RelaySGD with respect to the
number of workers, and to study the benefits of binary tree topologies over chains, we introduce
a family of synthetic functions. We study random quadratics with local cost functions fi(x) =
‖Aix − b>i x‖2 to precisely control all constants that appear in our theoretical analysis. The
Hessians Ai are initialized randomly, and their spectrum is scaled to achieve a desired smoothness L
and strong convexity µ. The offsets bi ensure a desired level of heterogeneity ζ2 and distance between
optimum and initialization r0. Appendix B.4 describes the generation of these quadratics in detail.
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Scalability on rings and trees Using these quadratics, Figure 2 studies the number of steps required
to reach a suboptimality f(x̄)− f(x?) ≤ ε with tuned constant learning rates. On ring topologies
with uniform (1/3) gossip weights (and chains for RelaySum), all compared methods require steps at
least linear in the number of workers to reach the target quality. RelaySGD and D2 empirically scale
significantly better than Gradient Tracking, these methods are all independent of data heterogeneity.
On a balanced binary tree network with Metropolis-Hastings weights [41], both D2 and Gradient
Tracking notably do not scale better than on a ring, while RelaySGD on these trees requires only
a number of steps logarithmic in the number of workers. SGP with their time-varying exponential
topology scales well, too, but it requires more steps on more heterogeneously distributed data.

0 20 40 60 80 100
Number of workers (n)

0

100

200

300

400

500

#
st

ep
s

to
f(x̄
)−

f(x
?
)≤

10
−6

ζ2 = 0.01 (a little heterogeneous)

0 20 40 60 80 100
Number of workers (n)

ζ2 = 1.0 (very heterogeneous)

Algorithm
Gradient tracking
SGP
RelaySGD
D2

Topology
Balanced binary tree
Ring / chain
Time-varying exponential

Figure 2: Time required to optimize random quadratics (σ2 = 0, r0 = 10, L = 1, µ = 0.5) to
suboptimality ≤ 10−6 with varying numbers of workers with tuned constant learning rates. On a
ring ( ), D2 and RelaySGD require steps linear in the number of workers, and this number is
independent of the data heterogeneity. RelaySGD reduces this to log n on a balanced tree topology
( ), but trees do not improve D2 or Gradient Tracking. For SGP with time-varying exponential
topology ( ), the number of steps does not consistently grow with more workers, but this number
becomes higher with more heterogeneity (left v.s. right plot).

5.2 Spanning trees compared to other topologies

RelaySGD cannot utilize all available edges in arbitrary networks to communicate, but is restricted
to a spanning tree of the graph. We empirically find that this restriction is not limiting. In Figure 3,
we take an organic social network topology based on the Davis Southern Women graph [4] from
NetworkX [7], and construct random spanning trees found by the Spanning Tree Protocol [30]. On
any such spanning tree, RelaySGD optimizes random heterogeneous quadratics as fast as D2 on the
full graph with Metropolis-Hastings weights [41], significantly faster than DP-SGD.

For decentralized learning used in a fully-connected data center for communication efficiency, the
deep learning experiments below show that RelaySGD on double binary trees outperforms the most
popular non-tree-based communication scheme used in decentralized deep learning [2].

5.3 Effect of data heterogeneity in decentralized deep learning

We study the performance of RelaySGD in deep-learning based image- and text classification. While
the algorithm is theoretically independent of dissimilarities in training data, other methods (D2,
RelaySGD/Grad) that have the same property often lose accuracy in the presence of high data
heterogeneity [20]. To study the dependence of RelaySGD in practical deep learning, we partition
training data strictly across 16 workers and distribute the classes using a Dirichlet process [47, 20].
The Dirichlet parameter α controls the heterogeneity of the data across workers.

We compare RelaySGD against a variety of other algorithms. DP-SGD [19] is the most natural
combination of SGD with gossip averaging, and we chose D2 [36] to represent the class of previous
work that is theoretically robust to heterogeneity. We extend D2 to allow varying step sizes and local
momentum, according to Appendix D.4, and make it suitable for practical deep learning. Although
Stochastic Gradient Push [2] is not theoretically independent of data heterogeneity, it is a popular
choice in the data center setting, where they use a time-varying exponential scheme on 2d workers that
mixes exactly uniformly in d rounds (Appendix D.6). We also compare to DP-SGD with quasi-global
momentum [20], a practical method recently introduced to increase robustness to heterogeneous data.
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Figure 3: Performance of RelaySGD on spanning trees of the Social Network graph (32 nodes)
found using Spanning Tree Protocol, compared to DP-SGD and D2 on the full network. Solid
lines ( ) indicate spanning trees while dashed lines ( ) indicate the full graph. The figure
on the right shows one spanning tree on top of the original network. Learning rates are tuned to
reach suboptimality ≤ 10−5 on random quadratics (ζ2 = 0.1, σ2 = 0.1, r0 = 1, L = 1, µ = 0.5).

RelaySGD on spanning trees converges as fast as D2 on the full network, while the total
communication on spanning trees is smaller than on the full graph.

Table 1: Cifar-10 [17] test accuracy with the VGG-11 architecture. We vary the data heterogene-
ity α [20] between 16 workers. Each method sends/receives 2 models per iteration. We use a ring
topology for DP-SGD and D2 because they perform better on rings than on trees. RelaySum with
momentum achieves the best results across all levels of data heterogeneity.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(optimal c.f. Table 2) (most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD binary trees 87.4% 86.9% 84.6%
+local momentum 90.2% 89.5% 89.1%

DP-SGD [19] ring 87.4% 79.9% 53.9%
+quasi-global mom. [20] 89.5% 84.8% 63.3%

D2 [36] ring 87.2% 84.0% 38.2%
+local momentum 88.2% 88.5% 61.0%

Stochastic gradient push [2] time-varying exponential [2] 87.4% 86.7% 86.7%
+local momentum 89.5% 89.2% 87.5%

Table 1 evaluates RelaySGD in the fully-connected data center setting where we limit the communica-
tion budget per iteration to two models. We use 16-workers on Cifar-10, following the experimental
details outlined in Appendix B and hyper-parameter tuning procedure from Appendix C. For this
experiment, we consider three topologies: (1) double binary trees as described in section 3, (2) rings,
and (3) the time-varying exponential scheme of Stochastic Gradient Push (SGP) [2]. Because SGP
normally sends/receives only one model per communication round, we execute two synchronous
communication steps per gradient update, increasing its latency. The various algorithms compared
have different optimal topology choices. In Table 1 we only include the optimal choice for each
algorithm. Table 2 qualitatively compares the possible combinations. We opt for the VGG-11 archi-
tecture because it does not feature BatchNorm [9]. BatchNorm poses particular challenges to data
heterogeneity, and the search for alternatives is an active, and orthogonal, area of research [21].

Even though RelaySGD does not use a time-varying topology, it performs as well as or better than
SGP, and RelaySGD with momentum suffers minimal accuracy loss up to heterogeneity α = 0.01, a
level higher than considered in previous work [20]. While D2 is theoretically independent of data
heterogeneity, and while some of its random repetitions yield good results, it is unstable in the very
heterogeneous setting. Moreover, Figure 4 shows that workers with RelaySGD achieve high test
accuracies quicker during training than with other algorithms.

These findings are confirmed on ImageNet [5] with the ResNet-20-EvoNorm architecture [21] in
Table 3. On the BERT fine-tuning task from [20], Table 4 demonstrates that RelaySGD with the
Adam optimizer, customary for such NLP tasks, outperforms all compared algorithms.
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Table 2: Motivation of topology choices. For each algorithm, we compare 4 topologies configured
to send/receive 2 models at each SGD iteration. The algorithms have different optimal topologies.

Algorithm Ring Chain (= spanning tree of ring) Double binary trees Time-varying exponential [2]

RelaySGD Unsupported Worse than double b. trees (E.1) Best result Unsupported
DP-SGD Best result Worse than ring Worse than ring (E.1) Unsupported
D2 Best result Worse than ring Worse than ring (E.1) Unsupported
SGP Equivalent to DP-SGD Equivalent to DP-SGD Equivalent to DP-SGD Best result
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y Figure 4: Test accuracy during training of 16 work-

ers with heterogeneous data (α = 0.01) on Cifar-10.
Like, with the all-reduce baseline, all workers in

RelaySGD on double binary trees quickly reach
good accuracy, while this takes longer for SGP
with time-varying exponential topology and D2 on
a ring. DP-SGD does not reach good accuracy with
such heterogeneous data.

Table 3: Test accuracies on ImageNet, using 16 workers with heterogeneous data (α = 0.1). Even
when communicating over a simple chain network, RelaySGD performs similarly to SGP with their
time-varying exponential communicating scheme. Methods use default learning rates (Appendix C.2).

Algorithm Topology Top-1 Accuracy

Centralized (baseline) fully-connected 69.7%
RelaySGD w/ momentum double binary trees 60.0%
DP-SGD [19] w/ quasi-global momentum [20] ring 55.8%
D2 [36] w/ momentum ring diverged at epoch 65, at 49.5%
SGP [2] w/ momentum time-varying exponential [2] 58.5%

Algorithm Topology Top-1 Accuracy

Centralized Adam fully-connected 94.2%± 0.1%
Relay-Adam double binary trees 93.2%± 0.6%
DP-SGD Adam ring 87.3%± 0.6%
Quasi-global Adam [20] ring 88.3%± 0.7%
SGP [2] Adam time-varying exp. 88.3%± 0.3%

Table 4: DistilBERT [34] fine-tuning on AG
news data [49] using 16 nodes with heteroge-
neous data (α = 0.1). Transformers are usually
trained with Adam, and RelaySGD naturally
supports Adam updates. (Appendix B.3).

Table 5: Robustness to unreliable networks. On Cifar-10/VGG-11 with 16 workers and heterogeneous
data (α = 0.01), we compare momentum versions of the best-performing algorithms from Table 1.
Like gossip-based algorithms, RelaySGD with the robust update rule 1 can tolerate up to 10% dropped
messages and converge to full test accuracy. Without modification, D2 does not share this property.

Algorithm Topology Reliable network 1% dropped messages 10% dropped messages

RelaySGD w/ momentum trees 89.2% 89.3% 89.3%
DP-SGD [19] w/ quasi-global mom. [20] ring 78.3% 76.2% 76.9%
D2 [36] w/ momentum ring 87.4% diverges diverges
SGP [2] w/ momentum time-varying 88.5% 88.6% 88.1%
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5.4 Robustness to unreliable communication

Peer-to-peer applications are a central use case for decentralized learning. Decentralized learning
algorithms must therefore be robust to workers joining and leaving, and to unreliable communication
between workers. Gossip averaging naturally features such robustness, but for methods like D2,
that correct for local data biases, achieving such robustness is non-trivial. As a proxy for these
challenges, in Table 5, we verify that RelaySGD can tolerate randomly dropped messages. The
algorithm achieves this by reliably counting the number of models summed up in each message. For
this experiment, we use an extended version of Algorithm 1, where line 10 is replaced by

x
(t+1)
i = 1

n

(
x

(t+1/2)
i +

∑
j∈Ni m

(t)
j→i + (n− n̄(t+1)

i )x
(t)
i

)
. (1)

We count the number of models received as n̄, and substitute any missing models (< n) by the
previous state x

(t)
i . RelaySGD trains reliably to good test accuracy with up to 10% deleted messages.

This behavior is on par with a similarly modified SGP [2] that corrects for missing energy. In contrast,
D2 becomes unstable with undelivered messages and diverges.

6 Conclusion

Decentralized learning has great promise as a building block in the democratization of deep learning.
Deep learning relies on large datasets, and while large companies can afford those, many individuals
together can, too. Of course, their data does not follow the exact same distribution, calling for
robustness of decentralized learning algorithms to data heterogeneity. Algorithms with this property
have been proposed and analyzed theoretically, but they do not always perform well in deep learning.

In this paper, we propose RelaySGD for distributed optimization over decentralized networks with
heterogeneous data. Unlike algorithms based on gossip averaging, RelaySGD relays models through
spanning trees of a network without decaying their magnitude. This yields an algorithm that is both
theoretically independent of data heterogeneity, but also high performing in actual deep learning
tasks. With its demonstrated robustness to unreliable communication, RelaySGD makes an attractive
choice for peer-to-peer deep learning and applications in large-scale data centers.
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